
TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 301, Number 1, May 19R7 

T-DEGREES, JUMP CLASSES, AND STRONG REDUCIBILITIES 

R, G, DOWNEY AND C, G, JOCKUSCH, JR, 

ABSTRACT. It is shown that there exist r.e. degrees other than 0 and 0' which have a 
greatest r.e. I-degree. This solves an old question of Rogers and Iockusch. We call 
such degrees I-topped. We show that there exist incomplete I-topped degrees above 
any low r.e. degree, but also show that no nonzero low degree is I-topped. It then 
follows by known results that all incomplete I-topped degrees are low2 but not low. 
We also construct cappable nonzero I-topped r.e. degrees and examine the relation-
ships between I-topped r.e. degrees and high r.e. degrees. 

Finally, we give an analysis of the "local" relationships of r.e. sets under various 
strong reducibilities. In particular, we analyze the structure of r.e. wtt- and tt-degrees 
within a single r.e. T-degree. We show, for instance, that there is an r.e. degree which 
contains a greatest r.e. wtt-degree and a least r.e. tt-degree yet does not consist of a 
single r.e. wtt-degree. This depends on a new construction of a nonzero r.e. T-degree 
with a least tt-degree, which proves to have several further applications. 

t. Introduction. This paper concerns itself with relationships between Turing (T-) 
reducibility and several other reducibilities-many-one (m-), one-one (1-), truth 
table (tt-), bounded truth table (btt-), and weak truth table (wtt-)- for Le. sets and 
various other d02 sets. In particular in §2 we are interested in the ordering of 
I-degrees within a single r.e. T-degree. In §3 we study connections between the 
(local) ordering of r.e. I-degrees in an r.e. T-degree a and the (global) properties 
possessed by a within R, the r.e. T-degrees. In §4 we analyze (local) relationships 
between various reducibilities and by this we are mainly concerned with interactions 
of the various orderings of r-degrees (for various r) in a single r.e. T -degree. Thus we 
continue our analysis along the lines of [Dgt,2, Jot, 2, 3, LS, and DSj. For 
background information we refer to Rogers [Rgj or Odifreddi's excellent survey 
[Odt]. 

It is well known that 0' and 0 are r.e.-degrees containing greatest r.e. I-degrees. It 
is an old question of Rogers and Jockusch (cf. [Jot, Problem 14-14; Rg, §4]) 
whether these are the only such degrees. 

Let r1 and r2 be reducibilities. We shall sayan r.e. r1-degree a is r2- topped if there 
is an r.e. set A of rcdegree a such that for all r.e. sets B of r1-degree a we have 
B ~ r2 A. In this case A is obviously unique up to r2-equivalence and is called the 
r2-top of a. Thus an r.e. T-degree a is tt-topped by an r.e. set A if A has T-degree a 
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and for all r.e. sets B ~ T A, B ~ It A. The question above may be rephrased in our 
terminology as asking if there exist nontrivial I-topped r.e. (T-) degrees. Odifreddi 
[Odl, Problem 12] noted that it was even unknown whether there exist nontrivial 
tt-topped r.e. degrees. 

In §2 we solve these questions affirmatively by constructing a nontrivial I-topped 
r.e. degree. The proof makes essential use of the fact that we are dealing with r.e. 
I-degrees-or r.e. tt-degrees-within a single r.e. degree. If we drop "r.e." and 
simply deal with all tt-degrees of degree a, our result then fails. In fact, 10ckusch 
[Jo2] showed that no hyperimmune degree (and hence no nonzero degree ~ 0') 
contains a greatest tt-degree. However, as we shall see in §4, it is possible for an r.e. 
degree a to contain a least tt-degree (amongst all sets of degree a). With this in mind 
we define an r.e. rI-degree a to be r2-bottomed if there is an r.e. set A of rI-degree a 
such that for all r.e. sets B of rcdegree a we have A ~ r B, and we define an a to be , 
strongly r2-bottomed (by A) if for all sets B of rcdegree a we have A ~ r, B. 

In §3 we analyze the R-global properties possessed by I-topped r.e. degrees. In 
particular we analyze how I-topped r.e. degrees behave under the jump operator. We 
show that no nonrecursive semilow r.e. set is an m-top and no nonrecursive low r.e. 
set is a tt-top. From a known result of 10ckusch [Jo3] it follows that all nontrivial 
tt-topped degrees are 10w2 but not low. We also construct incomplete I-topped r.e. 
degrees above each low r.e. degree. In particular, this means that there exist 
incomplete promptly simple I-topped r.e. degrees (by e.g. [AJSS]). We remark that 
many characterizations of promptly simple degrees appear in [AJSS], and in 
particular promptly simple degrees are exactly the noncappable r.e. degrees (i.e. 
those nonzero r.e. degrees that are not part of a minimal pair of r.e. degrees). To 
complete §3 we show that there exist cappable I-topped r.e. degrees, and examine 
the relationship between high r.e. degrees and I-topped r.e. degrees. 

In §4 our focus shifts to the interrelationships between various reducibilities at a 
more "local" level (rather than the "global" aspects of §3). The main theme of this 
section is the structure of the tt-degrees within a single T- (or wtt-) degree. We start 
with a direct proof of Kobzev's [Ko3] result that there exist nonzero r.e. T-degrees 
with strong tt-bottoms. Our construction is much more flexible than Kobzev's 
indirect method (using "1J-maximal semirecursive sets") and allows us to solve a 
question of Odifreddi [personal communication] by constructing a strong r.e. tt-bot-
tom which is not of minimal tt-degree. 

Strongly tt-bottomed r.e. degrees mayor may not be (strongly) contiguous, where 
(following [Do2]) an r.e. degree is called contiguous (resp. strongly contiguous) if it 
contains a single r.e. wtt-degree (resp. single wtt-degree). These and other results 
enable us to show that there are 

(1) 10w2 r.e. degrees that are I-topped but not tt-bottomed, 
(2) strongly tt-bottomed and strongly contiguous r.e. degrees, 
(3) strongly tt-bottomed and not wtt-topped r.e. degrees, and 
(4) wtt-topped strongly tt-bottomed noncontiguous r.e. degrees. 

Many of these results are to some extent the best possible by various results from 
Lachlan [La2], Cohen [Co], and Kobzev [Kol, 2,3]. 
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Two other results from §4 are the following. First, there exists an r.e. T-degree 
that contains infinitely many r.e. wtt-degrees, the structure of which is a lattice with 
least and greatest members. Second, we generalize the Friedberg and Rogers [FR) 
result that hypersimple r.e. sets are not wtt-complete by showing that hypersimple 
r.e. sets are not wtt-cuppable. That is, if H is hypersimple and r.e., and D is any r.e. 
set with D EB H == wtt 0' then D == wit 0'. In particular each r.e. T-degree contains 
r.e. wtt-degrees that are not wtt-cuppable and no contiguous r.e. degree is wtt-cuppa-
ble. (This last result is due to Ambos-Spies, Jockusch, So are, and Shore in [AJSS).) 
Finally, we show that O~ fails to be wtt-bottomed in a very strong way. Namely, we 
show that if A is any r.e. set with A ~ wit B for all r.e. sets B of T-degree 0' then 
A ==T 0. 

Our notation is for the most part standard and will follow the rules that ~e and fe 
will denote T-functionals, fe will denote a wtt-functional with use Ye , and in general 
Ye will denote a partial recursive function. We will denote the eth r.e. set. The 
arguments of all computations, etc. will be bounded at any stage s by s. We denote 
by lXe the eth tt-condition, so that B ~ It A iff there is a recursive function f such 
that for all x, x E B iff A F lXf(x)' When convenient we suppose that use functions 
and dom lX x are both monotone in x. We denote by u( -) the use function of any 
computation (-). We let dtt and btt denote, respectively, disjunctive truth table and 
bounded truth table reducibility. Here and elsewhere we refer to Odifreddi [~dt). 

Finally, most of our constructions use" tree of strategies" constructions, presented 
in the manner of Stob [St). It would be helpful if the reader were familiar with this 
or Soare [S03 or S04). We do abuse notation slightly by sometimes using We for 
different roles in the same construction. However, we shall only do so when the 
meaning will be clear from the context. 

The authors wish to thank Mike Stob for several helpful suggestions regarding this 
material. 

2. At-topped r.e. degree. The goal of this section is to give the basic construction 
of a I-topped r.e. degree. 

(2.1) THEOREM. There exists an r.e. degree a *- 0,0' such that a is I-topped. 

PROOF. We shall build A = UsA, together with an auxiliary set B = UsBs III 

stages, to satisfy the requirements: 

Pe: A *- We' 
Qe:-,(B ~IA viaye ), 

Re: ~e(A) = We implies We ~ 1 A. 

Here, for the Qe we suppose {Ye}eEw is a recursive list of a111-I partial recursive 
functions, and for the Re we regard (~e' We) as a list of all pairs consisting of a 
T-functional (~e) and an r.e. set (We)' Our priority ranking here is Ro, Po, Qo, R I ,···· 

We shall satisfy the Pe in the usual way: we appoint followers x, wait till x 
appears in We and then enumerate x into A when this occurs. The basic idea for the 
satisfaction of the Qe requirements is also quite simple. We pick a follower x 
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targeted for B and wait till Ye,s(x)!, We then enumerate x into B iff Yejx) $ As' 
H Ye,s(x) $ As we restrain A in the sense that we would not allow Yejx) to be 
enumerated into A. (Strictly speaking we attempt to restrain by cancellation and use 
the fact that s bounds all current computations.) 

Our problems occur with the satisfaction of the Re requirements in conjunction 
with the Pi and Qi requirements. First we need to describe the method of satisfac-
tion of the Re' Let I( e, s) = max{ x: V'y < x(<Pe,s(As; y) = Wejy»}. 

CONVENTION. Here we regard <Pe,s(A,) as controlling We,s and do not allow We,s 
to change until allowed to by <Pe,s(As)' Explicitly, this means that once I(e, s) > y 
then for all t > s, Wejy) = We,/Y) unless some number z enters At - As with 
z < u(<PejAs; y». We shall adopt this convention here and for our other construc-
tions. This convention is important since it allows us to control We,s by controlling 
As' 

Let ml ( e, s) denote max {l ( e, t) : t < s}. We say a stage is e-expansionary if 
I(e, s) > ml(e, s). For a single Re requirement, roughly speaking, our idea is as 
follows. We intend to give each yEw a trace I(e, y) and ensure that y E We iff 
I ( e, y) EA. Thus at e-expansionary stages, we give each y < I ( e, s) not already 
possessing a trace, a trace I(e, y) which will be a large fresh number. Now we 
promise that if ever y EWe,s then I(e, y) E As+l' (The reader should note that the 
convention above on We,s will mean, in a sense, we will cause such y E We ... since 
such y can enter only when we change A.) 

By choosing followers of Pe correctly, this will not interfere with the satisfaction of 
the Pe requirements. However the combination of this Pe with the R e may affect the 
Q e' When x enters A for the sake of some Pi' this allows A to change and so We to 
change and hence perhaps force many traces into A, because of our commitments to 
Rk for k ~ e. Now in the situation to satisfy the Qe we wait till Ye,s(x)!, and act 
according to whether or not Ye,s(x) E As' It is however possible that Ye,s(x)! but 
Ye,s(x) = I(i, y) for some i ~ e, and Ye,/x) $ As' Hence although we set Bs+l = Bs 
U {x}, perhaps at some later stage t, At[u(<PJAt; y»] changes, allowing y to 
enter ~ and now forcing l(i, y) = Ye(x) into A. This problem is acute due to the 
infinitary nature of the Re requirements. 

Our solution is to be more shrewd in our choice of stages at which to attack the 
Qe' Thus we wait for a stage s where s is i-expansionary (for each "appropriate" 
i ~ e) and for all z < u(<Pi,sCAs; y», z E ~,s iff l(i, z) E As' We then cancel all 
lower priority followers and traces for Rk and Pk for k > e and know that with 
prioritye we have satisfied Qe since A[U(<Pi,sCAs; y»] is now fixed. 

Now, as usual, we do not know which i ~ e are appropriate (that is, have 
I(i, s) ~ (0) and this necessitates some sort of nested strategies procedure. We 
choose to use Lachlan's tree of strategies approach. This method equips Qe with 
guesses as to the action of higher priority requirements. The crucial definition is that 
of "a-correct computation" which, as in (say) a high minimal pair, lies at the heart of 
the construction. For more on tree arguments the reader is referred to Soare [S02, 
and S03, Chapter XIV]. 

We now give the formal details of the argument. Let T = 2 < w. Re is identified 
with those a E 2 < W with lh( a) = e + 1 where lh( 0') denotes the length of a. 
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Members of 2 < ware referred to as guesses. We let a <;;; T denote a is an initial 
segment of T and a ~ L T the usual left tree ordering: a ~ L T iff a <;;; T or 
31'( I' AO <;;; a & I' Al <;;; T). We remark that a ~ L T should be read as a is stronger 
than T (for a =f- T). 

Instead of fee, y) above, we shall build guessed versions f(a AO, y) for each a AO 
with lh(a) = e. A guess a AO is guessing that <l>e(A) = We plus whatever a encodes. 
In fact f( a AO, .) will be partial recursive but have cofinite domain in the second 
variable for each" truly correct" guess a A 0. Also dom f is finite at each stage s. It 
is important to note that dom f( a AO, -) is only extended at a AO-stages (which we 
define later). The key definition is 

(2.2) DEFINITION. We say a computation <l>e,s(As; x) = Wejx) is a-correct at 
stage s where lh(a) = e + 1 and a = TAO if I(e, s) > x and for all pAO ~ L a and 
all z if 

(i) f(pAO, z) is defined, and 
(ii) f(pAO, z) ~ u(<I>ejAs; x)), 

then 
(iii) z E W;,s iff f(pAO, z) E As for i = lh(p). 
The reader should note that the above must hold for all p A ° ~ L a not just 

pAO <;;; a. Roughly speaking, (2.2) says that a does not believe any computation until 
all higher priority Ri action that might affect the computation has been completed. 

(2.3) We define the notions I( a, s) and a-stage by induction on lh( a) and s. 
(i) Every stage s is a 0 -stage. 
(ii) If s is a T-stage with lh( T) = e then we define 

I( TAO,S) = max{x :'Vy < x(<I>e,s(As; y) = We,s(y) 

and these computations are TAO-correct at stage s) }. 

Then if I(TAO,s) > max{l(TAO,t):t is a TAO-stage and t < s}, we say s is a 
TAO-stage. Otherwise s is a T A I-stage. 

Now let as denote the unique guess of length s such that s is a as-stage. Following 
the ideas of Stob [St], followers of Pe and Q e are given guesses a with Ih( a) = e + 1. 
We shall say that Pe requires attention at stage s + 1 if We,s n As = 0 and one of 
the following options holds. 

(2.4) Pe has no follower. 
(2.5) Pe has a follower x with x EWe,s' 
We say that Qe requires attention at stage s + 1 if Qe is not currently declared 

satisfied, and one of the following options holds. 
(2.6) Qe has no follower with guess <;;; as. 
(2.7) Qe has a follower x with guess a <;;; as and the following conditions are 

satisfied. 
(i) Ye,s(xH. 
(ii) For all TAO <;;; a, I( TAO, S) > Ye,s(x). 
At each stage s we take as the requirement to require attention the one of highest 

priority according to the above definitions and the given scheme. 
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CONSTRUCTION, STAGE S + 1. 
Step 1 (CANCELLATION). For all '1' 1;. L as' cancel all f( '1', x) and followers with 

guess '1', and declare as unsatisfied any Qe that is currently satisfied by a number 
with guess T. 

Step 2 (TRACE ASSIGNMENT). For each 'T "'0 ~ as and for each x < I( '1' "'0, s) if 
f ( 'T '" 0, x) has not as yet been defined at any stage t .::; s, find a large fresh number 
y(x) > s and define f( 'T "'0, x) = y(x). 

Step 3 (ATTEND Pe' Qe)' Find the requirement R of highest priority to require 
attention. Then R = Pe or Qe for some e. 

Substep 1. First cancel all followers with guess 'T and traces f( '1', z) for all '1' with 
a ~ '1' and (J =1= '1' where lh( a) = e + 1 and a ~ as. 

Substep 2. Adopt the appropriate case below. 
Case 1. R = Pe and (2.4) holds. Appoint a large fresh number x as a follower of 

Pe with guess a where a ~ as and lh( a) = e + 1. 
Case 2. R = Pe and (2.5) holds. Enumerate x into A s + 1' Pe is now met (forever). 

Declare those Q j for j ? e as unsatisfied. 
Case 3. R = Qe and (2.6) holds. Appoint a large fresh number as a follower of 

Qe' 
Case 4. R = Qe and (2.7) holds. Set Bs+l = Bs U {x} if Ye,/x) $. As' Otherwise 

set Bs+l = Bs' Declare Qe is currently satisfied via x. 
Step 4 (ATTENDING Re)' For each y"'O and x with fey "'0, x) defined and 

x EWe,s where e = lh( y), 
(2.8) If fey "'0, x) $. As enumerate fey "'0, x) into AsH 
Please note that we do not ask that y "'0 ~ as here. 
END OF CONSTRUCTION. 
VERIFICATION. Let f3 denote the leftmost path. Namely f3 E 2w with f3 defined by 

induction on substrings: 0 ~ f3 and a ~ f3 implies a '\0 ~ f3 iff 3 DOS (s is a 
a '" O-stage), otherwise a '" 1 ~ f3. 

We first verify that all the Pj for j .::; e receive attention finitely often and Qj for 
j .::; e receive attention finitely often at a stages where a ~ f3 and lh( a) = e + 1, 
and all are eventually met. Fix a ~ f3 with lh( a) = e + 1. Let So be a a-stage such 
that for all s > So 

(i) a .::; Las' 
(ii) s is a a-stage implies Pj and Qj for j < e do not receive attention at stage s. 
(iii) For all z, '1' such that '1' "'0.::; L a, '1' "'0 q;, a, and f( '1' "'0, z) defined, f( '1' "'0, z) 

EA iff f(T"'O,Z)EA so' Note that (iii) is possible since f(T"'O,Z) are only ap-
pointed at '1' "'O-stages, and since there are only finitely many '1' "'O-stages, only 
finitely many f( '1' "'0, z) are ever defined. 

Now if Pe has no follower at stage So it will get one with guess (J. If Pe already has 
a follower it must have guess '1''::; L as' In either case such a follower is now 
uncancellable, and so after stage So (2.4) cannot pertain to Pe' Hence Pe can require 
attention at most once more after stage So (namely when (2.5) holds) and thereafter 
is met. 

We now turn to the activity of the Qe' Let Sl > So be a a-stage such that also 
"<;j s > Sl (Pe does not receive attention at stage s ). 



T-DEGREES, JUMP CLASSES, AND STRONG REDUCIBILITIES 109 

Let S2 > SI be a a-stage. Now at stage S2 + 1, Qe must have an uncancellable 
follower x with guess a. Certainly Qe is met and will never again receive attention at 
a a-stage if Ye(x)i. Similarly, if yeCx)! and Ye(x) E As with x f/'. B, for some stage 
s ~ S2' then Qe is clearly thereafter forever met. (Nothing will induce us to add x to 
B.) Hence the only situation we need worry about is exactly the one discussed in the 
introduction, that all the mechanics of the construction were set up for. Thus let 
S3 ~ S2 be the least a-stage with Ye s (x)! and Ye s (x) f/'. As' Now, as a ~ f3 for • 3 , 3 3 

each T 1\ ° ~ a we know that I ( T 1\ 0, s) ~ 00 for a-stages s. Hence there is a a-stage 
S4 ~ S3 such that I( T 1\0, S4) > Ye(x) for each such T. Now at stage S4 + 1, Qe will 
receive attention via x. Thus we will cancel all lower priority followers and traces 
f(p, z) for all p with a .:;; L p and a =f. p (Step 3, Sub step 1). 

Also, since I( T 1\0, s) > Ye(x) for each T 1\0 .:;; L a, we know that for all z .:;; Ye( x), 

Z E W;,s, iff f( T 1\0, z) E As, where i = Ih( T) 

by definition of I( T 1\0, s) and a-correctness. Thus by cancellation and choice of S4' 

we see that 'Vs > S4 (I( T 1\0, s) > Ye(x) and l(i, s) > Ye(x». The reader should 
realize here that we are explicitly appealing to our convention concerning the way 
numbers may enter W;. Thus we have achieved our desired aim that Ye(x) E A iff 
Ye(x) E As. Hence we now win the requirement Qe in Substep 2 by ensuring 
x f/'. Bs,+1 iff Ye(x) E As, and so x f/'. B iff Ye(x) E A. 

Finally, we argue that all the Re are met. Let Y ~ f3 with lh(y) = e + 1. Suppose 
<Pe(A) = We' Since <Pe(A) = We we know that the use function of any computation 
is bounded. Therefore Y = T 1\0. If So is the stage defined at the beginning of the 
verification, we see that no trace f( T 1\0, z) (for any z) defined after stage So is ever 
cancelled. Then the activity in Step 4 (2.8) specifically ensures that z E We iff 
f( T 1\0, z) E A. As I( T 1\0, s) ~ 00 for T I\O-stages, we see that for almost all z, 
I( T 1\0, z) is defined after stage So and so u: .:;; 1 A. 0 

There are several corollaries or easy modifications to the above. Using infinitary 
Sacks restraints with guessing as above, we may avoid cones: viz 

(2.9) COROLLARY. Let c be any nonzero b.°2 degree. Then there exists a I-topped r.e. 
degree a =f. 0 with a *" c. 

We leave the proof of (2.9) to the reader. Another corollary is motivated by the 
following definition: recall from [LR] that an r.e. set A has USP (universal splitting 
property) if for all r.e. sets B .:;; T A there is an r.e. splitting Al U A2 = A of A with 
Al == T B. Every nonzero r.e. degree contains an r.e. set without USP [Dol], and 
many r.e. degrees contain no r.e. set with USP (e.g. d. [LR)). We obtain the 
following very strong USP existence theorem. 

(2.10) COROLLARY. There exists an r.e. set A =f. T 0, 0' such that for any nonsimple 
coinfinite r.e. set B .:;; T A there is an r.e. splitting Al U A2 = A with Al == 1 B. Hence 
for any coinfinite r.e. set C..:;; T A there is an r.e. splitting A3 U A4 = A with 
A3 == m C. Any I-topped r.e. degree contains such an r.e. set. 
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PROOF. Let A be the I-top of a I-topped r.e. degree. Let B ~ T A be r.e. and 
nonsimple. Then B ~ I A and B EB A == I A. Let Y be a recursive permutation of w 
with y(B EB A) = A. Let Al = y(B EB 0) and A2 = y(0 EB B). Evidently Al U A2 
= A and since B is not simple, B == I B EB 0 == I AI' 0 

3. Classification of the 1-topped degrees. The concern of this section is to analyze 
the properties in R possessed by I-topped degrees. The first one was found by 
Jockusch [Jo3] and we give it here for the reader's convenience. 

(3.1) THEOREM (JOCKUSCH [Jo3, COROLLARY 8(i)]). Let a '* 0' be an r.e. I-topped 
degree. Then a is low2 (i.e. a" = 0"). 

PROOF. Let A be the r.e. set which is the I-top of a. Let G (~ I A) = {e: We ~ I A} 
and G (~a) = {e: We ~ T A}. Then clearly G (~l A) is ~~. Also G (~a) is 
~t-complete by Yates [Ya]. Now G (~l A) = G (~ a) and as A is incomplete, this 
can only happen 'if A is low2 by Yates [Val. 0 

A related result we would like to mention here is also due to Jockusch in [Jo3]. Let 
A and B be r.e. We write A ~ pr B if A = J-I(B) via some primitive recursive 
function f. In [Jo3] it is shown that if B is r.e., nonrecursive, and not creative then 
there is an r.e. set B == T A such that B <t pr A. 

Our next result shows that not all nonzero degrees bound nonzero I-topped r.e. 
degrees. Indeed, no low r.e. degree '* 0 is I-topped. 

(3.2) THEOREM. (i) Suppose A is r.e. and semilow (that is, {e: We n X '* 0} ~ T 

0') and E is r.e. and nonrecursive. Then there is an r.e. set B ~ wtt E and B <t rn A. 
(ii) In particular, no low nonzero r.e. degree is I-topped. 

PROOF. Let A = UsA s be given by some recursive enumeration. We build 
B = Us Bs to satisfy the requirements 

Re:-,(B ~ rnA viaYe)· 
Here Ye denotes the eth partial recursive function. To meet Re we use auxiliary sets 
Uj(e) where J is recursive. Let C = {e: Uj(e) n X '* 0}. Then C ~ T 0' as A is 
semilow. Thus there is a recursive function gee, s) such that Ve(C(e) = lim, gee, s» 
by the limit lemma. By the recursion theorem we can use g in the construction. 

We now describe the strategy for a single R e' 

Look for x and s such that 
(i) x fi Bs ' 

(ii) Ye,/x)l, and 
(iii) Es+I[x] '* Eslx]. (We say E permits on x at s.) 

Then we put Ye,s(x) into Uj(e),s+1 and search for the least t;;. s such that 
Ye(x) E At or gee, t) = 1. This t exists, because if Ye(x) fi A then Uj(e) n X,* 0 
and so g( e, t) = 1 for all sufficiently large t. 

If Ye( x) EAt do nothing further for R e since then x fi Band Ye( x) E A and so 
Re is satisfied. 

If g( e, t) = 1 put x into Bs + I - Bs and do nothing further to satisfy R e unless 
Ye(x) is later enumerated into A. In this case, start over by searching for a new 
witness. 
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This strategy obviously succeeds if the "Ye(x) E A/' case occurs, or if Ye(x)i for 
some witness, or if we put x into Band Ye(x) $. A. If none of these occurs then Re 
receives attention infinitely often since E is nonrecursive and furthermore Jfj(e) C A, 
However if we attack Re at stage s and this attack is not successful, by assumption 
there exists t :;;. s with gee, t) = 1, and yet Jfj(e) C A. This contradicts the assump-
tion that C( e) = lims g( e, s). 

To combine strategies we simply require that a witness x for Re be an element of 
wee). The requirements then do not interfere with each other in any way. Notice that 
B ~ wit E by permitting. The result follows. 0 

A similar argument establishes 

(3.3) THEOREM. (i) Suppose A is r.e. and low, and E is r.e. and nonrecursive. Then 
there is an r.e. set B ~ wit E such that B 1;. It A. 

(ii) Hence, no low nonzero r.e. degree is tt-topped. 

PROOF. In this argument, we now have that Re is 

Re:---,{B ~ It via yJ. 
This time Jfj(e) is a set of canonical indices of finite sets. We let 

c= {e:(3uE Jfj(e»)[DucA]}. 

Now, as A is low, it follows that C ~ T 0' (d. Soare [Sol)) and may again be 
approximated by the limit lemma using gee, t). 

Now attack Re under essentially the same conditions as before, but put u into 
Jfj(e),s+l where Du is the set of yEA,. mentioned in the tt-condition O'y.(x)' Search 
for t :;;. s such that either Du n At =1= 0 or gee, t) = 1. If Du n At =1= 0 put u' into 
Jfj(e),t+l where Du' is the set of y E ~ mentioned in O'ye(x)' Repeat this until a stage 
t' :;;. t is found with gee, t') = 1. Now put x into B if At' does not satisfy O'Ye(x)' 

The remaining details are essentially the same. 0 
It is interesting to compare this result and the existence of a 1-topped r.e. degree 

with the following result due to 10ckusch [J03]. Recall from [J03] that if a is an r.e. 
degree then a class C of unary functions is called a -subuniform if there is a binary 
function f oof degree ~ a such that C ~ {Ie: e E w}. (Here fe denotes An (f ( e, n».) 
Define an r.e. degree b to be 1-bounding over an r.e. degree a if there exists an r.e. set 
B of degree b such that if C is any r.e. set degree ~ a, then C ~ 1 B. Finally define 
an r.e. degree b to be 1-bounding if it is 1-bounding over some lesser r.e. degree 
a =1= O. (By (3.3) we see no low degree is 1-bounding.) We have 

(3.4) THEOREM. (a) (10CKUSCH [J03]). If a and bare r.e. with b ~ a and b < 0' 
then the following three statements are equivalent: 

(i) the r.e. sets of degree ~ bare a-subuniform, 
(ii) b" = a' = 0", 
(iii) there is an r.e. sequence of r.e. sets which is uniformly of degree ~ a and 

consists exactly of the r.e. sets of degree ~ b. 
(b) In particular, every high r.e. degree a is 1-bounding (over any low2 r.e. degree 

b ~ a). 
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PROOF. (b) Let a be high and b ~ a be nonzero and low2 . By (a)(iii) we have an 
Le. sequence of Le. sets {A;A LEW which consists exactly of the Le. sets of 
degree ~ b and this sequence is uniformly of degree ~ a. Let A be an Le. set of 
degree a. Then A EEl EB. AI' is an Le. set of degree a which I-bounds all Le. sets of 

lEw 

degree ~ b. 
It would seem an interesting project to classify the I-bounding Le. degrees. It is 

possible that the collection of I-bounding r.e. degrees is exactly the nonlow Le. 
degrees, but this seems unlikely. 

Returning to the classification of the I-topped r.e. degrees, combining (3.1) and 
(3.3) we see that the nontrivial I-topped Le. degrees form a subset of the low2 - lowl 

Le. degrees. On the other hand, we have 

(3.5) THEOREM. Let c be a low r.e. degree. Then there exists an incomplete I-topped 
r.e. degree a ;:,. c. 

PROOF. Rather than give complete details, we explain how the proof of the 
existence of a nontrivial I-topped degree (2.1) can be modified to give the result at 
hand. Thus we assume the reader is completely familiar with the proof of Theorem 
2.1. 

Let C be an r.e. set of the given low degree c. We construct an auxiliary r.e. set B 
to satisfy the same requirements as in (2.1) except that the requirements Pe are 
dropped and the requirements R e are modified by replacing A by A EEl C. Thus our 
requirements are the following: 

Qe : -,(B ~ 1 A via Ye)' 
Re: qJe(A EEl C) = We implies We ~ 1 A. 
Note that these requirements imply that C ~ 1 A, by applying Re to an e chosen 

so that qJe(A EEl C) = We = C. Thus the theorem holds for a = deg(A) = 
deg( A EEl C) if the requirements are all satisfied. 

The basic strategies for satisfying Qe and Re are as in (2.1). These requirements 
conflict as in (2.1), but the added difficulty here is that in satisfying Q e we may not 
use A alone to control W; for the "appropriate" i ~ e, but rather we must use 
A EEl C. Of course this is a new kind of obstacle because C is not under our control. 
This obstacle is overcome by using the "Robinson technique" (see [S04, Chapter XI, 
Theorem 3.2]) to avoid excessive reliance on C-false computations. The Robinson 
technique is combined with our guessing strategy so that, for each string a of length 
e + 1, there is an auxiliary set Wh(a) used to meet Qe' where h is a recursive 
function. (Actually we may use several" versions" of Wh(a)') Let 

Then E ~ T C' ~ T 0', so by the limit lemma there is a recursive function g( a, s) 
with lim s g( a, s) = E ( a) for all a. By the recursion theorem we may assume that h 
and g are known during the construction. When Qe requires attention via a follower 
x with guess a at stage s, there will be at most one pair (i, y) such that i ~ e, 
y $. W;,s' and f(y,T) = Ye,s(x), where TII(O) c a and T has length i. As in (2.1), 
we would like to put x into B to meet R e , but our attempt will be ruined if y later 
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enters Jf',. We thus require (if such a pair exists) that «Pi,s(As EB Cs; y) = 0 and 
enumerate u into Wh(IJ)' where Du is the set of numbers whose nonmembership in Cs 

is used in this computation. We then find the least t ~ s such that either g( a, t) = 1 
or Du n Ct =1= 0. If g( a, t) = 1 and Ye,s(x) $. AI' we put x into B, and otherwise we 
do nothing. If we later realize that Du n C =1= 0 (having put x into B as above), we 
cancel x and thus may choose a new follower for Re with guess a, but we continue 
to use the same version of Wh(IJ)' However, at any stage t with at ~ L a and at r:t a, 
we start over with a new version of Wh(IJ)' 

We now give some further technical details of the argument, although these are 
quite straightforward, and the reader may prefer to work them out for himself. 

The definitions prior to the construction are the same as in Theorem 2.1, except 
that all references to the Pe's are dropped, and As is replaced by As EB Cs whenever 
As occurs as an oracle. We will also have auxiliary functions g and h, where Wh(IJ,k) 

should be thought of as the (k + l)st version of Wh(IJ)' and 
limg(a,k,s) = E(a,k), 

s 

where 

E= {(a,k):(3uE Wh(IJ,k»)[Dun C= 0]). 
The construction is the same with the following exceptions. In Step 1 (cancella-

tion), also cancel all followers x of any Qe such that x E Bs and Ye,,(x) E As' 
Declare all such Qe's to be unsatisfied. In Step 2 (trace assignment), require that 
f(7 1\0, x) E W(T,X), so that the pair (i, y) in our previous discussion will be unique 
if it exists. Cases 1 and 2 of Substep 2 of Step 3 are omitted. The main change is in 
Case 4 of Substep 2 of Step 3. As before in this case, if Ye(x) E As, let Bs+l = Bs, 
and declare Qe to be satisfied. Assume now that Ye(x) $. As, and ask if there exist y 
and 7 such that 71\0 C as' and f(y, 7) = Ye(x). If no such y, T exist, let Bs+l = Bs 
U {x}, and declare Qe to be satisfied. Assume now that such y and T exist. Then y 
and 7 are uniquely determined, since Ye(x) E W(y,T). By (2.7)(ii), /( T 1\0, s) > Ye(x) 
= f(y, 7) > y. (We have f(y, 7) > Y by the way we choose to define f.) Thus 
«Pi,s(As EB Cs; y) = Jf',,,(y) by a 71\0-correct computation. Let Du be the set of 
numbers whose nonmembership in Cs is used in this computation, and let 

k = 1 {t < S : at ~ L as & at ct. as} I· 
Enumerate u into Wh(IJ,k)' and let t ~ s be minimal so that g(a, k, t) = 1 or 
Du n Ct =1= 0. If g( a, k, t) = 1, let Bs+ 1 = Bs U {x} and declare Qe to be satisfied. 
Otherwise (in which case Du n Ct =1= 0), let Bs+l = Bs' In this final case, do not 
declare Qe to be satisfied or even regard Qe as having received attention, and pass to 
the least e' > e (if any) such that Qe' requires attention at s, and treat it similarly. 
Repeat this process until either some Qe receives attention at s, or no e' remains 
such that Qe' requires attention at s and has not been considered. This completes 
the description of the construction. 

The verification that the Re's are met is as before. To treat Qe, let a be the initial 
segment of the leftmost path of length e + 1. We must show that Qe receives 
attention only finitely often at a stages and is met. (However, it may happen that Q e 
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requires attention infinitely often at a stages.) Let k = I{ t: at ~ L a & at C1 a} I. There 
are two cases. 

Case 1. (a, k) E E, so there exists u in Wh(a,k) with Du C C. Let s be the stage at 
which we added u to Wh(a,k)' Then s is a a-stage at which Qe receives attention via 
some existing follower x. It is easy to see as in Theorem 2.1 that x witnesses the 
satisfaction of Qe' and Qe never again requires attention at a a-stage. 

Case 2. (a, k) (/:. E. Pick Ss so large that a ~ L as for all s ;:, ss, no Qi for i < e 
receives attention at any a-stage after ss, and g(a, k, t) = 0 for all t ;:, ss. Then by 
construction, Qe is never regarded as receiving attention at any a-stage after ss. It 
remains only to show that Qe is met. Let x be a follower of Qe which exists at some 
a-stage s > ss. If 'Ye,s(x)i, then 'Ye,sCx) is obviously met. Suppose that 'Ye,s(x)t. 

Case 2A. 'Ye,s(x) E A. Then we are done unless x E B. If x E B, then x will be 
cancelled and replaced by a new follower appointed after ss. Hence we may assume 
without loss of generality that x is appointed after stage ss, so x (/:. B. Thus (still 
assuming that 'Ye,s(x) E A), Qe is met. 

Case 2B. 'Ye,/x) (/:. A. Assume for a contradiction that Qe is not met, so in 
particular x(/:. A. Since 'Ye(x) (/:. A and x exists after stage ss, x is never cancelled. 
Thus Qe never has a follower other than x at any a-stage after x is appointed. If Qe 
is declared satisfied at any a-stage after x is appointed, it is easily seen as in the 
proof of Theorem 2.1 that Qe is met. Thus this never happens. Hence we may see as 
in the proof of Theorem 2.1 that Qe requires attention at all sufficiently large 
a-stages. Since this attention does not lead to Q/s being declared satisfied at a large 
a-stage, there must be a fixed pair (i, y) such that IPJA EB C; y) = 0 and yet, for all 
sufficiently large a-stages s, IPi,sCAs EB Cs; y) = 0 via a computation which is 
C-incorrect. This contradiction shows that Qe is met and concludes our sketch of the 
proof of Theorem 3.5. 0 

Using this result we can establish several existence theorems for I-topped r.e. 
degrees in several other degree classes. For example, recall that an r.e. degree a is low 
cuppable (d. [AJSS]) if there is an r.e. degree c such that c is low and c U a = 0', 
and an r.e. degree a is contiguous (cf. [LS, 002]) if it consists of a single r.e. 
wtt-degree. We have 

(3.6) COROLLARY. Let c be any low r.e. degree. Then there exists an incomplete 
I-topped low cuppable degree a ;:, c such that for all b ;:, a, b is not contiguous. 

PROOF. Let K denote a creative set. Let C be an r.e. set of degree c with c low. 
Apply Robinson's [Ro] (cf. Soare [S04, Chapter XI, Theorem 3.2]) splitting theorem 
to find r.e. sets K 1, K2 with Kl U K2 = K an r.e. splitting of K and Kl EB C, 
K2 EB C both low. Let D = Kl EB C. Apply (3.4) to D to obtain an r.e. set A such 
that A is the I-top of a degree a;:, T-deg(D). Clearly a is low cuppable by K 2 • 

Suppose that Q is an r.e. set of contiguous degree with A ~ T Q. Then Kl ~ wit Q 
and hence K 2 EB Q == wit K. Thus Q is wtt-cuppable. This contradicts the established 
result of [AJSS] that no contiguous r.e. set is wtt-cuppable. (See §4 for an extension 
of this result.) 0 
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To complete the picture suggested by (3.5) we point out that I-topped r.e. degrees 
may be cappable. Recall that a is cappable if there exists an r.e. degree b =1= 0 with 
a n b = 0, In [AJSS] it is shown that every r.e. degree is either cappable or low 
cuppable (but not both). We have 

(3.7) THEOREM. There exists an r.e. degree a =1= 0 such that a is I-topped and 
cappable. 

PROOF. We build A = UsA sand B = Us Bs to satisfy 

P2e: A =1= We' P2e + 1 :B =1= We' 
Ne : II> e (A) = II> e (B) = f and f total implies f recursive, 
Re: lI>e(A) = We implies w., ~ 1 A. 

We again use a tree of strategies 2 < w. Ne is associated with those a E 2<w with 
lh( a) = 2e + 2 and the R e with those a of length 2e + 1. In this construction we 
define restraints r( 'T, s) for those 'T of even length> 2. At stage s, we automatically 
define R( a, s) via 

R (a, s) = max { r( 'T, s): 'T ~ La} . 
This is well defined since we initialize all r( 'T, 0) = -1, and only reset those r( a, s) 
for a C as, where as usual as is the unique path of length s with s a as-stage. 

The reader should note that in this construction the important guessing is the 
minimal pair guessing. This forces us to only enumerate f( 'T 1\0, s) into A for the 
sake of R e (where e = lh( 'T» at 'T-stages. This is the gist of the next series of 
definitions. 

DEFINITION. We define the notions a-stage, I(a,s), r(a,s), and a-correctness 
simultaneously by induction on lh( a ). 

(i) Every stage s is a 0 -stage and r( 0 , s) = -1. 
(ii) If s is a 'T-stage and lh( 'T) = 2e, define 

I( 'T 1\0, s) = max{ x: Vy < x{ lI>e,s(As; y) = We,,(y) 

and this computation is 'T I\O-correct) }. 

Here a computation lI>ejAs; y) = Wejy) is 'T I\O-correct if, for all z with f(y 1\0, z) 
defined for some y 1\0 C 'T 1\0 we have that 

R(y,z) <f{yI\O,z) < u{lI>e,,(As;Y)) 

= z E W;,s iff f{ y 1\0, z) E As where 2i + 2 = lh{ y 1\0). 

Now if 

I( 'T 1\0, s) > max{l( 'T 1\0, t): t is a 'T-stage and t < s} 

we say that s is a 'T 1\ O-stage. Otherwise s is a 'T 1\ I-stage. Set r( 'T 1\ i, s) = -1. 
(iii) If s is a 'T-stage and Ih( 'T) = 2e + 1 then let 

1('TI\O,s) = max{x:Vy < x{lI>e,,.(As;Y) = lI>e,,(Bs;Y) and 

these computations are 'T I\O-correct)}. 
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Here T I\O-correctness is defined as in (ii) mutatis mutandis. Then if 

I( T 1\0, s) > max{l( T 1\0, t): t is a T I\O-stage and t < s} 

declare s to be a T I\O-stage, and set r( T 1\0, s) = -1 and r( T 1\1, s) = s. If s is not a 
T 1\ O-stage declare s as a T 1\ I-stage and define 

r ( T 1\ 1, s) = max { t : t is a T 1\ O-stage and t < S } . 

We say P2e requires attention at stage s + 1 if A, n We,s = 0 and for all 
followers x of P2e with guess c as, x < R(a, s). 

We say a number x requires attention if either 
(a) (i) x is a follower of Pe for some e, and 
(ii) x has guess Teas for some T, and 
(iii) x > R( T, s), and 
(iv) x E We." or 
(b) (i) x = f( T 1\0, y) for some Teas' and 
(ii) y E W;,s and f( T 1\0, y) $. As' 
CONSTRUCTION, STAGE s + 1. 
Step 1. Cancel all f( T, z) and r( T, s) and followers with guess T for T 1;. Las' 
Step 2. For each T 1\0 C as and x < I( T 1\0, s) for lh( T) even and ~ 2 if f( T 1\0, x) 

is undefined for all stages t < s, find a large fresh number y( x) and set f( T 1\ 0, x) = 

y(x). 
Step 3. Find the least i such that Pi requires attention and as above we may 

suppose i = 2e. Appoint a large fresh number as a follower with guess a. Cancel all 
f ( T, z) and r( T, s) currently defined for T 1;. La. 

Step 4. Now find the least number x (if any) such that x requires attention. If x is 
a follower targeted for B, set Bs+l = B, U {x}&As+l = As' Otherwise x is a 
follower or a trace targeted for A. In this case set Bs+l = Bs and AS+l = A, U {x}. 
Notice only one number is enumerated into A EB B at this stage, so the f( T 1\0, z) get 
into A "slowly". 

END OF CONSTRUCTION. 

We now sketch the verification as most of it is a fairly standard minimal pair type 
one or similar to (2.1). Let /3 denote the leftmost path. By the same argument as 
(2.1), once we see that lims R( T 1\0, s) = R( T 1\0) exists for all T 1\0 < LaC /3 where 
lh(a) = 2e + 1, we see that Re is met since almost all f(a 1\0, z) are free to enter in 
Step 4. Hence <Pe(A) = We implies We < 1 A. 

It is evident that for a C /3, limsR(a,s) = R(a) exists: Briefly, for y < La the 
first possibility is that y = T 1\ 1 and lh( T) = 2 j for some j, and so there are only 
finitely many stages where 

/( T 1\0, s) > max (l( T 1\0, t): t is a T I\O-stage and t < s}. 

Hence limsr(TI\I,s) = r(TI\I) exists in this case. (Namely r(TI\I) = max{t:t is a 
T 1\ O-stage }.) The other possibility for y < L a is that y =1= T 1\ 1 for any T with lh( T) 
even and hence reT,S) = -1 for all s. TIns means that limsR(a,s) = R(a) exists 
since there are only finitely many T 1\ I-stages with T 1\ 1 < r. a but T 1\ 1 ct /3. (The 
above is all fairly standard.) 
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In view of this it is clear that all the Pe are met since eventually Pe must get a 
follower x with guess a C f3 where x > R( a) and this follower will succeed. 

It remains therefore to observe that all the Ne are met. Let a c f3 with Ih( a) = 2e 
+ 1. Let So be a stage after which a ~ L as and r( 'T, so) = r( 'T) for all 'T ~ L a and 
all the lJ activity for j < e has ceased and all fey /\0, z) E Aso if fey /\0, z) E A for 
all y /\0 ~ L a with y /\0 1:. a. Let x be given. Find a a-stage s > So where I( a, s) > x. 
Now at most one number not restrained at s may enter A EEl B between this and the 
next a-stage, as in the construction of a high minimal paiL We refer to, e.g., [So2 or 
S04, Chapter XIV] for further details. 0 

The above result is the simplest of a series of such results. For example we can 
easily modify the argument above to show 

(3.8) COROLLARY. There exists a minimal pair a, b of 1-topped r.e. degrees with 
a U balsa 1-topped. 

PROOF. Left to readeL 0 
(Other results would include embed dings (by 1-topped Le. degrees) of boolean 

algebras, etc.) 
To conclude this section we give some further limitations on the I-topped degrees. 

One we should mention is 

(3.9) THEOREM (LERMAN AND REMMEL [LR]). The r.e. degrees without wtt-tops 
form a dense subcollection of the r.e. degrees. 

Our last result for this section is a partial answer arising from an attempt to 
connect the 1-topped degrees with another jump class. We do not know whether 
every high Le. degree bounds a nonzero 1-topped Le. degree. Our partial solution to 
this question is: 

(3.10) THEOREM. There exists an r.e. set A of high degree such that for all r.e. sets B 
with 0 < T B ~ wit A, wtt-deg(B) is not tt-topped. 

PROOF. Let D = UeD(e) be a piecewise recursive set such that D(e) = w(e) if 
card(We) = 00 and De is a finite initial segment of w(e) otherwise. We recall that an 
r.e. set QeD with Q(e) = * D(e) for all e is called a thick subset of D. As in [So2] 
if Q is a thick subset of D then Q is high. Thus we construct a subset A = UsA,. of 
D and a collection Ce = Us Ce,s of auxiliary Le. sets to satisfy 

Pe:A(e)=* D(e), 

Re,i: If ~e(A) = We then We is recursive or, 
Ce ~ wit We and -,( Ce ~ It We via Yi)' 

Here (~e' We> is a standard enumeration of pairs of wtt-functionals ~e with use <Pe 
and Le. sets We' As usual we consider 4> e( A) as controlling We' and ~ e s( A s; x) t 
means 4>e,s(A s ; xH and has use ~ <pe,s(x) where <pe,,(xH. Associated with the Re,i 
will be a collection ofrestraints r( 'T, s) for 'T E 2 < W with Ih( 'T) = < e, i) + 1. 
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(3.11) DEFINITION. Define a-correct, I( 0, s), and a-stage by induction on lh( 0) as 
follows: 

(i) Every stage s is a 0 -stage and all computations are 0 -correct. 
(ii) If s is a T-stage where lh( T) = e then if 

card ( Ds(!)l) > max { card( D/e)): t is a T-stage with t < s} 

then s is a TAO-stage. Otherwise s is a T AI-stage. Now a computation <I>e,s(As; xH 
is T Ai-correct for i = 0, 1 if for all pAO C T Ai where lh(p) = j if r(pAO, s) < Z ~ 

Ye,s(x) and Z E w(J) then Z E As' Let I( T Ai, s) denote max{ x: \ify < x(<I>e,s(As; y) 
= We,s(y) and the computation is T A i-correct)}. 

As usual as denotes the unique string of length s with s a as-stage. Recall aa 
denotes the ath it-condition. 

(3.12) DEFINITION. We say Re,i requires attention at stage s + 1 if one of the 
following options hold: 

(3.13) For some follower z of Re,i we have 
(i) z is active and has guess T ~ L as, and 
(ii) if we set 

I ( e, s) = max { x : \if y < x ( <I> e ,s (A s; y) = We ,s (y )) } , 
then 

I ( e , s) > max {l ( T, t) : t is a T-stage and t < s } , 

and 
(iii) U-:,Az] oF We,t[z] where t is the last T-stage less than s, that is 

t = max{ t': t' < sand t' is aT-stage}. 

(3.14)(a) For all followers z of Re,i if z has guess Teas then z is active, and 
(b) there does not exist a number z such that 
(i) Yi,s( z Hand z E Ce,s iff -, We,s F ay,(z)' 
(ii) For some p ~ L T with lh(p) = Ih(T) we have rep,s) > Nand I(e,s) > N, 

where 
(ii)(a) N = max{ eMy):y ~ M}, and 
(ii)(b) M = max{p:p E domay,(z)}' 
(3.15) Re has an inactive follower z with guess Teas, Yi,,(zH and I( T, s) > 

max{ z, z'} where z' = max{ p:p E domay,(z)}' 
CONSTRUCTION, STAGE s + 1. 
Step 1. Cancel all followers and restraints with guesses T 1;. Las' 
Step 2. For each < e, i> < s, adopt the first case below which holds. 
Case 1 (SATISFYING Re)' (3.13) holds; set reT,s + 1) = s + 1. Set Ce,s+l = Ce,s 

U {z} if -, We,s F ay,(z)' Declare z to be no longer a follower. Cancel all followers 
with guess p for T ~ L P and lh( T) = lh(p). 

Case 2 (FOLLOWER ASSIGNMENT). (3.14) holds: appoint a large fresh number as an 
inactive follower of R e,i with guess a where a C as and lh( a) = < e, i> + 1. 
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Case 3 (ACTIVATION). (3.15) holds; declare z as active. 
Step 3. Finally for all e and x E Ds(!)l if x $. As enumerate x E AS+l provided 

that x» r( T, s + 1) for all T ~ L a where a C as and lh(a) = e + 1. 
END OF CONSTRUCTION. 
Let f3 denote the leftmost path. We verify by simultaneous induction that for 

a ~ L f3 that lim s r( a, s) = r( a) exists, the R e,; are met and all the Pe are met. Thus 
let a be given, with lh( a) = e + 1 and let So be a stage such that for all s > So 

(i) a ~ L as, and 
(ii) r( T, s) = r( T, so) for all T * a and Tea. 

We easily see that if pAl C a then D,<J) = D (j) where j = lh( p). Thus we may also o 
suppose that 

(iii) A~j) = A(j) for all pAl C a with j = lh(p). 
o 

Finally we may also suppose that for all followers y and all j with guess p ~ L a 
and p ~ a (so that p is to the left of the true path) we have that y E Cj iff y E ~,so' 

Since there are only finitely many such p-stages it follows that lim S r( p, s) = r( p ) 
exists. By assumption lim s r( T, s) = r( T) exists for all Tea with T * a. Thus it 
suffices to argue that lim s r( a, s) = r( a) exists. 

N ow, by construction, r( a, s) is only reset when some follower with guess a is 
enumerated into Cj,s+l - Cj,s for the sake of Rj,i where (j, i) = lh(a) - 1. The 
only possible way for lims r( a, s) not to exist is if r( a, s) ~ 00 and R j,i receives 
attention infinitely often via (3.13), Thus take some follower z appointed to Rj,i 
after stage So such that (3,13) pertains to z. 

Let 1 be the stage at which (3.13) pertains to z. We know that at some stage 11 

with 11 < 1 we have that (3.15) pertained to z and so z was activated. At stage 11 we 
know that 

l(a,s) > M, where M = max{ p:p E domayi(Z)}' 

Now since a c f3 and So is chosen as above, we know that the <I>j,t/At,; y) 
computations for y ~ M are a-correct at stage 11, 

The critical observation we need to make is that at any stage s > 11, if l(j, s) > M, 
then the <I>j,s(A,; y) computations for y ~ M are also a-correct. This is because the 
use function cannot change in a wtt-reduction. Therefore when (3.15) pertains to z 
at stage t we have that 

(i) l(j, 1) > M, and 
(ii) the computations <I>j,t(A t; y) for y ~ M are a-correct. 

Now we apply Step 2, Case 1 and this ensures that 
(a) Cf,t+1(Z) = 1 iff -.Wj,t 1= ay,(z), and 
(b) A t+1[Nj = At[Nj where N = max{ cJ>/y):y ~ M}. 

We ensure (b) because we reset r( a, t) to be 1 + 1 at stage t + 1. Now by choice of 
So and a C f3 we know that (b) ensures that, in fact 

(b)' A[Nj = At[N] = At+1[N]. 
This means that <I>j,/(A/; y) = <I>/A; y) for all y ~ M. Therefore Wj)M] = Wj[Mj. 
Thus Wj 1= ayi(z) iff Wj,t 1= ayi(z) iff C/ z) = O. 



120 R. G. DOWNEY AND C. G. JOCKUSCH, JR. 

It is now clear that (3.14) is exactly the condition we need, since (3.14)(b) ensures 
that no new followers can be appointed to R j,i after stage t. Also all followers with 
guess a are cancelled in Step 1. Therefore Rj,i never again receives attention, and so 
r( a, t + 1) = t + 1 = r( a). Thus we know that lims r( a, s) = r( a) exists. This easily 
implies that all Pe are met: If a = T 1\1 there is nothing to prove. If a = T 1\0, then if 
t is chosen such that t > So and r( a, t) = r( a) we see that at every a-stage tl > t we 
have 

(i) rep, t1 ) = rep, t) for all p ~ L a and 
(ii) rep, t1) = ° for all p 1;. Las' 

Thus in Step 3 any number x in D/ e), with x > max{ r(p): p ~ La} is enumerated 
into At +1 if x $. At. Thus D(e) = * A(e). 

1 1 

Finally we need argue that all the R j,i are met. As above let a c f3 with 
lh(a) = (j, i) + 1. Our earlier analysis reveals that if (3.l3) ever pertains to Rj,i 

after stage so' then Rj,i will be met. Now if we assume that Rj,i fails to be met, or 
receives attention infinitely often, it must be that <I>/ A) = Jtj and Cj ~ It Jtj via Yi' 
It is not difficult to see that Jtj is recursive since (3.l3) cannot pertain after stage So 
to any follower with guess a: To determine Jtj[ z 1 find the least a-stage t = t( z) 
where Rj,i has an active follower q > z. Since (3.1.3) cannot pertain to any number 
~ q, we must have Jtj[q] = Jtj)q]. Finally if <P/A) = Jtj then S ~ wit Jtj. To 
compute if z E Cj find the least j-expansionary stage (i.e. where l(j, s) > l(j, t) for 
all t < s) with Jtj)z] = Jtj[z]. Then z E Cj iff z E S,S+l" D 

4. Local structure. In this section we analyze the structure of 1- and other 
r-degrees within a single r.e. T-degree. Thus we focus on the more "local" behavior 
of (for example) I-topped r.e. degrees. Various questions seem to suggest themselves. 
For example, we know that an r.e. degree a *' 0,0' can have a I-top. It would seem 
natural to ask if an r.e. degree a*'O can have a I-bottom. This question has the 
following negative solution. 

(4.1) THEOREM (KOBZEV [Kol]). Each nonzero r.e. degree contains an infinite 
antichain of minimal r.e. btt-degrees. Here "minimal" refers to both the r.e. btt-
degrees and all Ll02 btt-degrees. 

Since a contiguous r.e. T-degree contains a single r.e. wtt-degree, some nonzero 
r.e. T-degrees have wtt-bottoms. The best result along these lines was also estab-
lished by Kobzev [Ko3]. He constructed a strongly tt-bottomed r.e. degree a *' O. 
That is, he constructed an r.e. degree a*'O containing an r.e. set A of least tt-degree 
amongst all (i.e. not necessarily r.e.) sets of degree a. In fact he obtained the 
following result. 

(4.2) THEOREM (KOBZEV [Ko3]). If A is an r.e. YJ-maximal semirecursive set, then 
for all B == T A, A ~ It B, and furthermore A has minimal tt-degree amongst all 
tt -degrees. 

The principal subgoal of this section is to analyze strongly tt-bottomed degrees, 
how they relate to I-topped degrees and more generally, the structure of tt-degrees 
within an r.e. T-degree. For our purposes (4.2) is too indirect and limiting since it 



T-DEGREES, JUMP CLASSES, AND STRONG REDUCIBILITIES 121 

necessarily constructs minimal tt-degrees. We first give a direct construction of a 
strongly tt-bottomed nonzero r.e. degree. We prove the following corollary to 
Kobzev's result. 

(4.3) COROLLARY (KOBZEV)_ If Cis r.e. and nonrecursive, then there exist an r.e. 
set A with 0 < T A ~ wit C such that if B is any set with B == T A, then A ~ It B. 

PROOF. Our construction is along the lines of Downey's [002) construction of a 
nonzero r.e. strongly contiguous degree. (Recall that a is strongly contiguous if a 
consists of a single wtt -degree and a * 0.) We build A = UsA s in stages to satisfy 

Pe: A * We' 
Ne : If fe( <pe( A)) = A and <pe( A) is total 

then A ~ It <Pe(A). 

Here we remind the reader that <Pe(A) is {a, I}-valued by convention. Before giving 
the formal details of the construction, we shall briefly discuss the technique we shall 
employ to meet the Ne • 

Define 

I ( e , s) = max { x : 'v' y < x ( fe,s ( <P e,,( A J; y) = As ( Y ) ) } . 

Note implicitly here we mean that for all z < u (fe,s(<PejAs); y», <Pe,s(As; z)!. 
From N/s point of view, the key points regarding the Pe will be that the Pe are 

finitary in nature, and will be satisfied by followers which are always appointed at 
stage s to be larger than s. In particular they exceed all computations, etc. by 
convention. 

For a single Ne we keep in mind that our overall aim is to achieve A ~ It <Pe(A). 
To do this, roughly speaking, for any follower x of Pj (say) we wait till the first stage 
where I( e, s) > x. At this stage we declare x as e-confirmed and attempt to ensure 

where Q = max{ u(fe,s(<PejAs); y»:y ~ x}. (Note that this is a dtt-condition if 
<Pe(A) is r.e.) To achieve this it is clearly in our interest to stop <Pe,,(As)[Q) from 
changing once x is e-confirmed (unless x enters A - As)' The first part of our 
strategy towards this aim is to cancel all lower priority followers than x when x is 
e-confirmed. (Such followers will be > x.) The net effect of this will be to ensure 
that there are no followers z with x < z ~ s, and thus if As[x) = A[x) then 
<Pe(A)[Q) = <Pe,,(As)[Q). 

By definition of a use function, we know that if A,[x) * A[x) then <Pe(A)[Q) * 
<PejAs)[Q). Thus to complete our strategy (for a single Ne) we must ensure that if 
ever A,[x) * Ar[x) then A,(x) * AI(x). This is fine if we add x to AI - A t- 1 

because x "receives attention," but is somewhat of a problem if some y < x acts. 
Our solution is to use "dumping." That is, if y E Ar+l - At then we ensure that 
'v'z(y ~ z ~ t ~ z E At+l)' (REMARK. In the terminology of [Jot), this makes A 
semirecursive.) In particular, if y enters A then x enters too. 
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From a global point of view we must also incorporate various nested strategies 
according to whether or not I ( e, S) -4 00. This is again achieved by a tree of 
strategies argument. We now give the formal details of the argument. 

A stage s is defined to be a a-stage by induction on lh( a). 
(i) Every stage s is a 0 -stage. 
(ii) If s is a 'T-stage with lh( 'T) = e then if I( e, s) > max{l( e, t): t is a 'T-stage and 

t < s}, we say s is a 'T I\O-stage. 
Otherwise, s is a 'T 1\ I-stage. 
Let f be a 1-1 recursive function enumerating a given r.e. nonrecursive set C so 

that f( w) = C. We say that Pe requires attention at stage s + 1 if We,s (I A, = 0 
and one of the following options holds. 

(4.4) Pe has no follower x with x $. We,s' 
(4.5) Pe has a follower x such that 
(i) x EWe,s' and 
(ii) f(s) ~ X. 

CONSTRUCTION, STAGE S + 1. 
Step 1. As usual, let as denote the unique string with lh( as) = sand s a as-stage. 

Cancel all followers x with guess 'T f,. Las' 
Step 2. Find the least follower x (if any) such that for some 'T 1\0 C as we have 
(i) x has guess "I and 'T 1\0 C "I, 
(ii) if e = Ih('T) then I(e,s) > x, and 
(iii) x is not yet 'T I\O-confirmed. 

Declare x as 'T I\O-confirmed for each such 'T and cancel all followers y > X. 

REMARK. The reader should note that "I ~ L as (as x is still alive) but it is not 
necessary for "I C as for Step 2 to apply. 

Step 3. Find the least e such that Pe requires attention. If (4.4) holds, appoint 
y = s + 1 as a follower of Pe with guess a c as where lh( a) = e + 1. Cancel all 
followers y with a guess "I for "I :::) a andy * a. 

If (4.5) holds, set As+l = As U {z: x ~ z ~ s}. Pe is now met (forever). 
END OF CONSTRUCTION. 

(4.6) LEMMA. (i) lfz = p.y (y E As+1 - As) then z is a follower. 
(ii) A ~ wit C. 

PROOF. (i) Numbers enter As+l - As only in Step 3, and when (4.5) pertains to 
some follower x. We then set As+1 = As U {z: x ~ z ~ s}. 

(ii) Let z be given. To decide if z E A, compute the least stage s such that 
'tit> s(f(t) > z). Then by (i) above and (ii) of (4.5) we see that z E A iff z E A s+1' 

D 
Now let f3 denote the leftmost path. Let a c f3 with lh( a) = e + 1. 

(4.7) LEMMA. Pe receives attention finitely often at a-stages and Pe is met. 

PROOF. By induction, let So be a a-stage such that for all s > So 
(i) For all j < e, Pj does not receive attention at stage s if s is a a-stage. 
(ii) a ~ Las' 
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(iii) For all j < e, Pj does not receive attention via (4.5) at stage s. 
(iv) No follower of Pj for j < e with guess T < L a receives any p-confirmation at 

stage S (for any p). 
Define a follower x at Pe with guess a to be confirmed if it is T I\O-confirmed for all 
T 1\0 C a. It is clear that choice of So and induction ensures that if x is a confirmed 
follower of Pe with guess a appointed after stage so' then x is uncancellable. 
Furthermore, (4.6)(i) ensures that x $. A, unless Pe receives attention via some 
follower y < x. 

Now if Pe fails to be met or receives attention infinitely often, it is quite easy to 
see that there exists an infinite recursive set of (uncancellable) followers {Xl < X2 < 
... } all appointed after stage So such that for all i, 

(i) Xi is confirmed, 
(ii) Xi has guess a, and 
(iii) Xi EWe' 

We claim that C = f( w) is recursive. To compute f( z) find the least stage s > So 

such that Pe has a confirmed follower Xi> z with guess a and with Xi EWe,s' Then 
z E f( w) = C iff z E {f(0), ... , f(s)}. Otherwise (4.5) would pertain to Xi at some 
stage meeting Pe' 

To complete the proof, we argue that Ne is also met. Thus suppose (a = T 1\0 with 
a C f3 and lh(a) = e + 1. Let So be a a-stage as in the proof of (4.7). We need to 
show that A < It <I>e(A) (assuming <I>e(A) total). Let z be given. Find the least 
a-stage Sl with I(e, Sl) > z. Suppose there is no follower X < z such that X has 
guess y :J a. Then by (4.6)(i), choice of so' and cancellation at a-stages it follows 
that z E A iff z E As' 

1 

Thus we suppose there is some (a-confirmed) follower X < z. Let Xl be the largest 
such follower. Let 

Q = max{ U(fe,S,( <I>e,s,(A,J; y )):y < Xl}' 

We claim that if z $. A S" then 
(4.8) z E A iff <I>e(A)[Q]"* <I>e,sl(AsJ[Q]. 

Note that (4.8) is a tt-condition. (Also if <I>e(A) is r.e. then this is a dtt-condition. 
In any case it is a dtt-condition from <I>e(A) EB <I>e(A).) 

Certainly as Xl is the largest a-confirmed follower < z at stage s, the way we 
appoint followers ensures that 

if A sJx1] = A[x1] then AsJS1] = A[Sl]' 
(By (4.6)(i) and minimality of Sl') Therefore if AsJxd = A[X1J then 
(4.9) <I>e,t(At)[Q] = <I>e,s,{AJ[Q] for all t;> Sl' 
since I( e, Sl) > z at stage Sl' By (4.9) and (4.6)(i) and the construction, we have 
(4.10) AS'{z) = A{z) implies <I>e,s,{AsJ[Q] = <I>e{A)[Q]. 

Conversely, suppose AS,(z) "* A(z). Then by construction and (4.6)(i), AsJxd "* 
A[xd. Now since fe,sJ<I>e,s,(As); Xl) = 0 "* A(x1) it cannot be that <I>/A)[QJ = 

<I>e,sJAs)[QJ by definition of Q. Thus <I>e(A)[QJ *' <I>e,sl(As)[QJ. Putting this to-
gether with (4.10) gives (4.8), as required, and so A < It <I>e(A). D 
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As we remarked at various points throughout the argument this construction gives 
(apparently) a little more than Kobzev's result: 

(4.11) COROLLARY. Let C be r.e. and nonrecursiue. Then there exists an r.e. set A 
with 0 < T A < wtt C such that 

(i) B == T A and B r.e. implies A < dtt B, and 
(ii) furthermore for any set D == T A, A < dlt D Ell D. 
We remark that all known constructions of (strongly) tt-bottomed r.e. degrees 

seem to use semirecursive sets such as A above. We do not know if this is necessary. 
Concerning the T-degrees of tt-bottomed r.e. degrees, we do not know of any jump 
class classification although it seems probable that no high r.e. degree can be 
tt-bottomed. Later we show 0' is not wtt-bottomed. In particular, the index set 
reasoning we used for I-degrees in §3 fails since, as we show, {e: We ~ wtt A} is 
always different from { e: We ~ T A} for A r.e., nonrecursive, and incomplete. 

We do have a partial classification in terms of wtt-cuppability. Recall that an r.e. 
set A is wtt-cuppable if there exists an r.e. set B such that A Ell B == wit 0' and 
0' ~ wit B. 

E. L. Post showed [Po] that hypersimple sets cannot be tt-complete, and R. 
Friedberg and H. Rogers observed [FR, p. 124] that similar methods may be used to 
show that hypersimple sets cannot be wtt-complete. In the next theorem we extend 
this to show that no hypersimple set can be wtt-cuppable. This result will have as a 
corollary a result mentioned in [AJSS, p. 124]: no contiguous degree is wtt-cuppa-
ble. We thank leanleah Mohrherr for asking about the connection between hyper-
simplicity and wtt-cuppability. 

(4.12) THEOREM. No hypersimple set is wtt-cuppable. 

PROOF. Let H be hypersimple and A be r.e. Assume that K < wit H Ell A, where K 
is creative. We must show that K < wit A. Using the technique devised by Lachlan 
for the nondiamond theorem [Lat, Theorem 5], we enumerate an r.e. set E in such a 
way as to "force" many numbers into H Ell A, and ultimately into A. Since 
E < wtt H Ell A and our construction is uniform, we may assume that we know in 
advance a wtt-reduction procedure f such that E = f( H Ell A), together with its 
(recursive) use function y. Let 

l(s) = max { x: (\iy < x)[ts(Hs Ell As; y) = Es(Y)]}. 

Clearly if u < l(s), u < let), and u E E t - Es ' then 

(4.13) 

We may assume without loss of generality that 'I is nondecreasing and that (n, i) 
is nondecreasing as a function of i, so that '1« n, i» is a nondecreasing function of 
j. 

If n enters K, we subsequently put the numbers (n,O), (n, I), (n,2), ... into E 
in that order, but we do not put (n, j + 1) into E until the change in H Ell A below 
y«n, j»-guaranteed by (4.13) with u = (n, i)-has already occurred. More 
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precisely, we define E = Us Es' where Eo = 0 and 
Es+1 = Es U{<n,k):n E Ks&(n,k) < I(s) 

&('V) < k)[(n,) E Es]}. 

It is trivial to show by induction on k that if n E K, then (n, k) E E for all k (so 
that E = K X w). For fixed n E K, let t(k) be the unique s with (n, k) E E,+l -
Es' By (4.13) 

(H'(k)EBA'(k»)[(y(n,k»)] =1= (H'(k+1)EBA'(k+1»)[y(n,k»)]. 
Using the above, the assumption that y( (n, k» is nondecreasing in k, and the 

r.e.-ness of H and A, it follows that (Hs EB As)[y«n, k»] has at least k + 1 distinct 
values for s E [teO), t(k + 1)]. Suppose for the moment that lls has at most k 
elements ~ y«n, k». Then 
(4.14) A '(0) [y( (n, k»)] =1= A [y( (n, k»)] 
since not all of the changes in H EB A can be due to changes in H. 

The assumption that H is hypersimple is used to show that the hypothesis of 
(4.14) is satisfied sufficiently often. Let any number n be given. (We no longer 
assume that n E K!) Then there exist k and s such that lls has at most k 
elements ~ yen, k). (Otherwise II has> k elements ~ y«n, k» for all k, in con-
tradiction to the domination definition of hypersimplicity. We remind the reader 
that this definition reads that A is hypersimple if its complement is not majorized by 
any recursive function (see [Rg, p. 139]).) Let (kn' sn) be (say) the least pair (k, s) 
with this property. To compute whether n E K from A, find s so large that 

As[y(n,kn»)] =A[y(n,kn»)]' 
Then n E A iff n E As' To verify this, assume for a contradiction that n E A - As' 
Then teO) > s where, as before, t(k) = (ILs)[(n, k) E Es+rl. By (4.14) with k = kn' 
A,(o)[y«n, k n»] =1= A[y«n, k n»], so As[y«n, k n »] =1= A[y«n, k n»]. This con-
tradicts the choice of s. Thus K ~ wtt A with use function y( (n, k 11»' 0 

(4.15) COROLLARY. Every r.e. T-degree contains an r.e. set which is not wtt-cuppa-
ble. In particular, no contiguous r.e. degree a contains a wtt-cuppable set. 

REMARK. The latter result was mentioned without proof in [AJSS, p. 124], and a 
direct proof is given in [AS, Theorem 5.3]. 

PROOF. Let a be any r.e. degree. If a = 0, then the result is trivial. If a =1= 0, then a 
contains a hypersimple set by [De]. The second sentence of the corollary follows 
immediately from the first since wtt-cuppability is invariant under == wU' 0 

Actually, the proof that contiguous degrees are not wtt-cuppable which is given in 
[AS] establishes somewhat more. This proof shows that wtt-Jottomed r.e. degrees 
contain r.e. sets that are not wtt-cuppable. In particular, the wtt-bottoms are not 
wtt-cuppable. This result also follows from (4.12) in the manner of (4.15) since we 
know that if A is any r.e. nonrecursive set then there exists a hypersimple r.e. set 
B == T A with B ~ wtt A. The easiest way to see this is to consider the Dekker [De] 
deficiency set for B. (This actually achieves B ~ tt A, see (e.g.) Soare [S04, V, Ex. 
2.12].) 
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We now turn to the relationships between r-topped degrees and tt-bottomed ones. 
The fact that nonzero strongly contiguous r.e. degrees exist would seem to suggest 
that perhaps there exists an r.e. degree consisting of a single (r.e.) tt-degree. This 
suggestion fails by Cohen [Co]. In fact, building on earlier results of Lachlan [La2] 
and Cohen [Co], Kobzev [Ko2] has shown that each nonzero r.e. wtt-degree contains 
an infinite antichain of r.e. tt-degrees. By our results of §3 we have the following. 

(4.16) THEOREM. Below any nonzero r.e. degree there exists a nonzero r.e. strongly 
tt-bottomed T-degree which is not tt-topped. 

PROOF. Combine (4.3) with (3.3). 0 
We can do a little better by squeezing more information out of the construction of 

(4.3). 

(4.17) THEOREM. The r.e. set A constructed in (4.3) is also of strongly contiguous 
degree. Thus, if C is any r.e. nonrecursive set there exists an r.e. set A with 
o < T A ~ wtt C such that for all sets B, if B == T A then A ~ tt Band B ~ wtt A. 
Hence deg(A) is strongly contiguous and tt-bottomed. 

PROOF. We verify that (4.3) gives the desired result. Thus suppose fe«<l>e(A)) = A. 
We also claim that <Pe(A) ~ wtt A. 

Let a, So be as in (4.7) and (4.8). (Recall a c f3 with lh(a) = e + 1 and So is a 
stage "good for a".) Let x be given. We show how to compute <Pe(A)(x) from A. 
Find the least a-stage that lee, Sl) > x and Sl > so. Now compute the least a-stage 
S2 > Sl with 
{4.18} 
We claim that <Pe s (As )(x) = <Pe(A)(x). We give the details although the argument , , , 
is fairly standard by now. Suppose not. By (4.18), this means that there is some 
number y with 

Sl ~ Y < u( <Pe ,S2( As,; x)) 
such that y enters A after stage S2' By (4.6)(i) and (4.18) we may clearly suppose y 
is a follower at the stage t when y EAt - A S2' By cancellation at a-stages, y must 
have guess y :) a since it is still alive at stage S2' Now since y has guess:) a it must 
have been appointed at a a-stage S3 with Sl ~ S3 < S2' Since y $. As, no number ~ y 
has entered A after stage S3 but before stage S2' (The entry of such a number would 
cause y to also enter.) It follows that A S3 [Sl] = As,[sd since Sl ~ y. But then 
As,[sd = A[sd by (4.18). This specifically contradicts the minimality of S2 since 
S3 < S2' Hence A[u(<Pe,s,(As,; x))] = A s,[u(<Pe,s,(A s2 ; x))] and so <Pe,s,(As,)(x) = 
cI>e( A)( x) as desired. Therefore <Pe( A) ~ wit A. 0 

(4.18) COROLLARY. There exist r.e. T-degrees consisting of a single wtt-degree that 
are strongly tt-bottomed, but have no tt-top. 

On the other hand, in §3 we observed that an r.e. degree may be I-topped but not 
tt-bottomed. For O~ in fact we have 

(4.19) THEOREM. O~ is I-topped but if R is any r.e. set wtt below all r.e. sets of 
T-degree 0' then R is recursive. 
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PROOF. Suppose 0 < T Rand R satisfies the given hypotheses. We build a 
T-complete Le. set A with R i; wit A. Thus let /( w) be a 1-1 enumeration of a 
creative r.e. set. We satisfy the requirements Qe: fe(A) *- R. Here fe denotes the eth 
wtt-reduction and has monotone use Yeo Now let 

I( e, s) = max { x: \iy < x(fe,s(As; y) = Rs(Y))}, 
ml ( e , s) = max {l ( e , s ) : t < S } , and 
Is(e,s) = max{O,t:t is a stage < s with/(e,t) > ml(e,t)}. 

We say that Q e requires attention at stage s + 1 if e is least such that I ( e, s) > 
ml(e, s). 

CONSTRUCTION. 
STAGE O. Set Ao = 0 and ai,o = i for all i E W. 

STAGE S + 1. Find the e (if any) such that Qe requires attention. Let 

Set 

and set 

n = {min{/(s),e} 
/(s) 

if e exists, 
otherwise. 

As+1 = As U {an,s"'" an+s,s}' 

fori < n, 
otherwise. 

END OF CONSTRUCTION. 
VERIFICATION. We argue that lims ai,s = ai exists and each Qe receives attention 

at most finitely often (and is met). For an induction, let So be a stage such that for 
all s > So 

(i) \i j < e (Q j does not receive attention at stage s), 
(ii) /(s) > e, and 
(iii) aj,s = aj for j < e. 

Suppose that Qe receives attention infinitely often. Then I( e, s) ~ 00. We show that 
this implies that R is recursive. 

To compute R(x) find the least stage Sl > So with I(e, Sl) > ml(e, Sl) and 
I(e, Sl) > X. Then Qe receives attention at stage Sl and 

As+1 = As, U {a e,SI"'" ae+s"SI}' 

Now by convention Ye(x) < Sl' By induction a i ,SI ~ i. Thus we see 

\i z ( (z < Ye ( X ) & z $. As, + 1) ~ z < a e os,). 

The assumptions on So imply that this means 

\i z ( (Z < Ye ( X ) & z E A) ~ z E A sJ 
Consequently, if S2 is the least stage with S2 > Sl and I( e, S2) > ml( e, S2) we see 
that the computation lI>e (As; x) is final. Hence x E R if x E R s . Hence R is 

,S2 2 2 

recursive. Therefore Qe receives attention finitely often. This in turn means lims ae,s 
= aeexists since after stage So' ae,s can only change when Qe receives attention. 
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Finally, we need argue that A == T f( w). To compute if x E f( w) A-recursively 
find the least stage s such that ax,s = a x,1 for all t > s. Then x E f( w) iff 
x E {f(0), .. . ,f(s)}. D 

For our next results we establish that an r.e. degree can be strongly tt-bottomed 
but have no wtt-top. To complete the picture we would need to construct an r.e. 
degree a =1= 0 with a I-top and a (strong) tt-bottom. We do not know how to do this! 
In fact, it is an open question whether there exists an r.e. degree a =1= 0 with an r.e. 
tt-top and an r.e. wU-bottom. The infinitary nature of the positive requirements used 
to satisfy the I-top requirements of (2.1) seem to interfere very strongly with the 
delicate contiguity-type machinery used to construct wtt-bottoms. On the other hand 
this machinery can be modified to admit certain infinitary positive requirements as 
witnessed by Ladner's [Ld] difficult construction of a low2 - low! "completely 
mitotic" contiguous r.e. degree. 

(4.20) THEOREM. There exists an I.e. degree a such that a is strongly tt-bottomed 
but has no wtt-top. In fact for all (not necessarily r.e.) sets B of degree a there is an 
r.e. set C of degree a with C ~ wtt B. 

PROOF. We build A = Us As together with auxiliary r.e. sets Ce = Us Ce,s to satisfy 

R e,; : fe( cI> e( A)) = A implies Ce ~ T A and <l>; ( cI> e( A)) =1= Ce. 
Ne: fe( cI>e(A)) = A implies A ~ tt cI>e(A). 

Again, let 

I ( e, s) = max { x : 'v' y < x (fe,s ( cI> e,s (A J; y) = As (y ) ) } . 

Now as in (4.3) define "a-stage" by induction on Ih(a) using I(e, s): every stage is a 
o -stage and if s is a T-stage with lh( T) = e define s to be a T /\ i stage where i = 0 
if I(e,s) > max{l(e,t):t < s} and i = 1 otherwise. 

Define as as usual. Also define ml( e, s) = max{ I( e, t): t < s}. We say a stage s is 
e-expansionary if I(e, s) > ml(e, s). Now, define 

L(e,i,s) = max{x :'v'y < x(<l>;,s(cI>e,s(A,); y) = Ce,s(Y) 

&/(e,s) > <I>;,s(cI>e,s(A,);y))}. 

Here the reader should recall that <1>; is the use of ~; by convention (and is 
nondecreasing). We say a stage s is (e, i)-expansionary if L(e, i, s) > mL(e, i, s) 
where mL(e, i, s) = max{ L(e, i, t): t < s}. 

We briefly describe the method we employ to satisfy the R e ,; in conjunction with 
the Ne. First for the Ne we proceed almost exactly as we did in (4.3). Of course we 
cannot proceed exactly as we did since we know that this gives a strongly contiguous 
degree. The crucial difference will be that we will allow numbers to be appointed to 
some Re; at some guess a with lh(a) = (e, i) at other than a-stages. (These 
numbers will be traces and R e ,; will be "waiting".) 

We satisfy the R e ,; by a Friedberg-Muchnik type procedure. Basically we wait till 
L(e, i, s) > x for some follower x of R e,; targeted for Ceo At this stage we enumerate 
x into A and declare R e,; as waiting. "Waiting" indicates that whenever possible we 
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wish to give x a trace (to ensure Ce ~ T A), The problem is that we cannot 
immediately give x a trace T( x) targeted for A. Our idea will be to be able to add x 
to Ce and T( x) to A at the same time to create a disagreement. Thus, we must know 
that T( x)'s entry will be good from the point of view of not injuring 
"<Pe,s(<Peos(As); x) = 0" computations. Now when x entered At the "<Pe,t(A t; x)" 
computations may have been injured and perhaps the use changed. Therefore we 
must wait until the "<Pe./At; x)" computations recover before we know how big the 
use is, and so how large T( x) needs to be. Thus, we choose to wait until the next 
e-expansion stage s > t and set T( x) = s + 1. We note that this is fine because 
Ce ~ T A is predicated upon fe(<Pe(A)) = A. 

N ow at stage s when T( x) is set, perhaps s is not a a-stage where x has guess a. 
Nevertheless, T(x) will inherit x's guess (so T(x) has guess a) to cooperate with the 
~. requirement. 

The remainder of the argument is straightforward. We declare x as active and wait 
till L( e, i, s) > x again. Then we create a disagreement by setting Ce,s+ 1 = Ceos U 
{ x} and enumerating T( x) into A. 

Formal details now follow, although we suspect that the reader may wish to 
supply them himself. 

We say that R e,; requires attention at stage s + 1 if R eo; is not currently declared 
satisfied. One of the following options holds. 

(4.21) Reo; is active via x and s is (e, i)-expansionary. 
(4.22) Reo; is waiting via x and s is e-expansionary. 
(4.23) Reo; is inactive but has a follower x with L(e, i, s) > x and s is (e, i)-ex-

pansIOnary. 
(4.24) Reo; is inactive, and has no follower. 
CONSTRUCTION, STAGE s + 1. 
Step 1. Let as denote the unique string with lh( as) = sand s a as-stage. Cancel all 

followers or traces x with guesses 7' 1. L as. Also for each e, i if Reo; is active or 
waiting via such x, declare Reo; as inactive. 

Step 2. Find the least follower or trace z not already 7' "'O-confirmed for some 
7' '" ° c as such that 

(i) z has guess y :l 7' "'0, and 
(ii) lee, s) > z, where e = lh( 7'). 

Declare z as 7' "'O-confirmed for each such 7' "'0 and cancel all followers or traces 
z' > z. 

Step 3. Find the least (e, i) (if any) such that R e,; requires attention. If none 
exists go to stage s + 2. Let a c as with lh( a) = (e, i) + 1. Cancel all followers or 
traces with guesses y :l a and y '* a. Adopt the appropriate case below. 

Case 1. (4.21) holds. Declare Reo; as currently satisfied via x. Set As+l = As U 
{z: T(x) ~ z ~ s}. Set Ceos+ 1 = Ce.s U {x}. (This step temporarily satisfies R e,;') 
Cancel all followers or traces of R g for g > e and declare these as inactive. 

Case 2. (4.22) holds. Declare Reo; as active via x and set T(x) = s + 1. Declare 
T( x) to have guess y where y is the guess of x. (Note T( x) is not yet p-confirmed 
for any p.) Cancel all followers or traces with guess 'T/ for 'T/ 1. L y. Declare the 
appropriate R g as inactive. 
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Case 3. (4.23) holds. Declare Re,i as waiting. Set As+l = As U {z:x.;;; Z';;; s}. 
Cancel all followers or traces of R g for g > e. Declare these R g as inactive. 

Case 4. (4.24) holds. Appoint x = s + 1 as a follower of Reo; with guess (J. Cancel 
all followers and traces with guess y for y ::J (J and y =1= (J. For any R g correspond-
ing to these followers or traces, declare R g as inactive. 

END OF CONSTRUCTION. 

VERIFICATION. Let f3 denote the leftmost path. Let (J C f3 with lh( (J) = (e, i). For 
an induction, suppose that So is a (J-stage such that for all s > So we have: 

(i) For all k < (e,i), Rk does not receive attention at stage s, nor do any 
numbers associated with Rk receive any confirmation at stage s. 

(ii) (J .;;; L (Js· 
(iii) All followers or traces with guess 'T "* L (J cease acting. 
We now verify that Reo; receives attention at most finitely often and is met. After 

stage so' once Reo; gets a follower x with guess y .;;; L (J this follower x is evidently 
uncancellable. We claim that this follower succeeds in meeting Reo;' Notice that such 
x will be the last follower Re,i ever receives. This follows since either we get stuck in 
some state such as waiting, or via x, Re,i eventually is declared satisfied. This 
declaration can only be cancelled by higher priority activity, which cannot happen 
by choice of so. Thus for the Reo; it remains to verify that the strategy actually 
works. 

Thus suppose fe(<I>e(A» = A. This clearly means that (4.23) pertains to x at some 
stage Sl' say. At this stage, we know L(e, i, Sl) > x and in particular 
(4.25) ~; s (<I>e s (As); x) = Ce s (x) = O. 

'1 '1 1 ,I 

Thus at stage Sl + 1, we enumerate x into As +1 - As, and declare Re; as waiting. 
1 1 0 

Now at the first e-expansionary stage S2 exceeding Sl (4.22) pertains and we set 
T( x) = S2 + 1. By convention this means 

(4.26) T(x»u foru=max{u(<I>eosz(As 2;z)):z';;;<Pe(x)}. 
Furthermore, the cancellation procedure and choice of So will ensure that 
(4.27) <l>eos2(As,)[u] = <l>e(A)[u] (with u as in (4.26)). 

Now, either (4.21) never pertains to x and so I(e, i, s) -# 00, or (4.21) pertains and 
(4.25), (4.26) and (4.27) together ensure that then 

~;( <l>e(A); x) = 0 =1= 1 = Ce(x). 
Finally, Ce .;;; T A by traces. To decide if x E Ce, see if x is a follower of some Reo; 

by stage x + 1. If x ft. A x and x is not a follower by stage x + 1 then x ft. Ceo If x 
is a follower, then x E Ce only if x EA. If x E A find the stage s when this occurs. 
Now at the least e-expansionary stage Sl > S either x has been cancelled or x has a 
trace T(x) at stage Sl + 1. Finally if x is still alive, then x E Ce only if T(x) E A. If 
T(x) E A go to stage S2> Sl where T(x) E A s2 +1 - A,z' Then x E Ce iff x E 

Ceos2+1' 
The verification for the Ne is almost the same as in (4.3). For example (4.6)(i) now 

reads "if Z = ILY (y E A S +1 - As) then Z is either a follower or a trace". Thus we 
ask the reader to check for himself that these details go through unchanged save for 
minor changes like the above. 0 
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We point out that again this argument blends with permitting to construct such an 
r.e. degree below any given nonzero r.e. degree. We remark that to answer our 
question "does there exist a tt-topped and tt-bottomed r.e. degree =fo O?" does not 
necessitate the construction of a contiguous degree with these properties. It is 
possible for an r.e. degree a =fo 0 to be noncontiguous and yet wtt-topped and 
bottomed. This is witnessed by the next result which also has several nice corollaries. 

(4.28) THEOREM. (a) Let C ¥= T 0 be r.e. Then there exist r.e. sets A and B with 
A == T B and A « wtt C such that 

(i) for all r.e. sets D if D « T B then D « wtt A, 
(ii) for all sets E if B == T E then B « It E, and 
(iii) A ¥= wtt B. 
(b) Hence deg(A) is wtt-topped and strongly tt-bottomed but not contiguous. 

PROOF. For simplicity, we drop the A « wtt C requirements which are achieved by 
an easy permitting argument along the lines considered earlier. Also, since the 
argument is essentially an amalgam of earlier ones «4.3) and (4.17» and a wait-and-
see argument, we feel fairly free to merely sketch some details, and also not to 
discuss the various strategies. We build A = U 5 A sand B = Us Bs to satisfy 

N:A ==TB. 

R e : «I> e ( A) = We implies We « wtt A . 
Ne : fe ( «I> e (B)) = B implies «I> e (B) ~ tt B. 
Pe:~e(B) =fo A. 

We ensure A == T B by traces. Numbers may be targeted for A or B or both. Let 
I ( e, s) = max { x : 'r/ y < x ( «I> e,5 (A 5; y) = We) Y ) )} , 

and let 
L(e, s) = max { x: 'r/y < x(fe) «I>e)Bs); y) = Bs(Y))}. 

We associate Re with those a E 2 < w with lh( a) = 2e + 1. We associate Ne with 
those a E 2 < W with lh( a) = 2e + 2. A stage s is called a a-stage by induction on 
lh( a). 

(i) Every stage s is a 0 -stage. 
(ii) If s is a 'T-stage with lh( 'T) = 2e for some e, then if 

I ( e , s) > max {l ( e, t) : t < sand t is a 'T-stage}, 
we say s is a 'T A O-stage; otherwise s is a 'T A I-stage. 

(iii) If s is a 'T-stage with lh( 'T) = 2e + 1 for some e, then if 
L ( e , s) > max { L ( e , t) : t is a 'T-stage and t < s } 

then s is a 'T A O-stage; otherwise s is a 'T A I-stage. 
Followers of Pe and their traces are only given guesses a with lh( a) even and ~ 2. 

We say that Pe requires attention if Pe is not currently (declared) satisfied and one 
of the following options holds: 

(4.29) q( e, s) > max { q( e, t): t < s} 

where q(e,s) = max{x :'r/y < x(~e)Bs; y) = As(Y))}, 
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and either 
(a) Pe is active via x, or 
(b) Pe is inactive but for some follower x, q( e, s) > x, or 

(4.30) Pe is inactive and has no follower. 

CONSTRUCTION, STAGE S + 1. 
Step 1. Define as as usual. Cancel and inactivate as usual for guesses T '" Las' 
Step 2. Find the least follower or trace x (if any) targeted for A for which there 

exist y and T such that 
(i) x has guess y, 
(ii) lh( T) is even, say, lh( T) = 2e, 
(iii) T 1\0 c y and T 1\0 Cas, 
(iv) x is not yet T I\O-confirmed, and 
(v) lee, s) > x. 

Declare x as T I\O-confirmed and cancel all traces or followers targeted for A or B 
greater than x. Declare all Pj affected by this as inactive. 

Step 3. Find the least (if any) follower or trace x targeted for B for which there 
exist y and T such that 

(i) x has guess y, 
(ii) lh( T) is odd, say, lh( T) = 2e + 1, 
(iii) T 1\0 C Y and T 1\0 cas' 
(iv) x is not yet T I\O-confirmed, and 
(v) L(e,s) > x. 

Cancel and inactivate as in Step 2, above. Declare x as T 1\ O-confirmed. 
Step 4. Now find the least e such that Pe requires attention. Cancel all followers 

and traces with guess T for T ::l a and T =1= a where a c as and lh( a) = 2e + 2. 
Inactivate appropriate Pj' Adopt the appropriate case below. 

Case 1. (4.30) holds. Appoint y = 2s + 1 as a follower of Pe with guess a. Pe 

remains inactive. Declare x and x + 1 as both targeted for A, declare x + 1 as a 
trace, and declare x + 1 as targeted for B. 

Case 2. (4.29) holds. 
Subcase (i). (b) holds. Declare Pe as active. Set AS+l = As U {x + I}. Set 

Bs+l = Bs U {z: x + 1 ~ z ~ 2s}. Set y(x) = 2s + 1 as x's new trace. Give y(x) 
guess y where y is the guess of x. Declare y(x) to be targeted for both A and B. 
Cancel all followers and traces with guess 1/ for y ~ L 1/ and y =1= 1/. Inactivate 
appropriate Pi' 

Subcase (ii). (a) holds. Set AS+l = As U {x, y(x)} and Bs+l = Bs U {z :y(x) ~ z 
~ 2s}. Declare Pe as satisfied. Cancel, etc., as in subcase (i). 

END OF CONSTRUCTION. 
VERIFICATION (SKETCH). Due to the evident similarities with (4.3) and (4.17), we 

sketch some of the details. 
Let f3 denote the leftmost path. We first verify the Re' Let So be a stage such that 

all the lj for j < e cease acting and a ~ as for all s > So where a c f3 and 
lh( a) = 2e + 1. 
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Let z be given. We wish to compute if z E We or not (from A). Find the least 
a-stage SI > So with lee, SI) > z. We claim that, as in (4.17), if S2 is the least a-stage 
with S2 > SI and As)sd = A[sd, then 

(4.31) Z E We iff Z E We,S2' 

This follows by virtually the same argument as in (4.17). The crucial observation is 
that y(x) may only enter A at the same time as x. Briefly, to see (4.31) it suffices to 
observe that the only numbers p left alive at stage S2 with 

(4.32) SI <p < u whereu= u(<Pe,s/As,;z)) 

must be traces y( x) and must be traces of some follower x already present at stage 
SI' Thus they can only enter A at the same time as x. The rest of the argument 
mimics (4.17). Since we have transported the Ne machinery virtually unchanged, the 
argument given in (4.3) will suffice for the Ne • Again we leave this to the reader. 

We thus turn to the verification of the Pe' Let So be an appropriate a-stage as 
above (with lh(a) = 2e + 2 and 0' C /3). Now if Re fails to be met thenq(e,s) ---> 00. 

Thus find a a-stage SI > So where (4.30) holds. Then Pe is given an uncancellable 
follower x. Find the least stage S2 > SI with q(e, S2) > x. At such a stage we set 
AS2+1 = AS2 U {x + I} and Bs2 +1 = BS2 U {x + I}. We also cancel all lower prior-
ity followers and traces. 

The crucial observation is that the way we appoint followers and choice of So 
ensures that 

Bs,+I[<Pe(X)] = B[<Pe(x)] 

since <Pe(x) = u(<I>e,sJBs,; x)) = u(<I>e(B; x)). (Any number targeted for B ap-
pointed after stage S2 must exceed S2 and there is no number left alive targeted for 
Band < S2 (except those that never get into B covered by so).) 

Thus, at the least stage S3 > S2' with q(e, S3) > x, (4.29)(a) pertains to x and we 
create a (permanent) disagreement 

<I> e (B; x) = 0 =1= 1 = A S3 + 1 (x). 

Finally, we verify that A == T B. To compute if x E A or not (from B) see if x or 
x-I is a follower or trace by stage x. If not and x $. A x then x $. A. If x is a trace 
then x E A only if x E B. If x E B find the stage s where x E Bs - Bs- l ' Then 
x E A iff x E As' If x is a follower, x E A only if x + 1 E B first. If x + 1 E B 
find the stage s where x + 1 E B, - Bs- l ' If x is still alive at stage s, x is given a 
trace y(x). To then see if x E A, find the stages (if any) where y(x) E B. If none 
exists then x $. A. If y(x) E Bt - Bt- l then x E A if x E At. Hence A ~ T B. On 
the other hand B ~ T A by simple permitting. 0 

We now give one surprising consequence of (4.28). 

(4.33) COROLLARY. There exists an r.e. degree a =1= 0 such that a contains infinitely 
many r.e. wtt-degrees and the structure of the r.e. wtt-degrees of degree a is a lattice 
with least and greatest elements. 
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PROOF. In [LS], Ladner and Sasso showed that if an r.e. degree is noncontiguous, 
then it contains infinitely many r.e. wtt-degrees. In [Fi] Paul Fischer constructed an 
Le. nonzero wtt-degree f such that the Le. wtt-degrees below f form a lattice. Now 
apply (4.28). 0 

We remark that we do not know if (4.33) may be improved to say that the 
collection of all wtt-degrees of degree a form a lattice. (Note: By Exercise 3.5 of 
Chapter IX of Soare [S04], if a pair of r.e. wtt-degrees have an infimum in the 
wtt-degrees, the infimum is r.e.) We cannot use the technique above since for all r.e. 
wtt-degrees f =1= 0 the wtt-degrees below f never form a lattice (d. e.g. [003]). 

We ask whether or not it is possible for the (r.e.) tt-degrees of an Le. (wtt-) degree 
to also form a lattice. We also point out that degrees satisfying the properties of a of 
(4.32) would seem rare. We refer to [OS, Fi and 003] for results on pairs without 
infimum in the Le. wtt-degrees. We do not know what countable lattices can be 
embedded in this way, although Downey [003] has shown that they are not Boolean 
algebras. 

As our final result we use the flexibility of the construction of (4.3) to answer a 
question of Odifreddi (personal communication) by showing that (strongly) tt-bot-
tomed degrees do not necessarily contain minimal (r.e.) tt-degrees. 

(4.34) THEOREM. There is a nonzero strongly contiguous strongly tt-bottomed degree 
a containing no sets of minimal (r.e.) tt-degree. 

PROOF (SKETCH). Build A = UsA s and an auxiliary Le. set B = Us Bs to satisfy 
N:B~ttA. 

Pe:B=I= We' 
Ne: fe( <l>e(A)) = A implies A ~ tt <l>e(A) and <l>e(A) ~ wtt A. 
Re: <l>e(B) =1= A. 

We meet the Ne exactly as we did in (4.3) and (4.17). We actually ensure that 
B ~ m A by asking that a follower x targeted for B enters B iff x EA. By meeting 
the R e we ensure that A :(;. T B. To meet these requirements we use a standard 
Friedberg-Muchnik procedure. Thus we first pick a follower y targeted for A, 
cancelling all lower priority followers when we do so. We next wait till <l>e,s(Bs; y) = 
As(Y)' At this stage we enumerate y into A and cancel all lower priority followers 
targeted for B. This clearly combines with our (4.3) strategy and creates a disagree-
ment <l>e(BO; y) = 0 =1= 1 = A(y). 

We meet the Pe by appointing followers x and waiting till x EWe,s' Then add x 
to both A and B. The only interactions we must be careful with are those where if x 
is a follower of Pe that is later cancelled, we must still add x to B if ever x enters A, 
because of the tt-condition we need to achieve. Nevertheless, it is really quite easy to 
blend the above with (4.3) and we leave this to the readeL 0 
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