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UNIFORM DISTRIBUTION OF TWO-TERM 
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WILLIAM YSLAS VELEZ 

ABSTRACT. Let uo, Ul' A, B be rational integers and for n ;;, 2 define un = AUn- 1 
+ BUn _ 2' The sequence (Un) is clearly periodic modulo m and we say that (un) is 
uniformly distributed modulo m if for every s, every residue modulo m occurs the 
same number of times in the sequence of residues us' us + l' ... , us + N- l' where N is 
the period of (un) modulo m. If (un) is uniformly distributed modulo m then m 
divides N, so we write N = mf. Several authors have characterized those m for 
which (un) is uniformly distributed modulo m. In fact in this paper we will show 
that a much stronger property holds when m = pk, P a prime. Namely, if (un) is 
uniformly distributed modulo pk with period pkf, then every residue modulo pk 
appears exactly once in the sequence us' u<+f"'" Us+(pk-l)f' for every s. We also 
characterize those composite m for which this more stringent property holds. 

Let uo, u l , A, B be rational integers and define, for n ~ 2, Un = AUn_ l + Bun_ 2 • 

The sequence of integers (un) thus obtained is said to be a two-termed linear 
recurrence sequence. If m is a positive integer then the sequence (Un) considered 
modulo m is dearly periodic. 

DEFINITION. The sequence (un) is said to be uniformly distributed modulo m 
(henceforth denoted by UD(mod m)) if every residue modulo m occurs the same 
number of times in any period. That is, if N is the period of (u n) modulo m, then for 
every s, every residue modulo m appears the same number of times among the 
residues {us, Us+I ,···, us+N-d· 

Those m for which (un) is UD(mod m) have been determined by several authors 
and recently Narkiewicz [2] has collected these results together. We shall use the 
notation and results of Chapter 3 of [2] throughout this paper. 

In order to state this characterization we begm by developing some terminology. 
Given (un), let D = A2 + 4B be the discriminant of x 2 - Ax - B. We can express 
un in terms of the roots of the quadratic in the following way (see Chapter 3 of [2]). 

Case I, D = O. Then un = (co + c I n)(A/2Y, for n ~ 0 and Co = UO, Cl = 
(2u l - Auo)A- I . 

Case II, D =F O. Then un = coCCA + {i5)/2)n + cl((A - {i5)/2)", where Co = 

(u o{i5 + (2u I - Auo))/2{i5, cl = (u o{i5 - (2u l - Auo))/2{i5. 
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THEOREM A. The sequence (Un) is UD(mod m) iff the following hold: 
(i) If a prime p divides m then p divides D and p + B. 

(ii) If P ;;;. 3 then p + 2uI - Auo· 
(iii) If P = 3 and 91 m then D "¥= 6 (mod 9). 
(iv) If p = 2 then uo, UI have opposite parity and if 41 m then A == 2 (mod 4) and 

B == 3 (mod 4). 

If (un) is UD(mod m) then it is obvious that the period of (un) modulo m is 
divisible by m. Henceforth let us denote this period by mf. 

If one specializes the above to the Fibonacci sequence, U o = 0, ul = A = B = 1, 
then (u n) is UD( mod m) iff m = S k and the period is S k . 4. For this sequence 
Erlebach and Velez [1] discovered that in fact (u n) satisfies an even more stringent 
property modulo Sk, namely, for every s, every residue modulo Sk occurs exactly 
once in the sequence us' Us+4'··.' us+(Sk-I)4. 

In this paper we shall see that this same type of distribution holds for the more 
general cases of UD(mod pk) and we shall also characterize those composite m for 
which the above property holds. With this in mind we make the following definition. 

DEFINITION. Let (un) be UD(mod m) with period mf. Then we say that (un) is 
f- UD(mod m) if for every s every residue modulo m occurs exactly once in the 
sequence us' us+!'···' us+(m-I)!· 

As mentioned above we shall prove the following. 

THEOREM B. The sequence (un) is UD(modpk) with period pkf iff (un) is 
f-UD(mod pk). Furthermore, f = 1 if P = 2 otherwise it is the multiplicative order of 
A j2 modulo p. 

It is obvious that if (un) is f-UD(modm) then (un) is UD(modm). Thus we only 
have to prove one direction. What we shall actually prove is that if (un) and p 
satisfy conditions (i)-(iv) then (un) is f-UD(mod pk). 

The method of proof will be as follows. We shall expand «A ± {ij)j2)n using 
the binomial theorem and reduce the expression in the appropriate residue system. 
Before launching into a proof we must first deal with some technical matters. 

For a prime p let pp( a) denote the exact power of p that divides the integer a. For 
a rational number ajb we set pp(ajb) = pp(a) - pp(b). 

LEMMA 1. Suppose that conditions (i)-(iv) of A are satisfied, D "* 0 andj ;;;. 1. 
Ifp = 2, P2«2j + 1)!A2i) = p2«2j)!A2i) < 4j ~ P2(Di). 
Ifp;;;. S or pp(D) > 1, then pp«2j + 1)!A2i) < pp(Di). 
Ifp = 3 and P3(D) = 1, then 

P3((2j + 1)!A2i) ~j = P3(Di). 

Further P3«2j + 1)!A2i) = j iff 2j + 1 is a power of 3. 

PROOF. It is well known that 

pp ((2j + I)!) = L } h ' 
'Xl [20+1] 

h=l P 
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where [ 1 denotes the greatest integer function. Let s be defined by pS :( 2j + 1 < 
pS+l. 

If p = 2 and k ~ 2 then since A == 2 (mod 4), B == 3 (mod 4) we see that 
"2(D) ~ 4 and "2(A2J) = 2j, so 

"2((2j + 1)!A2J) = 2j + "2((2j)!) = 2j + t [2{] 
h~l 2 

S 2· 
:( 2j + L -{; = 2j + 2j(1 - 2-S). 

h~l 2 
However, since the left-hand side is an integer we have that 

"2((2j)!A2J) = "2((2j + 1)!A2J) < 4j:( "2(D s). 
The remaining cases follow the same pattern. 0 

LEMMA 2. Suppose that uo, u1 satisfy conditions (i)-(iv). If we replace uo, U 1 by US' 
us+l in (i)-(iv), then US' us+1 also satisfy conditions (i)-(iv). 

PROOF. It is obvious that if uo, u1 have opposite parity then US' Us+1 also have 
opposite parity. Thus it only remains to show that p t (2u s+1 - Aus)' where p is an 
odd prime satisfying plD and p t B. From this it follows that ptA and (AI2)2 == 
-2B (modp). 

Suppose that p t 2uk - AUk_1 and consider 2Uk+1 - AUk. Since Uk+l = AUk + 
BU k _ l , we have that 

2Uk+1 - AUk = AUk + 2Buk_1 == AUk _(A2/2)Uk_1 

== (AI2)(2u k - AUk-I) (modp), 
so P t 2Uk+1 - AUk. 0 

The formulas appearing in Cases I and II are rather cumbersome. The next two 
lemmas will allow us to reduce the analysis to the case where U o = 0 and U 1 = 1. 

LEMMA 3. Suppose that (un) and p satisfy (i)-(iv). Given any k there exists an n 
such that "p(un) ~ k. 

PROOF. Case I: un = (co + c1n)(AI2Y. From the assumptions we see that 
(p, c1) = (p, A12) = 1, so we can easily solve the linear congruence Co + c1n == 0 
(modpk). 

Case II. By applying the binomial theorem to (A ± li5)n, we obtain 

Un = (~ r[Uo(l +(~)A-2D +(~)A-4D2 + ... ) 

+(2u1 - AUo)((~)A-l +(~)A-3D +(~)A-5D2 + ... )]. 
First of all observe that by 1 all of the expressions involving the binomial 

coefficients are integral at p. 
Let us write n in the form n = pk-lm, where k ~ 1 and m is to be determined 

later. If "p( DJ I A2J+ 1(2j + I)!) > 0 or "p(DJ I A2J(2j)!) > 0, then 

,,((pk-Im )A- 2J- 1DJ) >- k and p ((pk-lm )A-2JDJ) >- k. p 2j + 1 ~ p 2j ~ 



40 W. Y. VELEZ 

Thus from Lemma 1 it follows that for n = pk~lm, 

[ (n) -2 (n) ~4 2 ]_ Uo 1 + 2 A D + 4 A D +... = U o 

Further, if p ~ 5 or vp(D) > 1, then from Lemma 1 we have that 

un = (A/2)"[u o +(2u I - AUo)A~lpk~lm] (modpk). 

We will now induct on k. If k = 1, then if p is odd 

Urn = (A/2) rn [u o + (2uI - Auo)A ~Im] = 0 (mod p) 

has a solution for some m since «2u I - Auo), p) = 1. If p = 2, then uo' ul have 
opposite parity, so at least one of uo, ul, is divisible by 2. 

Thus, assume there is an s for which Us = 0 (mod pk -1). By Lemma 2 we may 
assume that Uo = 0 (modpk-1). So let Uo = pk~IV. Then 

un = (A/2)"[pk-1V +(2u1 - AUo)A-lpk~lm] = 0 (modpk) 

iff 

UnP-k+1 = (A/2)"[v +(2u1 - Auo)A-1m] = 0 (modp), 

which clearly has a solution for some m. Thus the lemma is true if p ~ 5 or 
vp(D) > 1. 

Let us now consider p = 3 and v3(D) = 1. Then if j ~ 2, 

V3((pk-lm)!j(pk~lm -(2j + 1))) ~ k, 

so 

Un = (A/2)" [U o + (2u l - AUo)( A -13k- 1m + (~)A ~3D)] (mod 3k). 

Again we induct on k. Since (un) and 3 satisfy (i)-(iv) and v3(D) = 1, we have 
that D = 3 (mod 9), so D /3 = 1 (mod 3). 

For k = 1, we have that n = 31~lm = m, 

Urn = (A/2)rn[u o +(2u1 - AUo)(A~lm + m(m - l)(m - 2)A~3(D/3)/2)] 

= (A/2)rn[u o +(2ul - AUo)(A~lm)] (mod 3), 

since m(m - l)(m - 2) = 0 (mod 3). Since (2u I - Auo, 3) = 1, there is certainly an 
m for which Urn = 0 (mod 3). 

Thus by induction we may assume that there is an s for which Us = 0 (mod3k~1) 
and as before we may assume that s = 0 and Uo = 3k~lV. Thus 

u"rk+l = (A/2)"[v +(2ul - 3k-1mA)(A~lm + m(3k- lm - 1) 

.(3k~lm - 2)A~3(D/3)/2)] (mod 3) 

= (A/2)"[v + 2ul(A~lm + m( -1)( -2)A~3/2)] 

= (A/2)"[v + 2u1A~lm(1 +A~2)] 
= (A/2)"[v + u1A~lm] (mod3), sinceA 2 = 1 (mod 3). 



UNIFORM DISTRIBUTION OF RECURRENCE SEQUENCES 41 

Since 31 Uo and 3 + (2ul - Auo), we have that V3(u I A -1) = 0 so there is an m for 
which v + u l A -1m == 0 (mod 3) so the lemma is proven. 0 

REMARK. The reader will note that if Dj3 == 2 (mod 3) then 1 + (Dj3)A -2 == 0 
(mod 3) and the induction fails to go through. 

COROLLARY 4. Suppose that (un) and p satisfy (i)-(iv). Then if we are considering 
the sequence (un) modulo pk we may assume that Uo = 0, Ul = 1 and Un modulo pk is 
given by the formulas: 

Case I. Un == (Aj2)n- ln (mod pk). 
Case II. Un == (Aj2r«n + (DA -2D + (~)A -4D 2 + ... ) (mod pk). 

PROOF. From the previous lemmas we may assume that U o == 0 (mod pk). Since 
p + 2u l - Auo if p is odd, this implies that p + u l . Also if P = 2 then uo, Ul having 
opposite parity yields that 2 + u l . Thus in all cases p + u1. If we multiply Un by u1l 

then (u1lu n) satisfy (i)-(iv). 0 
Now that we have these preliminaries out of the way we can begin to obtain 

information about the periods of uniformly distributed sequences. 

LEMMA 5. Let the order of Aj2 modulo p be f. If (un) is UD(mod pk) its period is 
pkf. 

PROOF. Without loss of generality we may assume that U o = 0 and Ul = 1. 
Case I. Since un == (Aj2r- ln (mod pk), we have that the order of Aj2 modulo 

pk is pif, where j ::::;; k - 1 and the period of n modulo pk is pk, so the assertion 
follows. 

Case II. Then un == (Aj2r-lB(n) (mod pk), where B(n) = (n + (j)A -2D + 
(~)A -4D 2 + ... , where of course the sum is finite. 

For k = 1, the period of (Aj2)n-l is f and the period of B(n) is p, thus the 
period of un is pf. 

For general k we have that the period of (un) modulo pk is pkh, for some h. As 
before (Aj2) has period fpi, where j::::;; k - 1, so f 1 h. It is also clear that 
(2;"+l)A -2iDi has period a divisor of pk. Thus the period of (Aj2y- lB(n) divides 
pkf, so the period is pkf. 0 

The determination of f-UD(modpk) involves the analysis of (Aj2y- lB(n) 
(mod pk). A useful technical result will be the following. 

LEMMA 6. Let n = m + pk-lml. If either (a) p ~ 5, (b) vp(D) > 1, or (c) p = 3, 
v3(D) = 1 andj ~ 2, then 

(2j: dA-2iDi == (2 j n: 1)A-2iD i (modpk). 

PROOF. If vp(DijA2i(2j + I)!) > 0 then the result follows, and this occurs if 
p ~ 5 or vp(D) > lor p = 3, vp(D) = 1 and 2j + 1 is not a power of 3, by Lemma 
1. 

Thus, let us consider p = 3, vp(D) = 1 and 2j + 1 = 3r. Then 

a = DJA -2J j(2j + I)! 
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is integral at 3. Set A = n(n - 1) ... (n - 2j). A factor of A is of the form n - i, 
where i E {a, 1, ... , 2j}. Thus write A = (n - i)A;. Now 

A = {m - i + pk-lm1)A i 

and 31 Ai since 2j ~ 8 (recall 2j = 3r, r ~ 2), so A is the product of at least 8 
consecutive integers. Thus A == (m - i)Ai and the result follows. 0 

We can now prove the main result on f-UD(mod pk). 

THEOREM 7. Let (Un) and pk satisfy conditions (i)-(iv). If A/2 has order f modulo 
p, then (un) isf-UD(modpk). 

PROOF. We want to show that for any s, us' us+f , ... , us+f(pk-l) are all distinct 
residues modulo pk. Let us first prove the assertion for k = 1. If p = 2 the assertion 
is obvious. 

In either Case I or II we have that Un == (A/2y- I n (mod p). Thus for n = s + af, 
a E {a, 1, ... , p - I} we have that 

Un == (A/2)'-\A/2)af (s + af) == (A/2)'-\s + af) (modp), 

since (A/2)f == 1 (mod p). Since f 1 p - 1, s + af runs through the distinct residues 
modulo p as a runs through {a, 1, ... , p - I}. Thus we have the result is true for 
k = 1 and now let us assume that the result is true for k - 1. 

For k > 1 and a E {O,I, ... ,pk -I} let us write a in the form a = b + cpk-\ 
whereb E {O,I, ... ,pk-l -I}, c E {O,I, ... ,p -I}. Thus 

us+af == (A/2),-1(A/2)bf (A/2)"f pk-l B (S + at) 

== (A/2)'-\A/2)hfB (s + at) (modpk). 

If we consider us+af modulo pk-l, then B(s + af) == B(s + bf) mod(pk-l), so 
us+af == (A/2y-l(A/2)hfB(s + bf) (mod pk-l). Thus the induction hypothesis 
yields that as b ranges through the set {a, 1, ... , pk-l}, these are all distinct modulo 
pk-l. 

Thus let us now let b be fixed and let c range through the set {a, 1, ... , P - I}. So 
we have us+ af == (A/2y-I(A/2)bfB(s + bf + Cfpk-l) (mod pk). So these are all 
incongruent iff B(s + bf + cfpk-l) (mod pk) are all incongruent. 

By Lemma 6 we have that if p ~ 5 or pp(D) > 0, then 

B(s + at) == (s + bf : Cfpk - I ) + C(s, b) (modpk), 

where C(s, b) depends only on band s and not on c. Thus B(s + af) are clearly all 
incongruent as c ranges through the set {a, 1, ... , p - I}. 

If P = 3 and P 3(D) = 1, then 

B(s+ at) == (S+bf~C3k-l) +(S+bf ;c3k- 1)A- 2D+ C1(s,b) (mod3 k ), 

where again C1(s, b) depends only on band s and not on c. Set BI(s + af) == 
B(s + af) - C1(s, b), and we shall prove the assertion for B1(s + af). 
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If k ~ 3 then condition (iii) gives that D =1= 6 (mod 9). Since we are also assuming 
that P3(D) = 1, this implies that D == 3 (mod 9), soA -2D/3 == 1 (mod 3). 

Let Ci = cf, then since (f, 3) = 1, c i ranges over the residue system {O, 1, 2} as c 
ranges over the same residue system. Set m = s + bf. Then 

Bi(S + af) == m + c13k - i +(m + c13k- i )(m - 1 + c13k - i ) 

·(m - 2 + c13k - i )A- 2D/(2. 3) 

. (m(m - 1) + m(m - 2) + (m - l)(m - 2))] A -2D/(2 . 3) 

== m + c13k - i + [m(m - l)(m - 2) + 2c13k- i ]A- 2D/(2· 3) 

== C2 (s,b) + c13k - i (mod3 k ), 

where C2(s, b) collects together all those terms which do not contain c i . 

Thus it is obvious that Bi(s + an are all distinct as Ci runs through the residue 
system module 3. 0 

We have proved Theorem B and in so doing we have proven A for the case m a 
prime power. It has already been observed that if (un) is UD(mod pk) for every pk 
dividing m, p a prime, then (un) is UD(mod m). We shall not prove this result again 
(though at the end of this paper we shall make some remarks about a different 
proof), rather we shall assume the validity of A and characterize when (u n) is 
f-UD(mod m). 

Let m = Pi ... Pr, where each Pi is a prime power, (Pi' P) = 1 if i =1= j. We shall 
assume that Un is UD(mod PJ, with period PJi' for each i (thus by Theorem B, 
(un) is frUD(mod Pi»' 

The period of (Un) modulo m is the l.c.m.{ Pdi' ... , PJr}, which we shall write as 
mf· 

We shall need the following technical result to arrive at this characterization. 

LEMMA 8. Suppose that (un) is f-UD(modm), then us' us+hf, us+2hf, ... , 
Us + (m -i)hf are all distinct modulo miff (h, m) = 1. 

PROOF. If (h, m) = 1 then 0, h, ... , (m - l)h are all distinct modulo m. Given j, 
let k(j) be the least residue between 0 and m congruent to jh modulo m. Thus 
jhf == k(j)f + l(j)mf· However, (un) has period mf modulo m, so us+}hf == uS+k(j)f 
(modm) and since us,us+f"",us+(m-i)f are all distinct modulo m the result 
follows. 

Conversely, if (h, m) =1= 1, there exist 0 < i < j < m such that ih == jh (mod m), so 
ihf=jhf+ Imf and US +ihf == u s+jhf (modm). Thus us,us+hf"",us+(m-i)hf are 
not all distinct modulo m. 0 

THEOREM 9. Suppose that m = Pi ... Pr and that (un) is frUD(mod PJ, i = 

1, ... ,r. Let l.c.m.{Pdi,P2f2,· .. ,PJr} = mf· Then (un) is f-UD(modm) iff 
(f,m) = 1. 
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PROOF. Let Pi be the prime corresponding to Pi' that is, Pi equals Pi to some 
positive exponent. We shall number the Pi so that PI < P2 < ... < Pro 

Assume that (f, m) = 1. We shall prove the theorem by inducting on r. For r = 1 
this is Theorem B. Set F = PI' L = P2 ... Pr and consider the matrix 

A= l Us 
us + F! 

US+(J-IJF! 

Us+! 
us+(F+IJ! 

Us+«L-I)F+Il! 

Us+(F-IJ! 1 
Us+(2F-IJ! . 

Us+(m-IJ! 

Since Pdl I PI ... PrI, we have that 11 I P2 ... PJ. However, 11 I PI - 1 since 11 
is the multiplicative order of Aj2 modulo PI if PI is odd, otherwise 11 = 1. Since 
PI < P2 < ... < Pr' this implies that (fl' P2 ... Pr) = 1, so 11 I I, and we write 
1= hdl· By assumption, (f, PI) = 1, so (hI' PI) = 1 and from Lemma 8 we may 
conclude that each row of the matrix A represents all of the distinct residues modulo 
PI and in fact all of the rows of A are identical modulo Pl. 

Now let us consider the columns of A modulo L. Set l.c.m.{ Pzf2' ... ' Prlr} = LI'. 
From the hypothesis that (m, f) = 1, it follows easily that (L, 1') = 1. Thus the 
induction hypothesis allows us to conclude that us' us+/', ... , us+(L-ll/, are all 
distinct modulo L. Obviously LI' I ml, thus I' I Pd and let us write FI = Pd = hI'. 
Since (f, m) = 1, this implies that (h, L) = 1, thus we may apply Lemma 8 to 
conclude that each of the entries of any column of A are distinct modulo L. 

The Chinese Remainder Theorem can now be invoked to conclude that 
u" us +!' ... ' u<+(m-ll! are all distinct modulo m. 

Now assume that (m, f) * 1. Then there exists a smallest v such that (Pi' f) = 1 
for i < v and (Pv'!) * 1. Set L = Pv ... Pr and F = mjL, and consider the 
matrix A with these new values of F and L. 

Just as in the preceding case it follows that each row of A represents all of the 
distinct residues modulo F and that all of the rows are identical modulo F. 

Thus by the Chinese Remainder Theorem, all of the entries of the matrix are 
distinct modulo m iff all of the entries in any column (which are constant modulo 
F) are distinct modulo L. We shall show that the entries in the first column are not 
distinct modulo L. 

From the first column of A construct a new matrix 

B= [

Us 
us + PvF! 

US+(PV+ 1 •• : p,-llPJ! 

US+(PV-IlF!j. 

us+(L-IlF! 

Now PJv I FLI, so Iv I FPv+1 ••. PJ. Further, since Iv I Pv - 1 and Pv < Pv+l < 
... < Pr' we have that (fv, Pv+1 ••• Pr) = 1, so Iv I FI, thus the rows are identical 
modulo Pv. Set FI = hlv· By assumption Pv I I and since (Pv, Iv) = 1, we must have 
that Pv I h. However, we can now apply Lemma 8 to conclude that the rows of Bare 
not all distinct modulo Pv, which in turn implies that the entries of B are not all 
distinct modulo L. 0 



UNIFORM DISTRIBUTION OF RECURRENCE SEQUENCES 45 

As we pointed out it has been proved that if (Un) is UD(mod Pi)' i = 1, ... , r, 
then (un) is UD(mod m), where m = PI ... Pro The proof of Theorem 9 did not 
need this result and in fact we can use Theorem 9 to prove this result on 
UD(mod m). We shall not give a complete proof but rather just indicate how 
Theorem 9 can be used. 

Suppose that (u n) is UD( mod P;), then by Theorem B, (u n) is Ir UD( mod P;), 
where /; 1 Pi - 1. Let ml = l.c.m.{ PIll"'" PrJr}. If (f, m) = 1, then by Theorem 9, 
(un) is I-UD(modm) and thus (un) is UD(modm). 

If (f, m) =F 1 then there are technical complications. However, if we assume that 
Pi =F 2 or 3 for all i, then we can apply Theorem 9 quite easily as the following 
argument shows. 

If Pi =F 2 or 3 and (un) is frUD(modP;) then by Theorem A, (un) is Ir 
UD(mod pn, for all e. 

Thus since (m, f) =F 1, let e be a sufficiently large integer so that 
l.c.m.{P{fI"'" P/lr} = P{ ... P/!' = me!" where (f', m) = 1. Thus by Theorem 
9, (un) is j'-UD(modme ), so (un) is UD(modm e ) and it then follows that (un) is 
UD(modm). 

If Pi = 2 or 3 for some i then we cannot use the above argument since it is 
possible that (un) is UD modulo 2 or 3, yet (un) is not UD modulo 22 or 32, 
respectively. 

Thus, if Pi = 2 or 3 then we would set F = PI' L = P2 ••• Pr if exactly one of the 
Pi is 2 or 3 and we would set F = PI P2 , L = P3 ••• Pr if PI = 2, P2 = 3. 

If (f, L) =F 1 then we can replace L by U for e sufficiently large (just as in the 
preceding argument) so that l.c.m.{ F, U, Ii' i = 1, ... , r} = FUj', where (f', L) = 
1. Thus if (un) is UD(modFU), then (un) is UD(modFL). So we can assume that 
(f, L) = 1, yet (f, F) =F 1; thus there are three possibilities (i) 21 I, 31 I, (ii) 21 I, 
3 + I, (iii) 2 + I, 31 f. All of these cases entail the same kind of analysis which we will 
not discuss further. 
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