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COHOMOLOGY THEORIES ON SPACES 

E, SPANIER 

ABSTRACT. In this paper a previously proven uniqueness theorem for nonnegative 
cohomology theories on the same space is extended to cohomology theories on the 
same finite-dimensional space. In this form it is applicable to extraordinary 
cohomology theories. An example is given to show that the theorem does not hold 
without finite dimensionality. 

1. Introduction. This paper is a study of cohomology theories of various types on a 
topological space, For our purposes a cohomology theory on a space X is a 
continuous exact contravariant functor from the category of closed subsets of X to 
the category of graded abelian groups, A homomorphism between two cohomology 
theories on the same space is a natural transformation between the contravariant 
functors which maps the exact sequences of one into the exact sequences of the 
other. We are interested in uniqueness theorems asserting that a homomorphism 
which is an isomorphism for every point of the space as an isomorphism for every 
closed subset of the space, Such theorems were proved in [5, 9] for nonnegative 
cohomology theories, These theorems have as consequences many results in ordinary 
cohomology theory previously obtained using sheaf theory. 

In the present paper the condition of nonnegativity is dropped so that the theory 
may be applied to extraordinary cohomology theories. In this case the uniqueness 
theorem is not valid without some additional assumption. We prove it is valid for 
finite-dimensional spaces, This form of the uniqueness theorem has some interesting 
applications to cohomology of manifolds, It can also be applied to prove a similar 
uniqueness theorem for cohomology theories defined on larger categories such as the 
category of all compact spaces and continuous functions or the category of all 
locally compact spaces and proper continuous functions. 

The rest of the paper is divided into three sections. §2 contains the definition of 
cohomology theory on a space and some of its elementary properties. §3 contains a 
proof that the cohomology theories considered by Lawson [5] are essentially the 
same as ours and that ES theories (which satisfy Eilenberg-Steenrod axioms) 
determine cohomology theories. §4 is devoted to a proof of the uniqueness theorem 
for finite-dimensional spaces and to applications of this result to manifolds. 
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2. Cohomology on a space. In this section we present the definition of a cohomol-
ogy theory on a space X and some elementary properties of such theories. The 
present definition differs from that in [9] in that nonnegativity is not assumed. 

All topological spaces will be assumed to be normal Hausdorff spaces. If H is a 
contravariant functor from a category of subsets (and inclusion maps between them) 
of such a space to the category of graded abelian groups (and homomorphisms of 
degree zero between them), we use the following notation. If H is defined for an 
inclusion map i: Be A and u E H(A), then u I BE H(B) is defined by u I B = 
H( i)( u). With this notation the statement that H is a contravariant functor is 
equivalent to the two conditions: 

(i) for u E H(A), ulA = u, and 
(ii) for C c B c A and u E H(A) then (uIB)IC = ulC. 

In general we will use p to denote a homomorphism induced by an inclusion map 
(i.e. p = H(i): H(A) ~ H(B) for i: Be A). Given a topological space X let cl(X) 
denote the category of all closed subsets of X and all inclusion maps between them. 
A cohomology theory H, 5 on X consists of (i) a contravariant functor H from cl( X) 
to the category of graded abelian groups (H(X) = {Hq(X)}qEZ) such that H(0) 
= 0 and (ii) a natural transformation 5 assigning to every two closed subsets 
A, Be X a homomorphism of degree 1, 5: H(A n B) ~ H(A U B), such that the 
following are satisfied. 

CONTINUITY. ror every closed A c X there is an isomorphism 
p: lim {Hq( N) I N a closed neighborhood of A in X} z Hq( A) 
~ 

wherep{u} = ulA for u E Hq(N). 
MV EXACTNESS. For every two closed sets A, B in X there is an exact sequence 

8 a fi 8 a 
... ~ Hq(A U B) ~ Hq(A) E9 Hq(B) ~ Hq(A n B) ~ Hq+l(A U B) ~ ... 

where a(u) = (uIA,uIB) for u E Hq(A U B) and {3(u, v) = ulA n B-
viA n B for u E Hq(A), v E Hq(B). 

REMARKS. (2.1) This definition differs from that in [9] in that it has not been 
assumed that Hq(A) = 0 for q < 0 for all closed A c X. This is a substantial 
difference in that the uniqueness theorem [9, Theorem 2.20] is only proved for 
finite-dimensional spaces X and, in fact, is false for arbitrary compact spaces (see §4 
below). 

(2.2) Note that the continuity property does not involve the natural transforma-
tion 5. Thus, we speak of a continuous H and an exact H, 5. 

(2.3) If H, 5 is a cohomology theory on X, then its pth suspension a PH, 5 where 
(aPH)q(A) = Hp+q(A) and 5: Hp+q(A n B) ~ HP+q+l(A U B) is also a 
cohomology theory on X for every p E Z. 

(2.4) If {Hi' OJ L E J is a family of cohomology theories on X indexed by an 
arbitrary set J, then the direct sum ED j E J Hj, ED j E JOj where 

( ffi Hj ) q (A) = ffi H/(A) 
JEJ jEi 

and ffi OJ: ffi H/(A n B) ~ ffi Hrl(A U B) 
jEi jEi jEi 
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is also a cohomology theory on X (because direct sums commute with direct limits 
and preserve exactness). 

(2.5) If H, ~ is a cohomology theory on X and G is a torsion-free abelian group 
the tensor product H ® G, ~ ® Ie where (H ® G)q(A) = Hq(A) ® G and ~ ® Ie: 
Hq(A Ii B) ® G -4 Hq+l(A U B) Ii G is also a cohomology theory on X (because 
tensor product with G commutes with direct limits and, because G is torsion-free, 
preserves exactness). 

(2.6) Let f: X -4 Y be a closed continuous map and let H, ~ be a cohomology 
theory on X. The direct image f*H, ~ where U*H)q(A) = HqU-l(A» for A c Y 
and ~: Hq(rl(A) Ii rl(B» -4 Hq+IU-I(A) U rl(B» is a cohomology theory 
on Y (closedness of f and normality of Y imply that the collection {I-l(N) I N a 
closed neighborhood of A in Y} is cofinal in the collection of closed neighborhoods 
of r\A) in X). 

The following proposition concerns two consequences of the continuity property 
of cohomology theories. 

PROPOSITION (2.7). Let H be a continuous contravariant functor on cl( X). 
(1) If A c A' are closed subsets of X, there is an isomorphism 

p: lim { Hq( N) I N a closed neighborhood of A in A'} z Hq( A) 
~ 

where p{u} = ulAforu E Hq(N). 
(2) If {Aj L E J is a family of compact subsets of X directed downward by inclusion, 

there is an isomorphism 

where p{u} = ulnjEJAjforu E Hq(A). 

PROOF. (1) follows as did the corresponding property for the cohomology theories 
previously defined [9, Lemma 2.13]. (2) follows from continuity using the fact that 
compactness of A j for each j E J implies that if N is any neighborhood of n j E J A j 
there is j E J such that Aj C N. 0 

A cohomology theory H, ~ is said to be nonnegative if Hq(A) = 0 for q < 0 and 
all closed A C X. The cohomology theories considered in [9] were nonnegative 
cohomology theories. 

A cohomology theory H, ~ on X is said to be compactly supported (or to have 
compact supports) if given u E Hq(A) there is a decomposition A = B U C where B 
is closed, C is compact, and u I B = O. 

A cohomology theory H, ~ is said to be additive if given a discretel family 
{Aj}jEJ of closed sets, there is an isomorphism Hq(UjEJA) z DjEJHq(A) 
sending u E Hq(U jEJA) to the family {u I Aj LEJ' 

lA family {A j}j E J of subsets of a topological space is said to be discrete if every point of X has a 
neighborhood meeting at most one member of the family. This implies the members of the family are 
pairwise disjoint and, since a discrete family is obviously locally finite, if each is closed in X, then 
U j E J Aj is also closed in X. 
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In none of the above definitions does the natural transformation 8 enter. 
If H, 8 and H', 8' are cohomology theories on the same space X, a homomor-

phism cP from H, 8 to H', 8' is a natural transformation from H to H' commuting 
up to sign with 8, 8'. 

Recall [9] that a homomorphism cp: G ~ G' of degree ° between graded abelian 
groups is an n-equiualence if cp: Gq ~ G,q is an isomorphism for all q < n and a 
monomorphism for q = n. We prove two results about homomorphisms between 
cohomology theories on the same space X which are assumed to be n-equivalences 
for certain subsets of X. (Actually neither result requires the continuity property.) 

PROPOSITION (2.8). Let cp: H,8 ~ H', 8' be a homomorphism between two com-
pactly supported cohomology theories on X and suppose there is n E Z such that CPc: 
H(C) ~ H'(C) is an n-equiualence for every compact C c X. Then CPA: H(A) ~ 
H' (A) is an n-equivalence for every closed A c X. 

PROOF. (1) We prove CPA: Hq(A) ~ H,q(A) is an epimorphism for q < n and A 
closed in X. Let u E H,q(A) where q < n. Since H' is compactly supported, 
A = B U C where B is closed, C is compact, and u I B = 0. The following diagram 
has exact rows and commutes up to sign 

Hq-l(B n C) 8 
Hq(A) 

a 
Hq(B) $ Hq(C) 

f3 
Hq(B n C) ~ ~ ~ 

<I> i ,., <l>i i<l> ,.,i<l> 

H,q-l(B n C) 8' 
H,q(A) 

a' 
H,q(B) $ H,q( C) f3' H,q(B n C) ~ ~ ~ 

and the vertical maps on the two ends are isomorphisms because B n C is compact 
and q < n. By [9, Lemma 2.19, part 2], a'-\imcp) c imcp. Since CPc: Hq(C)::::; 
H,q(C) there is v E Hq(C) such that cp(v) = uiC. Then (0, u) E Hq(B) $ Hq(C) is 
such that cp(O,u) = (O,cp(v)) = (O,uIC)= a'(u) so a'(u)Eimcp and, hence, uE 
imcp. 

(2) We prove CPA: Hq(A) ~ H,q(A) is a monomorphism for q ~ n. Assume 
u E Hq(A), q ~ n is such that cp(u) = 0. Because H has compact supports, A = 
B U C where B is closed, C is compact, and u I B = 0. The following diagram has 
exact rows and commutes up to sign 

f3 8 a 
Hq-l(B) $ Hq-l(C) ~ Hq-l(B n C) ~ Hq(A) ~ Hq(B) $ Hq(C) 

<l>i <l>i'" i<l> i<l> 

and the first vertical map is an epimorphism by (1) above and the second vertical 
map is an isomorphism because B n C is compact and q - 1 < n. By [9, Lemma 
2.19, part 1] kera n kercp = 0. Since CPc: Hq(C) ~ H,q(C) is a monomorphism for 
q ~ n it follows that ulC = ° (since cp(u) = 0). Therefore, a(u) = ° so U E kercp n 
ker a and so u = 0. D 
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PROPOSITION (2.9). Let </>: H, S ~ H', S' be a homomorphism between two additive 
cohomology theories on a paracompact space X. Suppose there is n E Z and an open 
covering IlIJ of X such that </>A: H(A) ~ H'(A) is an n-equivalence for every A 
contained in some element of 1lIJ. Then </>A: H(A) --> H'(A) is an n-equivalence for 
every closed A c X. 

PROOF. Let rt' be the collection of closed subsets A of X such that </>B: 
H(B) ~ H'(B) is an n-equivalence for every closed Be A. By the hypothesis of 
the Proposition every point of X has a closed neighborhood in rt'. From the 
definition of rt' it is clear that if A', A are closed sets with A' c A and A E rt', then 
A' E rt'. It follows from the exactness of H, S and of H', S' that if A, B are in rt' 
then A U BErt'. It follows from the additivity of H, Sand H', S' that if {AjLEJ 
is a discrete family in rt', then U j E J A j is also in rt'. Hence, rt' satisfies the 
hypotheses of [7, Theorem 5.5] so X E rt'. 0 

3. Other theories. In [5] Lawson considered cohomology theories satisfying axioms 
similar to, but somewhat different from, those defined in §2. We prove that his 
definition is essentially equivalent to ours. We also consider theories defined on 
cl( X)2 satisfying axioms similar to those of Eilenberg and Steenrod [2] and show 
that they define cohomology theories. 

An L theory H, Ll on X is defined to be a pointwise taut cohomology theory on X 
in the sense of [5]. Thus, it consists of: 

(i) A contravariant functor H from cl( X) to nonnegative graded abelian groups 
such that H(0) = 0, and 

(ii) A natural transformation of degree 1, Ll: Hq( A n B) ~ Hq+ l( A U B) de-
fined for every two closed subsets A, B of X such that int AU B A U int AU B B = 
A U B (in which case we say A, B are an excisive couple in X), satisfying 

(1) For every x E A where A is closed in X there is an isomorphism 

p: lim {Hq(N) I N a closed neighborhood of x in A} ::::: Hq(x) 
~ 

such that p{u} = ulx for u E Hq(N). 
(2) For every excisive couple A, B in X there is an exact sequence 

where a( u) = (u I A, u I B) and f3( u, v) = u I A n B - v I A n B. 
Thus, an L theory differs from a cohomology theory in two respects. Firstly, in an 

L theory the continuity property (1) is for a point x in a closed set A rather than for 
a closed set A in X. Secondly, in an L theory the natural transformation Ll is 
defined and the exactness property (2) of H, Ll is required only for excisive couples 
in X whereas in a cohomology theory S is defined and exactness of H, S is required 
for every two closed sets in X. 

An L theory is additive if it satisfies the same additivity property defined in §2 for 
cohomology theories. The following shows that on paracompact spaces additive L 
theories are essentially the same as additive nonnegative cohomology theories. 
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THEOREM (3.1). Every nonnegative cohomology theory on X is an L theory on X. On 
a paracompact space X every additive L theory can be extended to an additive 
nonnegative cohomology theory on X. 

PROOF. If H, 8 is a nonnegative cohomology theory on X, then (1) above follows 
from (1) of Proposition (2.7) and (2) above is MVexactness for excisive couples in X 
which is a consequence of MVexactness for every two closed sets A, B in X. Thus, 
H, 8 is an L theory on X. 

Conversely, given H, il an additive L theory on X, we show how to extend il to a 
natural transformation 8 defined for every two closed sets in X. Given A closed in 
X define 

Jjq( A) = lim {Hq( N) I N a closed neighborhood of A in X}. 
~ 

Then H is obviously a contravariant functor from cl( X) to nonnegative graded 
abelian groups such that Jj( 0) = 0 and satisfying the continuity property. 

To define a natural transformation of degree 1, 8: Jjq(A Ii B) ~ Hq+l(A U B) 
such that Jj, 8 satisfy MVexactness for every two closed sets A, B c X note that 
because X is normal, it is easy to verify that if A, B are closed sets in X and U, V, 
Ware open neighborhoods of A, B, A Ii B, respectively, in X, there exist closed 
neighborhoods M, N of A, B, respectively, such that M, N is an excisive couple and 
M c U, N c V, M Ii NeW. 

Thus, as M, N vary over closed neighborhoods of A, B, respectively, such that 
M, N is an excisive couple in X, it follows that M, N, M Ii N, M U N vary over a 
cofinal family of closed neighborhoods of A, B, A Ii B, A U B, respectively. The 
direct limit of the exact sequences 

~ a f3 ~ 
... ~Hq(M U N) ~ Hq(M) EB Hq(N) ~ Hq(M Ii N) ~ Hq+l(M U N) ~ 

is an exact sequence 

... ~ Jjq(A U B) ! Jjq(A) EB Jjq(B) ! Jjq(A Ii B) ~ Jjq+l(A U B) ~ 

and defines the natural transformation 8: Jjq(A Ii B) ~ Jjq+l(A U B). 
Therefore, Jj, 8 is a nonnegative cohomology theory on X. We show it is additive. 

Let {Aj}jEJ be a discrete family of closed subsets of X. For each i' let~, = X-
u j "" j' A j' Then 0lI = {~,} j' E J is an open covering of X by sets each of which meets 
at most one member of {Aj }. Let l' be an open star refinement of 0lI (which exists 
because X is paracompact [1]) and, for each i E J, let 

Jj = U{ V E l' IV Ii Aj * 0}. 
Then Aj c Jj c ~. Furthermore, if V is any element of l' and V Ii Jj * 0, 
V Ii Vk * 0 for i, k E J there are V', V" E l' with V Ii V' * 0, V' Ii Aj * 0, 
V Ii V" * 0, and V" Ii Ak * 0. Then V', V" c V* c some element of 0lI. Since 
no element of 0lI meets more than one member of {A j }, it follows that i = k. 
Hence, every element of 0lI meets at most one member of {Jj} j E J so {Jj} j E J is a 
discrete family of open neighborhoods of {A j } j E J' respectively. If U is any open 
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neighborhood of A = UA j' then {U n lj} j E J is a discrete family of open neighbor-
hoods of {A j }, respectively, contained in U. For each j E J let N; be a closed 
neighborhood of Aj contained in Un lj. Then {N;} is a discrete family of closed 
neighborhoods of {Aj }, respectively, whose union is contained in U. This implies 
that the collection of unions of discrete families {N;} where N; is a closed 
neighborhood of Aj for each j E J is cofinal in the family of all closed neighbor-
hoods of A in X. Therefore, 

Il(A) := lim {H(N) IN = UN;, {N;} discrete, 
~ 

so II is additive. 

N; a closed neighborhood of A j in X} 

:= lim { n H( N;) I { N;} discrete, 
~ jEJ 

N; a closed neighborhood of A j in X} 

Clearly there is a natural homomorphism <1>: ll, S ~ H, Ll defined by <I> { u} = u I A 
for u E H(N), N a closed neighborhood of A. Then <I> is a homomorphism between 
two additive L theories on the paracompact space X. The hypothesis (1) above 
implies that <l>x is an isomorphism for every x E X. By [5, Theorem 3.2] <I> is an 
isomorphism of L theories. Therefore, H, Ll is isomorphic to the L theory de-
termined by the cohomology theory ll, S. 0 

Cohomology theories on X frequently arise from suitable contravariant functors 
defined on cl(X)2, the category of pairs of closed subsets of X. We formalize this 
using the following Eilenberg-Steenrod axioms. An ES theory H, 8* on X consists 
of: 

(i) a contravariant functor H from cl( X)2 to the category of graded abelian 
groups, and 

(ii) a natural transformation of degree 1, 8*: Hq(B, 0) ~ Hq+l(A, B), for every 
(A, B) in cl(X)2 such that the following hold: 

CONTINUITY. For every closed A in X there is an isomorphism 
p: lim {Hq( N, 0) I N a closed neighborhood of A in X} := Hq( A, 0) 
~ 

where p{ u} = u I(A, 0) for u E Hq(N, 0). 
EXACTNESS. For every closed pair (A, B) in X the following sequence is exact 

S* H(j) H(i) S* 
... ~ Hq(A, B) ~ Hq(A, 0) ~ Hq(B, 0) ~ Hq+l(A, B) ~ 

where i: (B, 0) C (A, 0) and j: (A, 0) C (A, B). 
EXCISION. For closed sets A, B in X there is an isomorphism p: H(A U B, B) := 

H(A, A n B). 
Thus, an ES theory satisfies some of the Eilenberg-Steenrod axioms [2] on cl(X)2. 

It need not satisfy the homotopy axiom nor the dimension axiom. 
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PROPOSITION (3.2). If H, 8* is an ES theory on X, there is a cohomology theory H', 
8' on X such that H'(A) = H(A, 0) and 8': H'(A n B) ~ H'(A U B) is suitably 
defined. 

PROOF. It is standard [2] that the exactness property of H implies that H'( 0) = 
H ( 0, 0) = 0 and the exactness and excision properties of H, 8 * imply the 
exactness of Mayer-Vietoris sequences with 8' suitably defined. The continuity of H' 
follows from that of H. 0 

In general we do not have a way of associating to a cohomology theory on X an 
ES theory on X. With suitable definitions of cohomology theories and ES theories 
on larger categories it can be shown that the two theories are equivalent on the 
category of all compact spaces. 

The concepts of nonnegativity, compactly supported and additivity are defined for 
ES theories to correspond to the same properties of the associated cohomology 
theories. 

Most of the cohomology theories on X we consider will be obtained from an ES 
theory on X using Proposition (3.2). 

EXAMPLE (3.3). Define I!'H on cl(X)2 by l!'Hq(A, B) = H ~q(X - B, X - A) 
(singular homology with an arbitrary but fixed coefficient group) and define 
8*: ilHq(B, 0) ~ ilHq+l(A, B) to equal the connecting homomorphism 
3: H ~q(X, X - B) ~ H ~q~l(X - B, X - A) of the triple (X, X - B, X - A). Ex-
actness of the homology sequence of the triple (X, X - B, X - A) yields exactness 
of ilH, 8*. The excision property for ilH follows from the fact that A, B closed in X 
imply that X - B, X - A are open in X so the inclusion map 

(X - B, (X - A) n(x - B)) C ((X - A) u(X - B), X - A) 

induces isomorphisms of singular homology. 
The continuity property for ilH follows from the fact that singular homology is 

carried by compact sets and the fact that, as N varies over closed neighborhoods of 
A in X, X - N varies over a collection of open subsets of X directed upward by 
inclusion whose union equals X - A and this implies [8, Theorem 4.4.6] 

lim {H ~q(X, X - N) I N a closed neighborhood of A in X} ::::; H ~q(X, X - A). 
~ 

Therefore, H, 8 * is an ES theory on X. 
In case X is locally compact this theory is compactly supported. In fact, if z E 

ilHq(A) = H ~/X, X - A) there is an open set U with compact closure fJ such that 
z is in the image of H ~/U U (X - A), X - A) ~ H ~q(X, X U A). Then A = 
(A - U) U A n U where A - U = B is closed, A n fJ = C is compact and z I B = 
o because X - B = U U (X - A) so the composite 

H~q(UU(X-A),X-A) ~ H~q(X,X-A) ~ H~q(X,X- B) 

is zero. 
In Example (3.3) the same construction can be applied to other covariant functors 

in addition to singular homology as long as the functor has properties that yield the 
axioms for an ES theory (i.e. the functor defined on open pairs of X should satisfy 
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exactness and excision and should be compactly supported). The next example uses 
a limiting procedure similar to that in the proof of Theorem 3.1 to obtain a 
cohomology theory on a normal space X from a suitable contravariant functor on 
open subsets of X (see pp. 289-292 of [8] where the same procedure is applied to 
singular cohomology). 

EXAMPLE (3.4). Let H be a contravariant functor from the category of open 
subsets of X to the category of graded abelian groups and let 8 be a natural 
transformation 8: Hq(U n V) ~ Hq+l(U U V) defined for two arbitrary open 
subsets U, V c X such that MV exactness holds for every open U, V c X. Define a 
contravariant functor Jj on the category of closed subsets of X by 

Jjq( A) = lim {Hq( U) I U an open neighborhood of A in X} 
~ 

for every closed A c X. Clearly Jj is continuous on cl X. If X is a normal space, as 
U, V over open neighborhoods of A, B, respectively, U U V and Un V vary over 
cofinal families of open neighborhoods of A U B and A n B, respectively. Thus, for 
a normal space X there is a natural transformation 8: Jjq(A n B) ~ Jjq+l(A U B) 
for closed A, B c X which is defined to be the direct limit of the natural transfor-
mations 8: Hq(U n V) ~ Hq+l(U U V) where U, V vary over open neighborhoods 
of A, B, respectively. Since the direct limit of exact sequences is exact, Jj, 8 satisfy 
MVexactness for closed A, B c X. In case X is paracompact and His additiye on 
discrete families of open subsets of X it is easily verified (by an argument similar to 
that in the proof of additivity in the proof of Theorem (3.1)) that Jj is additive on 
cl(X). 

4. Finite-dimensional spaces. First we present an example to show that the main 
uniqueness theorem [9, Theorem 2.20] generally fails if H, H' are not nonnegative 
cohomology theories on X. Then we prove that the uniqueness theorem is valid for 
arbitrary H, H' if X is assumed to be a finite-dimensional space (finite-dimensional 
will mean a finite-dimensional separable metric space, as in [3]). We then present 
some applications of this uniqueness theorem to manifolds. 

We consider the cohomology theory K (X) defined for a compact Hausdorff space 
using complex vector bundles over X. It is well known [4] that K is a cohomology 
theory on every compact Hausdorff space X and that it is periodic of order 2 (i.e. 
Kq+2(A) z Kq(A) for all q). Since KO(A) z Z Ell K(A), it follows that K is not a 
nonnegative cohomology theory. 

In [10] there is given an example2 of a continuous map f: X ~ Y between 
compact Hausdorff spaces such that for every y E Y, f I rly: rly ~ y induces an 
isomorphism of K(y) with K(f-ly) but K(Y) is not isomorphic to K(X). There is 
a homomorphism f from the cohomology theory K on Y to the direct image (as in 
Example 2.6) f*K (which is also a cohomology theory on Y). This homomorphism is 
an isomorphism for every y E Y but is not an isomorphism for Y itself. Thus, the 
uniqueness theorem of [9] is not true for arbitrary cohomology theories on a compact 
Hausdorff space. 

2The author is indebted to S. Ferry for pointing out this example to him. 
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In order to extend the uniqueness theorem to arbitrary cohomology theories we 
need an inductive argument based on something other than degree of cohomology. 
Such an argument is possible based on dimension of the subset A c X. First we 
establish the following property of finite-dimensional spaces needed for the induc-
tive proof. 

LEMMA (4.1). Let A be a compact metric space of dimension q. Given E > 0 there 
exists a finite number of closed sets A 1, . .. , Am such that 

(1) A = A1 U ... UA m , 

(2) diam Ai ~ E for 1 ~ i ~ m, 
(d) dim(Ai n A) < qfor 1 ~ i '* j ~ m. 

PROOF. Because A is a compact metric space of dimension q, there is a finite open 
covering A = U1 U ... U Urn such that diam~ < E for 1 ~ i ~ m and dim boundary 
~ < q for 1 ~ i "< q. 

Define Ai = ~ - (U1 U ... U ~-1). Then A 1, ... , Am clearly satisfy (1) and (2) 
and, because i < j implies Ai n A j c boundary ~, (3) is also satisfied. 0 

We now prove the uniqueness theorem for finite-dimensional spaces. 

THEOREM (4.2). Let </>: H~. H' be a homomorphism of cohomology theories on a 
metric space X and let n E Z be such that </>x: H(x) ~ H'(x) is an n-equivalencefor 
every x E X. Then </>A is an n-equivalence for every compact finite-dimensional subset 
AcX. 

PROOF. We prove the theorem by induction on the dimension of the subset A. If 
A has dimension - 1, then A = 0 and </>0 is an isomorphism because H( 0) = 0 = 
H'( 0) so </>0 is an n-equivalence. Assume A is compact, dim A = q > -1 and the 
result is valid for all compact subsets of dimension < q. 

(1) We prove </>A: Hk(A) ~ H,k(A) is an epimorphism for k < n. Let u E H,k(A), 
k < n, and assume u $. im</>A" By Lemma 4.1 we have closed sets B 1, ... , Bm such 
that A = B1 U ... UBm , diamBi ~ 1 for 1 ~ i ~ m and dimBi n Bj < q for 1 ~ i 
'* j ~ m. We claim there is some i with 1 ~ i ~ m such that u I Bi $. im</>. In fact, if 
there is no such i let ~ = B1 U ... UBj for 1 ~j ~ m. We prove by induction on 
j that u I ~ E im</>, which will give a contradiction because Cm = A and u I Cm = u 
$. im</> by hypothesis. For j = 1 we know by hypothesis on u I B; that u I C1 = u I B1 
E im </>. Assume j > 1 and u I Cj -1 E im </>. The following diagram has exact rows 
and commutes up to sign 

Ii 
Hk( 0) a 

Hk( 0-J E& Hk( BJ ) 
fl 

Hk( 0-1 n BJ Hk- I( C n B) --> --> --> 
i-I j 

<j>.j. '" H H '" .j.<j> 

H,k-I( C n B) Ii' 
H'k( 0) a' 

H'k( 0-1) E& H'k( BJ fl' 
H'k( ck n B) --> --> i-I i i-I j 

and the first and last vertical homomorphisms are isomorphisms because k < nand 

dim(Cj _1 n Bj ) ~ dim((B1 U ... UBj _1) nBJ 

~ dim(B1 n Bj U ... UBj _1 n BJ < q. 
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By [9, Lemma 2.19, part 2] a'~I(im</!) C im</!. The inductive hypothesis on UICJ~I 
implies u I Cj~I E im</!. Also we have supposed u I B) E im</!. Therefore, a'( u( Cj» E 

im</! so u I Cj E im</!. This completes the induction. Thus, the assumption that 
u I B; E im</! for 1 < i < m leads to a contradiction so there is some i such that 
ulB; $. im</!. 

Choose Al to be a B; such that u I Al $. im</!. Then A => AI' diam Al < 1 and 
u I Al $. im</!. Repeat the argument to obtain Al => A 2, A2 closed, diam A2 < 1 and 
u I A2 $. im</!. Continue to obtain a decreasing sequence of closed sets A => Al => A2 
=> .. , such that diam A; < 1/2;-1 and u I A; $. im</!. Then nA; is a single point, 
say x, and by continuity of H, H', it follows that u I x $. im</!x contradicting the 
hypothesis that </!x is an epimorphism in dimensions < n. Therefore, u E im</!A so 
</!A is an epimorphism for dimensions < n. 

(2) We prove </!A: Hk(A) ~ H'\A) is a monomorphism for k < n. Assume 
u E H\A), k < n is such that </!A(U) = O. We want to prove u = O. Assume u *- 0 
and let A = BI U ... U Bm be such that B; is closed and diam B; < 1 for 1 < i < m 
and dim(B; n Bj ) < q for 1 < i *- j < m. We claim u I B; *- 0 for some i with 
1 < i < m. Otherwise let Cj = BI U ... UBj _ 1 for 1 <j < m. We prove by induc-
tion on j that u I Cj = 0 (this would give a contradiction because 0 = u I Cm = u I A 
= u *- 0). For j = 1 we know by hypothesis on u I B; that u I CI = u I BI = O. 
Assume j > 1 and that u I Cj-I = O. 

The following diagram has exact rows and comutes up to sign 

H"-I( 0-1) Ell Hk- I ( BJ fl 
Hk - I ( 0-1 n BJ H"( 0) Hk ( 0 _ I) Ell Hk ( BJ ---> 

<H 'H"" H H 

W"-I( 0-1) Ell W"-I( BJ fl' 
W k- I ( C n B) 

~' 
Wk( 0) a' 

H'k( 0-1) Ell W"( BJ ---> ---> j-I j 

and the first vertical homomorphism is an epimorphism by (1) above and the second 
vertical homomorphism is an isomorphism because dim(Cj _ 1 n B) < q. By [9, 
Lemma 2.19, part 1], kera n ker</! = O. Since 

u I Cj E kera n ker</! so u I Cj = O. This completes the induction. Thus, the hypothe-
sis that u I B; = 0 for all 1 < i < m leads to a contradiction so there is some i such 
that u I B; *- O. 

Choose Al to be a B; such that u I Al *- 0, continue as above to obtain a 
decreasing sequence of closed sets A => Al => A2 => '" such that diam A; < 1/2;~1 
and u I A; *- O. Then nA; is a point x E X and by continuity of Hand H', u I x*-o 
contradicting the hypothesis that </!x: Hk(X) ~ H'\x) is a monomorphism for 
k < n. Therefore, u = 0 so </!A is a monomorphism for dimensions < n. 0 

COROLLARY (4.3). Let </!: H ~ H' be a homomorphism of cohomology theories with 
compact supports on a finite-dimensional space X and let n be such that </!x: H( x) ~ 
H'(x) is an n-equivalence for every x E X. Then </!A is an n-equivalence for every 
closedA eX. 
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PROOF. By Theorem 4.2 <l>A is an n-equivalence for every compact subset A c X. 
The corollary follows from this and Proposition (2.8). 0 

COROLLARY (4.4). Let H be a cohomology theory with compact supports on a 
finite-dimensional space such that H( x) is nonnegative for every x E X. Then H( A) is 
nonnegative for all closed subsets A c X. 

PROOF. This follows from Corollary (4.3) using the obvious homomorphism from 
the trivial cohomology theory on X to H. 0 

EXAMPLES (4.5). Let X be an n-manifold with or without boundary and consider 
the cohomology !:J.H defined in Example (3.3) on X. This is a cohomology theory on 
X with compact supports such that !:J. Hq( x) = H _ i X, X - x) = 0 for q -=1= - n so 
a-n!:J.H(x) is nonnegative for every x E X (where a-n!:J.H is as defined in Remark 
(2.3». By Corollary (4.4) a-n!:J.H(A) is nonnegative for all closed A or, equivalently, 
Hq(X, X - A) = 0 for all q > n and all closed A eX. 

(4.6) Let X be an n-manifold with boundary X. We prove that for singular 
homology Hq(X - X) :::::: Hq(X) for all q (see also Lemma 11.7 of [6]). It suffices to 
prove Hi x, X - X) = 0 for all q. Let !:J.H be the compactly supported cohomology 
theory on X defined in Example (3.3) and consider its restriction H' to X (i.e. for A 
closed in X we have H,q(A) = H -iX, X - A». Then H'(x) = 0 for all x E X. 
The unique homomorphism <1>: 0 ~ H' of the trivial cohomology to H' is such that 
<l>x is an isomorphism for all x E X. By Corollary (4.3), <l>A is an isomorphism for all 
closed A c X. Taking A = X we see that Hi x, X - X) = H,-q(X) = 0 for all q. 

COROLLARY (4.7). Let <1>: H ~ H' be a homomorphism of additive cohomology 
theories on a locally compact finite-dimensional space X such that, for some n, <l>x is an 
n-equivalence for every x E X. Then <l>A is an n-equivalence for every closed A c X. 

PROOF. By Theorem (4.2), <l>A is an n-equivalence for every compact A c X. Since 
X is locally compact, X has an open covering IlI/ such that every closed subset 
contained in some element of IlI/ is compact. The corollary follows from this and 
Proposition (2.9). 0 

EXAMPLE (4.8). Let X be a paracompact n-manifold with boundary X. We prove 
that for Cech cohomology iIq( X) :::::: iIq( X - X) for all q (see also Lemma 11.10 of 
[6]). It suffices to prove iIq( X, X - X) = 0 for all q. Let H be the contravariant 
functor defined on relatively open subsets U c X by 

Hq(U) = iIq(u u (X - X), X - X) 

and for relatively open U, V c X let S: Hq(U Ii V) ~ Hq+l(U U V) be the natural 
transformation of Cech cohomology 8: iIq«u Ii V) U (X - X), X - X) ~ 
iIq+1«u U V) U (X - X), X - X). Then H, S satisfy MV exactness for relatively 
open subsets U, V c X and additivity on discrete families of relatively open subsets 
in X. The procedure of Example (3.4) yields an additive cohomology theory Ii, S on 
X and it is easily seen that Iiq( x) = 0 for all x E X. Thus, the obvious homomor-
phism from the trivial cohomology theory on X to Ii is an isomorphism for all 
x E X. By Corollary (4.7) it is an isomorphism for all closed A c X. In particular 



COHOMOLOGY THEORIES ON SPACES 161 

taking A = X we have 

0= llq(x) = iIq(x u(x - X), X - X) = iIq(x, X - X) 
for all q. 

The result in Example (4.8) and the one in Example (4.6) for a paracompact 
n-manifold also follow from the fact that for a paracompact n-manifold X the 
inclusion map X - X c X is a homotopy equivalence. 
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