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THE ETALE COHOMOLOGY OF p-TORSION SHEAVES. I 

WILLIAM ANTHONY HAWKINS, JR, 

ABSTRACT, This paper generalizes a formula of Grothendieck, Ogg, and Shafarevich 
that expresses the Euler-Poincare characteristic of a constructible sheaf of f/-mod-
ules on a smooth, proper curve, over an algebraically closed field k of characteristic 
p > 0, as a sum of local and global terms, where I"" p. The primary focus is on 
removing the restriction on I. We begin with calculations for p-torsion sheaves 
trivialized by p-extensions, but using etale cohomology to give a unified proof for all 
primes I. 

In the remainder of this work, only p-torsion sheaves are considered. We show the 
existence on Xe(' X a scheme of characteristic p, of a short exact sequence of 
sheaves, involving the tangent space at the identity of a finite, flat, height I, 
commutative group scheme, and the subsheaf fixed by the pth power endomor-
phism; the latter turns out to be an etale group scheme. A corollary gives complete 
results on the Euler-Poincare characteristic of a constructible sheaf of F,,-modules on 
a smooth, proper curve, over an algebraically closed field k of characteristic p > 0, 
when the generic stalk has rank p. 

Explicit computations are given for the Euler characteristics of such p-torsion 
sheaves on pI and a result on elliptic surfaces is included. A study is made of the 
comparison of the p-ranks of abelian extensions of curves. Several examples of 
p-ranks for nonhyperelliptic curves are discussed. The paper concludes with a brief 
sketch of results on certain constructible sheaves of Fq-modules, q = pr, r ;;. 1. 

Introduction. This paper generalizes a formula of Grothendieck, Ogg, and 
Shafarevich [15] that expresses the Euler-Poincare characteristic of a constructible 
sheaf of Frmodules on a smooth, proper curve, over an algebraically closed field k 
of characteristic p > 0, as a sum of local terms and a global term, where I "* p. The 
primary focus is on removing the restriction on I. The previously known results were 
limited largely to calculations for p-torsion sheaves trivialized by p-extensions. We 
begin §I with a result similar to these, namely Theorem 1.1, but using etale 
cohomology to give a unified proof for all primes I. The other results are corollaries 
to this theorem. 

In the remainder of this work, only p-torsion sheaves are considered. The main 
theoretical results occur in §II. They are Theorems 2.1 and 2.7. The latter gives 
complete results on the Euler-Poincare characteristic of a constructible sheaf of 
Fp-modules on a smooth, proper curve, over an algebraically closed field k of 
characteristic p > 0, when the generic stalk has rank p. Theorem 2.1 shows the 
existence of a certain short exact sequence of sheaves on Xw X a scheme of 
characteristic p, making possible the proof of 2.7 in the presence of Lemma 2.5. The 
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sequence involves the tangent space at the identity of a finite, flat, height 1, 
commutative group scheme and the sub sheaf fixed by the pth power endomorphism; 
the latter turns out to be an etale group scheme. We conjecture the form of a general 
result for all constructible sheaves of Fp-modules over integral schemes in 2.4. 

§III contains explicit computations of Euler characteristics using 2.7 for the case 
of sheaves over pl. The key fact is Theorem 3.1, which will be important for later 
calculations involving the p-ranks of curves over pI in §IV. A result on elliptic 
surfaces is included here. 

The topic of §IV is the comparison of the p-ranks of abelian extensions of curves. 
The direct image of the constant sheaf Fp for certain cyclic extensions of curves is 
determined in Theorem 4.1 in terms of known sheaves, whose cohomology can be 
computed using Corollary 3.2. A result of Manin is recovered in Corollary 4.3. 
Corollary 4.4 is a slight generalization of 4.1 to certain abelian extensions of curves. 
Examples of p-ranks for several curves over pI complete this section. 

In the Appendix, one finds a brief sketch of results on constructible sheaves of 
Fq-modules, q = pr, r ~ 1. The significance of Fq-cohomology is brought out by 
Corollary AI.2. The modified versions of Theorems 3.1 and 4.1 are given, but the 
calculations of p-ranks depend more on the new forms of Corollaries 3.2 and 4.2. 
This approach provides another generalization of the original Theorem 4.1. Any 
cyclic extension of curves can be handled by one of these two methods. 

Notation and conventions. All rings are commutative, Noetherian with 1; all 
schemes are locally Noetherian. If R is a ring, then R* will denote its group of units. 
A variety is an integral, separated scheme of finite type over a field k. A curve is a 
variety of dimension 1. A proper variety over k is also called complete. For a field 
k, we denote the separable closure of k by k s ' If K/k is Galois, then Gal(K/k) 
denotes the Galois group. The finite field of I elements is denoted FI , I any prime. 
For an integral scheme X, we write k( X) for the field of rational functions of X. 
The set of points of dimension 0, i.e., the closed points, is written XO. The etale 
(Zariski) site Xet(XZar) means the small etale (Zariski) site on the scheme X. The 
Cartier dual of a group scheme G is denoted G D. 

References will be enclosed in brackets [ ], except for internal cross-references. In 
general, references will be numbered to coincide with the corresponding biblio-
graphic item. The symbol / / will indicate the end of a proof. 

I. I-torsion sheaves and I-extensions. This section concerns the Euler characteristic, 
on a complete smooth curve X, of a constructible sheaf F of Frmodules, I any 
prime, trivialized by an I-extension. Some of the results are not new (see the Remark 
following Corollary 1.4) but the main theorem (1.1) gives a unified statement and 
proof using etale cohomology. This theorem contains a global term involving the 
Frcohomology of X and the Frdimension of the generic stalk of F; there are local 
terms involving the Frdimension of the stalks of F at all closed points of X as well 
as its generic stalk. As a corollary, we compute the Frcohomology of a certain curve 
lying over X, with the local terms now relating to ramification. The other corollaries 
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give reinterpretations of the foregoing in terms of algebraic function fields in one 
variable and Artin-Schreier extensions. 

Let X be a smooth curve over an algebraically closed field k of characteristic 
p > O. Let F be a constructible sheaf of Frmodules on Xel' I a prime not 
necessarily distinct from p. Let K = k(X) and g: 1/ = SpecK ~ X be the inclusion 
of the generic point. Let Ks be the separable closure of K. FfJ is a fs = Gal( Ksl K)-
module. Since Ffj is finite, the action factors through a finite quotient f = fsl Hs. 
Let X(X, F) denote the sum I:(-lydimHi(Xet, F) (dim = dim F). When X is 
complete and 1=1= p, this number is finite by [5, V.2.1]; for complete X with 1= p, it 
is finite by [5, VI.2.8]. 

If X is not complete, it is affine, say X = SpecR, by [4, Exercise IV.l.4]. The case 
1=1= p is uninteresting. Although X(X, F) is finite by the argument of [5, V.2.4(a)], 
the vanishing of H2(X, FI ) shows how much this deviates from the usual result for 
complete, smooth curves. The case I = p is pathological. Here HI( X, Fp) = RlpR 
where p: R ~ R is the map x ~ x p - x. Since R has transcendence degree lover 
k, we have k[T] ~ R. The image of k[TJlpk[T] in RlpR is infinite, which shows 
HI(X, Fp) does not have finite dimension over Fp. 

THEOREM l.l. Let f be an I-group. Then 

x(X, F) = X(X, FI)(dimFfj) - L (dimFfj -dimF,,), 
xEXO 

for X complete. 

The proof will require several steps. 
Step l. Let Y be the normalization of X in L = (Ks)H,. We do not require that f 

be an I-group or that X be complete. Let C be the category of all constructible 
sheaves F on Xet satisfying 

(i) F =' g*g* F and 
(ii) FlY is constant on an open set. 

Let D be the category of finite f -modules. Then the functor from C to D that sends 
F to Ffj is a category equivalence. 

PROOF. Let E be the category of sheaves on 1/et. We know that E is equivalent to 
the category of fs = Gal(KjK)-modules by [5, 1I.l.9], via the functor sending Fo 
to (Fo)fj. It is clear that E is also equivalent to the category of sheaves F on Xet 

satisfying (i). Let 'TT: Y ~ X be the finite morphism corresponding to LI K. To 
complete the proof, we need only show that the action of fs factors through f if and 
only if 'TT* F becomes constant on an open subset of Y, i.e., that condition (ii) holds. 

If 'TT* F becomes constant on an open subset of Y, then it follows immediately that 
the action factors. Conversely, let V be an open subset of Y such that 'TTiV is etale. 
We can find such a Vas follows. Choose an open subset U' of Y disjoint from the 
support of Qy/x and let Z' = Y - U'. Then the map 'TT: Z' ~ Z = 'TT(Z') is finite 
and so Z is closed. Let U = X - Z and j: U ~ X be the inclusion. Then 
V = 'TT-l(U) = U X x Y is etale over U by [5,1.3.21], since V ~ U'. In addition, V is 
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finite over U by base change [5, I.1.3]. Since k(V) = Land k(U) = K, we see that 
V is Galois over U with group f. Let W ~ Y be etale and factor through V, where 
we assume W is connected. Then 

'7T*F(W) ;; F(W) ;; g*g*F(W) ;; g*F(Speck(W)) ;; Ffj' 

which shows that '7T* F is constant. This completes the proof of Step 1. I I 
For the remainder of the proof, we assume X is complete. 
Step 2. Let j: U ~ X be the inclusion of an open subscheme. Then 

X(X,F)=X(X,j!j*F)+ L dimFx· 
xEX-U 

PROOF. By [5, 11.3.13], there is an exact sequence 

o ~ j!j*F ~ F ~ i*i*F ~ 0 

of sheaves on Xe(' where i: Z = X - U ~ X is the inclusion. Since F is construct-
ible, both j!j*F and i*i*F are constructible. So X(X, F), X(X, i*i*F), and 
X( X, j!j* F) are all defined and finite. Thus, 

X(X,F) = X(X,j!j*F) + X(X,i*i*F). 

Z is a finite set and so 

HS(X, i*i*F) ;; HS(Z, i*F) ;; HS( U x, i*F);; n HS(x, i*F) = 0 
xEZ xEZ 

for s > O. We know HO(x, i*F) = Fx. Hence, 

X(X,F)=X(X,j!j*F)+ L dimFx· II 
xEX-U 

REMARK. Let Fl and F2 be two sheaves on Xet which satisfy j* Fl ;; j* F2 for 
some open sub scheme U of X. Then 

X(X, F1 ) - L dim(F1)x = X(X, j!j*F1 ) = X(X, j!j*F2) 
XEX-U 

= X(X, F2 ) - L dim(F2 )x· 
xEX-U 

Step 3. Let j: U ~ X be the inclusion of an open sub scheme such that '7T: 
V = '7T-\U) ~ U is etale. Let F be a sheaf on Uet with Fw constant and F;; g*g*F 
for g: '1/ ~ U the inclusion of the generic point. Assume f is an I-group. Then 

X(X,j!F) = X(X,j!E/)(dimF,J 

PROOF. The f-module Ffj has a composition series, all of whose quotients are 
isomorphic to F, with f acting trivially, by [8, p. 139]. 

We can write 

Ffj = M = Mo :2 Ml:2 ... :2 Mn :2 Mn+ 1 = 0 

such that M/ Mi+ 1 ;; E/ with trivial f-action. As in Step 1, we can find sheaves F; 
on u"t satisfying (F;)fj ;; Mi. We get a short exact sequence 
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Applying g* to the corresponding sequence of sheaves on '/jet' we have a sequence of 
sheaves 

(** ) 
on Uet. We show it is exact. Looking at stalks and using F;;::;: g*g* F;, we get a 
sequence of abelian groups 

o -> (F;+l)~x -> (F;)~x -> (F/)~x -> 0, 

where Ix is the decomposition subgroup of fs corresponding to an embedding 
Ox -> Ks' Since the fs-action factors through f, we may replace Ix by fx" the 
decomposition subgroup of f at some closed point x' mapping to X. The hypothesis 
that V -> U is etale implies fx' ~ Hs (so fx' acts trivially on F",) and the sequence 
becomes 

0-> (F;+l)", -> (F;h -> (F/h -> 0, 

which is just sequence (*). We conclude that the desired sequence (* *) of sheaves on 
u"t is exact. Since j! is an exact functor, applying it to (**) gives an exact sequence 

of sheaves on X et . The exactness of the sequences (*) and (***) shows that 
dim(MJ = dim(Mi + 1) + 1, X(X, j!F;) = X(X, j!F;+l) + X(X, j!F/), and (by induc-
tion) dim F", = n + 1, X(X, j!F) = X(X, j!F/)(n + 1). Thus, 

X(X,j!F) = X(X,j!F/)(dimF",). II 
REMARK. In particular, when F is a sheaf on Xel' 

X(X,j!j*F) = X(X,j!i*F/)(dimF",); 

this follows from (j* F)", = F", and j* F/ = F/. 
Step 4. Assume f is an I-group. If F is a constructible sheaf of Frmodules on XCI' 

then 

x(X, F) = X(X, F/)(dimF",) - L (dimF", -dimFx)' 
XEXO 

PROOF. Choose an open sub scheme U of X such that 7[: V = 7[-\U) -> U is etale 
and Flu = (g*g* F)lu' Let j: U -> X be the inclusion. We know from Step 2 that we 
must compute X(X, j!j*F); from Step 3, this is 

X(X, j!F/)(dimF",). 

Again from Step 2, we have 

X(X, F/) = X(X, j!j*F/) + L dim(F/)x' 
xEX~U 

Since j* F/ = F/, this shows that 

X(X, j!F/) = X(X,F/) - L dim(F/)x' 
xEX-U 
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Substituting and using Steps 2 and 3, we get 

X(X, F) = X(X, i!i*F) + L dimFx 
xEX-U 

= X(X,F,)(dimFlj) - L (dimFlj -dimFx )' 
xEX-U 

Since dimFx = dimFlj for all x E U, we have LXEx_u(dimFlj -dimFx) = 
Lx E XO (dim Flj - dim Fx)' This completes the proof of Step 4 and Theorem 1.1. / / 

COROLLARY 1.2. Let r have order In and Y be the normalization of X in L. Let 'IT: 
Y ~ X be the corresponding finite morphism. For i = 1, ... , n, denote by ti the 
number of points where the ramification index is Ii. Then 

n 
x(Y, FJ = In. X(X, F,) - L ti(ln - In-i). 

i~l 

PROOF. Let F, be the constant sheaf on Yand F = 'IT*F,. Using [5, II.3.5(c)], we 
compute Fx' If x E X O, then Fx = nx'~x(F,)x" If x = 1/, then Flj = (F,)~" where 
1/' = SpecL. Moreover, 

In = [L:KL = L e(x')[k(x'):k(x)L = eJk(x'):k(x)L(orderYJ, 
x'----+X 

where ex is the constant value of the ramification index e(x') for all x' mapping to 
x. 

We have dim Flj = In . dim F, = In. For x E X O, dim Fx = In-i. dim F, = I n-\ 
when ex = Ii for i = 1, ... , n. Note that tn corresponds to the points of total 
ramification. Since X(X, F) = X(X, 'IT*F,) = X(Y, F,), the result now follows. / / 

REMARK. (1) When I =1= characteristic k, Theorem 1.1 is a special case of [5, 
V.2.12]. 

(2) Let I be any prime. For a smooth curve X over k, the I-rank of X is the 
dimension over F, of the points of J(k) of order I, where J is the Jacobian of X [6, 
p. 64]. If K is a field of algebraic functions in one variable over k, then the divisor 
(ideal, null) class group of K is isomorphic to the points of J( k), J the Jacobian of 
the complete smooth curve X over k corresponding to K. 

Let ax, a y denote the p-ranks of the curves X, Y respectively. For 1= 
characteristic k = p, Corollary 1.2 shows 

n 
1 - a y = pn(1 - ax) - L t;{pn - pn-i). 

i~l 

COROLLARY 1.3. Let K be a field of algebraic functions in one variable over an 
algebraically closed field k of characteristic p > O. Let L/K be a cyclic extension of 
degree I, I a prime not necessarily different from p. Let t p denote, respectively, the 
I-ranks of the null class groups of Land K. Then 

~ = Ip +(t - 8)(1- 1), 
where t is the number of ramified primes and 8 is 1 or 2 according as I equals p or not. 
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PROOF. Let X, Y be the complete smooth curves corresponding to the fields K, L 
respectively. From Kummer and Artin-Schreier theory (see [5, pp. 126, 128]), it is 
known that ~ = dim Hl(y, F/) and p = dim Hl(X, ~). Also, see [16] for the case 
I = p. Writing the formula as 

8 - ~ = I( 8 - p) - t(l- 1), 
we see that the result follows easily from the theorem or Corollary 1.2. The values of 
8 arise from the fact that dim H2( Y, ~) = dim H2( X, F/) = 0 or 1 according as I 
eq uals p or not. / / 

COROLLARY 1.4. Let X/k be a complete smooth curve with function field K, where k 
is algebraically closed of characteristic p > O. Let Y -4 X be the covering correspond-
ing to the Artin-Schreier extension L of K with equation yP - Y = f, where f E K*. 
Let S ~ X( k) be the set of points which ramify in Y. Then the p-ranks a x and a yare 
related by the formula 

(a y - 1 + #S) = p(ax - 1 + #S). 
PROOF. This is a special case of Corollary 1.2, with n = 1. The group r has order 

p, and tl = #S. (The formula is written explicitly in the Remark immediately 
following Corollary 1.2.) / / 

REMARK. Corollary 1.3 is due to Madan [13], who proved it using Galois 
cohomology. Corollary 1.4 is due to Subrao [17], who used the Cartier operator. 
Each of these authors proves a result like Corollary 1.2. 

II. p-torsion sheaves. The etale core of A is determined by the exact sequence of 
Theorem 2.1 which involves the tangent space at the identity of a finite, flat, height 
1, commutative group scheme A, and the sub sheaf fixed by the pth power endomor-
phism. This sub sheaf is the etale core, which is any etale group scheme. The 
Fp-dimensions of the cohomology groups of a complete projective variety X, over an 
algebraically closed field k of characteristic p > 0, with coefficients in an etale core, 
are computed in Corollary 2.3. The idea will be to use the cohomology with 
appropriate etale core coefficients to help calculate the cohomology with coefficients 
in a given constructible sheaf. In 2.4, we conjecture a result as to the conditions 
under which such an etale core can be found. 

The rest of this section is basically a proof of the conjecture and its consequences 
in the case that the constructible sheaf has its generic stalk of rank p. After 
discussing finite etale group schemes of rank p over an integral scheme and its 
generic point, we prove an extension lemma (2.5). For curves, we give complete 
results via 2.6 and 2.7 on the Euler-Poincare characteristic. 

Let X be a scheme of characteristic p > O. Let Lie( A) denote the tangent space at 
the identity of a group scheme A over X. All group schemes are commutative and 
killed by p. (See [10] for an elementary discussion.) 

THEOREM 2.1. Let A be a finite, flat, height 1 group scheme on X. Then 
G = Hom(A D , F;,) is an etale group scheme on X, and there is a short exact sequence 

[p]-l 
0-4 G -4 Lie(A) -4 Lie(A) -4 0 

of sheaves on Xet . Here [p] denotes the p th power map. 
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PROOF By [5,11.2.18], there is an exact sequence 
FR-l o ~ Fp ~ Ga ~ Ga ~ 0 

of sheaves on Xel' where Ga is the sheaf given by Ga(U) = f(U,Ou) and FR is the 
map a ~ a P• We apply the function Hom(A D, -) to this sequence and obtain the 
exact sequence 

(*) 0 ~ Hom( AD, r;,) ~ Hom{AD, Ga ) ~ Hom{A D, Ga ). 

We can identify Hom(AD,Ga ) with Lie(A) as follows. Let X. = SpecOx[e], 
where e2 = O. Let '17: X. ~ X be the structure morphism. Then there is an exact 
sequence 
(** ) 
of sheaves on Xel' where Gm is the sheaf given by Gm(U) = feU, 0u)*. If U = SpecR 
is an open affine of X, then the first map is R ~ R[e]*, with a ~ 1 + ae; the 
second map is R[e]* ~ R*, with c + de ~ c. Since an element c + de of R[e] is 
invertible if and only if c is invertible, it follows that R[e]* ~ R* is surjective with 
kernel isomorphic to R, for any ring R (in particular, for R local). Hence the 
sequence (**) is exact as a sequence of sheaves for the Zariski (or any finer) 
topology. 

If we now apply the functor Hom( AD, -) to this exact sequence, we get the exact 
sequence 

o ~ Hom{AD,Ga ) ~ Hom{A D,'17*Gm ) ~ Hom{AD,Gm ). 

By adjointness, we have Hom(A D, '17*Gm ) ~ Hom('17* AD, Gm ), which is A(X.). We 
also know that Hom(A D, Gm ) = A(X). Thus, we get the exact sequence 

o ~ Hom(AD,Ga ) ~ A(X.) ~ A(X). 

It is now clear that Hom(A D, Ga ) ~ Lie(A). 
This result, together with the fact that the pth power map on Lie(A) is just FR*, 

[6, p. 138], shows that we have exactness at all points of the desired sequence (*), 
except for the surjectivity of [p] - 1. Viewing Lie (A) as a vector group, we see, by 
[5, 11.2.19], that it suffices to show [p] - 1 is an etale morphism (this is equivalent to 
G being an etale group scheme); if so, then [p] - 1 is surjective as a morphism of 
sheaves on Xct. This is the content of the following lemma. 

LEMMA 2.2. Let f: V ~ V be a p-linear morphism of vector groups over a scheme X 
of characteristic p > O. Then f - 1 is an etale morphism. 

PROOF. Since the result is local on the base, we may assume X = SpecR is affine 
and V = A~ is affine n-space over R for some n. Let e l , ... , en be an R-basis and 
(Xl' ... ' xn) denote the coordinates of a point X E V. If Y = f(x) has coordinates 
(Yl'···' Yn)' then 

n 

Y; = L A;jxJ, 
)=1 

where A = (Ai) is the matrix of f with respect to the given basis. 
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We use the criterion of [5,1.3.16] to show that f - 1 is etale. The partial derivative 
of L'J-1AijxJ - Xi with respect to x k is -1, for i = k, and 0, otherwise. Hence the 
Jacobian of the matrix of f - 1 in this basis is -1, where 1 is the n X n identity 
matrix. 

This completes the proof of the lemma and Theorem 2.1. / / 
DEFINITION. The etale group scheme G of Theorem 2.1 will be called the etale 

core of Lie(A) or A. (This terminology is suggested by [1, Exercise 1.1.23].) 
REMARK. (1) If Gx = G X x Speck(x) for X E X, then Gx is finite etale when A~ 

is etale. Otherwise, G x = Spec k (x), since this is true for geometric fibers over 
algebraically closed fields [7, p. 11.14-2]. In fact, let U be the largest open subset of 
X such that the structure map 1(-1(U) -> U is etale, for 1(: AD -> X. Then AB = 

AD X X U is etale over U. U is precisely the set of all x where Gx is finite etale. 
(2) Every finite etale group scheme G killed by p occurs as the etale core of some 

height 1 group scheme A. First, GD has height 1, when G is a finite etale group 
scheme on X such that pG = 0. We can see this as follows. The Verschiebung [3, 
VIIA.4.3] followed by the Frobenius is multiplication by p, hence kills G. Since the 
Frobenius is an isomorphism, G is killed by the Verschiebung. Cartier duality 
interchanges the Verschiebung and the Frobenius, so G D is killed by the Frobenius. 

Let G* = Hom(G, Fp) be the etale core of G D. Then G* is a finite etale group 
scheme killed by p and may be viewed as an "etale" dual of G. Moreover, G** ~ G 
since this clearly holds for geometric fibers. We conclude that G is the etale core of 
A = (G*)D. 

Concepts associated with p-linear, additive endomorphisms of finite-dimensional 
vector spaces will be very important in this and later sections. These include 
semisimple subspaces and the stable rank of a matrix. We need some notation. 

NOTATION. If V is a vector space of dimension d over an algebraically closed field 
k of characteristic p > 0, let v's denote the semisimple subspace of V under a 
p-linear, additive endomorphism f. Then v~s = nrn ?>1 Im(frn) and Um?>1Ker(fm) is 
denoted by Vn . 

The k-dimension of v's equals the Fp-dimension of Vi, the set of all v in V such 
that f( v) = v. If B is the matrix of f with respect to any basis, then the 
k-dimension of v's equals the rank of the matrix BB(p) ... B(pd-l), by [12], and is 
sometimes called the stable rank of the matrix B. 

COROLLARY 2.3. Let X be a complete projective variety over an algebraically closed 
field k of characteristic p > 0. Then 

dimF(Hi(XepG)) = dimkHi(XepLie(A)).s 
p 

for all i. 

PROOF. The exact sequence of sheaves on X et of Theorem 2.1 leads to a long exact 
sequence of abelian groups: 

0-> HO(G) -> HO(Lie(A)) -> HO(Lie(A)) -> .. , -> W(Lie(A)) 

-> Hi(Lie(A)) -> Hi+1(G)-> 
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Since Lie( A) is a locally free sheaf of Ox-modules of finite rank, Hi( Xw Lie(A» is a 
finite-dimensional k-vector space, with a p-linear endomorphism induced by [pl. By 
[5, 111.4.13], [p] - 1 is smjective on Hi( Xep Lie( A» for each i. So the long exact 
sequence breaks up into short exact sequences 

a ~ Hi(G) ~ H'(Lie(A» ~ Hi(Lie(A» ~ a 
for each i. We conclude dimF(Hi(Xel' G» = dimkHi(Xep Lie(A»ss for all i. / / 

p 

REMARK. In particular, this result provides a method of calculating x( Xw G) for 
any finite etale group scheme G killed by p, when X is a complete projective variety 
over an algebraically closed field k of characteristic p > a. 

DEFINITION. Let X be a curve over an algebraically closed field k of characteristic 
p > a and let F be a constructible sheaf of Fp-modules on Xet • The tame conductor 
of F at x E X is 

tx(F) = dimFlj -dimFx' 

CONJECTURE 2.4. Let X be an integral scheme and F a constructible sheaf of 
Fp-modules on X et • Then there exists a finite, flat, height 1 group scheme A on X whose 
etale core G has as generic fiber the finite etale group scheme corresponding to Flj" 

REMARK. (1) If X is a smooth proper curve over k, then the remark following Step 
2, Theorem 1.1, shows (modulo the proof of Conjecture 2.4) that 

X(X, F) = X(X,G) + L (tx(G) - tJF»). 
XEXO 

(2) This conjecture is true when the finite etale group scheme corresponding to Flj 
has rank p (see 2.5-2.7 below). Thus it may be possible to prove the conjecture by 
induction. Since the proof for rank p requires the existence of an ample invertible 
sheaf L, it may be necessary to assume the existence of an ample vector bundle E on 
X and then to exploit the relationship between the canonical line bundle on the 
projective space bundle peE) and the vector bundle E on X. 

(3) There may be a best choice of A and hence G, but A is not unique, since it is 
not unique for rank p. 

We now turn to the problem of applying these ideas to calculating cohomology 
with coefficients in a constructible sheaf whose generic stalk has rank p. We first 
discuss group schemes of rank p over an integral scheme and its generic point. We 
also describe the etale cores of rank p group schemes which are height 1. 

For X integral, let K = k(X) and a E K*. Then G;,o = Spec(K[T]/(TP - aT» 
is a finite etale group scheme of rank p over 1/ = Spec K. Every finite etale group 
scheme of rank p over 1/ has this form. By [18], rank p group schemes over a 
scheme of characteristic p > a are classified by triples (L, a, b). Here L is an 
invertible Ox-module, a is a section of rex, LP-1), and b is a section of reX, L1-P) 
with a ® b = a. The group scheme is denoted by G!:b' If T is any X-scheme, then 
the T-valued points of Ga\ can be viewed as the set of all x E reT, L ®ox 0T) such 
that x P = a ® X. The Cartier dual of Ga~b is Gt:a for M = L -1. When G~:b is etale, 
we have b = a since a is invertible. When the Frobenius is the a-morphism from G 
to G(p), it follows that a = a and the pth power map is given by f ~ b ® fP for f 
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in Lie( G) = L. This identifies the pth power map for height 1 group schemes of 
rank p. In fact, this motivated the search for the sequence of Theorem 2.l. 

Let AD = G/; 0 extend GaK..1o and G be the etale core of A = G!;~l,. The section a' 
of f(X, LP-l) ~ Homx(X, LP-l), where LP-l is viewed as a ve~tor group over X, 
gives an element a: of Homx(x, (LP-l )x) ~ f(x, (LP-l )x) by base change: 

(LP-l L ~ LP-l 

t i a: t i a' 
X ~ X 

So ([p] - l)x is the map y ~ a: ® yP - Y and the sequence of 2.1 becomes 
P(T) o ~ Gx ~ Spec(k'[TD ~ Spec(k'[TD ~ 0; 

here P(T) = cTP - T with c the element of k' = k(x) corresponding to a:. The 
element a: is in f(x,(LP-l)x) ~ L!-l. If mx is the maximal ideal of Ox, then c is 
the image of a: in L!-l/mxL!-l ~ k'. Therefore, Gx = Spec(k'[TJ/(cTP - T». 

Now c = 0 if and only if a: E mxL!-l. Then Gx ~ Speck'. If < $. m x L!-1, 
then c =1= 0 and Gx = G<~~ ~ Gf,~ ~ (Fph .. (It is known that Lie(ap ) ~ k' with 
[p] = O-map and Lie(fLp) ~ k' with basis e such that [p](e) = e.) If U is the open 
set of all x E X such that < $. m xLC 1, then we see G IV is a finite etale group 
scheme of rank p and G I x-v is trivial. 

We note that G;,o ~ Hom(G,;\o, Fp). It suffices to show there is a nondegenerate 
pairing G;l,o X G;,o ~ Fp. Indeed, since a sheaf on l1et is determined by its stalk as 
a fs-module, we need only exhibit the pairing for global sections over Ks' We know 
G;l,o(Ks) is the set of all b in Ks such that bP = a-1b and Ga~o(Ks) is the set of all 
d in Ks such that d P = ad. It follows that (bd)P = bd, so that bd E Fp- As this is 
just the pairing Fp X Fp ~ Fp of Fp with its dual vector space, it is clearly 
nondegenerate. 

We need to know when a finite etale group scheme of rank p over the generic 
point extends to the integral scheme itself. This is detailed in the following lemma, 
whose proof uses a portion of the proof of [4, 1I.7.6]. 

LEMMA 2.5. The finite etale K-group scheme Ga~O extends to a finite flat group 
scheme Ga~O on any quasi-compact integral scheme X with an ample divisor. 

PROOF. Let Dl be an ample divisor on X. Then Ll = L(D1) is an ample 
invertible sheaf on X Zar ' The element a E K* can be represented by a regular 
function s defined on some open set U, so we can regard s as a section of ° v over 
U. We may assume U = SpecA is affine and L 1IV is free on U; for some P E U, 
sp =1= O. 

Let Y be the closed set X - U with the reduced induced scheme structure and let 
I y be its sheaf of ideals. Then I y is a coherent sheaf on XZap so for some n > 0, 
I y ® L~ is generated by global sections. In particular, for the point P E U, there is a 
section f E f(X, Iy ® L~) such that fp $. mp(Iy ® Lnp. 

Now Iy ® L~ is a sub sheaf of Ox ® L7 ~ L~, so we can think of f as an element 
of f(X, L'i). If XI is the open set of all Q E X such that fQ $. mQ(LnQ, then it 
follows from our choice of f that P E XI and XI <;;; U (when Q E Y, fQ E mQ(Ll)Q 
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since (IY)Q ® (Ln Q is a submodule of mQ ® (LD Q). The set V is affine and L 11U 
is trivial, so under the isomorphism W: L 11U -:: Ou, f induces an element g = 

wn(fIU) E f(V, 0u), and then XI = Vg is also affine. 
Under restriction, S E f(V,Ou) maps to a section t E f(XI , Ox) = f(Vg,Ou) 

= A g. Since f(XI , Oxf ) = f(XI' Ox), we can apply [4,11.5.14] with L replaced here 
by L~ and F by Ox' The hypotheses of (b) are satisfied. Therefore, given the section 
t E f(XI , Ox), the section t ® fm E f(XI , Ox ® (LDm) ~ f(XI' (L~)m) extends to 
a global section of (Lnm for some m > O. Clearly, for rep - 1) ? m, the section 
t ® j'(p-l) E f(XI , Ox ® (L~r(p-l») ~ f(XI , (L~r(p-l)) extends to a global sec-
tion a of LP-l for L = L~r. This determines a flat group scheme G/;o on X, which 
we now show extends G:;'o' ' 

Let ( ) denote the rational function corresponding to a local section of Ox. 
Define B: f(X, L) ~ f(X, K) ~ K by B(z) = (wnr(zIU)/(gr) for z E f(X, L). 
Then we want to choose an isomorphism D: L ®o K ~ K such that the following x 
diagram commutes: 

D 
f( X, L ®ox K) -:: f(X, K) ~ K 

i~ 
f(X, L) 

But j' E f(X, L) can be regarded as a nonzero element of reX, L ®ox K), hence 
as a basis element. That is, D can be defined by D(fr) = 1. Then B(fr) = 

(wnr(fl;;)/(gr) = (gr)/(gr) = 1 and the diagram commutes. 
Clearly, the following diagram commutes 

f(X,(L®oxKy-l) 
D(p-l) 

f(X,KP-l) ~ 

i ;; t ;; 
f( X LP-l ® K) , Ox f(X,K)~K 

J ?B(P-l) 

f(X, LP-l) 
Here D(p-l)(fr(p-l») = 1 and B(p-l)(y) = (wnr(p-l)(YIU)/(gr(p-l» for y E 

f( X, LP-l). The fact that 
B(p-l)( a) = ( wnr(p-l)( aw)) / (gr(p-l») 

= (WI~(P-l)( a IX)) /( gr(p-IJ) 

= (tgr(p-1J)/(gr(p-1J) = (t) = a 

shows that Ga~O X x 1/ ~ Ga~o· Therefore, G;,o extends G:;'o' / / 
REMARK. (1) It is clear that the extension is not unique. 
(2) Let X be a curve over an algebraically closed field k of characteristic p > O. 

For a E K*, the divisor of a is the divisor of zeros of a minus the divisor of poles of 
a, i.e., (a) = (a)o - (a)oo' Choose Dl = (a)oo and let D be a divisor of minimal 
degree such that (p - l)D ? Dl (D exists since the set of such divisors is non-
empty). Then (a) ? -(p - l)D and a determines a global section a of LP-l for 
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L = L(D). Clearly, Ga~o X x SpecK:= G,,~o. This is the best choice of L, which is 
still not unique, however. 

(3) We see a represents a coset in K*/K*(P-i), which was already known, of 
course. With the hypotheses of (2), we may assume a is a coset representative whose 
divisor of poles is of minimal degree by factoring out (p - l)st powers. This is the 
best choice of a. 

In the case of curves, we have the next two results which completely describe etale 
cohomology with coefficients in a constructible sheaf whose generic stalk has rank 
p. We assume the following hypotheses. Let X be a smooth proper curve over an 
algebraically closed field k of characteristic p > O. Let F be a constructible sheaf of 
Fp-modules on Xet such that G;,o is the finite etale group scheme corresponding to 
Fw Let gx denote th~ genus of X. Let AD = GaL"o extend G"K..1,o and let G be the 
etale core of A = G(;~" 

THEOREM 2.6. Let L = L(D) for D > O. Then HO(Xw G) = H2(Xw G) = 0 and 
dim Hi( Xep G) = a, where a is the stable rank of the matrix B corresponding to 
Hi([p]), 

PROOF. For a curve X, L(D) is ample if and only if D > 0 [4, IV.3.3]. Hence 
HO(Xep C i ) = 0 where L-i = L(-D). Since dim X = 1, H2(Xel' L- i ) = 0 as well. 
The Riemann-Roch theorem shows dim k Hi( Xel' L-i ) = gx + deg D - 1. 

Since L-i = Lie(A), we can apply Corollary 2.3 to determine Hi(XepG). The 
value for a follows from the discussion before Corollary 2.3. / / 

THEOREM 2.7. Let L = L(D) for D > 0 and n(a') be the cardinality of the support 
of the divisor of zeros (a')o of a' E r( X, LP-i). Then 

X(X,F)= [X(X,G)+n(a')]- L tx(F). 
xExD 

PROOF. As in the proof of [4,11.7.8], we find that the complement of X a" the set of 
all x E X such that a: $. mxL~p-i), is the support of the divisor of zeros (a')o of 
a' E rex, LP-il. It follows that 

n(a') = L (dimG1j -dimG,) = L tx(G) 

(see the next-to-Iast paragraph of the discussion before 2.5). 
By Step 2, Theorem 1.1, we can write X(X, F) = X/V,F) + LXEx-vdimFx for 

any open subscheme V of X; similarly, X(X,G) = xJV,G) + LXEx-vdimGx. 
Since F satisfies F1j == G1j := (G,,~o)1j' we may choose V so that Fw:= Gw and both 
F,G are locally constant on V. 

If we use the remark following Step 2, Theorem 1.1, then we have 

x(X, F) - L dimFx = X(X,G)- L dimGx 
xEX-V xEX- V 

and so 
X(X,F) = X(X,G)- L dimGx + L dimFx 

xEX-V xEX- v 
= X(X,G) + n(a') - L txCF). 

xEX-V 
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The choice of V insures that 

L (dimFjj -dimF,,) = - L tx(F) = - L txCF). / / 
xEX- V xEX- V XEXO 

REMARK. This does not require the best choice of L or a', but for the best choice 
of L, we have (a')o = (a- 1)0 = (a)oo' the divisor of poles of a. In this case, we 
denote n(a') by n(a-1). 

III. Calculations on pl. The purpose of this section is two-fold. One is that 
calculating the cohomology of pI with coefficients in a constructible sheaf whose 
generic stalk has rank p can be done quite explicitly and serves to illustrate the 
results of §II, especially Theorems 2.6 and 2.7. The other is that, once the results of 
§IV are established on comparing r;,-cohomology for certain extensions of curves, 
the p-ranks of certain curves can be calculated by viewing these curves as lying over 
pl. In Theorem 3.1, we prove the general result for coefficients in a constructible 
sheaf. Corollary 3.2 calculates the Euler characteristic when the coefficient sheaf is 
the direct image of a finite etale group scheme of rank p over the generic point. A 
result on elliptic surfaces is included here also. 

Let F be a constructible sheaf of Fp-modules such that Fjj =: G:'o(Ks ), where 
K = k(p1) and a E K*. Choose homogeneous coordinates Xo, Xl on pI and let 
T = X 1/XO. Then K = k(T). We assume a-I E k[T]. 

NOTATION. Let f E k[T] be a polynomial. Choose m ~ 1 minimal such that 
m(p - 1) ~ degf. If f = 'Ld;Ti, then AU) will denote the matrix 

dp_1 d 2p - 1 d(m-1)p-1 
dp_ 2 d 2p - 2 d(m-1)p-2 

dp- m+1 d 2p - m+1 d(m-l)p-m+1 

Let aU) be the stable rank of the (m - 1) X (m - 1) matrix A, where A = AU). 
(Set AU) and aU) both equal to 0 for m = l.) 

THEOREM 3.l. Under the above hypotheses, 

X(P1, F) = d - a(a-1) + # - L tx(F), 
XEXO 

where d = 1 if deg a-I = 0, and d = 0 otherwise. Here # is the number of distinct 
zeros and poles of a-I, less 1 when (p - 1) I deg a-I i= O. 

PROOF. Suppose dega-1 i= 0 and let a-I = 'Ld;r. Setting d i = 0 for i > dega-1, 

it is clear that a' = 'L~~OdiXt-;. X{ is a global section to O(m(p - 1», if N = 
m(p - 1) > dega-1• The isomorphism D: O(m(p - 1» ® K ---+ K of Lemma 2.5 
given by xt ---+ 1 maps the image of a' in O(m(p - 1» ® K to a-I. Let G be the 
etale core of Gf/~~m). Then X(p1, G) = -a(a-1) by Theorem 2.6, provided we show 
the matrix of H1([p]) with respect to the canonical basis of Hl(O(-m» is A(a-1). 
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Now HO(O(m - 2)) has a canonical basis Xom - 2, Xr;-3. Xl' ... ' Xom - 2- i . 

X{, ... , Xt- 2. The k-vector space Hl(O(-m)) ~ H\O(m - 2))* has dual basis 
Xom+l . Xl-I, x o m+2. Xl- 2, ... , Xo- m +l +i . Xl-l-i, ... , XO- l . Xl- m +l . For i = 
0, ... , m - 2, let Wi +l = Xo- m +l + i • XLI-i. Calculating 

N 
a' ® wl+ l = L djX;:-j . Xi ® Xopm+p+pi . Xl-p-pi 

j~O 

N 
= L dj xg(i+l)-m-j . Xl-p(i+l)+j 

j~O 

m-2 
'\' d x- m + l + s x- l - s 

= '-- p(i+l)-(s+l) 0 • 1 , 
S~O 

where the substitution j = p(i + 1) - (s + 1) was made in the last summation. It 
follows that the matrix of Hl([p)) with respect to the canonical basis of Hl(O(-m)) 
is A( a-I). 

On the other hand, n(a-1) is the number of distinct zeros of a-I, regarded as a 
global section of O(m(p - 1)). This is the same as the number of distinct zeros of 
a-I, regarded as a rational function, together with the point at infinity, except when 
(p - 1) I deg a-I. If x is the point at infinity, and L = O(m), then a: E m xL!-l if 
and only if ordAa- l ) ~ 1 - m(p - 1), which is equivalent to dega-1 ~ m(p - 1) 
- 1. The choice of m shows x is not a zero of the global section a-I of 
O( m( p - 1)), precisely when (p - 1) I deg a-I =1= 0. 

This case, i.e., deg a-I =1= 0, follows immediately from Theorem 2.7 and the 
previous discussion. 

If deg a-I = 0, then a-I is an element of k; the etale core in this case is just Fp 
and the sequence of 2.1 coincides with that of [5, 1I.2.18(c)] (see also the second line 
of the proof of Theorem 2.1). By 2.7, 

x(PI,F)=x(Pl,Fp )+n(a-1 )- L tAF)=l- L tx(F). 
XEXO xEXO 

As m = 1, o( a-I) = 0; # = ° as well. This completes the second case and the proof 
of the theorem. / / 

THEOREM 3.2. Let g: 1/ = SpecK ~ pi be the inclusion of the generic point. Under 
the same hypotheses, we have 

X(pl,g*G,,~o) = d+ z - o(a- I ), 

where d = 1 if deg a-I = 0, and d = ° otherwise. Here z is the number of distinct 
zeros of a-I whose orders are divisible by p - 1. 

PROOF. For this result, we need only show that LXExotAg*Ga~o) = n(a- 1 ) - z 
and then use Theorem 3.1. Let Y be the complete smooth curve corresponding to the 
field K(al/(p-I)). The proof of Theorem 4.1 shows that dim(g*G;o)x = 1, if Y" is 
unramified over x, and ° otherwise. A study of the equation Sp-I - a = ° over the 
completion of K, as in [11, III.2.6], shows Yx is unramified over x if and only if 
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(p - 1) lordx(a). Since a-I E k[T] by hypothesis, the ramification points lie over 
seme of the zeros of a-I (since ordxCa-1) = ordxCa» and possibly the point at 
infinity. This latter does not occur precisely when (p - 1) I deg a-I "* O. It is easy to 
see that n(a- 1) - LXExotxCg*G,;:o) = z, when dega- I "* 0 (if dega-1 = 0, all three 
terms are 0). The rest follows immediately from Theorem 3.1. / / 

REMARK. (1) It is important to note that neither of these results depends on 
making the best choice of a, but only on making the best choice of L (see Remark 
(2) following Lemma 2.5). 

(2) It follows from Corollary 3.2 that g*G,;:o is representable by the corresponding 
etale core for the best choice of a. 

We will conclude this section with a result on elliptic surfaces. We show how to 
calculate H2( Xel' Fp) for a smooth, complete, elliptic surface X over an algebraically 
closed field k of characteristic p > O. We may assume by [5, V.3.I] that there is a 
proper flat morphism 17: X ~ pI whose generic fiber is a smooth elliptic curve XK 

over K = k(pl), i.e., a Lefschetz pencil. 
Now, consider the sheaf F = RI17*Fp' Since we have that 17*Ox 0:::= Opl, we see that 

17*Ga 0:::= Ga and 17*Fp 0:::= Fp. Hence R017*Fp 0:::= Fp' By [5, III.1.15], it follows that 
Fr, 0:::= H\ XK,' Fp), where XK, = Xk ® K Ks' If K denotes the algebraic closure of K 

_ - I _ I . 
and Xl(- XK®KK, then H (XK"Fp) = H (Xl(,~) by [5, VI.2.6]. ThIS latter 
group is known to be 

Ker[ HI( Xl(, OxK ) F~l HI( Xl(,OXK)]' 

So we have dimF/Fij) equal to 0 or 1 depending on the Hasse invariant of XK. Thus, 
Fr, 0:::= Ga~o(Ks) for some a E K and the cohomology of pI with coefficients in 
RI17*Fp can be calculated using Theorem 3.1, when a E K*. 

One can show that RI17*Fp is an etale group scheme. Since all the fibers have 
genus 1, we can apply [4, IIU2.9] to see that RI17*OX is locally free of finite rank on 
pl. Viewing it as a vector group, we see that RI17*Fp is the kernel of an etale 
morphism and so it is an etale group scheme by Lemma 2.2 and [5, II.2.19]. Hence, 
FT/ 0:::= G,;:o' The induced p-linear morphism on RI17*OX gives it the structure of a 
p-Lie algebra whose etale core is RI17*~. When there are singular fibers, the sheaf 
RI17*Fp has no global sections over pI by Theorem 2.6. 

The Leray spectral sequence [5, III.1.18] shows that Hi(Pc;' RJ17*Fp) ~ 
Hi+J( Xw Fp). There is an associated exact sequence 

o ~ HI( pI, Fp) ~ HI( X, Fp) ~ HO(pl, F) ~ H2( pI, Fp) 

~ Ker[ H2( X, Fp) ~ HO( pI, R 217*Fp)] ~ HI( pI, F) ~ H 3 ( pI, Fp); 

see [5, Appendix B]. We know Hi(P\ Fp) = 0 for i ~ 1. Since (R217*~)s = 
H\X" Fp) = 0 (X, is a curve) for all s E pI, we see that R 217*Fp = O. Thus 
Hi(X, Fp) 0:::= Hi-l(p!, F) for i = 1,2. This shows X(X, Fp) = 1 - X(p\ F). 

If Xs is nonsingular, then dimF(Fs) = dimF(Fr,) and ts(F) = 0 in Theorem 3.1. 
Hence we may compute X(X, Fp{ using only singular fibers, where HI(X, Fp) = O. 
With the notation of 3.1, we have proven the following theorem. 
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THEOREM 3.3. Notation as above. Let X be a smooth, complete elliptic surface with a 
Lefschetz pencil. Assume the generic fiber is smooth of Hasse invariant 1. If T is the set 
of points s of pI with 7T-I(S) = Xs singular, then 

dimFpH2(XePr;,) = a(a- I) - # + L ts(R I7T*Fp). II 
sET 

IV. The p-ranks of abelian extensions. The concept of the p-rank of a complete, 
smooth curve X was first discussed in §I. The result discussed there, Corollary 1.2, 
involves p-extensions, i.e., the action of the Galois group of the separable closure Ks 
over K = k( X) on the generic stalk factors through a finite quotient which is a 
p-group. This section concerns cyclic and abelian extensions of order dividing p - 1, 
Theorem 4.1 and Corollary 4.4 respectively. Although 4.4 generalizes it, Theorem 4.1 
is the most important, its proof containing all the significant details. For Corollary 
4.2, we take the cohomology of the sheaves in 4.1. In Corollary 4.3, we give a new 
proof of a result due to Manin on hyperelliptic curves. Some examples are included. 

Thoughout this section, let X be a complete smooth curve over an algebraically 
closed field k of characteristic p > 0. Let K = k( X) and g: 'I) ~ X be the inclusion 
of the generic point. Let Ks denote the separable closure of K and f, = Gal(KJK). 
We will denote Gfo by Gf3,o for f3 E K*. 

THEOREM 4.1. Let f = Gal(LIK) be a cyclic group of order n I(p - 1), with 
L = K(fI/n) for some f E K*. Let 7T: Y ~ X be the corresponding finite morphism. 
Then 

for a = f(p-I)/n. 

n-I 

7T*Fp ~ EB g*Ga"o 
;=0 

PROOF. The cyclic group f = < s > has n distinct irreducible representations of 
degree 1. Let C/ f ~ (Fp)* be defined by s ~ Cj(s), with s(fl/n) = C/s)f l/ n. 
Here C/s) E J.Ln(K) ~ (r;,)*. The n distinct irreducible characters Cj correspond 
to simple Fp[f]-modules V, ~ r;, for i = 0, ... , n - 1. The group f acts on V, by 
sv = Cj(s)v for v E V,. 

The category equivalences of [5, II.1.9] and Step 1 of Theorem 1.1 show there exist 
finite etale group schemes Gi of rank p over K such that Gi(Ks) ~ V, as a 
fs-module. Since the action factors through f, we see Gi(L) ~ V, as a f-module. We 
want to show that Gi ~ Ga"o' For this, consider Ga',o(L) which is the set of all c E L 
such that cP - (ic = 0. Then the elements of Ga, o(L) are 0, r/n, 2f i / n , ... , 

(p - l)fi/n. Calculating, s(fi/n) = (s(fl/n»i = (C;(s)fl/nr = Cj(s)F/n. There-
fore, Gi ~ Ga"o' 

There is a commutative diagram: 

SpecL = y 

SpecK = 
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The natural morphism Fp ~ g'*g'* Fp of sheaves on Yet induces a morphism w*Fp ~ 
w*g'*g'* Fp; this last sheaf is isomorphic to g'w' *g'* Fp by commutativity. By 
adjunction, we get a morphism g*w*Fp ~ w'*g'* Fp- Since the first of these mor-
phisms induces an isomorphism of generic stalks, it is easy to see that the second and 
third do also. The category equivalence of [5, II.1.9] (together with [5, II.3.1(e)]) 
shows w'*F;, = (w'*g'*Fph, where w'*F;, = 7T'*(g'*Fph". We find that the f-modules 
(7T*Fp)'ij and 7T'*Fp are isomorphic; use V for either. We can write V = EEl i:-01W;, 
where W; is the set of all v E V such that sv = C;(s )v. This is the canonical 
decomposition [9, p. 21]. 

Each W; is irreducible if and only if no W; = 0. However, V = 7T'*F;, is the 
induced representation of the trivial representation on the trivial subgroup Gal( L/ L), 
whence V = Fp ® FpFp[f] is the regular representation. From [9, p. 18], it follows that 
each W; is irreducible and so W; = V; for each i. Thus, 

n-l n-l 

(7T*Fp)_;::: E9 V; and g*7T*Fp ;::: E9 Gaio' 
1J i~O i~O ' 

It remains to show that 7T*Fp ;::: g*g*7T*Fp' We now know that g*g*w*Fp ;::: 
EEl in~-olg*Ga' ,0' Hence there is a natural map 7T*Fp ~ EEl in~-olg*Ga"O' We will show it is 
an isomorphism by checking stalks. First, note that the kernel of the induced map on 
stalks is H~( X, 7T*Fp) for any x E Xu. By [5, m.l.28], this is H~(Spec o.x, 7T*Fp)' 
which is the kernel of the restriction map 7T*Fp (SpecO,J ~ 7T*Fp(SpecKx)' where 
Kx = K;x for Ix the inertia group corresponding to o.x ~ Ks' Let X' = Speco.x and 
Y' = X' X x Y. Then this is the map 

Fp (closed fiber of Y'/X') ~ Fp (genericfiber of Y'/X') , 

which is clearly injective since Fp is the constant sheaf on Y'. Thus, the map on 
stalks is injective, and the same is true for the map of the sheaves themselves. 

If x E X and r > 1 points of Y lie over x, i.e., Yx consists of the points Yl" .. , Yr' 
then (7T*Fp)x;::: (Fpf. On the other hand, it is true that EElin~-ol(g*Ga"oh;::: 

EElin~-ol(Ga"o)~x. Since fy = f n Ix for some Y ~ x, we find (Ga"O)~x = (Ga"O)~" But 
the right hand side is Fp if fy acts trivially and ° otherwise. 

The decomposition group fy is a subgroup of the cyclic group f = (s) and the 
ramification index at Y is n/r, so the order of fy is n/r and fy = (sr). For v E V;, 
we get srv = Crv, where we abbreviate Cj(s) by C. This means we want c r to be 
the identity, more precisely, i = 0, n/r, 2n/r, ... , (r - l)n/r (= n - n/r < n - 1). 
We conclude that 

n-l r-l 

E9 (Ga"O)~Y = E9 (G"kn/',o)~';::: (Fp)'. 
i~O k~O 

Since the stalks have the same dimension and we know the map of sheaves IS 

injective, it is an isomorphism, as desired. / / 

COROLLARY 4.2. Let Ox, 0 y denote the p-ranks of X, Y respectively. Then 
n-l 

1 - Oy= 1- 0x+ L X(X,g*G",o)' 
i~l 
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PROOF. Take cohomology in the theorem and use that X(Xel' '1T*Fp) = X(Yel' Fp) 
= 1 - 0Y' X(Xep Fp) = 1 - ox' Also see the statement below about g*GI.O' / / 

COROLLARY 4.3. Let X = pI and Y be a hyperelliptic curve with '1T: Y ---4 X the 
corresponding morphism of degree 2. Let L = k(Y) = K(fl/2) for f E K* and 
a = f(P-I)/2, where the characteristic of k is greater than 2. Then the Hasse- Witt 
matrix of Y is A( a). 

PROOF. The Hasse-Witt matrix is the matrix of the endomorphism of H\Y, Oy) 
induced by the Frobenius morphism of Y. By Theorem 4.1, we have '1T*Fp = g*GI,o 
EEl g*Ga,o' It is clear that g*GI.O' which is g*Fp, is the constant sheaf Fp. Hence there 
is a short exact sequence 

of sheaves on Xet . 
There is also an exact sequence 

of sheaves on Yet. The locally free sheaf '1T*Oy is, in fact, decomposable of rank two 
on Xet and hence '1T*Oy = O(s) EEl O(t) for some integers s, t by [4, V.2.14]. 
Calculation of the cohomology groups of this sheaf on Xet shows that s = 0 and 
t = -u < 0, and then dim k Hl(Xel' Ox EEl O(-u)) = gy implies u = gy + 1. As a 
result, we get a commutative diagram with exact rows and columns: 

0 0 0 
! ! FRx - 1 ! 

0 ---4 Fp ---4 Ox ~ Ox ---4 0 

! ! ",.(FRy-l) ! 
0 ---4 '1T*Fp ~ '1T*Oy ---4 '1T*Oy ~ 0 

! ! ! 
0 ---4 H ---4 O(-g - 1) O(-g - 1) ~ 0 

! ! ! 
0 0 0 

Therefore, H = g*GaO' 
Since a 2 = f(p-I) 'is a (p - l)st power in K*, we see that a and a-I determine 

the same coset of K*/K*(p-l), so GaO =:; Ga-1 0' For the standard choice of f as a , , 
polynomial of degree 2gy + 1 or 2gy + 2 with no multiple roots, the best choice of 
L is clearly O(g + 1). We find from Corollary 3.2 that X(Xel' g*Ga-l,O) = -o(a). 

From Remark (2) following Corollary 3.2, we see that g*Ga-1 0 is the etale core of 
O(-g - 1). Thus, the Hasse-Witt matrix of Y is the matrix of HI([p]) with respect 
to the canonical basis of HI(O( -g - 1)); as in the proof of Theorem 3.1, this is just 
A(a). / / 
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REMARK. (1) Corollary 4.3 is due to Manin [14], who proved it using the Cartier 
operator. His matrix is A(a)t, since he worked essentially with the k-linear dual of 
H 1(y,Oy). 

(2) If n f (p - 1), let d = gcd(n, p - 1). If d 1= 1, then Theorem 4.1 goes through 
for the cyclic subgroup of f of order d. More precisely, with the same hypotheses as 
Theorem 4.1 except that n t (p - 1), let ~ ~ f be a cyclic subgroup of order d and 
M = Lt:.. Then ~ = Gal(L/M) and there is a corresponding finite morphism J-t: 
Y ~ Z of degree d (so that '1T factors through Z). It follows that J-t*Fp can be 
calculated via Theorem 4.l. 

Alternatively, there is a minimal r such that n I (q - 1), where q = pro Hence the 
above theory can be applied to sheaves of Fq-modules. This will be discussed in the 
appendix. 

Let L/K be an abelian extension of degree n I(p - 1) and f = Gal(L/K). Let 
'1T: Y ~ X be the corresponding finite morphism. The irreducible representations of 
f are homomorphisms C: f ~ Q/Z, where C(f) is a subgroup of Z/nZ, the 
unique cyclic subgroup of Q/Z of order n. There is a tower of fields K < K C = 

L KerC < L. Then KerC = Gal(L/Kc) and C(f) = Gal(Kc /K) is a cyclic group of 
order dc I n. Moreover, we have K C = K(fJ1dc ) for some fc E K*. 

COROLLARY 4.4. Let'1T: Y ~ X be the morphism corresponding to L/ K. Then 

where f' is the gruop Homz(f, Q/Z). 

PROOF. Let Vc be the simple F[f]-module corresponding to the homomorphism 
C. Then Theorem 4.1 shows Vc is the stalk of the etale K-group scheme Gk~O for 
nc = (,p - 1)/dc- If Ch/ C(f) ~ F/ is defined by Sc ~ Ch/sC>, then f acts on 
Vc by scv = Chf(sc>v, where Sc is the generator of C(f). 

Since ('1T*Fph, is the regular representation of f, we get ('1T*~)1j ~ [ EEl c E rGf:~oh· 

As in Theorem 4.1, it follows that we have '1T*~ = EEl c E fg*Gf:~O' / / 
EXAMPLES. We conclude by computing the p-ranks of several curves over pi to 

illustrate Theorem 4.1 and its corollaries. 
(1) Let Y be the projective completion of the elliptic curve with affine equation 

y2 = x{x - 1){x - A), 

for A E k*, k an algebraically closed field of characteristic p> 2. For f(x) = 
x(x - 1)(x - A) and a = f(p-l)/2, we can use A(a) as in the proof of 4.3. We have 
A ( a) = d p _ l' the coefficient of x p -1 in a. This is just the polynomial h / A) of [4, 
IV.4.22], giving the classical Hasse invariant for the elliptic curve Y. 

(2) Let p = 7 and L/ K be Galois of degree 3. Choosing I 1= P and applying 
Corollary 1.2, we see that the number t of ramification points of the corresponding 
curve Y is gy + 2, since Y is totally ramified. The matrix A(a- i ) is an (m - 1) X 
(m - 1) matrix, where m(p - 1) ~ deg(a- i ). Assume the ground field k is algebrai-
cally closed of characteristic p. 



ETALE COHOMOLOGY OF p-TORSION SHEAVES. I 183 

(a) Let gy = 4 and assume Y is the projective completion of the curve with affine 
equation 

y3 = [h(X)]-l. 

Here h(x) = nJ~l(X - a) for distinct aj E F7. Then a- i = [h(x)fi for i = 0,1,2. 
For i = 1, we get m = 2 and A(a-1) = d 6 • For i = 2, the value of m is 4. The 3 X 3 
matrix A( a- 2) has entries 

Using a Fortran program, a computer generated the following table with 7 rows 
(Table 1). In all these cases, a y = 4 = gy and Y is ordinary, i.e., the p-rank and 
genus of Y coincide. 

(b) Let g y = 4 and the affine equation be 

y3 = (1 - x5r1. 

The sizes of the matrices are the same as in (a). For i = 1, the entry d6 = 0 and 
a(a- 1 ) = O. For i = 2, the only nonzero entries are d 5 = 3 and d 20 = 1. Thus 
a(a- 2 ) = O. We find a y = 0 < gy and Y is supersingular, i.e., the p-rank of Yis O. 

N ow let the affine equation be 

where l(x) = n}~l(X - a) for distinct aj E F7. The matrix sizes are unchanged. 
The following 21-row table (Table 2) was also computer-generated. When A( a-1 ) = 
0, we get a y = 3 < g y and Y is not ordinary. Otherwise, a y = 4 and Y is ordinary. 

The 3 X 3 matrices A(a- 2 ) whose entries are given in the two tables below have 
the following properties: (i) A 3 = 613 = -13 (mod 7) for all A = A(a- 2); (ii) all A2 
are distinct. 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

a1 

0 

0 

0 

0 

0 

0 

1 

a 2 a 3 

1 2 

1 2 

1 2 

1 2 

1 3 

2 3 

2 3 

a4 a 5 a6 

3 4 5 
3 4 6 

3 5 6 

4 5 6 

4 5 6 

4 5 6 

4 5 6 

TABLE 1 

DEGREE 6 
A(a-1 ) d 6 d 5 d 4 dl3 d12 d ll d 20 d 19 d 18 

5 3 3 1 0 6 1 0 0 3 

5 3 6 4 0 6 2 0 0 3 

5 3 2 2 0 6 3 0 0 3 

5 3 5 2 0 6 4 0 0 3 

5 3 1 4 0 6 5 0 0 3 

5 3 4 1 0 6 6 0 0 3 

5 3 0 0 0 6 0 0 0 3 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 
10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 
20. 

21. 

a l 

0 

0 

0 

0 

0 

0 

0 

0 

0 
0 

0 

0 

0 

0 

0 

1 

1 

1 

1 
1 

2 

a 2 

1 

1 

1 

1 

1 

1 

1 

1 

1 
1 

2 

2 

2 

2 

3 

2 

2 

2 

2 
3 

3 

a 3 a 4 

2 3 

2 3 

2 3 

2 4 

2 4 

2 5 

3 4 

3 4 

3 5 
4 5 

3 4 

3 4 

3 5 

4 5 

4 5 

3 4 

3 4 

3 5 

4 5 
4 5 

4 5 
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TABLE 2 

DEGREE 5 

as A(a- I ) d6 ds d4 

4 1 5 4 4 

5 0 1 1 2 

6 0 2 6 1 

5 1 3 4 2 

6 1 6 4 1 

6 2 1 0 4 

5 0 4 6 4 

6 2 2 0 2 

6 1 6 3 1 
6 0 2 1 1 

5 2 4 0 1 

6 0 4 1 4 

6 1 3 3 2 

6 0 1 6 2 

6 1 5 3 4 

5 5 3 0 0 

6 5 5 0 0 

6 5 6 0 0 

6 5 6 0 0 
6 5 5 0 0 

6 5 3 0 0 

dl3 d12 d ll d 20 d I9 d I8 

3 2 6 1 2 5 

4 4 5 1 5 1 

5 1 2 1 1 2 

5 4 6 1 1 3 

6 1 6 1 4 6 

0 3 0 1 0 1 

6 2 2 1 4 4 

0 6 0 1 0 2 

1 1 1 1 3 6 
2 1 5 1 6 2 

0 5 0 1 0 4 

1 2 5 1 3 4 

2 4 1 1 6 3 

3 4 2 1 2 1 

4 2 1 1 5 5 

1 6 0 1 3 3 

2 3 0 1 6 5 

3 5 0 1 2 6 

4 5 0 1 5 6 
5 3 0 1 1 5 

6 6 0 1 4 3 

Appendix I: Sheaves of Fq-modules. Here we briefly sketch results on constructible 
sheaves of Fq-modules that can be obtained by the above methods. We begin with a 
discussion of the group scheme Fq and q-linear maps. The relationship between Fp-
and Fq-cohomology is given in Corollary AL2. Following a version of Theorem 2.1, 
we consider finite etale group schemes of rank q over the generic point of an integral 
scheme and modifications of Theorems 2.6,2.7. We repeat the appropriate versions 
of 3.1,3.2 and 4.1, 4.2. We conclude with several examples of the use of Fq-cohomol-
ogy to compute p-ranks via the new versions of 3.2, 4.2. 

Let X be a scheme of characteristic p > 0 and set q = pr, r > 1. Then Fq = 
Spec(Ox[Tl/(P - T)) is a finite etale group scheme of rank q over X. There is a 
short exact sequence 
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of sheaves on Xet • Recall that FR is the map a ~ a P• (To show exactness, one can 
view Ga as a vector group and apply the obvious variant of Lemma 2.2.) 

Next let X be a complete projective variety over an algebraically closed field k of 
characteristic p. The finite-dimensional k-vector spaces Hi( Xep Ga) have a q-linear 
endomorphism induced by (FRY. By a q-linear endomorphism of a finite-dimen-
sional k-vector space V, we mean an additive homomorphism f: V ~ V such that 
f(av) = aqf(v) for a E k, v E V. 

Modifying the results of [12], we find that any such vector space V has a 
direct-sum decomposition into a sernisimple subspace v;,~q) (= nm;;dImfm) on 
which f is bijective and a subspace Vn(q) (= Um;;'lKerfm) on which it is nilpotent. 
(In the discussion before Corollary 2.3, we denote v;,~p) by v;,s, Vn(p) by Vn.) Here 
the k-dimension of v;,~q) equals the Fq-dimension of Vi. If we define the q-stable 
rank of the matrix B of f with respect to any basis to be the rank of BB(q) ... B(qd-l) 

(d = dim k V), then the q-stable rank of B equals the k-dimension of v;,~q). We see 
that Hi(Xep Fq) is a finite-dimensional Fq-vector space for all i. 

PROPOSITION ALl. Let V be a finite-dimensional vector space over an algebraically 
closed field k of characteristic p > O. Let f be a q-linear endomorphism of V with 
corresponding decomposition V = v;,~q) $ v;q). Then r gives the same decomposition 
of V for all s ~ I. 

PROOF. For simplicity, denote the original decomposition by V = ~s $ Wn and 
the decomposition corresponding to r by V = ~s $ Un. Then f is bijective on ~s 
implies fS is also; hence ~s ~ ~s. If r 0 g is the identity on Uss ' then f 0 r~lg is 
also; then ~s ~ ~s. Moreover, f is nilpotent on a subspace if and only if r IS 

nilpotent on this same subspace. / / 
Let 

and 

COROLLARY AL2. X(X, Fq) = X(X, Fp). 

PROOF. Apply the proposition to V = Hi( Xep Ga) and f = FR. / / 
REMARK. If Fp-cohomology is known, we see that Fq-cohomology provides no new 

information. However, we will use Fq-cohomology to calculate ~-cohomology when 
this latter cannot be obtained by our usual methods. 

We now restate some of the results of earlier sections in this context. 

THEOREM 2.1 (BIS). Let X be a scheme of characteristic p > O. Let M be a 
locally-free sheaf of finite rank on X Zar with q-linear endomorphism f. Denote by H the 
subsheaf of M fixed by f. Then H is an etale group scheme on X and 

f~l 

O~H~M~M~O 

is a short exact sequence of sheaves on Xet • 
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PROOF. Use the obvious variant of Lemma 2.2. / / 
REMARK. With the hypotheses of Theorem 2.1, let rG = Hom( A D, Fq) and f = [p] r. 

Then rG is the subsheaf of Lie(A) fixed by f. This is a special case of the above 
result. 

For X integral, K = k(X) and a E K*, let H~q) = Spec(K[Tl/(P - aT». (We 
used G:'o for H~p) earlier.) Then H~q) is a finite etale group scheme of rank q over 
'I) = Spec K. Every twisted form [5, p. 134] of Fq over 'I) can be described this way by 
Kummer theory [5, p. 125], since Aut(Fq ) == Z/(q - l)Z (see [2,111.5.3.3]). If X is 
quasi-compact and has an ample divisor, the proof of Lemma 2.5 shows there is an 
invertible sheaf L and a global section a of Lq-l extending a. 

Suppose L is an invertible sheaf and a' is a global section of Lq-l extending a-I. 
Define a q-linear morphism f: L-1 ~ L-1 by f(x) = a' ® x q• Let H be the 
subsheaf of L -1 fixed by f. We can apply Theorem 2.1 (bis) to H. The discussion on 
group schemes of rank p before Lemma 2.5 can easily be modified to show that H 1U 
is a finite etale group scheme of rank q and H1x- U is trivial, where U is the open set 
of all x E X such that < $. mxL%-I. If L%-I/mxL%-1 == k', then Hx"" Speck' for 
x $. U and Hx == (Fqh, for x E U. Finally, H~q) == Hom(H~~(, Fq). 

Let X be a smooth proper curve over an algebraically closed field k of character-
istic p > O. Let F be a constructible sheaf of Fq-modules on Xet such that H~q) is 
the finite etale group scheme corresponding to Fr,. Let L be an invertible sheaf and 
a' a global section of Lq-l extending a-I. Let H be the sub sheaf of L-1 fixed by the 
q-linear morphism of the previous paragraph. Then Theorem 2.6 goes through with 
G replaced by Hand (J replaced by (Jq (= the q-stable rank of the matrix 
corresponding to Hl(f). Denote the q-tame conductor at x of a constructible sheaf 
F of Fq-modules by 

t~q)(F) = dimF(Fr,) - dimF(Fx)' 
def q q 

Clearly, Theorem 2.7 holds with n(a') renamed by n/a'), LP-l replaced by Lq-l 
and t x< F) replaced by t~q)( F). 

At the beginning of §III, let F be a constructible sheaf of Fq-modules such that 
Fr, == H~q)(Ks)' where K = k(pl) and a E K*. Denote by A/I) the matrix A(f) 
with q substituted for p. Let (Jq(f) denote its q-stable rank. 

THEOREM 3.1 (BIS). Under the above hypotheses, 
X(pl,F)=d-(Jq(a- 1)+#q- L t~q)(F), 

where d = 1 if deg a-I = 0, and d = 0 otherwise. Here # q is the number of distinct 
zeros and poles of a-I, less 1 when (q - 1) Ideg a-I 01= O. / / 

The modification of the proof is straightforward. 

COROLLARY 3.2 (BIS). Let g: 'I) = SpecK ~ pI be the inclusion of the generic point. 
Under the same hypotheses, we have 

X(PL, g*H~q») = d + Zq - (Jq(a- 1), 
where d = 1 if deg a-I = 0, and d = 0 otherwise. Here Z q is the number of distinct 
zeros of a-I whose orders are divisible by q - 1. / / 
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Again, the modification of the proof is easy. 
For §IV, let r be minimal such that n I(q - 1), where q = pro Fix this value of q. 

Denote H~q) by Ha. 

THEOREM 4.1 (BIS). Let r = Gal(L/K) beacyclicgroupojordernl(q -1), where 
L = K(fl/n) jor some j E K*. Let 'TT: Y ~ X be the corresponding jinite morphism. 
Then 

jor a E j<q-.l)/n. / / 

n-l 

'TT*Fq ~ EB g*Ha , , 
i=O 

The proof is easy to change. 

COROLLARY 4.2 (BIS). Let ux, U y denote the p-ranks oj X, Y respectively. Then 
n-l 

1-uy =1-ux + LX(X,g*Ha ,)· 
i=l 

PROOF. Take cohomology in 4.1 (bis) and use Corollary AI.2. Note that g*H1 = 
g*Fq ~ Fq . / / 

REMARK. The above result provides the method of addressing the case n f (p - 1) 
indicated in Remark (2) following Corollary 4.3. 

In the paragraph immediately preceding Corollary 4.4, replace p - 1 by q - 1. In 
the statement of Corollary 4.4, replace Fp by Fq and g*Gf:~O by g*Hf: c , where 
nc = (q - l)/dc- The proof presents no difficulty. 

EXAMPLES. We now compute the p-ranks of several curves over pI to illustrate 
Theorem 4.2 (bis). 

Let p = 5 and L/K be Galois of degree n = 3, so n I(q - 1) for q = p2 = 25. 
The number t of ramification points of the corresponding curve Y is g y + 2. The 
matrix A/a-i) is an (m - 1) X (m - 1) matrix, where m(q - 1) ;;:, deg(a- i ). As-
sume the ground field k is algebraically closed of characteristic p. 

(1) Let g y = 3 and assume Y is the projective completion of the curve with affine 
equation 

y3 = (1- x4rl; 

it is ramified over the point at infinity. Then a- i = (1 - X 4 )8i for i = 0,1,2. For 
i = 1, we get m = 2 and Aq( a-I) = d 24 = 3. Thus, uq( a-I) = 1. For i = 2, the value 
of m is 3. The 2 X 2 matrix A/a- 2 ) has entries 

( d24 d 49 ) 
d 23 d 48 • 

The only nonzero entry is d 24 = 3 and uq(a- 2) = 1. Hence u y = 2 < gy and Y is 
not ordinary. 

(2) Let g y = 4 and the affine equation be 

y3 = (1 - x 6r\ 
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which is unramified over the point at infinity. We have a- i = (1 - X 6 )8i for 
i = 0,1,2. If i = 1, then m = 2 and Aia-1) = d 24 = 0; this gives aia-1) = O. The 
value of m is 4 when i = 2. The 3 X 3 matrix Aia-2) has entries 

( 
d24 d 49 d 74 ) 
d 23 d 48 d 73 . 
d 22 d 47 d n 

It is the O-matrix so aia-2) = O. This gives a y = 0 < gy and Y is supersingular. 
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