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A REGULARITY RESULT FOR VISCOSITY SOLUTIONS 
OF HAMILTON-JACOBI EQUATIONS IN ONE SPACE DIMENSION 

R, JENSEN AND P, E. SOUGANIDIS 

ABSTRACT, Viscosity solutions of Hamilton-Jacobi equations need only to be con-
tinuous, Here we prove that. in the special case of a one-dimensional stationary 
problem, under quite general assumptions, Lipschitz continuous viscosity solutions 
have right and left derivatives at every point. Moreover, these derivatives have some 
kind of continuity properties. 

Introduction. The theory of nonlinear, first-order partial differential equations of 
Hamilton-Jacobi type has been substantially developed with the introduction by 
M. G. Crandall and P.-L. Lions [2] of the class of viscosity solutions, which turns out 
to be the correct class of generalized solutions for such equations. M. G. Crandall, 
L. C. Evans, and P.-L. Lions [1] provided a simpler introduction to the subject, while 
the book by P.-L. Lions [8] and the review paper by M. G. Crandall and P. E. 
Souganidis [3] provide a view of the scope of the theory and references to much of 
the recent literature. 

Viscosity solutions need only to be continuous. On the other hand, they satisfy the 
corresponding equations at every point of differentiability. One would like to know, 
however, more about the structure of these solutions; for example, if and when there 
exist regions where viscosity solutions are (piecewise) continuously differentiable. 
Such kinds of results are of interest not only from the theoretical point of view but 
also for applications, since they may lead presumably to an understanding of the 
structure of the singularities of solutions of Hamilton-Jacobi type equations (e.g., the 
eikonal equation in geometrical optics, etc.). 

This paper is concerned with the regularity of a Lipschitz continuous viscosity 
solution u of the simple problem 
(0.1) u + H(uJ = u in (-R, R) 
where H: It ~ It and u: (-R, R) ~ R are continuous functions. The results ob-
tained say that under some conditions on H for every Xo E (-R, R) u has left and 
right derivatives at x o, which we denote by u~(xo) and u;(xo) respectively. 
Moreover, these derivatives are continuous in a sense we make precise later. 
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Before we state the results, we need to introduce some notation. In particular for 
c E R 

H-l({C}) = {p E R: H(p) = c}. 

We have 

THEOREM 1. Let u be a locally Lipschitz continuous viscosity solution of (0.1), where 
H: R ~ R and v: (R, R) ~ R are continuous functions. Assume that for every 
c, MER the set 

H-l({C}) n[-M,M] 

is either empty or finite and that the local extremum values (i.e., the local minimum 
and maximum values) of H are isolated. Then for every Xo E (-R, R), u is either 
differentiable or it has left and right derivatives u;(xo) and u;(xo) at Xo respectively. 
Ifu;(x o) oF u;(xo), then 

{
H(U;(XO)) = H(u;(xo)) = v(xo) - u(xo) and 

(0.2) H(i)( u;(xo) - u;(xo)) ~ (v(x o) - u(xo))( u;(xo) - u;(xo)) 

for every IE [min( u;( xo), u; (x o)), max( u;( xo), u; (x o))] . 

REMARK. The second part of (0.2) above is immediate from the definition of the 
viscosity solution. 

THEOREM 2. Under the assumption of Theorem 1 for every x 0 E (-R, R) there exists 
an a = a(xo) > 0 such that: 

(i) Ifv(xo) - u(xo) is not a local extremum value of H, then 

ul (xo-a,xo J E C1((xo - a, xOD1,2 and ul [xo.xo+a) E C1([xo, Xo + a)). 

(ii) If v(xo) - u(xo) is a local extremum value of H, then the following are true on 
(xo - a, x o] (respectively [xo, Xo + a)). Either u(x) = vex) + u(xo) - v(xo) or 
u I (xo - a, x o] E C1«xo - a, x o]) (respectively u I [xo,xo+a) E C([xo, Xo + a))) or 
ux(x) exists for every x E (xo - a, x o] (respectively [xo, Xo + a)) except perhaps a 
sequence xn ~ Xo where u;(xn) oF u;(xn ). In this last case, however, we have 

lim 
xi Xo 

xE (xo-a,xo} 

where p(x) E {u;(x), u;(x)}. 

( respectively lim p(x) = u+(xo)), 
x t Xo 

XE[XO'XO+ a) 

Part (ii) asserts that in the case where v(xo) - u(xo) is a local extremum value of 
H one cannot expect in general something as simple as part (i). In particular, it may 
happen that there exist points arbitrarily close to Xo where u is not differentiable; 
the left and right derivatives at these points satisfy, however, the continuity property 
stated above. On the other hand, there are cases (for example v == 0) where we know 

If I, is the restriction of the function f on I. 
2el (l) is the space of continuously differentiable functions defined on T. 
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that, independently of whether u(xo) - u(xo) is a local extremum of H or not, u is 
continuously differentiable in a suitable neighborhood of any point Xo with possible 
discontinuity of the derivative at xo' 

Inequality (0.2) is the Oleinik E-condition [9] as it applies to the problem (0.1) 
(for more details see §3). Thus Theorem 1 shows that the condition introduced by 
M. G. Crandall and P.-L. Lions in [2] to uniquely characterize solutions of 
Hamilton-Jacobi equations implies in one dimension the necessary condition for 
uniqueness of piecewise smooth solutions of scalar conservation laws. 

The proof of Theorem 1 is based on a "blow-up" argument. More precisely, for 
Xo E (-R, R) and S > 0 sufficiently small, let u 8, u8 : [-1, 1] ~ R be defined by 

(0.3) {
u8(X) = u(xo + S~) - u(xo) 

u8 (x) = u(xo + Sx). 

It turns out that u 8 is a viscosity solution of 

(0.4) 

and 

The existence of left and right derivatives of u at Xo follows from an analysis of the 
possible values of u~. The regularity of u depends on the properties of H and the 
fact that we work in one space dimension. All these are made precise in §2. In §1 we 
prove a kind of intermediate value theorem concerning sub- and superdifferentials of 
continuous functions defined in one space dimension. This is then used in the same 
section to obtain information about u 8 as well as Lipschitz continuous viscosity 
solutions U OO of the problem 

(0.5) 

§3 describes the analogy with conservation laws. 
General results concerning regularity of the value function of control problems 

were obtained by W. H. Fleming [6]. Very precise and general information about the 
structure of viscosity solutions of the corresponding to (0.1) evolution problem in 
R X (0, (0) can be obtained by "integrating" the results of C. M. Dafermos [5] 
concerning the structure of solutions of conservation laws. For some results concern-
ing the regularity of viscosity solution of certain special equations in two space 
dimensions, we refer to R. Jensen [7]. Finally, P. Cannarsa and H. M. Soner [4] 
recently obtained some regularity results concerning the evolution problem with 
convex Hamiltonian. 

We conclude the introduction with the definitions of sub- and superdifferentials 
and viscosity solutions. We have 

DEFINITION 1 [1,2]. Let f be a function from (a, b) into R and let Xo E (a, b). 
Then the superdifferential of fat Xo is the set, denoted by D+f(xo), of Po E R such 
that 

(0.6) 
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holds. Similarly the subdifferential of f at Xo is the set, denoted by D-f(xo), of 
Po E R such that 
(0.7) 
holds. 

DEFINITION 2 [1,2]. A continuous function u: I ~ R, where I is an open subset 
of R., is a viscosity solution of 
(0.8) F(x, u, uJ = 0 in I 
if 
(0.9) F(x,u(x),p) ~ 0, '\;;fx E I, '\;;fp E D+u(x) 
and 
(0.10) F(x,u(x),p) ~ 0, '\;;fx E I, '\;;fp E D-u(x). 
In a similar way a continuous function u: I ~ R is said to be a viscosity sub solution 
(resp. supersolution) of (0.8) if (0.9) (resp. (0.10)) holds. 

1. We begin with a lemma which plays the role of an intermediate value theorem 
concerning sub- and superdifferentials of continuous functions. The result is one-
dimensional and resembles the properties of Dini derivatives. (In one space dimen-
sion there is an obvious relation between sub- and superdifferentials and Dini 
derivatives). We have 

LEMMA 1.1. Let f E C(I),3 where I is an open interval and a, bEl with a < b. 
The following are true: 

(i) Ifp E D+f(a), q E D+f(b) and p < q, then, for every c E (p, q), there exists 
a Xo E (a, b) such that c E D-f(xo)' 

(ii) Ifp E D-f(a), q E D-f(b) andp > q, then, foreveryc E (q,p), there exists 
a Xo E (a, b) such that c E D+f(xo). 

PROOF. (i) Let c E (p, q) and define g: I ~ R by 
g(x) = f(x) - cx. 

It is immediate that p - c E D+g(a), q - c E D+g(b), and p - c < 0 < q - c. 
Using Definition 1 for f > 0 sufficiently small we obtain 

g( x) < g( a) on (a, a + f) and g( x) < g( b ) on (b - f, b). 
This implies that g achieves a local minimum at some Xo E (a, b); therefore 
o E Dg(xo); hence c E D-f(xo) 

(ii) The proof is similar to the one of (i); therefore we omit it. 
We continue with a discussion of the properties of u and us. Let Xo E (-R, R). If 

u: (-R, R) ~ R is locally Lipschitz continuous, then us, vs: [-1, 1] ~ R given by 
(0.3) are well defined for sufficiently small li > O. Moreover, there exists a constant 
L = L(xo) > 0 such that 

(1.1) ( i) 
(ii) 

luS(x)l~ L for every x E [-1,1]' and 
US is Lipschitz continuous with Lipschitz constant L. 

3C( l) is the space of continuous functions defined in I c R. 
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If u is a viscosity solution of (0.1), then Definitions 1 and 2 imply that uS is a 
viscosity solution of (0.4). Finally, (1.1)(ii) and the properties of the viscosity 
solution [2], yield 

(1.2) (
U+H(UJ=V a.e.in(-R,R)and 

8u s + H( u~) = Vs - u(xo) a.e. in (-1,1). 

The next lemma is concerned with the possible values of u~. The main idea is that 
US being a viscosity solution of (1.2) forces u~ not to "oscillate" too much. This 
follows from Lemma 1.1 and Definition 2. More precisely, we have 

LEMMA 1.2. Let Xo E (-R, R). Assume that H, v, and L are as in (1.1) and the 
statement of Theorem 1. For sufficiently small 8 > 0 there exists a positive integer 
n = n(8) such that for i = 0,1, ... , n, then there exist Xi E [-1,1], Pi E 
H- I({ v(Xo) - u(Xo)}) n [-L, L], and mutually disjoint relatively open neighborhoods 
Ip! of Pi' in [-L, L] with the properties: 

(i) -1 = Xo < Xl < ... < x n- I < xn = 1; 
(ii) PI < P2 < ... < Pn-I < Pn; 

(iii) (0:) u~ E Ip! a.e. on [Xi-I' X;] for every i = 1, ... , n, or (13) u~ E Ipn + , _, a.e. 
on [Xi-I' Xi] for every i = 1, ... , n. 
In the case that (iii)(o:) (respectively (iii)(f3» holds, if, for some i, H(p;) is a local 
extremum value of H, then it has to be a local minimum (respectively maximum). 
Moreover, H(p) > v(xo) - u(xo) (respectively H(p) < v(xo) - u(xo» for every 
p E [PI,Pn]' Finally, ifn > 2, then, fori = 2, ... ,n -1, H(p;) isalocalextremum 
value of H. 

PROOF. In view of (Ll) and (1.2) we have 

where wv,xo(') is the modulus of continuity of v at Xo and L is given by (1.1). The 
assumptions on H imply that the set 

(1.3) 

contains finitely many points qI < ... < qm for some positive integer m. More-
over, by choosing 8 sufficiently small we may assume that the restriction of H on 
[-L, L] has no local extremum values in [v(xo) - u(xo) - 0, v(xo) - u(xo) + 0] 
except perhaps H(qi)' where 

o = Wv x ( 8) + 8L. 
• 0 

Finally, for each i = 1, ... ,m there exist mutually disjoint relatively open [-L, L] 
neighborhoods Iq! of qi such that 

m 

U~E UIq, fora.e.xE [-1,1] 
i~I 
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(V(Xo) - U(XO) - (), V(XO) - U(XO) + ()) 
if H( qi) is not a local extremum, 

[v(xo) - u(xo), v(xo) - u(xo) + ()) 
if H( qi) is a local minimum, 

(v(xo) - u(xo) - (), v(xo) - u(xo)] 
if H( qi) is a local maximum. 

Let {PI < ... < Pn} c A be such that for each i = 1, ... ,n there exists an 
x E (-1,1) with u~(x) E Ip,. If n = 1, there is nothing to show. If n ~ 2, let x, 
y E (-1,1) be such that u~(x) E Ip" u~(y) E IPn' Next we assume that x < y. 
Lemma 1.1(i), Definition 2, and (0.4), (1.1) yield 

(1.4) H(c) ~ v(xo) - u(xo) - () foreveryc E [u~(x),u~(Y)l. 

This implies that H does not attain a local minimum value on [PI' Pn] except 
perhaps on some element of A and that H( c) ~ v( x o) - u( x o) for every c E [PI' Pn]' 
If there exists z E (-1, x) such that u~(z) E I p , for i> 1, then Lemma 1.1(ii), 
Definition 2, and (0.4), (1.1) yield 

(1.5) H(c) ~ v(xo) - u(xo) = () for every c E [u~(x),u~(z)l. 

Combining (1.4), (1.5), and the way () was chosen, we see that H must be constant 
on [u~(x), min(u~(y), u~(z »] which is a contradiction. This shows that there exists 
Xl E (-1,1) such that u~(a) E Ipl for a.e. a E [-1, xd. If there exist wE (y, 1) such 
that u~(w) E Ip} for j < n, arguing as above we again obtain a contradiction. So 
there exists x n - l E (-1,1) such that u~(a) E Ip. for a.e. a E [x n - l , 1]. Next we 
reason in a similar way on [Xl' xn-d and thus we obtain statements (i), (ii), and 
(iii)(a). Finally, it is immediate that for any two Pi' P; with i <j, H cannot attain a 
local minimum on (Pi' p); therefore if H(Pk) is a local extremum value for 
i ~ k ~ j, it has to be a local minimum. 

Case (iii)(m follows in exactly the same way if X > Y above. 
The next result refines the information given by Lemma 1.2. In particular, it 

shows that as the whole family 8 ~ 0 either n = 1 with PI independent of 8 or n = 2 
with Xl = 0 and PI' P2 independent of 8. For notational simplicity in what follows 
we denote all subsequences of the family 8 ~ 0 in the same way as the family. We 
have: 

LEMMA 1.3. Let Xo E (-R, R) and H, v, L, and A be as in (1.3) and Lemma 1.2. 
Then there exist p, q E A (independent of 8) such that along the whole family 8 ~O 
either 

(1.6) u~ E Ip fora.e. X E [-1,1] 

or 

(1.7) u~ E Ip for a.e. X E [-1,0] and u~ E Iq for a.e. x E [0,1]' 
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where Ip' Iq are the neighborhoods of p, q respectively defined in the proof of Lemma 
1.2. Moreover, if (1.7) holds, then there exists a constant c > 0 such that 

(

If p < q (respectively p > q), then H does not assume any values 
smaller (respectively larger) than v(xo) - u(xo) - c (respectively 

(L8) v(xo) - u(xo) + c). If v(xo) - u(xo) is a local extremum value of 
H in either Ip or I q, it has to be a local minimum (respectively 
maximum). 

PROOF OF LEMMA 1.3. We assume that there exists a subsequence 8 ! 0 such that 
(iii)( a) of Lemma 1.2 holds. (If such a subsequence does not exist, then (iii)(f3) of 
Lemma 1.2 holds along the whole family 8 ! O. In this case, we argue in a similar 
fashion.) The fact that A has finitely many points implies that along a further 
subsequence 8 ! 0 we have n( 8) = n and for i = 1, ... , n, where n and Pi E A are 
independent of 8. 

If n = 1, then u~ E Ip for a.e. x E [-1,1]. This yields U x E Ip for a.e. x E 
[xo - 8, Xo + 8] as 8 !O. For any arbitrary S > 0 such that S < 80 , where 80 is the 
largest element of the above subsequence, we have 

[x o - S,xo - S] c [x o - 80 ,xo - 80 ); 

thus u~ E Ip for a.e. x E [-1,1]. 
If n ;;:, 2 we first show that, as 8 to, Xl = xl(8);;:, O. Indeed if not, then along a 

subsequence 8 ! 0 we must have -1 < Xl < O. This implies that, as 8! 0, u~ E Ipl 
for a.e. x E [xo - 8, Xo + 8xd and u~ E U7=2Ip, for a.e. x E [xo + 8xl, Xo + 8] or 
equivalently, U x E Ipl for a.e. x E [xo - 8, Xo + 8xl ] and u~ E U7=2Ip; for a.e. 
x E [xo + 8XI ' Xo + 8], where we may assume without any loss of generality that the 
neighborhoods I p , above are independent of 8. Next observe that 8Xl(8) ~ O. 
Passing, if necessary, to a further subsequence, we may assume that 8Xl(8) strictly 
increases to 0 as 8 to. Let 81 < 82 be such that 8lx l(8 l ) > 82x l(82 ). The above 
analysis implies that 

n 

uxEIpl(i Ulp; fora.e.xE [xo + 82x l (82),xO + 8lx l (8l )], 
i=2 

which is a contradiction. 
A similar argument shows that along a further, if necessary, subsequence 8 ! 0, 

x n _ l (8) ~ O. But then we have n = 2 and Xl = O. For the general 8 > 0 we argue as 
in the Case where n = 1. Finally, the rest of the assertions follow from Lemma 1.2 
and its proof, thus we omit the details. 

We conclude this section by discussing the nature of Lipschitz continuous viscos-
ity solutions of (0.5). The results are very much similar to the ones of Lemma 1.2. 
For the proof of Theorem 1, however, we only need a less precise qualitative 
assertion which we give in the following lemma. Since the proof is similar to and 
simpler than the one of Lemma 1.2 we omit it. We have 

LEMMA 1.4. Let U OO be a Lipschitz continuous viscosity solution (0.5). Assume that H 
is as in the statement of Theorem 1. Then U OO is linear or piecewise linear with finitely 
many corners. 
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2. We begin with the proof of Theorem 1. As usual we denote subsequences in the 
same way as sequences. We have: 

PROOF OF THEOREM 1. Relation (1.1) yields that the family {u 8: S > o} is 
precompact in [-1,1], that is, along subsequences u 8 converges uniformly to Lipschitz 
continuous functions U oo : [-1,1]-+ R which are ([2]) viscosity solutions of (0.5). 
Such solutions are described by Lemma lA. Here we use Lemma 1.3 to obtain that 
U OO is unique and either linear or piecewise linear with only one corner at x = 0, 
hence the existence of u!(xo). 

To this end, assume that Xo is such that (1.6) holds for S > 0. Consider any 
uoo : [-1,1]-+ R which is a possible limit of {u 8: S> o} and suppose that there exist 
Xl' X 2 E [-1,1] and I E A \ {p} such that Xl < X 2 and Uoo(x) = Ix on [Xl' X 2 ]. We 
have 

(U 8(X2) - Uoo (x 2)) - (U 8(XI) - UOO(x l )) = jX2 (u~{y) - I) dy. 
x, 

The left-hand side above tends to zero along a subsequence but the right-hand side 
does not; thus Uoo(x) = px on [-1,1] and ux(xo) = p. In the case that (1.7) holds 
for S > 0, a similar argument shows that 

{ PX uoo{x) = 
qs 

forxE[-I,O], 
forxE[O,I] 

and, thus, the existence of ux±(xo). Finally, the first part of (0.2) is immediate from 
the properties of u 00. 

We continue with Theorem 2. The main step in the proof is to reduce to the case 
where we can invert H. If H;;l is an appropriate branch of H;;l and u x = H;;l( U - u) 
a.e. in a neighborhood of x o, then the continuity of the right-hand side will imply 
the result. Unfortunately this is not always possible; thus we have to deal with 
several cases. We have 

PROOF OF THEOREM 2. We begin with the case where u(xo) - u(xo) is not a local 
extremum value of H. If ux(xo) = P exists, then, for X sufficiently close to x o, H- I 

is defined in a neighborhood of u(xo) - u(xo) with range some open neighborhood 
Ip of p and 

u{x) = u{xo) + jX H- I { u{y) - u{y)) dy, 
Xo 

which implies the result. If u~(xo) = p * u;(xo) = q, then we have two branches 
Hp-l and H;/ of the inverse of H defined in a neighborhood of u(xo) - u(xo) with 
values in some open disjoint neighborhoods Ip and 1 q of p and q respectively. 
Again we have 

u{x) = u{xo) - jXO Hp-l{ u{y) - u{y)) dy for X ~ Xo 
X 

and 

u{x) = u{xo) + jX Hq-l{ u{y) - u(y)) dy for X? x o, 
Xo 

thus the result. 
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If u(xo) - u(xo) is a local extremum of H the argument is more complicated. We 
have to examine the following cases: 

Case 1. u;(xo) = p < q = u;(xo). We first assume that H attains a local ex-
tremum only at q, which by Lemma 1.3 has to be a minimum. Moreover, H is 
invertible in a neighborhood of u(xo) - u(xo) with values in some Ip. Finally, 
Lemma 1.3 also yields the existence of an a > 0 such that u A x) E Ip for a.e. 
x E (xo - a, x o] and u(x) E Iq for a.e. x E [xo, Xo + a), where Iq is an ap-
propriate open neighborhood of q. For x < Xo we argue as before. For x > Xo we 
define 

If, for a.e. x E [xo, Xo + a), uAx) either belongs to Iq,l or Iq,2' then we can again 
invert H and argue as before. If this does not happen, then we cannot necessarily 
show that u is of class C1 for x > Xo in general. On the other hand, we are able to 
obtain some other information concerning q. In particular, we can find Xo < x < y 
<xo+a arbitrarily close to Xo such that uAX)EIq,l\{q} and Ux(y)E 
I q ,2 \ {q}. Then Lemma 1.1 implies the existence of z such that x < z < y and 
q E Du(z). This yields u(z) + H(q) ? u(z). But u(x) + H(u x ) = u(x) and H(q) 
< H(u x ) for a.e. x E [xo, Xo + a). The continuity of u and u then imply 

u(x) - u(xo) < u(x) - u(xo) for every x E [xo, Xo + a). 

Combining all the above we obtain 

u(z) - u(xo) = u(z) - u(xo) 

and, moreover, 

(2.1) 
. u(x) - u(xo) 

q = hm . - x-xo 
x ~ xo 

N ext define the sets 

and 

We first investigate the behavior of u on I, which is closed and nonempty. Let z E I. 
By Theorem 1 u;= (z) exists and lies in a small neighborhood of q provided that a is 
sufficiently small. On the other hand, since H(u;=(z» = u(z) - u(z) = u(xo) -
u(xo), the properties of H yield u;=(z) = q; thus u is differentiable at z. If 
I = [xo, Xo + a] there is nothing to show. If not, then II is a nonempty open set; 
therefore it can be written as countable union of mutually disjoint open intervals 1m , 

i.e., II = Um 1m' On each 1m = (am, bm) we have u(x) - u(xo) < u(x) - u(xo) and 

u(a m ) - u(xo) = u(bm) - u(xo) = u(a m ) - u(xo) 

= u(bm ) - u(xo) = u(xo) - u(xo)· 
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It is easy to see arguing as before that for every x E J m either u! (x) E I q,l \ { q} or 
u!(x) E I q ,2 \ {q}. Moreover, Lemma 1.1 yields that there exists at most one 
cm E Jm such that 

and 

Arguments similar to the ones at the beginning of the proof imply that 

Moreover, u~(cm) *' u;(cm) and limx~amuX<x) = limx~bmux(x) = q. This com-
pletes the proof. 

If. p is a local minimum but q is not or when both are local minima, we argue as 
above changing (2.1) appropriately. 

The remaining two cases, 
Case 2. u~(xo) = p > u;(xo) = q and 
Case 3. ux(xo) = p, 

follow in the same way; therefore we omit the details. 
We conclude this section by showing how one can overcome the above difficulties 

in the special case where v == O. We have 

PROPOSITION 2.1. Under the assumption of Theorem 2 but with v == 0, for every 
Xo E (-R, R) there exists an a = a( x o) > 0 such that 

ul (xo-a,xol E C1((xo - a, x o]) and ul [xo,xo+a) E C1([xo, Xo + a)). 

PROOF. We continue with the proof of Case 1 of Theorem 2. We want to claim 
that u == u(xo) on [xo, z]. Indeed if not then there exists awE (xo, z) such that 
u(w) < u(xo) = u(z) and 0 E D-u(w). But then u(w) + H(O) ~ O. On the other 
hand, by (2.1), q = 0 and H(q) = -u(xo). Therefore u(w) ~ u(xo), which leads to 
a contradiction, thus the result. The other cases can be treated similarly. 

3. In this section we use Theorem 1 to illustrate the relation between the notion of 
viscosity solution and the E condition introduced in [9] by O. A. Oleinik. Throughout 
the section we assume 

(3.1) { (i) 
(ii) 

H, v are continuously differentiable; 
u(xo) - v(xo) is not a local extremum value of H. 

Let w: (-R, R) -4 R be defined by 

w(x) = ux(x) fora.e. x E (-R,R). 

In view of (3.1) and the results of the previous section, at every point where U x 

exists, w is continuous and it satisfies 

(3.2) w + (H( w) - v) x = 0 a.e. in (-R, R). 
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Moreover, at points where U x does not exist, w has right and left limits w + and w_ 
respectively which satisfy 

(33) {
H( w +) = H( wJ = u(xo) - u(xo) and 
H(p):::::; H(w+) for every p E [w+,wJ if w_> w+or 
H( p) :? H( wJ for every p E [w_, W +] if w + > w_ 

Relation (33), however, is the E condition, as it applies to (3-2). Indeed let 

We say (cf_ O. A. Oleinik [9]) that a solution w of (3.2) satisfies the E condition if at 
all points of discontinuity Xo of w, the following is satisfied: If w +> W_, then 
l(w):::::; H(w) - u(xo) for all wE [w_,w+l and if w_> w+' then l(w):? H(w)-
u(xo) for all w E [w+, wJ. 
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