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THE BINARY MATROIDS WITH NO 4-WHEEL MINOR 

JAMES G. OXLEY 

ABSTRACT. The cycle matroids of wheels are the fundamental building blocks for the 
class of binary matroids. Brylawski has shown that a binary matroid has no minor 
isomorphic to the rank-3 wheel M(1f3) if and only if it is a series-parallel network. 
In this paper we characterize the binary matroids with no minor isomorphic to 
M (if;.). This characterization is used to solve the critical problem for this class of 
matroids and to extend results of Kung and Walton and Welsh for related classes of 
binary matroids. 

1. Introduction. The purpose of this paper is to study the class of binary matroids 
with no minor isomorphic to M( ~), the cycle matroid of the rank-4 wheel. The 
motivation for this study derives from the fact that for every 3-connected binary 
matroid M with at least four elements, there is a sequence Mo, M 1, M 2 , ... , Mn of 
3-connected matroids with Mn = M such that each matroid in the sequence is a 
single-element deletion or contraction of its successor and, for some r )0 3, M o ;:; 
M(-W;). This result, a consequence of Tutte's wheels and whirls theorem [18], 
establishes the wheels as the fundamental nontrivial building blocks for the class of 
3-connected binary matroids. Indeed, since every matroid that is not 3-connected is 
a direct sum or a 2-sum of two matroids on fewer elements (Theorem 1.2), these 
building blocks are fundamental to the whole class of binary matroids. It is natural 
then to consider which binary matroids can arise when, for some r, M( -W;) is 
excluded as a minor. For r = 3, this question was answered by Brylawski [3] who 
identified the class of such matroids as the class of series-parallel networks. In this 
paper we characterize the corresponding class of matroids when r = 4 by listing its 
3-connected members. For larger values of r it appears that a similar characteriza-
tion will be much more difficult to obtain. 

The matroid terminology used here will in general follow Welsh [21]. The ground 
set and rank of the matroid M will be denoted by E(M) and rk M, respectively. If 
T ~ E(M), rk T will denote the rank of T. The deletion and contraction of T from 
M will be denoted by M \ T and MIT, respectively. If Z is an n-element circuit of 
M, then we shall call Z an n-circuit; Z is an odd circuit if n is odd and an even 
circuit otherwise. 
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A matroid M is 3-connected if it is connected and E(M) cannot be partitioned 
into subsets X and Y each having at least two elements such that rk X + rk Y -
rk M = 1. It is routine to verify that M is 3-connected if and only if its dual M * is 
3-connected. 

If MI and M2 are matroids on the sets Sand SUe where e tt S, then M2 is an 
extension of MI if M2 \ e = M I, and M2 is a lift of MI if M2* is an extension of 
Mr. We call M2 a nontrivial extension of MI if e is neither a loop nor a coloop of 
M2 and e is not in a 2-circuit of M 2. Likewise, M2 is a nontrivial lift of MI if M2* is 
a nontrivial extension of MI*' The following result is well known (see, for example, 
[12, Lemma 2.1]). 

(1.1) LEMMA. Let N be a 3-connected matroid having at least three elements and M 
be an extension of N. Then M is 3-connected if and only if M is a nontrivial extension 
ofN. 0 

We shall assume familiarity with the operation of parallel connection of matroids; 
a detailed discussion of this operation and its properties can be found in [3]. For 
matroids MI and M2 such that E(MI ) n E(M2) = {p}, we shall denote the 
parallel connection of MI and M2 with respect to the basepoint p by 
P«MI ,p),(M2,p)). The following basic link between 3-connection and parallel 
connection was proved by Seymour [15, (2.6)]. 

(1.2) THEOREM. A connected matroid M is not 3-connected if and only if there are 
matroids MI and M2 each of which has at least three elements and is isomorphic to a 
minor of M such that M = P«MI' p), (M2' p») \p where p is not a loop or a coloop of 
MI or M 2. 0 

When M decomposes as in this theorem, it is called the 2-sum of MI and M 2. 
If {x, y} is a circuit of the matroid M, we say that x and yare in parallel in M. 

If, instead {x, y} is a cocircuit of M, then x and yare in series in M. The matroid 
M I is a parallel extension of M if M = M '\ T and every element of T is in parallel 
with some element of M' not in T. Series extensions are defined analogously. A 
matroid in which each connected component is obtained from a single-element 
matroid by a sequence of operations each of which is either a series or parallel 
extension is called a series-parallel network. A detailed investigation of the properties 
of such matroids can be found in [3]. 

If A is a matrix with entries in a field F, then the matroid on the set of columns of 
A that is induced by linear independence over F will be called the dependence 
matroid D(A) of A. A basic tool in this paper is the well-known fact (see, for 
example, [5, Theorem 3.7]) that binary matroids are uniquely representable, that is, if 
A and A' are r X n matrices over GF(2) such that the map which, for all i in 
{I, 2, ... , n }, takes the ith column of A to the ith column of A' is an isomorphism 
from D(A) to D(A'), then A' can be transformed into A by a sequence of 
operations each of which consists of interchanging two rows or adding one row to 
another. 
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Another result that we shall rely on heavily is the following easy consequence of 
Seymour's splitter theorem [15, (7.3)]. For r ~ 2, if/r will denote the whirl of rank r 
[21, p. 81]. 

(l.3) THEOREM. Let M and N be 3-connected matroids such that N is a minor of M, 
IE(N)I ~ 4, and if N ~ M(if/k)' M has no M(if/k+I)-minor, while ~f N ~ if/k, M 
has no if/k+I-minor. Then there is a sequence Mo, M I, M 2 , •.• , Mn of 3-connected 
matroids such that Mo ~ N, Mn = M and, for all in {I, 2, ... , n}, Mi is an 
extension or lift of Mi -1. 0 

In §2 of this paper, we state and prove the main theorem of the paper, a 
characterization of the binary 3-connected matroids with no M(~)-minor. We also 
characterize a somewhat larger class of 3-connected binary matroids and, in doing 
so, use the following well-known result of Tutte [17]. The Fano matroid will be 
denoted F7 . 

(1.4) THEOREM. A binary matroid is regular if and only if it has no minor isomorphic 
to F7 or F7*. 0 

In §3, we use the main theorem to determine a best-possible upper bound on the 
number of elements in a rank-r simple matroid with no M(~)-minor. We then use 
this bound to extend a result of Kung [9]. In addition, we extend a result of Murty 
[11]. 

Let M be a loopless matroid that is isomorphic to the dependence matroid D( A) 
of some matrix A over GF(q). If A has r rows, then r ~ rk M and the set S of 
distinct columns of A is a subset of VCr, q). The critical exponent c(M; q) of M is 
the least number k of hyperplanes HI' H 2 , ..• , Hk of VCr, q) such that (n7=1 Hi) n S 
= 0, this number being independent of the particular matrix A representing M [6]. 
The problem of determining c(M; q) is known as the critical problem [6, Chapter 16] 
for M. In the fourth and final section of this paper, we use our main theorem to 
solve the critical problem for the class of binary matroids with no M(~)-minor. We 
also use results from §3 to solve the critical problem for a related class of binary 
matroids thereby extending two results of Walton and Welsh [20]. 

2. The main result. In this section we state and prove the main result of the paper, 
a characterization of all binary 3-connected matroids having no M(~)-minor. We 
shall denote by e the class of all such matroids. It follows from Theorem l.2 that 
one can construct every binary matroid with no M(~)-minor by beginning with the 
members of e and repeatedly using the operations of 2-sum and direct sum. 

Let r be an integer exceeding two and Ar be the following r X (2r + 1) matrix 
over GF(2): 

a l a2 Q r bl b2 b3 br Cr 

A, ~ l 0 1 1 1 

:] 0 1 
I, 0 1 

0 
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Let Zr be the dependence matroid of Ar. Then Z3 == F7, the Fano matroid. 
Moreover, Zr* == Zr+I \ br+I, Cr+I for all r ~ 3. Hence, in particular, F7* == Z3* == 
Z4 \ b4 , c4 • We also note that Z4 \ C4 == AG(3, 2). The following is the main result of 
the paper. 

(2.1) THEOREM. Let M be a binary matroid. Then M is 3-connected and has no 
M(~)-minor if and only if 

(i) M == Zr' Zr*' Zr \ cr or Zr \ br for some r ~ 4; or 
(ii) M == F7, F7* or M(1f/3); or 
(iii) M == UO,I' Ul,l' UI ,2' U1,3 or U2,3' 

The only pairs of matroids in the above list that have the same rank and corank 
are the self-dual matroids Zr \ Cr and Zr \ br. For r ~ 4, these matroids are not 
isomorphic since the latter has a 3-circuit whereas the former does not. We conclude 
that" all the matroids listed are nonisomorphic. 

To prove Theorem 2.1, we shall first characterize a somewhat larger class ':It of 
3-connected binary matroids, namely those such matroids having no P9- or P9*-minor. 
Here P9 denotes the extension of M(~) for which a binary representation is shown 
in Figure 1. The same figure also shows a Euclidean representation for P9• In 
addition to the planes shown, there is one further 4-point plane. It contains the four 
circled points. 

(2.2) THEOREM. Let M be a binary matroid. Then M is 3-connected having no minor 
isomorphic to P9 or P9* if and only if 

(i) M is regular and 3-connected; 
(ii) M == Zr' Zr*' Zr \ Cr or Zr \ br for some r ~ 4; or 
(iii) M == F7 or F/, 

PROOF. Evidently neither F7 nor F7* has a minor isomorphic to P9 or P9*' The fact 
that no regular matroid has such a minor follows, using Theorem 1.4 and duality, 
from the observation that the contraction of (1,0,0, 1)T from P9 has an F7-minor. 
We now show that none of the matroids listed in (ii) has a P9- or a P9*-minor. Since 
both P9 and P9* have M(~) as a minor, it suffices to show that none of the 
matroids in (ii) has an M(~)-minor. We shall use the following: 

(2.3) LEMMA. The automorphism group of Zr is transitive on {aI' a2 , 

... ,a" b I , b2 , • •. , br}. Moreover, for r ~ 4, every automorphism of Zr fixes c,. 

PROOF. Interchanging rows i and j of Ar induces an automorphism of Zr that 
swaps ai with a j and bi with bj' Moreover, the automorphism of Zr that is induced 
by replacing row i of Ar by the sum of rows i, 1 and r for each i in {2, 3, ... , r - 1} 
swaps a l with br and ar with b l . We conclude that the automorphism group of Zr is 
transitive on {aI' a2 , ••• , ar' bI, b2 , ... , br}. The fact that, for r ~ 4, every automor-
phism fixes Cr follows immediately from the observation that, for such r, Cr is the 
unique element of Zr that is in r 3-circuits. 0 

(2.4) LEMMA. Zr has no M(~)-minor. 
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FIGURE 1 

In addition to the planes shown, 
there is one further 4-point 
plane. It contains the four 
circled points. 

PROOF. This is immediate for r = 3. Now suppose that r = 4. If M(~) is a 
minor of Z4' it is a single-element deletion of Z4' But, by the preceding lemma, Z4 
has precisely two nonisomorphic single-element deletions, namely Z4 \ b4 and 
Z4 \ c4· As Z4 \ b4, c4 ~ F7*' neither Z4 \ b4 nor Z4 \ C4 is isomorphic to M(~). 
Thus the lemma holds for r ~ 4. 

N ow assume the lemma holds for Zr and consider Zr+ 1 where r ~ 4. Suppose that 
Zr+ 1 has an M( ~)-minor. Then, since rk Zr+ 1 > rk M( ~), the Scum Theorem [6] 
implies that for some element z of Zr+l' Zr+llz has an M(~)-minor. Now 
Zr+ II a r+ 1 is a parallel extension of Zr and therefore has no M( ~)-minor. Hence, 
z =1= zr+l' Therefore, by the preceding lemma, z tt {aI' a z, '" ,ar+1, 

b1, b2 , ••• , br+d. Thus z = cr+1• It is routine to check that Zr+l/cr+1 ~ M(C}+I) 
where C}+ 1 is the graph obtained by replacing every element of an (r + 1 )-circuit by 
two elements in parallel. Since M(C}+I) dearly has no M(~)-minor, we have a 
contradiction. The lemma now follows by induction. 0 

The last lemma completes the proof that none of the matroids listed in (2.2) 
(i)-(iii) has a P9- or a P9*-minor. We now prove that if M has no such minor and is 
3-connected and binary, then M is listed in (i)-(iii). Suppose that M is not regular. 
Then, by Theorem lA, M has a minor isomorphic to F7 or F7*' Thus, by Theorem 
1.3, there is a chain Mo' M1, .•. , Mn of 3-connected matroids such that Mo ~ F7 or 
F7*' Mn = M, and for all i in {O, 1, 2, ... , n - 1}, Mi is a single-element deletion or 
contraction of M i + 1• For the rest of the proof of Theorem 2.2, we shall be concerned 
with the members of this chain. If M ~ F7 or F{, then M is listed under (iii). Thus 
assume that this does not occur. We shall first suppose that Mo ~ F7*' Then, since 
F7* has no nontrivial binary lifts, Ml is a nontrivial extension of F7*' Seymour [16] 
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has noted that F7* has precisely two nonisomorphic binary nontrivial extensions, 
these two matroids being represented by the matrices X 4 and Y4 shown below. 
Evidently these two matroids are 

r 
0 1 1 11 101 1 

X4 = 14 1 1 0 1 ' 
1 1 1 0 

r 
0 1 1 11 101 1 

Y4 = 14 1 1 0 1 
111 1 

isomorphic to Z4 \ C4 and Z4 \ b4 • Thus, if Mo ~ Ft, then MI ~ Z4 \ C4 or Z4 \ b4 • 

But both of the last two matroids are isomorphic to their duals and therefore, if 
Mo ~ F7 , we again get that MI ~ Z4 \ C4 or Z4 \ b4 . We shall treat the cases when 
MI ~ Z4 \ b4 and when MI ~ Z4 \ C4 separately. First suppose that MI ~ Z4 \ c4 · 

(2.5) LEMMA. Every nontrivial binary extension of Z4 \ c4 is isomorphic to Z4. 

PROOF. Let N be a nontrivial binary extension of Z4 \ c4 . Then N can be 
represented by the matrix obtained by adjoining the column (Xl' X 2 , X 3, X 4 )T to X 4 

where each of Xl' X 2 , X3 and X 4 is in {O, I}. Evidently exactly two or exactly four of 
Xl' X 2 , X3 and X 4 are equal to 1. Moreover, by the symmetry of X4 , all six matroids 
that arise by adjoining a column with exactly two ones are isomorphic. In addition, 
each of these matroids is isomorphic to the matroid Z4 which is obtained when 
(Xl' X 2 , X 3 , X 4 ) = (1,1,1,1). To see this, observe that by adding row 3 to each of 
rows 1 and 2 in the matrix A 4 , we get the following matrix: 

[
1 0 1 0 1 0 1 0 01 o 1 100 1 100 
00101 101 1 . 
000 1 1 1 101 

On deleting the last column of this and suitably reordering the first eight columns, 
we get the matrix X4 • D 

We now suppose that M] ~ Z4 \ b4 • The next lemma is stronger than we need for 
the proof of Theorem 2.2. We shall use this additional strength in the proof of 
Theorem 2.1. 

(2.6) LEMMA. The only column that can be adjoined to the matrix Y4 to give a 
representation of a 3-connected binary matroid with no M(~)-minor is (1,1,1, O)T. 
Thus, the unique extension of Z4 \ b4 in e is Z4. Moreover, every other nontrivial 
binary extension of Z4 \ b4 is isomorphic to P9. 

PROOF. Assume that the column (Xl' X 2 , X 3, X 4 )T is adjoined to Y4 to give a matrix 
Y'; over GF(2) representing a 3-connected matroid N. If (Xl' X 2 , X 3, X 4 ) = (1,1,1,0), 
then clearly N ~ Z4. We may now assume that (Xl' X 2 , X 3, x 4 ) has exactly two ones. 
Moreover, by the symmetry of Y4 , we can suppose that (Xl' X 2 , X 3, x 4 ) is one of 
(1,1,0,0) and (1,0,0,1). In each case, it is not difficult to check that the matrix 
obtained by deleting the sixth column from Y'; represents a matroid isomorphic to 
M(~) and that Y'; itself represents a matroid isomorphic to P9 • D 
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As an immediate consequence of the preceding lemma, we have the following 
corollary. 

(2.7) COROLLARY. Every nontrivial binary extension of Z4 has a P9-minor and hence 
has an M(~)-minor. Hence, for all r ~ 4, every nontrivial binary extension of Zr has 
a P9-minor. 0 

Now either (a) M2 is an extension of M 1, or (b) M2 is a lift of MI. By Lemmas 2.5 
and 2.6 and Corollary 2.7, in case (a), M2 ~ Z4 and M3 is a lift of M 2. By duality, 
in case (b), M2 ~ Z,t and M3 is an extension of M 2 • In general, Zr* is represented 
by the matrix 

hI h2 hr Cr a l a2 a3 a r 

0 1 
1 0 

A: = lr+ I 1 1 0 1 

0 

The next lemma consider the nontrivial binary extensions of Zr*. 

(2.8) LEMMA. Suppose that r ~ 4 and that x = (Xl' X 2, ... , Xr+l)T is a column that 
is adjoined to A; to give a matrix B over GF(2) representing a 3-connected matroid N. 
Then either (i) N has a P9-minor, or (ii) Xl = X 2 = ... = Xr = 1. 

PROOF. As (Xl' X 2 , ••• , Xr+J T is distinct from every column of A;, it has at least 
two ones. We may also assume it has at least two zeros otherwise (ii) holds. We now 
choose ii' i 2, i3 and i4 to be distinct elements of {l, 2, ... , r} such that XiI = 1, 
X i2 = 0 and Xi3 = 1 + Xr+l' the sum here being taken modulo 2. Then exactly two of 
XiI' X i2' Xi3 and Xr+1 are 1. To construct a matrix representing a P9-minor of N, we 
proceed as follows. First delete all the rows of B except ii' i 2, i3 and r + 1, and 
arrange the remaining rows in the order listed. Then delete all the columns of the 
resulting matrix except b,. ,b,. , b, ,cr ' a ,. , a ,· , a ,. ,ai and x, and arrange the remain-

1 2 3 1 2 3 4 

ing columns in the order listed. The matrix obtained by this construction is Y4 with 
one column adjoined, this extra column having two ones and two zeros. We 
conclude, using Lemma 2.6, that N has a P9-minor. 0 

On adjoining (1, 1, 1, ... ,1, O)T to Zr*' we obtain a matrix representing Zr+1 \ cr + 1; 

on adjoining (1,1,1, ... ,1, If instead, or adjoining both these columns, we get 
representations for Zr+ 1 \ br + 1 and Zr+ l' respectively. It follows from this, using a 
straightforward induction argument and Lemma 1.1, that for every r ~ 4, all of Zr' 

Zr*' Zr \ br and Zr \ cr are 3-connected. The following result is an easy consequence 
of these observations and the last lemma. 

(2.9) COROLLARY. For r ~ 4, Zr* has precisely two nonisomorphic extensions in '1', 
these being isomorphic to Zr+1 \ br+ 1 and Zr+1 \ cr+ 1• Moreover, the unique extension 
of each of the last two matroids that is in 'I' is Zr+ I. 0 
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The next result finishes the proof of Theorem 2.2. 

(2.10) COROLLARY. Let Mo, M 1, M 2,... be a sequence of binary 3-connected 
matroids each of which is an extension or lift of its predecessor. Suppose also that 
Mo ~ F7 or F7* and that none of M 1, M 2,... has a P9- or P9*-minor. Then, for all 
j? 1, M 2j - 1 ~ Zj+3 \ bj +3 or Zj+3 \ cj+3 and M 2j ~ Zj+3 or Z/+3' 

PROOF. We argue by induction on j. We noted earlier that M1 ~ Z4 \ b4 or 
Z4 \ C4 and that M2 ~ Z4 or Z:. Thus the result holds for j = 1. Assume it holds 
for j < k and let j = k. Then M 2k - 2 ~ Zk+2 or Z:+2' In the latter case, by 
Corollaries 2.7 and 2.9, M 2k- 1 is an extension of M 2k - 2 and is isomorphic to 
Z k + 3 \ b k + 3 or Z k + 3 \ c k+ 3' Since the last two matroids are isomorphic to their 
duals, if M 2k - 2 ~ Zk+2' then again M 2k - 1 ~ Zk+3 \ bk+3 or Zk+3 \ Ck+3' Now 
using Corollary 2.9 and duality, we get that M2k ~ Zk+3 or Z:+3 and the theorem 
follows by induction. 0 

It is now straightforward to complete the proof of Theorem 2.1 and we omit the 
details. 

3. A bound on the number of elements. Dirac [7) proved that, for all n ? 3, a 
simple n-vertex graph with no subgraph homeomorphic from 1f/'3 has at most 
2n - 3 edges. As every binary matroid having no M(1f/'3)-minor is a series-parallel 
network [3, Theorem 7.6) and hence is graphic, Dirac's result gives that, for all 
r? 2, a simple binary matroid of rank r having no M(1f/'3)-minor has at most 
2r - 1 elements. A similar linear bound on the number of elements in a rank-r 
simple ternary matroid having no M(1f/'3)-minor was proved in [13, Theorem 5.1). 
By making the obvious modifications to the proof of that result and using the main 
theorem of this paper,we get the next theorem. The details of the proof are omitted. 

(3.1) THEOREM. Let M be a simple binary matroid of rank r having no M(~)-minor. 
Then 

{ 3r - 2 if r is odd, 
IE(M)I < 3r - 3: ifr is even. 

Moreover, the following list includes all the matroids that attain this bound: 
(i) r = 1, U1,1; 

(ii) r = 2, U2,3; 

(iii) r = 3, F7 ; 

(iv) r = 4, Z4' P(F7' U2,3); 
(v) r = 2t + 1 for t ? 2, all matroids that can be formed from t copies of F7 using 

t - 1 parallel connections; 
(vi) r = 2t for t ? 3, all matroids that can be formed from t - 1 copies of F7 and 

one copy of U2,3 using t - 1 parallel connections, and all matroids that can be formed 
from t - 2 copies of F7 and one copy of Z4 using t - 2 parallel connections. 0 

We now consider extending this result. We shall use some additional terminology. 
For a class vi{ of matroids which contains a simple matroid of every nonzero rank, 
Kung [9) has defined the size function h (vi{, r) to be the function on Z + given by 

h ( vi{ , r) = max { IE ( M) I: M E vI{, rk M = rand M is simple} . 
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If N 1, N2 , ... , Nm are matroids, then EX(Nl' N2 , ... , Nm ) will denote the class of 
binary matroids having no minor isomorphic to any of N 1, N2 , ••. , Nm • The follow-
ing is an immediate consequence of the last theorem. 

(3.2) COROLLARY. 

{ 3r - 2 
h(EX(M(~)),r)= 3r-3: 

The next result extends this corollary. 

if r is odd, 
ifr is even. o 

if r is odd. 
ifr is even. 

To prove this theorem we shall use both Corollary 3.2 and the next theorem. The 
latter is one of the several results of Kung [9, 10] on the size functions of various 
classes of binary matroids. 

(3.4) THEOREM [9, THEOREM 9.1]. 
. {3r - 2 

h(EX(M(Ks),FtLr)= 3r-3: 
ifr is odd. 
ifr is even. o 

PROOF OF THEOREM 3.3. By [9, Lemma 10.1], since EX(M(~» and 
EX(M(Ks)' F/) have the same size function, EX(M(~» u EX(M(Ks), F7*) also 
has this size function. To establish the theorem, we shall first show that 

(3.5) EX(M( ~)) U EX( M(Ks), F7*) ~ EX( M(Ks), P9, P9*)' 

Since the class EX(M(~» U EX(M(Ks), F/) is closed under minors, it can 
certainly be characterized by excluded minors. It is straightforward to check that 
M(Ks) is a minimal such excluded minor. The following lemma completes the proof 
of (3.5). We omit its routine proof. 

(3.6) LEMMA. Both P9 and P9* are minor-minimal matroids not in EX(M(~» U 
EX(M(Ks), F7*)' 0 

The next lemma completes the proof of Theorem 3.3. 

(3.7) LEMMA. Let M be a simple matroid that is in EX(M(Ks), P9, pn but is not 
in EX(M(~» U EX(M(Ks), F/). Then 

{ 3 rk M - 2, if rk M is odd, 
IE(M)I< 3rkM-3, ifrkMiseven. 

PROOF. Assume that the lemma is not true and let N be a minor-minimal 
counterexample. It is straightforward to show, using Theorem 1.2, that N must be 
3-connected. Moreover, since N $. EX(M(Ks), F/) but N E EX(M(Ks), P9, pn, 
N has an F7*-minor. Thus, by Theorem 1.3, there is a chain No, N 1, N 2 , ••• , Nn of 
3-connected matroids such that No == Ft, Nn = N and, for each i in {O, 1, 2, ... , 
n - I}, 11; is a single-element deletion or contraction of Ni+l' By Theorem 3.1, 
N = Nn $. EX(M(~». But No E EX(M(~». Let 

m = min{i: 11; $. EX(M(~))}. 
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Then Nm - 1 E EX(M(~)) and, by Theorem 2.1, Nm - 1 is isomorphic to Z" Zr*' 
Zr \ br or Zr \ Cr for some r ~ 4. 

Now Nm is an extension or lift of Nm - 1. Since Zr \ br and Zr \ cr are both 
isomorphic to their duals and Zr* ~ Zr+1 \ br+1, cr+1, one of Nm and N': is 
isomorphic to an extension of N' where N' is isomorphic to Zr' Zr \ br or Zr \ C r 
for some r ~ 4, or to Zr \ b~, cr for some r ~ 5. But, by Lemmas 2.5, 2.6 and 2.8 
and Corollary 2.7, every nontrivial binary extension of each of the possibilities for 
N' has a P9-minor or is in EX(M(~)). Thus one of Nm and N': has a P9-minor. It 
follows that N has a P9- or a P9*-minor; a contradiction. D 

To conclude this section, we determine the size function of EX(P9, P9*) noting 
that, unlike h(EX(M(Ks), P9, P9*)' r), it is quadratic in r. 

(3.8) THEOREM. 

if r oF 3, 

ifr = 3. 

This result extends the following theorem of Murty [11] (see also [1, 2]) which 
itself is an extension of Heller's result [8] that h(EX(F7' Fn, r) = ct 1). 

(3.9) THEOREM. h(EX(F7)' r) = (rt 1). D 

On combining Heller's result with Theorem 3.8, we get the size function for 
EX(F7*). This can also be deduced from a result of Walton [19]. 

(3.10) COROLLARY. 

if r oF 3, 

ifr = 3. D 

PROOF OF THEOREM 3.8. We argue by induction on r. As PG(2, 2) ~ F7 E 

EX( P9, P9*)' it follows easily that h (EX( P9, P9*)' 3) = 7 = e t 1) + 1. To see that 
h(EX(P9, Pg*), r) ~ Ct1) for r oF 3, we note that M(Kr+1) is a rank-r member of 
EX(P9, P9*). Evidently, for r = 1 or 2, h(EX(P9, P9*), r) = ct1). Hence, for r ::0:;; 3, 
h(EX(P9, P9*), r) is as stated in the theorem. Now suppose that M is a simple rank-r 
member of EX(P9, Pg*) having h(EX(P9, P9*)' r) elements and assume that r ~ 4. If 
ME EX(F7)' then, by Theorem 3.9, h(EX(P9, Pg*), r) = (rt 1). Thus we can sup-
pose that M has an F7-minor. Since IE(M)I = h(EX(P9, P9*)' r) ~ Ct1), it follows 
from Theorem 2.2 that M is not 3-connected. Then using Theorem 1.2 and the 
choice of M, we can deduce that M = P(N1' N2) where both N1 and N2 are simple 
members of EX( P9, P9*) having rank at least two. It is now straightforward to apply 
the induction assumption to N1 and N2 to obtain the contradiction that IE(M)I ::0:;; 

ct 1) - 1. D 
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4. The critical problem. A loopless binary matroid with no M(ir3)-minor has 
critical exponent at most two [3]. In this section we shall show that a loopless binary 
matroid with no M(~)-minor has critical exponent at most three and explicitly 
determine the critical exponents of all loop less binary 3-connected matroids with no 
M(~)-minor. We shall use the following result. 

(4.1) LEMMA [4, THEOREM 10.3]. Let M be a matroid that is represented by the 
matrix [Ir I A] over GF(2). Then the following statements are equivalent: 

(i) c(M; 2) = 1. 
(ii) M has no odd circuits. 
(iii) Every column of A contains an odd number of nonzero entries. 0 

(4.2) THEOREM. Let M be a loopless binary 3-connected matroid having no M(~)­
minor. Then c(M; 2) = 2 unless 

(i) M has rank one, or r is an even integer exceeding 3 and M 2:: Zr \ Cr or Zr*~l; or 
(ii) r is an odd integer exceeding 2 and M 2:: Zr' 

In cases (i) and (ii), c(M; 2) = 1 and 3, respectively. 

PROOF. If IE(M)I « 4, then, by Theorem 2.1, M 2:: U1.1' Ul ,2' Ul ,3 or U2,3 and it is 
easy to check that c(M; 2) is as claimed. Now suppose that IE(M)I > 4. Then, for 
some r ~ 3, M is isomorphic to one of Zr' Zr*' Zr \ br or Zr \ Cr' We shall treat the 
cases when r is even and when r is odd separately. First suppose that r is even. The 
matroid Zr \ cr is represented by the matrix A~ obtained from Ar by deleting the 
last column. Every column of A~ has an odd number of nonzero entries and so, by 
Lemma 4.1, c( Zr \ C r; 2) = 1. It follows that c( Zr; 2) « 2 and hence c( Zr \ br; 2) « 2. 
Moreover, since Zr*~l 2:: Zr \ cr, b" C(Z/~l; 2) = 1. Now consider Zr \ br. It has an 
odd circuit, namely {aI' a 2 , . •• , ar' cr}. Therefore, by Lemma 4.1, c( Zr \ br; 2) ~ 2 
and hence c(Zr; 2) ~ 2. We conclude that 

c(Zr \ br; 2) = c(Zr; 2) = 2. 

Next we suppose that r is odd. Then Zr*~l has an odd circuit, namely 
{aI' b2 , b3 ,···, br~l' cr~d· Therefore c(Zr*~l; 2) ~ 2. Moreover, as both Zr \ br and 
Zr \ Cr are extensions of Z/~l' both c(Zr \ br; 2) and c(Zr \ cr; 2) are bounded below 
by 2. Now consider the representations for Zr \ br and Zr \ Cr obtained from the 
matrix Ar by deleting the second last and last columns, respectively. Let HI' H2 and 
H3 be the hyperplanes of PG(r - 1,2) defined by the equations Xl + x 2 

+ ... + xr~l = 0, Xl + x 2 + xr = 0 and Xl + xr = O. Then HI n H2 n E(Zr \ br) 
= 0 and HI n H3 n E(Zr \ cr) = 0. Thus both c(Zr \ br; 2) and c(Zr \ cr; 2) are 
bounded above by 2, so both quantities equal 2. Moreover, c(Zr*~l; 2) = 2 and 
c( Zr; 2) « 3. The next result completes the proof of the theorem. 

(4.3) LEMMA. If r is odd and exceeds 2, then c( Zr; 2) > 2. 

PROOF. Consider the matrix Ar representing Zr' We shall show that PG(r - 1,2) 
does not have two hyperplanes H and H' such that H n H' n E(Zr) = 0. 
Assume that two such hyperplanes do exist. Each hyperplane is defined by an 
equation of the form alxl + a lx 2 + ... +arxr = 0 where each of aI' a 2 , ••. , a r is 0 
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or 1 with at least one (Xi being nonzero. Now we may assume that H avoids Cr' Then 
the equation defining H has an odd number of nonzero coefficients, so we may 
suppose, without loss of generality, that this equation is Xl + X 2 + ... X 2k + l = 0 
for some k> O. The elements of E(Zr) which are contained in H include 
hi' h2 ,···, h2k + l , a 2k + 2 , a 2k + 3,···, a r and these elements form an odd circuit in Zr' 
Therefore, by Lemma 4.1, H' cannot avoid all these elements and we have a 
contradiction. 0 

The last theorem can be used to show that every loopless binary matroid having 
no M(~)-minor has critical exponent at most 3. The proof here follows the same 
lines as the proof of the corresponding result for loopless ternary matroids with no 
M( ir3)-minor [13, Corollary 3.3]. We omit it since we can obtain a stronger result 
by combining Theorem 3.3 with the following theorem of Kung. 

(4.4) THEOREM [9, LEMMA 3.1]. Let.4t be a class of simple matroids representable 
over GF( q) that is closed under restriction. Assume that there is an integer k so that for 
all r > 1, every rank-r member of.4t has at most kr elements. Then, for every member 
M of.4t, c(M; q) ~ k. 0 

(4.5) COROLLARY. Let M be a loopless binary matroid having no minor isomorphic to 
any of M(K5), P9 or P9*. Then c(M; 2) ~ 3. 0 

Since both EX(M(K5), F7 ) and EX(M(K5), F/) are contained m 
EX(M(K5), P9 , P9*), a consequence of the last corollary is the following result of 
Walton and Welsh [20, Theorem 2, (a) and (b)]. 

(4.6) COROLLARY. Let M be a loopless binary matroid. If M is in EX(M(K5), F7 ) 

or EX(M(K5), Fn, then c(M; 2) ~ 3. 0 

Corollary 4.5 provides a partial answer to Walton and Welsh's question [20, p. 5] 
as to whether c(M; 2) ~ 3 for allioopiess binary matroids having no M(K5)-minor. 
Kung [10] has given another partial answer to this question by showing that for all 
such M, c(M; 2) ~ 8. 
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method of proof of Theorem 2.1 could be extended to prove Theorem 2.2. 
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