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HYPERGEOMETRIC FUNCTIONS OVER FINITE FIELDS 

JOHN GREENE 

ABSTRACT. In this paper the analogy between the character sum expansion of a 
complex-valued function over GF(q) and the power series expansion of an analytic 
function is exploited in order to develop an analogue for hypergeometric series over 
finite fields. It is shown that such functions satisfy many summation and transfor-
mation formulas analogous to their classical counterparts. 

1. Introduction and notation. Let GF( q) denote the finite field with q elements 
where q is a power of a prime, If X is a multiplicative character of GF(q)*, extend 
X to all of GF( q) by setting X (0) = 0, It is easy to see that any function f: 
GF(q) ~ C has a unique representation 

(1.1 ) f(x) = fl)(x) + Lfxx(x), 
x 

where the sum ranges over all multiplicative characters of GF(q) and i> IS the 
function 

(1,2) i>(x) = g if x = 0, 
ifx=f-O, 

In fact, the constants fli and fx are given by 
1 (1.3) fli = f(O), fx = ~ L f(x)x(x). 

q xEGF(q) 

The expression (1.1) represents a finite field analogue for the power series expansion 
of a function. 

As an example, let Tr be the trace map from GF(q) to GF(p), set r = e 2 '1Tilp and 
define the Gauss sum by 

(104) G(x) = L X(t)rTr(t). 
tEGF(q) 

The Gauss sum is the analogue of the gamma function 

(1.5) 100 dt r(x) = tXe- t -. 
o t 

Received by the editors January 16, 1986. 
1980 Mathematics Subject Classification (1985 Revision). Primary 11T21, 11 Lxx; Secondary 33A30, 

llG20. 
This paper contains parts of the author's Ph.D. thesis written under the supervision of Professor D. 

Stanton at the University of Minnesota. 

77 

©1987 American Mathematical Society 
0002·9947/87 $l.00 + $.25 per page 



78 JOHN GREENE 

The power series expansion for eX can be written in terms of the gamma function 

(1.6) 
00 xk 

eX = L 
k=O r(k + 1) . 

Comparing (1.4) and (1.5) one might guess that an analogous formula holds for 
~ - Tr(x) and, in fact, it follows easily from (1.3) that 

(1.7) ~-Tr(x) = 1 + -q- L X(x) . 
q - 1 x G(X) 

This analogy, which can essentially be expressed by x k ~ X (x), dates back at 
least to Jacobi (see for example [13]). Recently there has been renewed interest in 
this analogy. For example, in [11, Theorem 2] Helversen-Pasotto gives a result 

(1.8) 1 
--1 L G(AX)G(BX)G( CX)G(DX) q- x 

= G(AB)G(AD)G(BC)G(CD) + ( _ 1)AC(-1)8(ABCD) 
G(ABCD) q q , 

where the term 8(ABCD) is 1 if ABCD is the trivial character and 0 otherwise. This 
result is analogous to Barnes' lemma 

(1. 9) 2 ~ i t: f (a + z) f (b - z) f (c + z) f (d - z) dz 

f(a + b)f(a + d)f(b + c)f(c + d) 
f(a+b+c+d) 

where the path of integration IS curved so as to separate the increasing and 
decreasing sequence of poles. 

More examples of this analogy can be found in the references [5-11, 14 and 15]. 
Evans [7] has recently exploited this analogy to produce character sum analogues for 
Hermite polynomials and has shown that many of the classical properties carry over 
to the finite field case. In this paper we conduct a similar study of a character sum 
analogue for hypergeometric series. It is hoped that a study of special function 
analogues will serve as a useful tool when applied to problems surrounding character 
sums in the literature. 

The organization of this paper is as follows. In §2 we derive an analogue for the 
binomial theorem. Binomial coefficients are then defined and their elementary 
properties are investigated. In §3, hypergeometric and generalized hypergeometric 
series are introduced. Transformations and summation theorems are given in §4 and 
we give examples in §5. In the remainder of this section we set notation. 

Throughout this paper, capital letters A, B, C, . .. and Greek letters x,1/;, ... will 
denote multiplicative characters. We will let 8 denote both the function on GF(q) 
defined in (1.2) and the function on characters 

(1.10) 8(A) = {~ if A is the trivial character, 
otherwise. 
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The trivial character will be denoted f and the quadratic character q;. Define X by 
XX = f. Write Lx to denote the sum over all x in GF(q) and Lx to denote the sum 
over all characters of GF( q). Let J( A, B) denote the Jacobi sum 

(1.11) J(A, B) = L A(x )B(l - x). 
x 

Elementary properties of Gauss and Jacobi sums which we will make use of are 
[12, pp. 92, 93] 

( 1.12 ) G ( A ) G (1) = qA ( -1) - (q - 1) 8 ( A) = qA ( -1) (1 - q ~ 1 8 ( A ) ) , 

(1.13) J(A, B) = J(B, A) 

and 

(1.14) J(A B) = G(A)G(B) +(q - 1)B(-1)8(AB). 
, G(AB) 

We will also make frequent use of the orthogonality relations for characters [12, pp. 
89,90] 

(1.15) LA(x)B(x) = (q - 1)8(AB) 
x 

and 

(1.16) L X(x) = (q - 1)8(1 - x). 
x 

2. Binomial coefficients and the binomial theorem. The binomial theorem states 

(2.1) 

where (k) is the" binomial coefficient" defined by 

(2.2) (a)=a(a-1) ... (a-k+1)= f(a+1) 
k k! f(k+1)f(a-k+1)· 

A character sum analogue for (2.1) follows easily from (1.1) with f(x) = A(1 + x). 
The result is 

THEOREM 2.3. For any character A of GF(q) and x E GF(q), 

A(l + x) = 8(x) + _1_} L J(A, xh(-x). q- x 

PROOF. By (1.3), 
1 _ 

fx = q _ 1 L A (1 + x)x ( x ). 
x 

The result follows from the change of variables y = -(1 - x). D 
It follows from Theorem 2.3 that the finite field analogue for the binomial 

coefficient is the Jacobi sum. It will prove useful to make this analogy more explicit. 
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DEFINITION 2.4. For characters A and B of GF(q) define (~) by 

(~) = B(;l) J(A, B). 

In terms of binomial coefficients, Theorem 2.3 can be written 

(2.5) A(l + x) = o(x) + q ~ 1 L(~)X(x). 
x 

Some useful properties of binomial coefficients which follow easily from proper-
ties of Jacobi sums are 

(2.6) (~) = (:B)' 
(2.7) ( ~ ) = ( Bf) B ( -1), 

(2.8) (~) = (~)AB(-l), 
and 

(2.9) ( A) = G(A)G(B)B( -1) + q - l o(AB) 
B G(AB)q q 

G (A) + q - 1 0 ( B) + q - 1 0 (AB). 
G(B)G(AB) q q 

Some important variants of the binomial theorem are 

(2.10) A(l - x) = o(x) + q ~ 1 L( ~X)x(x) 
x 

and 

(2.11) B(x)AB(l - x) = q ~ 1 ~(~~)x(x). 
The result in (2.10) follows from (2.5) and (2.7). The result in (2.11) follows from 
(2.10) and the change of variables X ~ BX. 

From (2.9) we derive the following special cases for binomial coefficients 

(2.12) 

(2.l3) ( EO) = _ A( -1) + q - l o(A) 
A q q 

and 

(2.14) 
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Less trivial but very important are the formulas 

(2.15) 

and 

(2.16) 

( ~ ) (~) = (i) ( ~~) - q ;2 1 B ( -1) 8 (A) 

+ q -2 1 AB( -1)8(BC) 
q 

81 

The result in (2.15) is the analogue of the well-known classical identity for binomial 
coefficients 

(2.17) 

The proof of (2.15) follows from a tedious but straightforward calculation using 
(2.9). The result in (2.16) is similar except that one must also invoke a special case of 
the Hasse-Davenport relation [3, p. 153] 

(2.18) G(A)G(cpA) = G(A2)G(cp)A(4). 

3. Hypergeometric series. Recall that the hypergeometric series is defined by 

(3.1 ) F ( a, 2 1 
bl ) = ~ (a)k(b)k k 

x L.. k'() x, 
C k=O' C k 

where 

(3.2) 
f( a + k) 

(a)k= f(a) =a(a+l)···(a+k-l). 

More generally, 

(3.3) (a1,a2, ... , ar l ) = f (a 1)k(a2)k'" (ar)k k 
rF, b1,b2, ... ,bs x k=O k!(bJk'" (b,)k X. 

The most elementary attempt to define a character sum analogue for (3.3) would 
thus be 

G(Bl)G(B2) ... G(Bs) L G(A1X)G(A 2X)'" G(ArX) ( ) 
G(Al)G(A2) ... G(Ar) x G(X)G(B1X) ... G(BsX) X x , 

using G(AX)jG(A) as an analogue for f(a + k)jf(a). Unfortunately, this ap-
proach leads to rather poor results. An alternative that gives better results is to 
develop an analogue for the integral representation for the hypergeometric series [2, 
p.4] 

() ( a bl)_ f(c) 11 b( )C-b( )-a dt 
3 .4 2 Fl ' C X - f ( b ) f ( c _ b) 0 t 1 - t 1 - tx t (1 - t) . 
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DEFINITION 3.5. For characters A, Band C of GF(q) and x E GF(q), 

F ( A, 2 1 
BI ) BC(-l) '\' - -C x = e(x) i...J B(y)BC(l - y)A(l - xy). 

q y 

In this definition we have dropped the normalizing constant f(c)/f(b)f(c - b) in 
order to obtain simpler results. The factor e(x )BC( -1)/ q is chosen so as to lead to a 
better expression in terms of binomial coefficients. 

THEOREM 3.6. For characters A, Band C of GF( q) and x E GF( q), 

F (A, 
2 1 

PROOF. By (2.10), 

A( 1 - xy) = 8 ( xy) + q ~ 1 L ( A ~ ) X ( xy ). 
x 

Since e(x)B(y)8(xy) = 0 for all x, y we have 

F ( A, 2 1 ~ Ix) = B~~ -:)~ ( A~)x(x )BX(Y )BC(l - y) 

= B~~-:) L( A~)J(BX, BC)x(x) 
x 

q '\'(AX)( BX \) 
= q - 1 ~ X Be X(x). 

The result now follows since 

Note that the classical hypergeometric series can also be expressed in terms of 
binomial coefficients 

(3.7) F ( a, 2 1 b Ix) = C f (a + k - 1 ) ( b + k - 1) X k. 
C k=O k c + k - 1 

where 

(3.9) C = { (:: = ~ ) ... ( ~: = ~ ) } -1 

This leads directly to the following definition. 
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DEFINITION 3.10. For characters Ao, AI"'" An' B I, ... , Bn of GF(q) and x E 

GF(q), 

n+IFn( AO,Al' ... ,Anix ) = -q I:(AoX)(AIX) ... (AnX)x(x). 
BI,···,Bn q-1 x X BIX BnX 

Again we drop the factor C in order to obtain simpler results later on. The 
important special case 

(3.11) 
follows from (2.10). 

Generalized hypergeometric series have the following inductive integral represen-
tation [1, p. 19] 
(3.12) 

The analogue for this result also holds. 

THEOREM 3.13. For characters Ao, AI"'" An' BI, ... , Bn of GF(q) and x E 

GF(q), 

PROOF. We use 

in Definition 3.10 to obtain 

n+IFn( AO'AI, ... ,Anix) = An Bn{-l) I: _q_I:(Aox) ... (An-IX) 
BI,···, Bn q y q - 1 X ' X Bn-IX 

'X{XY )An{Y ) AnBn (1 - y), 
and the result follows. 0 

COROLLARY 3.14. For characters A, B, C, D and E of GF(q) and x E GF(q), 

(i) 3F2( A'~:ilx) 
BCDE{ -1) ,,- - -= e{x) 2 £...., C{y)CE{l - y)B(z)BD(l - z)A(l - xyz), 

q Y,z 
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(ii) 3F2( A'~:~IX) 
= e(x) BD(;1) L AE(y)CE{1 - Y )B(z )BD(1 - z )A{y - xz). 

q y.z 

PROOF. The result in (i) follows from Theorem 3.13 and Definition 3.5. The result 
in (ii) follows from (i) by the change of variables y t-+ l1Y. D 

It is clear from (3.3) that for the classical hypergeometric series, if a numerator 
parameter equals a denominator parameter, then the series can be written as a 
hypergeometric series with rand s each reduced by one. We expect a similar result 
in the finite field case. In addition, the series will also reduce to one of lower order if 
one of the numerator parameters is the trivial character. To simplify notation we 
adopt the following conventions: for characters AI' ... ,An' BI, ... , Bn let 

denote the product 

and let 

denote the series 

Since the order of the binomial coefficients in (3.10) is irrelevant, there are five cases 
to consider. 

THEo)tEM 3.15. Using the above notation, 

(i) F( e'~:~lx) = -~C(X)F( Ac'~~lx) +e{x)(~)(;), 

(ii) F( A'::ilx)=-~F( A'ilx)+B(X)(A~)(~;), 
(iii) 

F( A,e'B'~lx) =A(-I)]5(X)(~)F( A]5'B~'~~lx) D,E,F ED,FD 
-~D(-I)e{x)(~)(~) + q;2 1 D(-l)E(X)F( BE'~ilx )8(A]5), 
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(iv) F( A,B,C,r:IX) = (~)F( B,C,r:IX) _lX(_x)(C~)(~~) 
A, E, F . E, F q EA FA 

+ q ;2 1 A( -1)E(x )F( CE, ~ilX ) 8(B), 

(v) F( A,B,C,r:IX) = (C~)F( A,C,r:IX) -lBE(-I)B(X)(A!)(~~) 
E, B, F BE E, F q B F B 

+ q ;2 1 BE( -1)F( A, ~IX ) 8( CE). 

PROOF. Cases (i) and (ii) follow easily from 

(~~) = -~ + q ~ 1 8(Ax). 

Cases (iii), (iv) and (v) follow from (2.15). For example, in (iv) the binomial 
coefficients 

appear in the character sum for F. By (2.15) 

( AX)(BX) = (BX)(B) _ q -l x (-1)8(Ax) + q -1 A(-1)8(B), X AX X A q2 q2 
and the result follows. D 

An important special case of Theorem 3.15 is where n = 1. 

COROLLARY 3.16. For characters A, B, C of GF(q) and x E GF(q), 

(i) ( eBI) (B) 1--2Fl 'c X = C e(x) - qC(x)BC(1 - x), 

(ii) 2Fl( A,~ Ix) = (~)A( -1)C(x )XC(1 - x) 

-lC(-I)e(x) + q - 1 A(-1)8(1 - x)8(XC), 
q q 

(iii) 2Fl( A'~lx) = (~)e(x)B(I- x) 

_lX(-x) + q - 1 A(-1)8(1 - x)8(B), 
q q 

(iv) 2Fl( A,! Ix) = -~e(x )X(1 - x) + (~)A( -1)B(x). 

DEFINITION 3.17. A hypergeometric series to which Theorem 3.15 applies is called 
degenerate. 

Another important topic to be discussed is that of symmetry. The classical 
hypergeometric function is invariant under any permutation of either the numerator 
or the denominator parameters. As Theorem 3.15 shows, that is not the case for our 
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analogue. There are some obvious symmetries present; for example, numerator and 
denominator parameters are paired off in binomial coefficients in Definition 3.10 so 
the series is invariant under permutations of pairs of parameters: 

(3.18) F( A,B'Ci ) - F( A,C,Bi ) 
32 D,E X -32 E,D X . 

Similarly, special cases can occur; for example, 

(3.19) F( A,B,Bi ) - F( A,B,Bi ) 
32 C,D X -32 D,C X . 

We now derive the relation in general between series if parameters are permuted. We 
restrict our attention to transpositions. By the symmetry we know to exist, we need 
only consider two cases. 

THEOREM 3.20. In the notation preceding Theorem 3.15, 

(i) (BP') F( A, B, ~Ix) - q - 1 (~) D(-l)e(x )c5(A) AD D,E q2 E 

+ q;2 1 AD(-l)F( A'~lx )8(BD) 

= (~)F( B'~:~lx) - q;2 1 (~~)A(-X)8(DA) 

+ q ~ 1 A( -l)D(x )F( AD, ~~ Ix) 8(B), 

(ii) ( C~)F( A, B,C, I>. Ix) _ q - 1 (A~)( ~!)BF(-l)B(X)c5(BE) BF E, F, G q2 B G B 

+ q -1 BF(-l)F( A,B,I>.IX)8(CF) 
q2 E,G 

= (C~)F( A,C, B, I>. Ix) _ q - 1 (A~)( ~!)BE(-l)B(X)c5(FB) BE E,F,G q2 B GB 

+ q - 1 BE( -l)F( A, B, I>. Ix) c5( CE). 
q2 F,G 

PROOF. We use the reduction formulas of Theorem 3.15 as follows. For (i), 
consider the series 

F( A'B'A'~lx). A,D,E 
This series can be reduced by either Theorem 3.15(iv) or by (v). Setting the two 
expressions equal results in (i). For (ii), apply Theorem 3.15(v) in two different ways 
on the series 

F( A, B, C, B, I>.lx). 0 
E,B,F,G 
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COROLLARY 3.21. If the series is nondegenerate, then 

is invariant under any permutation of numerator or denominator parameters. 

PROOF. Without loss of generality we may restrict our attention to transpositions 
of numerator parameters. Again as in Theorem 3.20 there are two cases; we will 
consider the second. By Theorem 3.20(ii), since the series is nondegenerate, 

( C~)F( A'B,C'~lx) = (C~)F( A,C'B'~lx). BF E, F,G BE E, F,G 
Thus, 

{(~)(;)( ~) r1 F( A, ~',i,~lx) 
= {( ~;)( ~)( ;)( ~) r1 (~i) F( A, i,i, ~Ix ) 

and so we must show that 

or 

Since none of the characters involved is trivial, by (2.9) we have 

(~;)(~)(;) = G(E}G(F~dt1:)~lBF}G(CB} = (~i)(~)(~)· 
Case (i) is similar. D 

The factor (~) in Corollary 3.21 arises because we did not normalize hypergeomet-
ric series in Definition 3.10. The reason for dropping this factor is that the results in 
Theorem 3.15 and 3.20 become even worse if this constant is incorporated. It also 
leads to simpler results in the next section. The complications in Theorems 3.15 and 
3.20 might lead one to question the definition we are using for hypergeometric series. 
The results would be much simpler if one were to use a definition involving Gauss 
sums instead of Jacobi sums. The justification for our definition comes in the next 
section when we give transformations and evaluation theorems for hypergeometric 
functions. These theorems would become intractible using a definition in terms of 
Gauss sums because the binomial theorem with Gauss sums instead of Jacobi sums 
is more complicated than Theorem 2.3. 

4. Transformations and summation theorems. Classical hypergeometric series satisfy 
a large number of transformation identities. Kummer gave a list of 24 solutions to 
the differential equation for the hypergeometric series 
(4.1) x(l - x}y" +(c -(a + b + l}x}y' - aby = O. 
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Any three such solutions form a linearly dependent set and the resulting linear 
dependence relations give transformations for hypergeometric series. For an account 
of these transformations and a list of Kummer's 24 solutions see [18, pp. 283-286 or 
4, pp. 105-108]. 

Kummer's techniques for obtaining solutions for (4.1) involved changes of varia-
bles which do not alter the form of the differential equation. We do not have an 
analogue for (4.1) so we must resort to other means in obtaining transformations. 
Our techniques are based on the binomial theorem and changes of variables in 
Definitions 3.5 and 3.10 or in Theorem 3.6. 

THEOREM 4.2. For characters A, B, D, C, E of GF(q) and x E GF(q), 

(i) F( A, B, ~Ix) = D(x )F( BD, AE, ~E Ix), D,EI D,ED 
(ii) F( 'A, B'~lx) = ABDCE(-l)A(X)F( A, A~, A!I!). D,E AB,AC x 

PROOF. We change variables in Definition 3.10, 

F( A'B'~lx) = -q L(AX)(BX)(~X)x(X). D E q - 1 X DX EX , x 
For (i), replace X by DX, for (ii), replace X by AX and appeal to property (2.8) for 
binomial coefficients. D 

We remark that the change of variables in (i) can be carried out for any 
denominator parameter, and the change of variables in (ii) can be done for any 
numerator parameter to obtain similar transformations. The result in (ii) is the 
analogue for the classical result on reversing the summation of a terminating 
hypergeometric series [17, p. 48] 

(4.3) n+iFn( -m,ai, ... ,anlx ) 
bi ,···, bn 

= (ai)m ... (an)m(_)m F ( 
(bi)m ... (bJm x n+i n 

-m, 1 - bi - m, . .. , 1 - bn - m I!) . 
1 - a i - m, ... , 1 - an - m x 

It is interesting to note that because the character sum has only a finite number of 
terms, the analogy is strongest with terminating hypergeometric series. In fact, if 
there is a difference between terminating and non terminating cases, our analogue 
will be with the terminating case of a formula. This phenomenon can be seen in the 
first part of the following theorem. 

THEOREM 4.4. For characters A, B, C of GF(q) and x E GF(q), 

(i) 2Fi( A, ~ Ix) = A( -1) 2Fi( :~~11 -x) 

+A( -l)(}C) 8(1 - x) - (~)8(x), 
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(ii) 2F1( A'~IX)=C(-1)X(1-X)2F1( A,C~lx~l) 

+ A ( -1) ( JC) 8 (1 - x), 

(iii) 2 F1 ( A, ~ IX ) = :8 (1 - x) 2 F1 ( cX, ~ I X ~ 1 ) 

+A(-1)(JC)8(1 - x), 

(iv) 2F1( A'~IX) = C(-1)CAB(1-X)2 F1( CX,C~IX) 

+ A ( -1) ( JC) 8 (1 - x). 

hOOF. We change variables in the definition 

2F1( A, ~Ix) = e(x) BC~-l) ~ B(y):8C(l - y)X(l - xy). 

For (i), we set y = zj(z - 1). Then we have 1 - y = 1/(1 - z) and 1 - xy = 
(1 - (1 - x)z)j(l - z). Thus, 

2F1( A, ~ Ix) 
= e(x) BC( -1) L B(z ):8(z - l)BC(l - z )X(l - z )X(l - (1 - x)z) 

q z 

= e(x)A(_l)AC(-l) L B(z)AC(l - z)X(l -( -x)z). 
q z 

The result now follows from the observation that e(x) = e(l - x) + 8(1 - x) -
Sex). For (ii), (iii) and (iv) make the changes of variables 

z 1 - z y = 1 - z, y = 1 and y = -1--' respectively. 0 -x+xz -xz 
Theorem 4.4, parts (ii) and (iii) are analogues for Pfaffs transformation [17, p. 31] 

(4.5) 2F1( a'~lx)=(1-Xra2F1( a,e-~IX~l)' 
part (iv) is an analogue for Euler's transformation [17, p. 10] 

(4.6) 2F1( a'~lx) = (1- xr-a-b2F1( c - a,e - ~Ix). 

Part (i) is an analogue for the transformation [17, p. 34] 
(4.7) 

F ( a, b 11 ) [(1 + a + b - e) f(l - e) F ( a b I ) 
21 l+a+b-e -x =f(1+a-e)f(1+b-e)2 1 'ex 

f(l+a+b-c)f(e-l) 1-c F( l+a-e,l+b- el) 
+ f( a) f( b) X 2 1 2 _ eX. 
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To strengthen the analogy, note that if a is a negative integer, say a = -n, then 
Ijf(a) = 0 so (4.7) becomes, in the terminating version, 

(4.8) 1 - x b I ) I-n+b-c ' 

which agrees well with 4.4(i). 
It may be pointed out that if one includes the trivial y >-+ z then there are 24 

changes of variables of the type used in the proof of Theorem 4.4. This gives rise to 
23 transformations (24 if one includes the identity transformation). These 24 
changes of variables and the resulting transformations correspond to Kummer's 24 
solutions. We have listed the most important transformations. The others may be 
obtained by various compositions of the transformations given in Theorem 4.2, in 
the case of the 2Fl' with the transformations in Theorem 4.4. 

THEOREM 4.9. For characters A, Band C of GF(q), 

PROOF. Set x = 1 in Theorem 4.4. Alternatively, one could set x = 1 in the 
definition of a 2Fl: 

2Fl( A, ~ 11) = BC~ -1) ~ B(y )BC(1 - y)A(1 - y) 

= BC(-I) J(B, ABC) =A(-I)( _B). D 
q AC 

Theorem 4.9 is the analogue of Gauss's evaluation [2, p. 2] 

(4.10) 2 Fl ( a, b 11) = f ( c) f (c - a - b) . 
c f(c - a)f(c - b) 

In fact, if F is nondegenerate, then putting in the proper normalization yields 

(~r12Fl( A'~ll) =A(-l)(A~)(~rl 

= A(-I) G(C)G(BC) 
G( CA)G(ABC) 

G( C)G( CAB) 
G( cA)G( CB) . 

Definition 3.5 leads to other summation theorems as well. For example, if we set 
x = -1 we have 
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If C = AB this becomes 

2 Fl ( A '-.B \-1) = A ( -1) L B (y ) X( 1 _ Y 2 ) 
AB q y 

= A(-I) LB(y)-q-L(AX)X(y2) 
q y q-l x X 

= ~~1{ L(A~)LBx2(y). 
x y 

The inner sum is zero unless BX2 is trivial so we are lead to 
if B is not a square, 

(4.11) 

This result is the analogue of Kummer's theorem [2, p. 9] 

(4.12) F (a, b 1-1) = r(1 + b - a)r(1 + t b) 
21 l+b-a r(l+b)r(l+tb - a )· 

The terminating form of (4.12) is 

(4.13) 2 Fl ( a, 1 _-: _ n 1-1) = {
O 

( N) N 

(a + Nh 

if n is odd, 

if n = 2N. 

U sing Theorem 4.4 we are lead to 

,F, ( A,:, (2) ~ A( -1){(~) + (~AC) 
if B is not a square, . 

(4.14) 

if B is not a square, 
(4.15) 

A large number of quadratic transformations exist for classical hypergeometric 
series. A partial list of quadratic transformations can be found in [4, pp. 64-67], 
which also gives necessary and sufficient conditions for the existence of a quadratic 
transformation in terms of the parameters of the function. A similar result holds for 
hypergeometric series over GF(q), but it is not our intention to examine the problem 
in such depth. Instead we will derive a single quadratic transformation by way of 
example. 

THEOREM 4.16. For characters A and B of GF(q) and x E GF(q), 
if B is not a square, 
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PROOF. Using the definition for a 2Fl we have 

2Fl ~ X = e(x)--£...B(y)A(l- y)A(l- xy) ( A B I ) A( -1) " - -
AB q y 

A(-l) " -= e(x)-- £... B(y)A(l - y(l + x - xy)). 
q y 

By the binomial theorem, 

X( 1 - y (1 + x - xy)) 

= S(y(l + x - xy)) + q ~ 1 L( A~)x(y)x(1 + x - xy). 
x 

Using this in (4.16) and changing y to y Ix gives 

(4.17) F ( A !1lx) = A (-1) B ( 1 + X) + A (-1) 
2 1 AB q x q - 1 

. L (AX) BX (x)BX(y)x(1 + x - y). 
x.y X 

Since 1 = e(l + x) + S (1 + x), (4.17) becomes 
(4.18) 

2Fl( AX! Ix) = A(;l) B( 1 : X) + S(l + x) ~~11 L (A~)B( -1)BX2(y) 
X,Y 

+e(l + x) A~~ L (AX) BX (x)BX(y)x(1 + x - y). 
q X,y X 

The second term on the right-hand side was evaluated in obtaining (4.11). To 
evaluate the third term make the change of variables y ~ (1 + x) Y to obtain 

{ 
0 if B is not a square, 

,p,( AX! 1+ A(~l) B( 1 : X) H(l + x) (~H ~~) if B ~ C', 

+ B ( 1 : x ) ~ ~ 11 ~ ( A~) X ( (1 : x )2 ) ~ Bx (y)x (1 _ y). 

The inner sum on this last term is 

](BX,X) = qX(-l)( B~). 
Using this and making the change X ~ BX gives the desired result. 0 

Theorem 4.16 gives the best analogue available for the classical transformation [4, 
p.l13] 

t + tb I 4x ) 
1 - a + b (1 + X)2 . 
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It is somewhat disappointing, however, that the major term on the right-hand side of 
(4.16) does not, strictly speaking, represent a hypergeometric series. The problem lies 
in the term (B~). If B is a square then we can exploit (2.16) to improve the analogy. 

THEOREM 4.20. For characters A and B of GF(q) and x E GF(q), 

2 Fl ( A ~ ~ Ix ) = 8 (1 + x) [ (~) + ( ~~ ) ] 
+A(-l) q - 1 e(x)e(l + x)8(~B) 

q 

-1( ~)-l (2) + 7 ~B A( -1)B2 1 _ X e(x )e(l + x )8(AB} 

+(~)( ~~flA(-1)B2( 1 ~ X )2Fl( ~BJ:21 (1 :Xx)2). 

PROOF. It follows from (2.16) that 

(4.21) ( B2~2) = (~~x)( :2:)( ~~ fl Bx(4). 

Consequently, if B is replaced by B2 in Theorem 4.16 we obtain 

2Fl( A~~lx) =8(1 +x)[(~) +(~~)] + A (;1) B2(1 :X) 

+B2(1 + X)B(4)( ~)-l_q_L(~BX)( BX)( _B2X)X( 4x ). 
~B q - 1 x X B2X AB2X (1 + X)2 

The character sum on the right-hand side is a degenerate 3F2 which when reduced to 
a 2Fl gives rise to the desired result. 0 

Given the quadratic transformation in Theorem 4.20, others may now be obtained 
by using the 2Fl-linear transformations. More information on quadratic transforma-
tions over finite fields can be found in [9, pp. 40-55]. 

Transformations for higher order hypergeometric series also exist. In fact, 3F2(l) 
transformations follow from 2Fl(X) transformations. For example, if both sides of 
the result in Theorem 4.4(i) are multiplied by (DE(-l)/q)D(x)DE(l - x), then 
summing on x gives 

(4.22) DE~-l) ~2Fl( A'~lx)D(X)DE(l-X) 

= ADE(-l) L 2Fl( A, ~11 -X)D(X)DE(l - x). 
q x ABC 

If we replace x by 1 - x on the right-hand side, then by Theorem 3.13 we have 

(4.23) B, 
ABC, 
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Similarly, from Theorem 4.4, parts (ii), (iii) and (iv) we obtain 

(4.24) 3F2( A, ~', ~ 11) = AC( -1)3F2 ( A, CE, D -11), C, ADE 

(4.25) 3 F2 ( A, ~', ~ 11) = B ( -1) 3 F2 ( CA, B, B~EI)' C, 

and 

(4.26) 3F2( A, ~', ~ 11) = AB( -1)3 F2( CA, CE, 
A:CEI1 ), c, 

respectively. 
There exists a 3F2 quadratic transformation [17, p. 90], 

(4.27) 3F2( a'l + ~'_ a, 1 + ~ _ b Ix) 

=(1-X rC3F2( 1C, 1+1C, l+c-a- b l -4x 2)' 
l+c-a, l+c-b (I-x) 

As might be expected, a similar result holds for the finite field case. 

THEOREM 4.28. For characters A, Band C of GF(q) and x E GF(q), 

F ( A, 
3 2 

B, 
CA, ~Ix) = - q -2 1 AC(-l)e(x)S(b) 

CB q 

+ q -2 1 BC(-l)e(x)e(l + x)S(A) - q -2 1 A(-x)S(ABC) 
q q 

+ t ABC(-l)S(l + x) + t(A!)BC(-l)C( x: 1 ) 

+8(1 - X)AB(_!){(~lr:!i)t: ;:;)( ~:~~) 
+BC(-l)C(l- x)~ L(CX2)( _cx)( A~CX)x( -x 2)' 

q - x X ACx BCX (1 - x) 

SKETCH OF PROOF. We proceed similarly to the proof of Theorem 4.16, beginning 
with the analogue of the integral representation, Corollary 3.14(i), 

(4.29) 3F2( A, ;X, ~Elx) 

= e(x) AC(;1) L C(y)E(l - y)B(z)ABC(1- z)A(l - xyz). 
q y,z 



HYPERGEOMETRIC FUNCTIONS OVER FINITE FIELDS 95 

Expanding A(1 - z)A(l - xyz) = A(1 - z(l + xy - xyz)) by the binomial theo-
rem and taking z to 1 - z gives 

F (A, 
3 2 

B, 
CA, 

~Ix) =e(x)AC(-l) -q-L(AX)L C(y) 
CB q2 q - 1 x X y,z 

·:8(1 - y):8C(z)BX(l - z)x(l + xyz) 

~ AC(-l) q ~ 1 ~(A~)x(-t),F,( 5(, 
BC, 

again by Corollary 3.14(i). When the 3F2 on the right-hand side is reduced, the main 
term is 

One may now apply the 2 F1-quadratic transformation producing the main term 

ABC(-l) q ~ 1 L( A~)( B~)X(-l)C(l - x) q ~ 1 
x 

. 7( C:2
)( C~~)o/( (1 =XX)2) 

= AB(-l)C(l - x) q ~ 1 7( C:2 )o/( (1: X)2 )3F2( A, 
B, 
e, 

The above 3F2 reduces to a 2Fl(1) which can be evaluated by Theorem 4.9 to obtain 
the summation on the right-hand side of Theorem 4.28. 0 

As was the case with Theorem 4.16, more can be said if the appropriate character 
is a square. For simplicity we will only state the result in the nondegenerate case. 

COROLLARY 4.30. If A, B, cpC, cX and C 2AB are all nontrivial, then 

F (A, 
3 2 

B, 
C 2x, 

~ 8(1 - x )AB( -l)[(~)C;~) + (~~) (~:;~) 1 + AB~ -I) 8(1 + x) 

+ (~)( ~~rAB(-I)C'L = x j,F, (~C, C~l:, 
PROOF. Similar to that of Theorem 4.20. 0 
We close this section with some important 3F2(1) evaluations. In the classical case 

there are four major summation theorems. These are Saalschiitz's theorem [17, p. 49] 

(4.31) ( -n a b I) (c - a L (c - b) n F " 1 = ....:........,-..,.--'-"'-'-----'-"-
3 2 c,l-c+a+b-n (c)n(c-a-b)n' 
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Dixon's theorem [17, p. 51] 

(4.32) 3F2( a, 1 + ~'_ b,1 + ~ _ cl l ) 

r(1 + 1a)r(1 + a - b)r(1 + a - c)r(1 + ~a - b - c) 
r(1 + a)r(1 + ~a - b)r(1 + ~a - c)r(1 + a - b - c)' 

Watson's theorem [17, p. 54] 

(4.33) 3 F2 (a, HI + ~'+ b),;c 11) 
r(~)r(~ + c)r(Hl + a + b))r(Hl - a - b) + c) 

r(Hl + a))r(Hl + b))r(Hl - a) + c)r(Hl - b) + c)' 
and Whipple's theorem [16, p. 54] 

(4.34) 3F2( a. 1 ~,a, 1 _ ;'+ 2e11) 

'7Tr(b)r(1 - b + 2e) 
22<-lr(Ha + b))rO(1 + a - b + 2c))rO(1 - a + b))rO(2 - a - b + 2c))' 

We give analogues for each of these. 

THEOREM 4.35. For characters A, B, C and D of GF(q), 

F ( A,B, 
3 2 D, C -11) = BC(-I)( ~)( ~) -l.BD(_I)(DB). ABC D DA DC q A 

PROOF. Recall Theorem 4.4(iv), 

(4.36) 2FI( A'~lx)=C(-I)CAB(I-x)2FI( CA'c~lx) 

+ A ( -1) ( A~ ) 8 (1 - x). 

We calculate the coefficient of D( x) on both sides of (4.36). The coefficient of D( x) 
In 

IS 

Since 

2FI( A'~lx) 

q (AD)(BD) q - 1 D CD' 

1 
8(1 - x) = --1 L X(x), q- x 

the coefficient of D(x) in A(-1)(A~)8(1- x)is 

~lA(-I)( _B). 
q - AC 

By the binomial theorem, the coefficient of D(x) in X(x)CAB(1 - x) is 

_q_(CAB)D (-1). 
q - 1 DX X 
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Collecting terms, we have 

_q_( AD)( BD) = D(_1)(-q-)2L: (CAX) (CBX) (C A~)X( -1) 
q - 1 D CD q - 1 x X Cx DX 

+~lA(-l)( _B) q- AC 
or 

( AD)(BD) -!A(-l)( _B) =ABC(_l)_q_L:(CAX)(CBX)( DX ). 
D CD q A C q - 1 x X Cx C ABD X 

The result now follows by relabeling the parameters. 0 

THEOREM 4.37. For characters A, Band C of GF(q), 

F ( A, 
3 2 

B, 
cx, C_11) = q -2 1 BC(-1)8(A) 

CB q 

- q -2 1 AC(-1)8(B) - q -2 1 A(-1)8(CAB) 
q q 

+AB(-l){(~)(:!i)t: (:~)( ~:;~) ifC~ D'. 
PROOF. Set x = 1 in Theorem 4.28. 0 
Theorems 4.35 and 4.37 are the analogues of Saalschutz's theorem and Dixon's 

theorem, respectively. The theorems of Watson and Whipple are obtained from 
Dixon's theorem by using the 3F2(1) transformations. 

THEOREM 4.38. For characters A, Band C of GF(q), 

(i) F ( A 2C, B, 
3 2 AC , 

( ii) 

F ( A, 3 2 

= q -2 1 C(-1)8(A) - q -2 1 AC(-1)8(B) - q -2 1 C(-1)8(ABC) 
q q q 

+A( _l){O( ~1)1(C :;o)t: s(q;~e),( CPBD) . = 2 
_ _ _ _ _ ifC D, 

A ABD A cpABD 

B, 
A 2e, 



98 JOHN GREENE 

PROOF. For (i), apply transformation (4.25) to the hypergeometric series in 
Theorem 4.37 and replace A by A. For (ii), apply transformation (4.23) and replace 
C by Be. 0 

5. Remarks. Several of the results in this paper have previously appeared in the 
literature under different guises. For example, the result [11, Theorem 2; 15, 
The-Jrem A2], 

(5.1 ) 
1 --1 L G(AX)G(BX)G( CX)G(DX) q- x 

= G(AB)G(AD)G(BC)G(CD) + ( _ 1)AC(-1)8(ABCD) 
G(ABCD) q q , 

is equivalent to Theorem 4.9 via (2.9). Also, results [5, (4)] and [5, (5)] are essentially 
two -different formulations of Dixon's theorem, Theorem 4.37. 

It is the author's hope that techniques involving hypergeometric series over finite 
fields will provide a useful and elementary set of tools for dealing with problems 
related to character sums. As an example, see [10] in which the character sum 

L <p ( xy (1 + x) (1 + y) (x + y)) 
x,y 

is evaluated over GF(P). This evaluation can be used to obtain an explicit count of 
the number of points on the surface (x 2 + 1)(y2 + 1)(x2 + y2) = Z2 over GF(P) 
and confirms a conjecture of Evans [8, p. 370]. 

Even the binomial theorem, Theorem 2.3, can be quite useful. For example, the 
lacobsthal sum, Hn( a), in our notation is defined by 

(5.2) 
x 

A classical result involving the lacobsthal sum is [16, p. 231] 

(5.3) 
d-l 

Hn(a) = <p(a)~(-l) L ~2j+l(a)J(~2j+l,<p), 
j~O 

where d = gcd(n, q - 1) and ~ is a character of order 2d. This result is easily 
proved by elementary techniques but it follows almost immediately from orthogonal-
ity and the binomial theorem. We have 

( Xll) L <p(x)<p(a + xn) = <p(a)L <p(x)<p 1 +----;; 
x x 

= <p(ai L J(<p,x)x(-a)<pxn(x) 
q - x.x 

by Theorem 2.3. By orthogonality, the x-sum is 0 unless X is an odd power of ~, 
which establishes the result. 
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The theory presented in this paper is by no means complete. Three notable 
transformations for which analogues have not been given are the balanced 4F3(1) 
transformation [2, p. 56] 

(5.4) 4F3( a, ~: i: ~nll) 
_ (f-c)n(g-c)" F( e-a,e-b, 
- (f)n(g)" 4 3 e, 

c, 
l+c-j-n, 

provided e + f + g = I - n + a + b + c, the transformation of a nearly poised 
4F3(1) to a I-balanced special sF4(1) [2, p. 33] 

(5.5) 

F ( a, 4 3 
b, 

1 + a - b, 
c 

1 + a - c, 

(w-a)m (l+a-w, -m, ~, ~+~, l+a-b-cl) 
= 5 F4 1 I 1 , 

(w)m 2:(I+a-w-m)'2(2+a-w-m),I+a-b, l+a-c 

and Whipple's transformation of a very well poised 7F6(1) to a I-balanced 4F3(1) [2, 
p.25] 

(5.6) 7F6( a, 1 ;,~' b, c, d, e, j I) 
l+a-b, l+a-c, l+a-d, 1+a-e, l+a_ j 1 

_ r(1 + a - d)r(1 + a- e)r(1 + a - I)r(1 + a - d - e - I) 
- r(1 + a)r(1 + a - e - I)r(1 -I- a - d - I)r(1 + a - d - e) 

.F(I+a-b-C, d, e, j I) 
4 3 1 + a - b, 1 + a - c, d + e + j _ a 1 . 

provided the left-hand side converges and the right-hand side terminates. Two 
evaluation theorems for which analogues have not been given are the evaluation of a 
very well poised sF4(1) [17, p. 56] 

1 + ~, b, c 

ia. l+a-b, 1 + a - c, 

and Dougall's theorem [17, p. 56] 

l+j, b, C, 

ia, l+a-b, l+a-c, 

-m I) (1 + a) m (1 + a - b - c) m 

l+a+m 1 =(I+a-b)m(l+a-c)m' 

d, e, 

1 + a - d, 1 + a-e. 

_ (1 + a)m(1 + a - b - c)m(1 + a - b - d)m(l + a - c - d)m 
- (1 + a - b) m (l + a - c) m (l + a - d) m (1 + a - b - c - d) m ' 

provided 1 + 2a = b + c + d + e - m. 
Analogues for the results in (5.4) and (5.5) are easily accessible. To obtain an 

analogue for (5.5) multiply both sides of the quadratic transformation, Theorem 
4.28, by (MW(-l)/q)M(x)MW(l - x) and sum on x. If the series involved are 
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nondegenerate, the resulting expression is 
(5.9) 

B, 
CA, 

Mil) = ABCW(-l) MW(2) + BCW(-l) ( B)(MWC) 
W q2 q AB W 

F ( A, 4 3 
C, 

CE, 

+B(-l)-q I(CX2)( _cx)( A~CX)( MX )X(-l). 
q - 1 x X ACX BCX MWCX2 

The series on the right-hand side of (5.9) is the best analogue available for 

/C, 
AC, 

CAB, 

BC, 

M, 

JCMW, 
cW 1 

CPJC MW 1 

if neither C nor CMW is a square. To obtain an analogue for (5.4), multiply two 
transformations of type 4.4(iv) to obtain 
(5.10) 

2Fl( A, ~Ix )2Fl( D, ~Ix) = AD(-1)(!c)(D~)S(l - x) 

+ CF(-l)FCABDE (1 - X)2 Fl( CA'c~lx )2Fl( FD, F~lx). 
If we pick the parameters so that FCABDE(l - x) = 10(1 - x) = 1 - S(l - x), 
then equating coefficients of G( x) gives 

or after relabeling the parameters, 
(5.12) 

F ( A, 4 3 
B, 
E, 

C, 
F, 

B, G, 
C, DG, 

EB, 
E, 

C, 
CDF, 

provided ABCD = EFG. These techniques do not seem to be good enough to give 
analogues for (5.6)-(5.8) and, in fact, there is no known analogue for these results. 
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