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F-PURITY AND RATIONAL SINGULARITY 
IN GRADED COMPLETE INTERSECTION RINGS 

RICHARD FEDDER 

ABSTRACT. A simple criterion is given for determining" almost completely" whether 
the positively graded complete intersection ring R = K[Xj , •.• , Xn+Il!(Gi , ... , GI ), 
of dimension 11, has an F-pure type singularity at m = (Xj , .•. , Xn + I ). Specifically, 
if deg(Xi) = ai > 0 for 1;( i;( 11 + t and deg(Gi) = d i > 0 for 1;( i ;( t, then 
there exists an integer 8 determined by the singular locus of R such that: 

(1) R has F-puretypeifL;~jdi - L;';:{a i < 8. 
(2) R does not have F-pure type if L;~ j d i - L;';: {a i > O. 
The characterization given by this theorem is particularly effective if the singular-

ity of R at m is isolated. In that case, 8 = 0 so that only the condition L~~jdi -
L;';:{ai = 0 is not solved by the above result. In particular, it follows from work of 
Kei-ichi Watanabe that if R has an isolated rational singularity, then R has F-pure 
type. The converse is also "almost true" with the only exception being the case 
whereL~~ld, - L;';:{ai = O. 

In proving this criterion, a weak but more stable form of F-purity, called 
F-contractedness, is defined and explored. R is F-contracted (in characteristic 
p > 0) if every system of parameters for m is contracted with respect to the 
Frobenius map F: R --> R. Just as for F-purity, the notion of F-contracted type is 
defined in characteristic 0 by reduction to characteristic p. The two notions of 
F-pure (type) and F-contracted (type) coincide when R is Gorenstein; whence, in 
particular, when R is a complete intersection ring. 

O. Introduction. Let R be a ring of characteristic p and let lR denote the ring R 
viewed as an R-module via the Frobenius map F(r) = r P • R is F-pure if for every 
R-module M, 0 ~ R I8i M ~ lR I8i M is exact. A notion of F-pure type can then be 
defined in characteristic 0 by reduction to characteristic p. 

The concept of F-purity was suggested originally by the Hochster-Roberts proof 
that the ring of invariants of a linearly reductive affine linear group acting on a 
regular ring is Cohen-Macaulay [4]. The same two authors later demonstrated that 
F-purity measures" nice" singularities in the sense that it implies much simplifica-
tion (and vanishing) in the computation of local cohomology [5]. 

The problem of identifying those rings which are F-pure (type) is quite difficult. 
The following special cases are known: 

(1) The invariant ring of a reductive linear group acting on a regular ring is F-pure 
(type) [5]. 
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(2) If K is a field of characteristic 0 and vii is a semigroup of monomials, then 
K[vII] is F-pure type if and only if vii is seminormal [5]. 

(3) The ring SII, where I is generated by square-free monomials, is F-pure (type) 
[5]. 

(4) If (R, m, K) is a I-dimensional local Noetherian ring of characteristic p with 
K C r an algebraically closed field and if IR is a finite R-module, then R is F-pure 
if and only if the m-adic completion of R is isomorphic to 

K [[Xl"'" Xr]]/(XiXjll ~ i <j ~ r) [3]. 
(5) Gorenstein square-free Hodge algebras are F-pure. 
(6) The ring R = K[XI, ... , Xnl/(G), where G is a quasihomogeneous polynomial 

with an isolated singularity at the origin, has F-pure type if deg(G) < n. R does not 
have F-pure type if deg( G) > n [2]. 

The purpose of this paper is to generalize result (6) to complete intersection rings 
and, at the same time, drop the isolated singularity requirement. We prove the 
following theorem. 

THEOREM (HOMOGENEOUS VERSION). Let S = K[XI, ... , Xn+ t ] where K is afield of 
characteristic O. Let I = (G I' ... , Gt ) be a homogeneous complete intersection ideal in 
S (i.e. {GI, ... ,Gt } is a regular sequence in S). DenoteL:~ldeg(GJ = d. Let 
R = S I I and let J be the radical ideal which determines the singular locus of R. Let l) 
be the length of the longest R-regular sequence in J. Then: 

(1) R has F-pure type if d < 8. 
(2) R does not have F-pure type if d > n. 

For a more precise statement of the main results, see Theorems 2.1 and 2.8. 
Kei-ichi Watanabe has proven that if R as above has, in addition, an isolated 

singularity at J.t = (Xl"'" xn+t)· (Here, Xi denotes the image of Xi in SIl), then: 
(1) R has a rational singularity if d < n. 
(2) R does not have a rational singularity if d :;;, n [8]. 

Since 8, as defined above, is n when R has an isolated singularity, our main theorem 
provides new evidence of the striking coincidence (in the known examples) between 
the notions of F-pure type and rational singularity. 

I. Definitions and preliminaries. 
DEFINITION. Let E ~ E' be an injective homomorphism of modules over a fixed 

base ring R. E ~ E' is pure if, for every R-module M, 0 ~ E ® M ~ E' ® M is 
exact. 

The existence of a splitting map from E' back to E (which insures left exactness 
of tensor) would, of course, imply that E ~ E' is pure. The converse is false. 
However, the reader may quite reasonably use the more familiar concept of "split" 
extensions as a source of intuition about pure extensions. In most circumstances, the 
two notions are equivalent. To be precise, we recall the following observations: 

LEMMA 1.1 [5, COROLLARY 5.2]. Let R be a Noetherian subring of S. Then R is a 
pure subring of S if and only if R is a direct summand, as an R-module, of every 
finitely generated R submodule of S which contains it. In particular, if S is module 
finite over R, then R ~ S is pure if and only if it is split. 
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LEMMA 1.2 [2, LEMMA 1.2]. Let (R, m) be a complete local ring and M an 
R-module. Let E be the injective hull of Rim [7]. Then the following are eqivalent: 

£'< 

1. R --> M is split. 
" 2. R --> M is pure. 
£'< 

3. E --> M ® E is injective. 

Note that if R --> M is a pure R-module map and if I is an ideal in R, then 
1M n R = I; consequently, I is a contracted ideal with respect to this map. For 
maps of the special type R --> M, Hochster defines cyclic purity to be the condition 
that every ideal is contracted and shows that under relatively mild assumptions 
about R, cyclic purity is equivalent to purity [6]. We weaken this condition 
somewhat. 

£'< 

DEFINITION. Let (R, p,) be a local ring and R --> M be a map of R-modules. The 
map a is contracted if every ideal I which is generated by a system of parameters 
for p, satisfies 1M n R = I. If R is not local, R --> M is contracted provided that 
Rp. --> Mp. is contracted for every p, E maxSpec(R). 

£'< 

One immediate consequence of the map R --> M being either pure or contracted is 
that it is injective. For purity, this follows from the definition simply by tensoring 
with R. For contractedness, note that if a(r) = 0, then certainly a(r) E 1M for 
every ideal I which is generated by a system of parameters for some maximal ideal p, 
of R. The contractedness hypothesis then guarantees that r lies in the intersection of 
all ideals of R which are generated by systems of parameters. But this intersection is 
well known to be O. 

If R is a K-algebra where K is a field of characteristic p, we denote by F the 
Frobenius homomorphism, F(r) = r P. 

DEFINITION. If M is an R-module (R has characteristic p), 1M will denote the 
F 

group M viewed as an R-module via r . m = rPm. R --> 1R is therefore an R-mod-
ule homomorphism. 

F 
DEFINITION. R is F-pure (respectively, F-contracted if R --> 1R is a pure (respec-

tively, contracted) map. 
In particular, for an F-pure or F-contracted ring, the Frobenius map must be 

injective; whence, R has no nilpotents (reduced). When R is reduced, there is a 
natural identification of maps: 

F 
(1) R --> 1R. 
(2) R --> R 1/p where R 1/p denotes the ring of pth roots of elements in R. 
(3) RP --> R where RP denotes the ring of pth powers of elements in R. 
To connect the notions of F-contractedness and F-purity with Watanabe's crite-

rion for a rational singularity, we need to briefly review the construction of graded 
local cohomology. Actually the case of HP(R), where I is the radical of an ideal 
generated by a regular sequence of length n, is the only one we will need for this 
paper, and it can be described in more down to earth terms than the other local 
cohomology modules. 
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Let R be a ring and m a maximal ideal in R. Let j = {II"'" In} be a finite set 
of elements in m and let M be any R-module. Recall that the Koszul homology 

- /, 
K*(f; M) is the tensor product of complexes (®i:lR ~ R) ®R M, and the Koszul 
cohomology is given by K*(/, M) = HomR(KAj, R), R) ®R M. Thus, the nth 
Koszul cohomology, Hn(K*(j; M», is just M/(fj, ... , In)M. Let je = 

{ft, ... , /,;}. The ith local cohomology, H)(M) is defined to be lime Hi(K*(je; M» 
---7 

where I is the ideal generated by {II"'" It} (or the radical thereof). The direct 
limit maps Hi(K*(je; M» ~ Hi(K*(/e+\ M» are induced by 

/,e 
R ~ R 

tid tJ, 
1,'-' 

R ~ R 

In particular, HF(M) isjust lime M/(f{, ... , J:)M with direct limit maps being 
---7 

For a graded module M, [ML will denote its th graded piece. In this paper, R 
will always be a special graded K-algebra, by which we mean that R is nonnegatively 
graded ring with [Rlo = K, a field. the irrelevant maximal ideal [~=j[RL will be 
denoted p.. Note carefully that we do not require p. to be generated by [R h. If 
j = {II"'" In}' each Ii is homogeneous of degree d i, and M is a graded R-module, 
then Hj(M) naturally acquires a grading (in fact, independent of the choice of 
generators for the homogeneous ideal I). Recall that M(d) denotes the graded 

/, 
module m with a shifted grading [M(d)L = [Ml d +l • Using this device, R ~ R(dJ 

/, 
is a degree preserving R-module homomorphism, and both ®':l(R ~ R(dJ) ® M 
= K*(j; M) and HomR(K*(j; M), R) = K*(/, M) are complexes of graded mod-
ules and degree preserving maps. The homologies of such complexes are, of course, 
graded. In particular, since R(t j ) ® R(t2 ) =:: R(t1 + t 2 ) as graded modules, 
H"(K*(/; M» =:: (M/(/)M)(d) as graded modules (d = [7=j deg(n). Thus, 
H;'(M) =:: lime (M/(/e)M)(de) which has a well-defined grading because the 

---7 
direct limit maps are degree preserving. 

We now specialize to the case where M = 1R (graded just as R is). If s E lR and 
IE R, then I· s = fPs as an element of 1R. Thus, 

and the direct limit maps consist of multiplication by IT7=Ji as R-modules; whence, 
multiplication by IT7=J/ as 1R-modules. Ignoring the R-module structure, we see 
that the direct limit sequence for HFeR) is precisely that subsequence of the direct 
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limit sequence for Hf'(R) consisting of every pth group in the sequence (with the 
same maps!). It follows that H;,(lR) = Hf'(R) as groups, or more precisely, Hf'eR) 
= l(Hf'(R» ==: H;'(R) 0 1R as R-modules. (Of course, the same is true for every d, 
H1ctR) = 1(H1(R» ==: H1(R) 0 1R, but we will not use this fact for d < n.) Since F: 
R -'> lR is an R-module homomorphism, it induces a homomorphism F: Hf'(R) -'> 

F 
Hl'CR). This can be obtained by applying 0 R H["(R) to R -'> lR or, more explicitly, 
by taking the direct limit of the induced maps from H"(K*(j; R)) to H"(K*(j; lR». 
That is, F: H;'(R) ~ H;,(lR) is the direct limit of the maps Rj(je)R 

F _ _ -
-'> l[RjUPe)R] where, for f in RjUe)R, F(r) = fP in l[RjUPe)R]. To under-

stand the grade of this "Frobenius" map, we put in the appropriate twists to get 

R 
-( _) (de) rR 

1=1 

R 
(je+l)R (d(e + 1)) 

F 
-'> 

F 
-'> 

F 
~ 

n 

[1(,P 1 
1=1 

'[ (['('~")R ](dP(e + 1)l 

If IX E [H;'(R)L, IX can be represented as f E [(Rj(je)R)(de)L for some e and r 
can be chosen to be homogeneous in R of degree t + de. It follows that F( IX) is 
represented by fP in R(dpe)j(jpe)R and, therefore, has degree pt in H;'(R). But, 
as already pointed out, H;,ctR) = H;'(R) as graded groups. In short, the Frobenius 
map induces a group homomorphism from Hf'( R) to itself which multiplies degrees by 
p. The same fact is true for Hf(R) for d < n, a fact which was used by Hochster and 
Roberts to simplify the computation of local cohomology for F-pure rings. 

DEFINITION. Let R be a special graded K-algebra with irrelevant ideal p. of 
dimension n. Then a(R) = max{tI[H;(R)L =f. O}. That is, a(R) is the largest 
non vanishing graded piece of local cohomology. 

DEFINITION. A special graded K-algebra R of dimension n is a complete intersec-
tion if R ==: K[Xl, ... ,Xn+tl!(Gl, ... ,Gt) as a graded ring. (The Xi'S are inde-
terminates of degree? 1.) {G1, ... ,Gt } must therefore form a regular sequence, and 
the ideal they generate is called a complete intersection ideal. 

DEFINITION. If (R, p.) is a O-dimensional local ring, the socle of R is the ideal 
(O:p.) = {x E Rlxp. = O}. 

REMARKS 1.3. (1) For a Noetherian ring, each of its local cohomology modules 
satisfy Dee [7]. But, for each NEZ, L(>N[H;(R)L is a submodule of H;(R). 
Therefore, there exists N such that, for every t > N, [H;(R)L = O. This implies that 
a(R) is finite. 

(2) The socle of a O-dimensional graded ring is a homogeneous ideal. 
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(3) If R IS an n-dimensional Cohen-Macaulay ring with a maximal ideal /1> and 
y = {Yl"'" Yn} is a system of parameters for /1>, then the direct limit system 
lim(RI(y)R) is injective, because, (O?~IYi)h E y+l implies hEY since 
~ 

{Yl' ... , Yn} is a regular sequence. Consequently, any homogeneous element of 
H~'(R) having degree equal to a(R) can always be represented by a homogeneous 
element of the socle of RI(Y)R for some e. 

(4) For a polynomial ring S = K[XI, ... , Xn], a(S) = _L;'~l deg(Xi)' To see this, 
write H~'(S) = lim (S/(Xe)S)(ae) where X = {Xl'"'' Xn} and a = L deg(XJ. 

~ 

For each e, the socle of (S/(Xe)S)(ae) is obviously generated by f17~lXt-l which 
has degree aCe - 1) - ae = -a. Thus, by the remark above, a(S) = -a. 

(5) If R is a special graded Cohen-Macaulay K-algebra with irrelevant ideal /1> and 
if Y is a homogeneous nonzero divisor in R, then a(RI(y» = a(R) + deg(y). Once 
we verify this fact, it follows that if R = K[XI, ... , Xn+,l/(G I, ... , G,) is a complete 
intersection ring with each Gi being a homogeneous polynomial of degree d i then 
a(R) = d - a where d = L~~ldi and a = L7~{deg(XJ. 

That a(RI(y» = a(R) + deg(y) is an easy consequence of the long exact 
sequence of local cohomology. If dim(R) = n and we use - to denote reduction 
modulo (y), then we have a long exact sequence of graded modules: 

Obviously, multiplication by y increases degrees by deg( y). And, it is not difficult to 
check that the boundary map 8 decreases degrees by deg( y). Since R is Cohen-
Macaulay, H;-l(R) = O. Thus, the long exact sequence above is actually a short 
exact sequence with graded maps. Taking graded pieces of this short exact sequence, 
we get 

Note that H~'-I(R) is precisely the right cohomology module in which to compute 
a(R) because dim(R) = n - 1 and H~'-l(R) can be identified with HS1(R.) = 

H~'-1(R). Now, if we let d = a(R) in the short exact sequence, we see that 8 
becomes an isomorphism (deg(y)? 1 by hypothesis) and, consequently 
[H~'-l(R)]a(R)+deg(y) * O. If, on the other hand, we assume d > a(R), then 8 injects 
H~'-l(R) into 0 and, consequently, [H;-I(R)]d+deg(y) = 0 for all d> a(R). Thus, 
a(RI(y» = a(R) + deg(y) as desired. 

The connections between the Frobenius action on local cohomology and the 
property of being either F-pure or F-contracted have been partially discussed in 
[2,5, and 6]. Restricting our consideration to Cohen-Macaulay rings, we can extend 
and consolidate these ideas in Proposition 1.4 and Corollary 1.5. 

PROPOSITION 1.4. For a Cohen-Macaulay local ring (R, /1», the following are 
equivalent: 

(1) The map from H,2(R) to H;ctR), induced by the Frobenius map from R to IR, is 
injective. 
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(2) R is F-contracted. 
(3) There exists a system of parameters for /-t which is contracted with respect to the 

Frobenius map from R to lR. 

PROOF. Note that an ideal (ZI"'" zs) is contracted with respect to the Frobenius 
if and only if F: RI(zl"'" zs) -4 1[RI(z{, ... , zf)] is injective. To prove (1) = (2), 
then, we must show that for any system of parameters y = {Y1"'" y,,}, F: 
RIO) -4 RIOP) is injective. (Here ye = {y[, ... , y;}.) Let a be an element of the 
kernel of this map. Since F: H;( R) -4 H;eR) is just the direct limit of maps F: 
RIO e ) -4 RIOPe ), the injective hypothesis on local cohomology implies that a is 
equivalent to 0 as a representative of local cohomology. But, since the direct limit 
system, H:'(R) = lime (RI(Y» is injective (because R is Cohen-Macaulay) a must 

~ 

already be 0 in RIO). 
(2) = (3) is true by definition. 
To prove (3) = (1), recall that, denoting K = RI/-t, the Cohen-Macaulay type of 

R is given by 

independent of the choice of system of parameters (Zl"'" z,,) for /-to Let y = 
(Y1' ... , y,,) be a given system of parameters which is contracted with respect to the 
Frobenius map. Then Y is a system of parameters (i.e. maximal regular sequence) 
in !l for every e ? 1. Note that the vector space «Y): (/-t»)/(Y), whose dimension 
d is the Cohen-Macaulay type of R, is just the socle of RIoe). Moreover, the direct 
limit map from RI(Y) to RI(y+ 1), multiplication by n7~lYi' induces a vector 
space homomorphism on the respective socles-well defined because a E « Y) : /-t ) 
= (n7~ly;)a E «y+1): /-t) and a E (Y) = (n;'~ly;)a E y+l. If a E R is such 
that a E socle(RI(Y» and if (n7~ly;)(a) == 0 in RI(y+ 1), then a E 

(y+1): (n7~lYi) = (Y) and therefore a = 0 in the socle of RI(Y). Thus, multipli-
cation by n7~lYi induces an injective map on the respective socles. But since the 
dimension of the socle of RI(y+ 1), equals the dimension of the socle of RIO e) as 
a K-vector space, multiplication by n7~lYi must induce an isomorphism. In other 
words, for every e ? 1, the socle of RI(Y) is isomorphically identified with the 
socle of RI(y) via the direct limit maps for H"."(R). Now, if F: H"."(R) -4 H;eR) 
were not injective, there would exist 0 =1= Y E H;(R), represented by an element of 
the socle of RIO e ) for some e, such that F(y) = O. But, by the above isomorphism 
y can in fact be represented by some a in the socle of RIO). The assumption that 
(Y1' ... , y,,) is contracted would then imply that F( a) =1= 0 in RIOP). Hence, 
F( a) =1= 0 in H;eR), a contradiction. D 

F or a Gorenstein local ring (R, /-t) of dimension n, it is a standard fact from local 
duality theory that H;( R) is isomorphic to E, the injective hull of RI/-t [7]. 
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Hochster and Roberts proved that R is F-pure if and only if E -> E ® lR IS 

injective [5]. Hence 

COROLLARY 1.5. Let (R, J.!) be a local Gorenstein ring (e.g. R is a complete 
intersection ring). The following are equivalent: 

(1) R is F-pure. 
(2) R is F-contracted. 
(3) There exists a system of parameters which is contracted with respect to the 

Frobenius map. 
F 

(4) Hp.n(R) -> H;(lR) is injective. 

The reader should be cautioned that, whereas conditions (2), (3), and (4) are 
equivalent for Cohen-Macaulay rings and condition (1) implies each of the others, 
(1) is not equivalent to (2), (3), and (4) in general [2]. Moreover, if R is not 
Cohen-Macaulay, the equivalences between (2), (3), and (4) also break down. 

F-purity is a characteristic p notion, but our primary interest is in rings of 
characteristic O. To pass from characteristic 0 to characteristic p: 

DEFINITION. Let W be a property defined for rings of characteristic p. 
(1) Let R = A[Xl , ... , Xnl!(FI , ... , F;) where A is a ring of mixed characteristic. 

We define a notion of W-type which is stable under localization at infinitely many 
elements of A. Let Y be the maximal spectrum of A and denote Km = Aim for 
m E Y. R has open (respectively, dense) W-type if there is a nonempty Zariski open 
(respectively, dense) subset U c Y such that for every m E U, R ® A Km satisfies W. 

(2) Let T = K[Xl , ... , Xnl!(Fl , ... , F;) where K is a field of characteristic O. T 
has W-type if there exists a ring A c K of mixed characteristic such that, for each 
1 ~ i ~ t, F; E A[XI , ... , Xn] and A[XI , ... , Xnl!(Fl ,··., F;) has W-type. 

At the beginning of §4 of the Hochster-Roberts paper [5], F-pure type is defined 
in 16 variations. The above definition corresponds to "having a presentation of 
F-pure type." By [2, Proposition 1.11], this is equivalent to "having a presentation of 
perfect F-pure type," so that we can replace Km in the definition by its perfect 
closure Km (a P E Km = a E Km). If R is the ring in the above definition and 
S = R ® A Km , then IS is module finite over S [2, Lemma 1.5]; so, S -> IS is pure if 
and only if it splits (Lemma 1.1). 

II. Complete intersection rings of F-pure type. We standardize notation throughout 
this section. S = K[Xl, ... , X n + t ] will be a graded polynomial ring such that 
deg(XJ> 0 for each 1 ~ i ~ n + t. (Note that we do not require deg(XJ = 1.) 
R = S/(Gl , ... , Gt ) will be a graded ring, graded consistently with the preassigned 
grading of S (which may be nonstandard). Polynomials in S will be represented by 
capital letters whereas equivalence classes of polynomials in R will be represented 
by lowercase letters. DJ Gj ) will denote the partial derivative of G J with respect to 
Xi' J will denote the Jacobian ideal in S which defines the singular locus of 
S I I = R. Recall that if (G l , ... , Gt ) is a complete intersection ideal, then J is the 
ideal generated by the tXt determinantal minors of the (n + t) X t matrix of 
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partial derivatives (D;( GJ )). The characteristic p version of the main theorem is as 
follows: 

THEOREM 2.1. Let S = K[X1, ... , Xn+,] where K is a field of characteristic p and 
let R = S I ( G l' ... , G,) be a special graded complete intersection ring of dimension n 
with irrelevant ideal J.L = R+. Assume that {Y1, ... , Yn} is a homogeneous regular 
sequence in S whose image, {Y1"'" Yn} in R forms a maximal (homogeneous) 
regular sequence. Further assume that (Y1, ... , 1';) is contained in the lacobian ideal 1 
for some 1 .:;; s .:;; n. Then if a(R) < -L7~s+1 deg(Y;), either R is F-pure or p < 
L:~l deg(Y;). 

PROOF. We induct on t, the height of the complete intersection ideal (If t = 0, 
then R = S is a polynomial ring which is easily seen to be F-pure.). To carry out 
this induction, we need to see that if R = S/(G1, ... , G,) satisfies the hypotheses of 
the theorem, then so does T= S/(G1, ... ,G'_1)' Since R = TI(G,) and G, is a 
nonzero divisor on T, it is clear that the images of (Y1, ... , Yn , G,) in T form a 
maximal regular sequence in the irrelevant maximal ideal of T. It is also clear that 

: ::J / : 
D1(G,-1) j r D1(G 1) 

Dn f-,c'Gt - 1 ) 'Dn+ t'( G1 ) 

In other words, the Jacobian ideal associated to T contains the one associated to R 
which, in particular, contains (Y1, ... ,1';). Since a(R) = a(TI(Gt )) = aCT) + 
deg(Gt ) [Remark 1.3] the fact that a(R) < -L7~s+1 deg(Y;) implies that aCT) < 
-L7~s+l deg(Y;) - deg(Gt )· Therefore, denoting Gt = Yn +1, the images of 
(Y1, ... , 1'", 1',,+1) in the special graded complete intersection ring T form a maximal 
homogeneous regular sequence such that (Y1 , ... , 1';) is contained in the Jacobian 
ideal of T and aCT) < -L7':;/+1 deg(1',). That is, T satisfies the "same" hypothesis as 
R. 

The following ideals will be used frequently in the ensuing discussions: 
(1) / = (Y1,· .. , Yn ,G1, .•• ,Gt ). 

(2) fr = (Yr, ... , Y,f, G1, ... , Gt - 1, G;) for r? 1. In particular, note that 
RI(Y{, ... , y!) = S/fl and RI(Yl"'" Yn) = SI/· 

To prove the theorem, we must show that a(R) < -L7~s+1 deg(1',) and R not 
F-pure together imply that p < L:~l deg(Y;). Since R is Gorenstein, the F-con-
tractedness test applied to anyone system of parameters will suffice to determine 
F-purity (Proposition 1.4 and Corollary 1.5). Thus, if R is not F-pure, F: 
(RI(Y1"" ,Yn))(a)~(RI(Y{,···, y!) (pa) is not injective. (Here, a = L7~1 deg(1',) 
and, as usual, the twists (a) and (pa) indicate the way in which RI(Y1"'" Yn) and 
RI(Y{, ... , y!) are embedded as graded sub modules of H;(R) and H;eR) respec-
tively.) It follows that there is a homogeneous hER such that 0 =f= li E 

R(a)/(Yp""Yn)' but lip = 0 in RI(Y{, ... ,Y!). Moreover li =f= 0 in H,.n(R); 
therefore deg(h) - a':;; a(R) < -L7~s+ldeg(Y;). Pulling back to S, there exists a 
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homogeneous polynomial H E S such that 

* 
{

(I) 
(2) 

(3) 

HP E r l ~ 
H$ I. 

deg(H) < IX - i~~l deg(Y,) = itl deg(y,).} 

Since {H, Yl, ... , Yn , Gl, ... , Gt } are all homogeneous polynomials, we may assume 
that the alleged expression of the form HP = AlY{ + ... +AnY,{' + BlGl 
+ ... + BPt is homogeneous (i.e. the degree of each term is the same, namely 
p deg( H». It would be convenient, but unjustifiable, to assume in the expression 
above that B t $ rl. However, making judicious use of our induction hypothesis, we 
can reduce to a slightly more technical standard form of condition *. (The details of 
this reduction will be presented later.) The essence of our proof is the somewhat 
surprising fact that if ] :l (YI , ... , Ys ) and if H E S satisfies 

(1) HP = AlY{ + ... +AnY,{' + B1G I + ... +Bt-Pt-I + BP; 
where this expression for HP is homogeneous. 

** (2) Bt $ r l and p does not divide r. 
s 

(3) deg(H) < L deg(Y,). 
i~l 

then P < L;'~s+l deg(Y,). 
To demonstrate that ** = p < L7~s+ I deg(Y,), let D be any derivation from S to 

S and note that D(HP) = o. Therefore, applying D to **(1) yields 
o == BlD( Gl ) + ... + Bt_lD( Gt~l) + rBtG;-lD( Gt ) (modulo rr)· 

In particular, if 1 ~ i l < i 2 < ... < i t ~ n + t is a t~tuple of integers and 
a /a Xi , we get a matrix equation 

J 

lDi1(Gl) ... Di1(Gt)1l :~l 1 = l~1 (modulo rr)· 

Di, (G l ) ... Di, (GJ rG;-lBt 0 

D = 
IJ 

Multiplying by the cofactor transpose of the above matrix, denoting its determinant 
by ~ i, ... i,' and considering only the bottom equation that results, we see that 
rG;-lBt~i. i == 0 (modulo rr). As p does not divide r, G;-lBt~i ... i == O. But the 

1 t 1 ( 

Jacobian ideal] is generated by the ~'s ranging over all possible t~tuples; therefore, 
G;-lBt E (rr:1). Since]:l (YI , ... , Ys), (rr:]) c (rr: (Y1, ... , 1',». This last ideal, 
being a colin of ideals generated by regular sequences, readily simplifies [1] to 
(TIJ~lY,P-\ rr). This means that Bp;-I E (TI:~lY,p-l, rr). 

We next claim that Bt E (fl:~lY,P-\ rl)\rl. By hypothesis **(2), Bt $ r l and, 
so, we need only show that Bt E (flY,P-l, r l). Since 

BtG;-l E (n Y,P-J,I'r) c n (Y{, ... ,Y,P-l, ... ,Y,{',Gl,···,Gt-l'G;), 
,~l i~l 

Bt E (n (y{, ... ,Y,P-l, ... ,Y,{',Gl, ... ,Gt_J,G;)):(G;-l) 
,~l 



F-PURITY AND RATIONAL SINGULARITY 57 

which equals 
s n (Y { , ... , }'/ -1 , ... , Y,{', G l' ... , Gt _ 1 , G;) : ( G: -1) . 

i=1 

This last ideal is an intersection of ideals which are colins of regular sequences, and 
so we can simplify: 

s 

Bt E n (Y{, ... ,Y;P-1, ... ,Y,{',G1,· .. ,Gt ) c (f1):(Y1, ... ,Ys ). 

i=1 

But (f1): (Y1, ... , Ys ) = (fl:=1:Y;P-r, fd because it is, once again, a colin of regular 
sequences. Thus, Bt E (fl Y;p - 1, f 1) \ f 1 as claimed. 

It follows that 

However, counting degrees in equation **(1) yields 

p deg( H) = deg( Bt ) + r deg( Gt ). 

Therefore (p - 1 )I::= 1 deg(:Y;) ~ deg( Bt ) < P deg( H). Solving for p, we get 

p [it1 deg(:y;) - deg(H)] < it1 deg(:y;). 

Since, by **(3), deg(H) is strictly less than I::=1 deg(:Y;), it follows that p < 
I:~=1 deg(:Y;). 

Summarizing, we have proven thus far that ** = p < I::=1 deg(Y;), the desired 
conclusion for our theorem, and that R not F-pure and a(R) < -I:7=s+1 deg(:Y;) 
together imply *. It remains only to prove, given the induction hypothesis by which 
we can assume the theorem to be true for T= S/(G I , ... ,Gt - 1), that * = ** or 
p < I::=1 deg(:Y;). 

Note that the theorem being true for T means that T is either F-pure or 
p < I::=1 deg(:Y;); and, in the latter case, there is nothing left to prove. Therefore, we 
may assume that T is F-pure. Again, applying the F-contractedness criterion 
(Corollary 1.5), to the particular system of parameters CY1' ... ' Yn , Gt ) in T, the 
F-purity of T translates into the condition that, for every H E S, HP E fp = 
(Y{, ... , Y,{', Gr, G1, .•• , Gt - 1) implies HE I = (Yn, Gf' G1, ... , Gt - 1). But HE I 
contradicts *. Hence, the F-purity of T in the presence of * implies HP $. fp-

Now, by hypothesis *, HP E f1 \ fp- Therefore, there exists an integer 1 ~ r < p 
such that H P E fr \ fr+ 1. This means that we can write 

HP = A 1Y{ + ... +AJ,{' + BIG 1 + ... +Bt - 1Gt - 1 + BP;, 

and we may assume this expression is homogeneous. It follows that Bt $. fl. For if 
Bt E f 1, then HP E fr+1> a contradiction. That 

HP = A 1Y{ + ... +AnY,{' + B IG1 + ... +Bt - 1Gt - 1 + BP; 

is a homogeneous equation with r strictly less than p and Bt $. fl guarantees that 
all of the conditions of ** are satisfied. 0 
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REMARK 2.2. Theorem 2.1 essentially says that if a(R) is sufficiently small, R 
should be F-pure. It is interesting to note the partial converse-if R is F-pure, then 
a(R) < 0 [5]. This follows from the fact that H;(R) has DCC; whence, there exists 
N such that [Hl'n(R)]e = 0 for every e? N. As pointed out in §1, (ignoring the 
funny R-module structure of IH;R), we can think of F as a homomorphism of 
graded groups which multiplies degrees by p. When R is F-pure, this homomor-
phism is injective. But, then, iterating F sufficiently, every positively graded piece of 
Hl'n(R) can be embedded eventually into 0 = [H;(R)]e for e > N. 

REMARK 2.3. The case where a(R) is trapped between -L7~.HI deg(¥;) and 0 is 
more ambiguous and subtle. On the one hand, R = K[X, Yl/(X2 + y2) is F-pure 
for all primes p =1= 2 because (X2 + y 2 )p-1 $. (XP, ¥p)S. (See [2, Theorem l.12] 
for this criterion for F-purity.) Yet, a(R) = deg(X) + deg(Y) - deg(X2 + y2) = O. 
On the other hand, T = K[XI , ... , Xnl/(Xr + Xl + ... + X;) is F-pure if and 
only if p == 1 modulo n; whence, the same is true for 

Since the radical of the Jacobian ideal for Wk contains precisely (XV"" X,,), the 
complementary regular sequence prescribed in Theorem 2.1 can be chosen to be 
(ZI"'" Zk)' Thus, "-L7~s+I¥;" in this example is -L7~1 deg(ZJ = -k. Also, 
a(Wk ) = -k = "-L7~s+ I deg(¥;)". Yet, if n > 2, there are infinitely many primes for 
which p ;t 1 modulo n; so, there does not exist an N for which p > N would imply 
Wk is F-pure. 

In some sense a result of the form R is F-pure or p < N (where N is fixed 
independent of p) is automatically a theorem in characteristic O. We could state 
immediately that "complete intersection type" rings which have "isolated singularity 
type" and "a(R) type" < 0 have F-pure type. Of course such a result would be 
obscure (to the point of nonsense). We must therefore analyze more carefully the 
effect on these properties of the reduction process from characteristic 0 to character-
istic p. 

Again, in the hypotheses of the next several results, S = K [ Xl' ... , Xn + t] and 
R = S/(GI , ... , Gt ). But, now, K will be a field of characteristic O. If A c K is any 
ring of mixed characteristic and m is a maximal ideal in A, then K m will denote the 
field Aim of characteristic p. We will denote Sm = Km[XI , ... , Xn+ t ] and, where 
the notion makes sense, Rm = Km[XI , ... , Xn+tl/(GI, ... ,Gt ). Of course, this last 
definition of Rm makes sense precisely when the polynomials GI , ... , Gt lie in the 
subring A[XI , ... , Xn+ t ] C K[XI , •.. , Xn+ t ], that is, precisely when all the coeffi-
cients of each of the G;'s lie in the coefficient sub ring A c K. Again, }.t will denote 
the maximal ideal (XI"'" Xn)' The same symbol will be used (ambiguously) 
whether we are talking about the maximal ideal of S, R, Sm or Rm' As usual, capital 
letters will denote polynomials in S or Sm whereas small letters will be used for their 
images in R or Rm' "-,, will be used to signify passage from A[XI , ... , Xn+ t ] to 
K n,[ Xl' ... , Xn + t]. Finally Z will denote the integers viewed as a subring of K. 
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LEMMA 2.4. Let (H, Fl , ... , Fd) E S satifsy H E (Fl , ... , Fd)S (respectively, HE 
(FI, ... , Fd)S,J. Then there exists Ao finitely generated over Z with the property: 

For every finitely generated Z-algebra A between Ao and K, (H, Fl , ... , Fd) C 

A [ XI' ... , Xn + t 1 and, there is a dense open set U in maxSpec( A) such that for every 
m E U, Ii E (Fl , ... , Fd)Sm (respectively, Ii E (Fl , ... , Fd)(Sm),J. 

PROOF. We will consider only the case HE (Fl , ... , F;)S/J.. (The case HE 
(Fl , ... , Fd)S follows trivially.) Let H = r.1~ICiF;/Bi where Bi, Ci E Sand Bi $. }L 

(i.e. Bi has a nonzero constant term). By adjoining to Z all the coefficients from K 
of each of the polynomials {H, Fl, ... , Fd, B l , ... , Bd, Cl , ... , Cd}, we can construct 
Ao so that each of these polynomials is in AO[Xl , ... , Xn+tl. If Ao cAe K and A 
has mixed characteristic, (01~IBi)H E (Fl , ... , Fd) in A[Xl, ... , Xn+tl. Conse-
quently, (OBJIi E (Fl , ... , Fd) in Sm, for every mE maxSpec(A). Note that if 
a E A is the nonzero constant term of OBi' then OBi E IlSm if and only if 
m E V(a) in SpecA. Thus 

whenever m E maxSpec(A) \ V( a). The further assumption that A be finitely 
generated over Z guarantees that maxSpec( A) \ V( a) is both open and nonempty 
(hence, dense). 0 

LEMMA 2.5. Let 1= (Fl , ... , Fd) ellS and let YI , ... , Ys be polynomials which 
form a regular sequence in ISw Then there exists Ao c K finitely generated over Z 
having the property: 

For every finitely generated Z-algebra A between Ao and K, (Fl , ... , Fd) c 
A[ Xl' ... ' Xn+tl and there is a dense open set U in maxSpec(A) such that, for every 
m E U, {Yl , ... , r,.} forms a regular sequence in (Fl ,· .. , Fd)( Sm) /J.. 

PROOF. Construct Aoo by adjoining all of the coefficients of the F; 's to Z. Since 
1', E (Fl ,.··, Fd)S, we can use Lemma 2.4 to construct A Oi' finitely generated over 
Z, such that ~ E (Fl , ... , Fd)Sm is always valid when m is in some dense open 
subset of the maxSpec of any finitely generated Z-algebra A such that AOi cAe K. 
Extend Yl ,··., Ys to a system of parameters {YI , ... , Y" Y,+l' ... , Yn + t} for }L in Sw 
Then for each 1 ~j ~ n + t, there exists e) such that Xl) E (Yl , ... , Yn+t)S£ By 
Lemma 2.4, we can construct rings Bo), for each 1 ~ j ~ n + t such that Xp E 

(Yl , ... , Yn+t)(Sm)/J. (with of course the usual generality that B is any finitely 
generated Z-algebra such that Bo; c B c K, and the usual restriction to a dense 
open set of m's in maxSpec(B)). Let Ao be the common refinement of the rings AOi 
and BOi (i.e. Ao is obtained by adjoining to Z air the finitely many elements of K 
necessary to construct each of the Ao/s and Bo/s.) In particular, Ao c K is finitely 
generated over Z and over each AOi and BoJ. The same is true for any A c K which 
is finitely generated over Ao. Therefore, given any such A, there exist dense open 
sets ~, for 1 ~ i ~ s, and Uj, for 1 ~j ~ n + t, in maxSpec(A) such that ~ E 

(FI , ... , Fd)(Sm)/J. whenever m E ~ and XJ) E <!l' ... ,!n+t)(Sm)/J. whenever m E 

Uj. Thus, if m E U = n:~l~ n nj:iUj, then {Yl, ... , Yn + t } must be a system of 
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parameters for /L in (Sm)1' and, so, {YI , ... , Y,} must be a regular sequence in 
(FI , .•. , Fd )(Sm)I" It remains only to observe that U is a dense open set because it is 
the intersection of finitely many such sets. 0 

From now on, we will abbreviate the statement that "There exists A o such that 
for every A c K fintiely generated over A o, there is a dense open set U such that for 
every m E U, ... " with the suggestive phrase "for almost every m, . .. ". 

LEMMA 2.6. Let deg( X;) be defined to be deg( XJ. Then every homogeneous 
polynomial FE S is homogeneous in Sw and either deg(F) = deg(F) or F = O. 
Moreover, each G; *- 0 for almost every m, and therefore, Rm is a graded ring with the 
"same" grading as R (i. e. for every F; E S, either deg( F) = deg(f) = deg( j) or 
j == 0 in R), for almost every m. 

PROOF. By setting deg( X;) = deg( X;), obviously each monomial term of F will 
have the same degree as each monomial term of F. Thus deg(F) = deg(F) unless 
every monomial term of F vanishes. If m $. U V( a;), where {a;};": I runs through all 
the coefficients of F, then none of the monomial terms of F vanish. But m $. UV( a;) 
for almost every m. In particular, for each 1 ~ i ~ t, and for almost every m, none 
of the monomial terms of G; vanish. Consequently, Rm = Sm/(GI, ... ,Gt ) has the 
"same" grading as R = S/(G I , ... , Gt ) for almost every m. 0 

LEMMA 2.7. If (YI , ... , Y,) c J C /L where J = J(G I, ... , Gt ) is the Jacobian ideal 
for R, and if {YI , ... , Y,} forms a regular sequence in SI'; then, for almost every m, 
(YI, ... , Y,) c J( GI , ... ,~) C /L in Sm and {YI, ... , Y,} forms a regular sequence in 
(Sm)/L" 

PROOF. This is an immediate corollary of Lemma 2.5 (which says that being a 
regular sequence inside a given ideal is "preserved" in passing to characteristic p) 
once we observe that the respective Jacobian ideal J(GI, ... ,Gt ) and J(GI, ... ,Gt ) 

have the "same" finite set of generators. Since the ideal of tXt minors of the 
t X (n + t) matrix D;(G) is the "same" as the ideal of t X (n + t) matrix D;(G), 
there is only one possible difficulty-that (GI, ... ,Gt ) might not be a complete 
intersection ideal of height t, in which case, J( GI , ... , Gt ) is not the ideal of tXt 
minors of D;( G). However, another application of 2.5 shows that if (G I , ... , Gt ) is a 
regular sequence in /LS, then (GI , ... , ~) is a regular sequence in /LSI' for almost 
every m. 0 

Weare now in a position to prove the characteristic 0 version of the main 
theorem: 

THEOREM 2.8. Let R = SjI be a special graded K-algebra where S = 
K[ Xl' ... , Xn+tl and K has characteristic O. If I is a complete intersection of height t 
with homogeneous generators (G I , ... , Gt ) and if YI , ... , Yn are homogeneous poly-
nomials such that {YI"'" Yn} forms a system of parameters for /L in Rand 
(YI ,···, Ys ) C J(G I, ... , Gt ), then: 

(1) R has F-pure type if a(R) < -L7~s+1 deg(Y;). 
(2) R does not have F-pure type if a(R) > O. 
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PROOF. Since {YI"'" Yn} forms a homogeneous system of parameters for }.LR, 
{YI , ... , Y", G I ,···, Gt } is a maximal regular sequence in }.LSI"" By Lemma 2.5, then, 
{YI , ... , Yn , GI , ... , Gt } is a maximal regular sequence in }.L(Sm)1' for almost every m. 
Hence (GI , ... , Gt ) is a complete intersection ideal of height t in Sm and {5\, ... , Yn} 
is a system of parameters for }.L(Rm)I" for almost every m. Since the grading for both 
Sm and Rm is the "same" as for Sand R (Lemma 2.5), 

t n +t t n+t 

a(R) = L deg(GJ - L deg(Y,) = L deg(Gi ) - L deg(Y,) = a(Rm), 
i~l i~l i~l i~l 

for almost every m. In particular, a(R) < -L7~s+1 deg(Y,) implies a(Rm) < 
-L;'~s+1 deg(Y,), for almost every m. Finally the fact that (YI , ... , Ys ) lies in 
J( G I , ... ,GJ and forms a homogeneous regular sequence in SI' guarantees that 
(YI , ... , Ys ) C J(GI , ... , Gt ) and forms a homogeneous regular sequence in (Sm)1' 
(Lemma 2.7) for almost every m. Taking advantage, as usual, of the fact that the 
finite "intersection" of "for almost every m" holds for almost every m, we see that 
all the hypotheses of Theorem 2.1 are satisfied for almost every m. Hence, either Rm 
is F-pure or Rm has characteristic p < L:~l deg(Y,) = LJ=l deg(Y,), for almost every 
m. But, of course, the characteristic of Rm is greater than L:~l deg(YJ whenever 
mE maxSpec(A)\ Vcn~=IQ;) where {Qi}~=l is the list of all prime numbers less 
than or equal to LJ=1 deg(Y;). Thus Rm must be F-pure for almost every m. That is, 
R has F-pure type. 

The partial converse that R does not have F-pure type if a(R) > 0 was proved by 
Hochster and Roberts [5]. It follows from the fact that a(R) = a(Rm) for almost 
every m and from Remark 2.2. 0 

REMARK 2.9. In the case where the irrelevant maximal ideal of R is actually 
generated by forms of degree 1 (the truly homogeneous case) the condition a( R) < 
_L;'~s+l deg(Y,) becomes a(R) < s - n the negative "cograde" of the ideal J. 

COROLLARY 2.10. Let R be as in the hypothesis of Theorem 2.8. If, in addition, R 
has an isolated singularity at }.L, then: 

(1) R is F-pure type if a(R) < O. 
(2) R is not F-pure type if a( R) > O. 

PROOF. The singularity at }.L is isolated if and only if the Jacobian ideal of R 
contains a maximal homogeneous system of parameters, {YI , ... , Yn}. In this case 
s = n and L7~s+1 deg(Y,) = O. 0 

I would like to thank the referee whose reading of the text was careful and helpful 
despite several confusing typographical errors. 

REFERENCES 

1. J. A. Eagon and M. Hochster, R-sequences and indeterminates, Quart. J. Math Oxford Ser. 25 (1974), 
61-71. 

2. R. Fedder, F-purity and rational singularity, Trans. Amer. Math. Soc. 278 (1983), 461-4RO. 
3. S. Goto and K.·i. Watanabe, The structure of i-dimensional F-pure rings, J. Algebra 49 (1977), 

415-421. 
4. M. Hochster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are 

Cohen-Macaulay, Adv. in Math. 13 (1974), 115-175. 



62 RICHARD FEDDER 

5. ___ , The purit)' of the Frobenius and local cohomology, Adv. in Math. 21 (1976), 117~ 172. 
6. M. Hochster, Cyclic purity versus purity in excellent Noetherian rings, Trans. Amer. Math. Soc. 231 

(1977), 463~488. 
7. E. Matlis, Injective modules over Noetherian rings, Pacific J. Math. 8 (1958), 511~528. MR 20 

# 5800. 
8. K.-i. Watanabe, Rational singularities with K*-action, Proc. Trente Conf., Lecture Notes in Pure and 

App!. Math. 84, Dekker, New York', 1983. 

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MISSOURI, COLUMBIA, MISSOURI 65211 


	0100051
	0100052
	0100053
	0100054
	0100055
	0100056
	0100057
	0100058
	0100059
	0100060
	0100061
	0100062
	0100063
	0100064
	0100065
	0100066

