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ON ROOT INVARIANTS OF PERIODIC CLASSES 
IN Ext A(Zj2, Zj2) 

PAUL SHICK 

ABSTRACT. We prove that if a class in the cohomology of the mod 2 Steenrod algebra 
is un-periodic in the sense of [10], then its root invariant must be un + I-periodic, 
where Vn denotes the nth generator of '1T*(BP). 

1. Introduction and statement of results. This work is motivated by a desire to 
understand the relationship between two ideas of recent interest in stable homotopy 
theory. The first concept is that of vrperiodicity in stable homotopy, which has been 
extensively studied in the setting of the Novikov spectral sequence [11, 12]. In [2], a 
start was made toward studying this phenomenon in the setting of the classical 
Adams spectral sequence (clASS). This study was continued in [10], where complete 
definitions were given of the notion of vrperiodicity in Ext A(Zj2, Zj2). The second 
idea is that of the root invariant. This invariant is defined using W.-H. Lin's 
theorem, which relates the stable homotopy of spheres with that of projective spaces. 
Complete definitions can be found in [9 and 12]. 

To state our results, we need to review the definitions and earlier results involved. 
The following theorems and definitions can be found in [10]. We recall that a class 
x E R, a commutative ring, is said to be a nonzero divisor if rxn =1= 0 for all nonzero 
r E R, and all n E N. Here A denotes the Steenrod algebra at the prime 2, and Ai 
denotes the Hopf subalgebra generated by {Sqo, Sq\ Sq2, ... ,Sq2'}. Let Qi denote 
the ith Milnor generator and E(QJ be the exterior algebra over Zj2. 

THEOREM (1.1). For each i ~ 1, there exists a unique nonzero divisor Wi E 
Extf l

•2,+1(2<+I-l)(Zj2,Zj2) such that Wi restricts nontrivially to Ext E(Q)(Zj2,Zj2) 
and ~orresponds to the class vrl E '1T*(BP). ' 

We hereafter use the notation vrl E Ext A,(Zj2,Zj2). We henceforth suppress 
the second module in Ext(M, N) whenever it is Zj2. 

For k> i, there is also some power of vrl present in Ext A/Zj2). In fact, we 
have the following result. 

THEOREM (1.2). For k any positive integer, there exist positive integers N1, N2,··., Nk 
such that 
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228 PAUL SHICK 

Note that the integer !if; also depends upon k. Note also that Nk can be chosen to 
be 1 by Theorem 1.1. It should be mentioned that although vtl and its multiples 
are classes in Ext A (Zj2), vtl N, is a coset in Ext A (Zj2), for k > i. Theorem (1.2) 

, k 

follows easily from a theorem of Lin [6]. In particular, Theorem (1.2) implies that for 
all k ~ i, Zj2[vt IN,] c Ext AJZj2). For each k ~ i, we localize Ext Ak(Zj2) with 
respect to Vi. Since Ext A(Zj2) = lim k Ext A (Zj2) this gives a map 

~ k 

fi: Ext~/(Zj2) --+ ~ [ExtA:(Zj2)(Vi- 1 )] , 

k 

which enables us to define the following concept. 
DEFINITION (1.3). A class x E ExtA(Zj2) is v;-periodic if fi(x) =1= 0, and is 

v;-torsion otherwise. 
Notice that this definition is equivalent to the following: if qt: ExtA(Zj2)--+ 

Ext~JZj2) denotes the usual restriction then x E Ext A(Zj2) is v;-periodic if there 
exists a K> 0 such that q{(x)( vtl N, Y =1= 0 for all s ~ 0 and k ~ K. 

The main result of [10] is 

THEOREM (1.4). If x E Ext A(Zj2) is vn-periodic, then x is also vn+k-periodic for all 
k ~ o. 

Equivalently, if x E ExtA(Zj2) is vn-torsion, then x is also vk-torsion, for all k 
such that 0 ~ k ~ n. 

In the setting of BP *BP-comodules, this result is due to Johnson and Y osimura 
[3]. Theorem (1.4) allows one to prove 

COROLLARY (1.5). There is a filtration, which we call the chromatic filtration, 

Ext (Zj2) = F c F: c Fe· .. c Fe· .. A -1 0 1 I 

such that F; - F; + 1 is the set of classes that are Vi + cperiodic but V k -torsion for all 
k ~ i. 

The second major concept that we deal with here is the root invariant, first 
defined in [8]. This invariant is constructed using W.-H. Lin's theorem [4]. To state 
this, let R P _ k denote the Thorn spectrum of - k times the canonical line bundle 
over Rpoo. Let P denote the direct limit lim. H*(RPj ; Zj2). Here, P is 

~J~-OO 

isomorphic to the ring of Laurent series Zj2[x, X-I], where Ixl = 1. The Steenrod 
algebra action is given by Sqixi = ({)xi+i. 

THEOREM (1.6) (LIN'S THEOREM). The inverse limit lim. 'lTt(RPj ) 20 'lTt(S-I). 
~J-+-OO 

Also, ExtA(P) 20 Ext A(L- 1Zj2). 

We use the following ideas to define the root invariant. Let Pm denote the 
A-module H*(RPm; Zj2), where m is any integer. We have a map of A-modules im: 
Pm --+ L mZj2, induced from the map generating 'lTm(RPm). There is also a map k m: 
Pm --+ P, given by the system of maps RPm- k --+ RPm which collapse the bottom k 
cells of RPm- k . With these conventions, we define the root invariant as follows: for 
a E Ext~/(Zj2), we may regard a as living in Ext~/-\P). There exists a maximal 
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integer N such that kJ,(a) =1= ° in Ext~/~\PN)' We then define the root invariant of 
a, R ( a), to be the coset given by 

R(a) = {Y E ExtAt~1(};NZ/2): jJ(y) = kJ,(a)}. 

Note that N will always be negative, for s > 0, by the proof of the algebraic 
Kahn-Priddy theorem [5], so that R will preserve the s-filtration and raise the 
(t - s)-filtration of a class. The diagram one should have in mind is 

Ext~,t(Z/2) 
= 

ExtAt~l(p) --> 

i R 

ExtAt~N~1(Z/2) k* 
Largest N s. t. 

(1.7) N k~(a) *- o. 
t~ 

.* 
ExtAt~1(};NZ/2) 

IN 
Ext~{~l(PN) --> 

For a E 'lT~(So), we define the geometric root invariant of a, Rc(a), in a similar 
manner. This geometric root invariant appears as the "Mahowald invariant" in [13]. 
Calculations of R( a) for a E Ext~/(Z/2), t - s < 16, have appeared in [9]. 

The goal of this paper is to prove the following result, which links these concepts 
of v;-periodicity and root invariants. 

THEOREM A. Let a E Ext~/(Z/2) be v;-periodic in the sense of Definition (1.3). 
Then the root invariant of a, R(a), is vi+1-periodic. 

The geometric version of this result was conjectured by Mahowald and Ravenel, 
and has been attacked by Hopkins and Wegmann using techniques from the proof 
of the Nilpotence Theorem. Also, this result seems closely tied into the notion of 
smooth linear Zip actions on exotic spheres, as the work of Schultz and Stolz in [14 
and 16] points out. 

The proof of this theorem uses the machinery of Koszul-type resolutions, pre-
sented in [1], together with the techniques used in the proof of Lin's theorem, found 
in [7]. The major concept in [7] is the following splitting of A-modules, due to Davis 
and Mahowald: 

(1.8) 

( ) - l'I'I ~k2,+j~1(A ®A"'j Z/2) Davis-Mahowaldsplitting: Yi:A®A,P/Fm --> W.:.. _ 
k~m 

where Fm is the A;-submodule generated by {xi E P: j < m}. This gives a splitting 
in Ext, after the change of rings isomorphism and taking the limit as m goes to 
minus infinity: 

(1.9) Y;*: EB };k2'+j~lExtAi-l(Z/2)! ExtA,(P). 
kEZ 

We use this to define the ith root invariant 

R i : ExtA (Z/2) ~ ExtA (Z/2) 
1-1 I 
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by including Ext A,,(L-1Zj2) in as the -1 summand in ExtAi(P). By taking inverse 
limits, we can now analyze the root invariant 

R: Ext~/(Zj2) ~ ExtA t - N - 1(Zj2) 

in terms of these R;'s. Davis and Mahowald have completely calculated 
R 2 : Ext A,(Zj2) ~ Ext A/Zj2) 

in [1]. Recalling that for all i > 0, we have v;'+' E Ext A i (Zj2), with all of its powers 
nonzero, we prove the following result. 

THEOREM B. For the class V;~+l' E ExtA,_,(Zj2), we have Ri(V;~+l') = vt' E 

Ext Ai(Zj2). Also, R1(hi;) = vi E ExtA,(Zj2). 

This is proved using the Koszul spectral sequence, a tool first presented in [1]. A 
brief summary is given in §2. 

The paper is organized as follows: in §2, we analyze the Koszul spectral sequence 
used to calculate ExtAi(P). In §3 we prove Theorem B. Finally we prove Theorem A 
in §4. Throughout the paper, we use homology and cohomology with Zj2 coeffi-
cients. By "spectrum", we mean a connective spectrum localized at the prime 2. The 
author would like to thank Stewart Priddy, Don Davis, and especially Mark 
Mahowald for many helpful conversations that helped to produce this paper, and 
also the referee for his helpful comments. The main results of this paper form part of 
the author's Ph.D. thesis, completed at Northwestern University in 1984 under the 
direction of Mark Mahowald [15]. 

2. Calculation of the Koszul spectral sequence for Ext A/P, Zj2). In this section, we 
explicitly calculate the Koszul spectral sequence for Ext Ai(P, Zj2) in terms of the 
components given by the Davis-Mahowald splitting (l.9). We first briefly review the 
construction of the Koszul spectral sequence, which first appeared in [1]. For 
complete details, see [10]. 

The Koszul spectral sequence (hereafter abbreviated KSS) is a tool which can be 
used to calculate ExtA(M), where M is any Armodule, in terms of ExtA ( ,Zj2) 

I 1-1_ 

of certain modules. We construct an exact complex of Armodules and apply the 
functor Ext Ai (_, Zj2) to it. 

To construct this complex, we exploit the following fact about the mod 2 Steenrod 
algebra: (Ai ®A i _, Zj2)* ~ E(rt,rr', ... ,ki+1), both as algebras and as left A-
modules, where E ( ) denotes an exterior algebra over the field F2· Here r k is X ( ~ k)' 
the conjugate of the kth Milnor generator. The Steenrod algebra action is given on 
the right by (r?~1_)Sq2k = r?~;' and (kf')Sq2i = 1, extended by the Cart an formula. 
For convenience, we denote (Ai ®A i _, Zj2)* ~ (A;/ jA i- 1)* by E(i). E(i) is an 
Armodule but not an A-module. We decompose E(i) as an F2 vector space into a 
direct sum E(i) ~ EB 0 E,,(i), where E,,(i) is the F2 vector space spanned by the 
monomials of length; in ut, rr-', ... , ki+ d. Each of these E,,(i)'s is closed under 
the Ai_caction inherited from E(i), so the decomposition holds as an Ai_I-module. 

We resolve this exterior algebra by using pieces of a polynomial algebra. Let 
R(i) = Zj2[kt, kf-', ... , ki+ 1]. This is a right A-module, with the same action as 
E(i). We can decompose R(i) as an Ai_cmodule R(i) ~ EB,,~oR,,(i), where R,,(i) 
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is the F2 vector space spanned by monomials of length s in U?" rr I, ••. , ri+d. 
Each of the R,,'s is an A-module. 

"" To construct the resolution, form the tensor product E/i) ® Z/2 Rs(i), a right 

A-module with the action given by the Cartan formula. (We will abbreviate this by 
Er ® R s') Define kr,s: Er ® Rs ~ Er- 1 ® Rs+1 by 

k r,s(x1x 2 ••• Xr ® p) = L X1X2 ••• Xj ... Xr ® xjP, for all r > 1, s > 0, 
)=1 

where each X k is an element of U?" rr', ... , r i+1} and p is a polynomial of these. 
Each k r.s is an Armodule map. Composing these we get an exact sequence 

° ~ Ei+1 ® Rs ~ Ei ® Rs+1 ~ ... ~ Eo ® R S +i+1 ~ 0. 

Summing these sequences over a constant s, we obtain 

which is an exact sequence. The differential is given by 

d [(x x ... x ) ® p] = "(x x .. · x ... x ) ® xp ,,12 r L.. 12 J r J' 
)=1 

Denote the dual of R(1(i) by NAi). Then, dualizing the exact sequence above, we 
have 

THEOREM (2.1). For i > ° there exists a family of A-modules, N(1(i), a > 0, defined 
above, and Armodule maps 8(1: Ai ® A,_I N(1+1(i) ~ Ai ® A,_I N(1(i), such that the 
sequence 

° ~ Zj2 ~ Ai ®A'_I No(i) ~ Ai ®A,_, N1(i) ~ ... ~ Ai ®A,_, N(1(i) ~ ... 

is exact as a sequence of Armodules. 

We refer to this as the Koszul-type resolution of Zj2 over Ai (KRi(Zj2) or just 
KR if i is understood). 

Applying the functor Ext~~(1,t(_) to the complex, we obtain 

THEOREM (2.2). For i any positive integer, there is a family of A-modules, N(1(i), 
a > 0, defined above, such that for any Armodule M there is a trigraded spectral 
sequence converging to ExtA:(M), with Er,s,t =: Ext~~_(1;t(N(1(i) ® M). 

This is called the Koszul spectral sequence for M over Ai (KSSi(M)). Note that a 
trigraded spectral sequence is a family of spectral sequences, one for each positive 
integer t. 

We use this KSS to calculate part of Ext Ai (P). We recall that the Davis-Mahowald 
splitting of Ai ® A P jF (1.8) yields, after change of rings and limits, 

,-I 

(1.9) y;*: EB ~k2'+'_1ExtA,_,(Zj2) ~ ExtA,(P). 
kEZ 
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There are KSS's converging to both sides of this isomorphism. To the right-hand 
side, we have 
(2.3) E(J,s,t = Ext'-(J,t(A ® N (i) ® p) == Ext'-(J,t(N (i) ® p), 1 A, l A i - 1 (} A i - 1 a 

converging to E~ ExV/(P). On the left-hand side we have 

(2.4) E(J,s,t = ExtS-(J,t('A_ ® N (i - 1) ® [ ffi L k2'+I_lZ/ 2]) 1 Ai - 1 I 1 A i - 2 (J W kEZ 

== Ext~~_(J/( EB L k2<+I_lN(J(i - 1)), 
kEZ 

converging to EO Ext',t (EB L k2,+I_lZ/2). (J A,_l kEZ 
We now explicitly relate these two E1 terms, using the following two lemmas. 

LEMMA (2.5). As an A i _ 2-module, N(J(i) splits as a direct sum 
(J 

N(J(i) == E9 L 2'(JNk(i - 1). 
k=O 

PROOF. Assume that N(J-1(i) splits in this fashion. We recall that the dual of 
N(J(i), R(J(i), is given as the vector space spanned by monomials of length (J in 
gl', Kr ', .. ·, Ki+l}' Now R(J(i) automatically contains a copy of Kt . R(J-1(i), 
since Kl' . m is of length (J if m is of length (J - 1. Further, considered as an 
A i _ 2-module, this copy of Kl' . R(J-1(i) splits off as a direct sum, since no Kl' . m 
can be a target of Sq21 for j ~ i - 1. This shows that R(J(i) == Kl' . R(J-1(i) EB M, 
where M is given by all monomials having no factor of Kl' in them. Thus M is given 
as R(J(i - 1), under the doubling homomorphism Kn ~ Kn+ 1. This raises dimension 
by 2i . (J, so that R(J(i) == L 2i (JR(J(i - 1) EB L 2iR(J_1(i). By our inductive hypothesis, 
we have the result. The i = 1 case that initiates the induction can be readily 
computed by hand (see [15]). 

LEMMA (2.6). Let M be any finite A-module. Then 

( ffi k2'+ 1 1 ) "" ( ) Ext A _ W L - M ~ Ext A M ® Z/2 P . 
I 1 keZ I 

PROOF. If we tensor the Davis-Mahowald splitting (1.8) with M we get 

Yi: E9 Lk2i+l_1( A ® A,_IZ/2) ® M! A ® Ai P /Fm ® M. 
k~m 

Applying Ext A( ), the change of rings theorem gives us the result. Note that it is 
necessary that M be an A-module, not just an Armodule. This is the case for the 
N(J(i)'s which we shall use. 

We now examine the relationship between the two E1 terms given earlier. On the 
RHS: 

(2.7) Ef,s,t == Ext~~_(J/( E9 L m2i - 1N(J(i)) by Lemma (2.6) 
mEZ 

== Ext~~_(J/( E9 L m2'-1[ ffi L2'(J~(i - 1)]) by Lemma (2.5). 
mEZ ;=0 
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So the E1 term for the Ext A (P) contains all of the £1 term for 
Ext::,(J El) k E Z ~k2'+1_lZj2), plus a ~onsiderable amount of excess. The diagram 
that one should have in mind is 

(2.8) 

E1 = EB Ext~~"·t( Ai ® A'_lN(J(i) ® p) (J 
j $ = by Lemmas (2.5) and (2.6) 

EB Ext~~_(J/( EB ~m2'-1 [ EB ~2;"N;(i - 1)]) 
(J mEZ J=O 

ji 

E1 = E¥ Ext~~_"l·t( Ai- 1 ® A'_2N(J(i - 1) 

® [k~Z ~k2'+1_lZj2]) 

KSS 
~ Ext~',t(P) 

y,* 

KSS ( k2,+1 ) ~ Ext"·t ffi ~ -lZj2. A j _ 1 'CI7 
kEZ 

In particular, by Lemma (2.5), N2'+1(i) == ~2'2'+lN2;+l(i - 1) EB (other terms), 
where tl~+11 corresponds to ~2'2;+ltt+l, as the top cell in each module. Let gk denote 
the class in Ext~ (P), so that gk is nonzero for k == -1 (mod2 i +1). Let tk denote the 
analogous class in Ext~ (El)~Zj2), also nonzero for k == -1 (mod2 i + 1). Then in 
diagram (2.8) one obse~~~ that i(tr 1 

• t 2'2,+1_1) = t?~+11 . g-l in Exto. 

3. Calculation of R i ( V;~+l\ We recall the definition of the ith root invariant, R i . It 
uses the Davis-Mahowald splitting (1.9) 

Y*: IT'I ~k2'+1_lExt (Zj2) ~ Ext (p). 
I 'C[] A j _ 1 Ai 

kEZ 

This splitting commutes with the natural projections [7, (1.5)]. We use this, together 
with the maps im and k m defined in §1 (now thoght of as Armodule maps), to 
define Ri as follows: 

Ext'·t (~-lZj2) A i - 1 
~ ExtA,t(P) 

i Ri 

(3.1) 
Exts,t-N(Zj2) A, k* N largest N 

$= 
.* 

ExtA:(~NZj2) 
IN Exts.t(p ) ~ A, N 

Thus R i: ExtA (Zj2) ~ Ext A (Zj2) is given by Ri(a) = {b E ExtA (~NZj2): 
1-1 I f 

i~( b) = k~(a), where N is the maximal integer S.t. k~(a) '* O}. 
To calculate Ri(v;~+:), we need to recall the construction of the classes vre! E 

Ext A (Zj2), as given in [10, §2]. In the Koszul-type resolution (2.2), the top class 
(t?~+/)* E N,,(i), for (J = 2i + 1, can be split off by Armodule maps 

~tZj2 ! N,,(i) ! ~tZj2, where t = 2i+1(2i+1 - 1). 
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This leads to a splitting of complexes 
(3.2) 

Ai ® A;_,No(i) 
p 

~ Ai ®A,_ I N1(i) ~ ... 

t h j 

o ~ Z/2 ~ Ai ® A,_,NO(i) ~ ... ~ Ai ® A,_,No(i) 
t g 

~ Ai ® A"No+! (i) ~ .,. 
t gj 

Ai ®A No(i) 
i-I 

~ Ai ® A N1 (i) ~ ... 
1--1 

The map g corresponds to a class g' E HomtA (Ai ® A No(i» = Ext~,t (No(i», 
where (J = 2i+l and t = 2i+1(2i+1 - 1). This is th~ Ef-2'+",t'term of the KSS'. In [10], 
it is shown that this class is a nonbounding cycle in the KSS and projects to the class 
Wi E Extfl,2,+1(2,+I-l)(Z/2) of Theorem (1.1). 

Recall that 

denote the appropriate nonzero classes. There is a Y oneda product in Ext A (P) given 
by the pairing Ext~/(Z/2) ® Ext~,t'(P) ~ Ext~+s"t+t'(P). In particular, there is a 
class given by vrl ® g-l which w~ will denote by vrlg-1 E Extf"t-1(P) where t 
is as above. This class is nonzero. In fact this class can be constructed by tensoring 
the above diagram (3.2) with the Armodule P. 

Ai ®A No(i) ® P ~ Ai ®A N1(i) ® P ~ ... ,-I ,-I 
t t 

(3.3) ... ~ Ai ® A No (i) ® P ~ Ai®A No+1(i)®P ~ . .. ,-I ,-I 
t t 

Ai ®A No(i) ® P ~ Ai ® A N1 (i) ® P ~ ,-I ,-I 

Thus, the nonzero class in Ext~-l(p) corresponds to a nonzero class in 
,-I 

where (J = 2i+1 as before. This class must be a nonbounding cycle in the KSS,(P) 
by the proof of Theorem A in [10]. This nontrivial class is exactly vr Ig -1 E Ext A, (P), 
as one can check by simply chasing the Y oneda pairing on the E1 term of the KSS. 

2 i + 1 We now calculate y,*(v i g-l)' 

T . * 21"+ 1 21+1 HEOREM(3.4). FOri ~ 1, Yi (Vi g-l) = V'-l L2'2,+1-1' 

PROOF. VC11 E ExtA (Z/2) is obtained by splitting off the top cell (rr ')* in 
N2,+,(i - 1). We now c~l~ulate Y,*(Vr lg-l) on the E1 level of the KSS's. Again, let 
t = 2i+1(2i+1 - 1) and (J = 2i+l. vrlg-1 corresponds to a class {u} E 

Ext~',t-1(No(i) ® P), given as the top class in No(i), tensored with P. But 

Ext~',t~l(No(i) ® p) ~ Ext~"t_~I( E9 ~m2'-I[ ffi ~021~(i - 1)]) 
mEZ }=O 
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by Lemmas (2.5) and (2.6). Now {u} lies completely in the m = ° summand of 
ExtAi_2($mEz~m2i-l[$O~o~02IAj(i - 1)]) for dimensional reasons. Since the iso-
morphism of Lemma d.6) is given here by Yi ® id N' we conclude that {u} 
corresponds to the top cell in ~2'2'+INo(i - 1), the top s~mmand in No(i). By the 
observation at the end of §2, this class {u} corresponds precisely to r{+1 . '2i2<+1_1' 
which yields V}~+1\2'2i+l-l in ExtA ($ ~Z/2). Since this class {u} yields vrlg_1 

,-I 
. 2,+1 k2,+1 1 . 

E ExtA,(P) In one KSS and +~i_lt2i2'+I-:}IE $kEzExtAij~ - Z/2) In the 
other, we conclude that y;*(v}' g-l) = V}~1'2'2'+I-l' It should be pointed out that 
we are dealing with classes in ExtA, and ExtA'_I' not cosets, so that this is actually an 
equality here. The easiest way to view the calculation is in the following diagram. 

Ext~',r_~l(Na(i) ® p) => 

;:,; ~ by Lemmas (2.5) and (2.6) 

(3.5) Ext~"t~l( E9 L m2'-1[ EB L2'2'+1~(i -1)]) 
mEZ )=0 

j 
Ext~"r~l( E9 L k2,+1_lNa(i - 1») => 

kEZ 

From this theorem, we can deduce the following 

THEOREM B. For the class V}~+II E ExtA (Z/2), we have R i(vCll) = V}'+I E 
,-I 

Ext A,(Z/2). Also, R 1(hri) = v1 E Ext A1(Z/2). 

PROOF. The class vr lg-l E Extfl.r-\p) survives k~1 but not k(j, by construc-
. F h *( 21+1 ) 2/+ 1 I h h hon. urt er'Yi Vi g-1 =Vi_1t2'2,+I_l,sot atwe ave 

Ext~,~II.t-l( ~2'2'+l-IZ/2) ~ 

(3.6) ~ Q 

Extfl,t-I(P) 

k~l t largest N 

Ext2o+l,t-l(p ) 
A, -I 

Here the map Q = ~2'2'+I-IRi' Desuspending the entire diagram 2i2i+l - 1 times, 
together with the fact that Extrl,t(Z/2) has only one nonzero class, completes the 
proof of Theorem B. 

4. On the root invariant of a vrperiodic class. In this section, we prove the main 
theorem. 

THEOREM A. Let a E Ext~l(Z/2) be vrperiodic in the sense of Definition (1.3). 
Then the root invariant of a, R(a), is vi+l-periodic. 

We recall that a E ExtA(Z/2) is vrperiodic if fiCa) '* 0, where fi: Ext:4t(Z/2) 
~ lim k[Ext:4 t(Z/2)(vi- 1)]. We will show that fi+l(R(a» '* 0. 
~ k 

We also recall that for k > i, there are co sets vr' and Vt'!-I in Ext Ak(Z/2). 

LEMMA (4.1). For the kth root invariant, R k: ExtAk_JZ/2) ~ Ext Ak(Z/2), we have 
vr' c R k(vt'-I)' whenever both Vt'-1 and vr' are nonzero in ExtAk_JZ/2) and 
Ext AJZ/2) respectively. 
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PROOF. For k = i, this is an easy consequence of the proof of Theorem B (the 
proof works for any power of Vi' not just for the 2i+ 1st power). For k > i, we note 
that the co sets in question here are of a-filtration zero in the KSS's. Thus, the 
calculations actually take place in the KSS's on the Ext Ak_2 and Ext Ak_1 levels. An 
easy induction starting at R i completes the proof. 

We can now complete the proof of Theorem A by using the A-module structure 
preserved by the Davis-Mahowald splitting (l.8). We recall that the splitting is given 
by 
(1.8) 

(Davis-Mahowald Splitting): Yk: A ®AkP/Fm-=: EB ~i2k+l-l(A ®Ak_1Z/2) 
j;;,m 

where Fm is the Ak-submodule generated by {xi E P: j < m}. This gives a splitting 
in Ext, after the change of rings isomorphism and taking the limit as m goes to 
minus infinity: 

. k+l ~ 

Y:: EB ~J2 -1 Ext A k-1(Z/2) ~ ExtAJP). 
jEZ 

(1.9) 

Since (l.8) is an isomorphism of A-modules, the induced map in ExtA( ) must 
respect Y oneda products with classes from Ext A (Z /2). After change of rings, the 
induced map in Ext (l.9) must therefore respect Yoneda products with classes qt( a) 
for a E ExtA(Z/2). With this in mind, we can prove Theorem A. 

PROOF OF THEOREM A. Let a E Ext(Z/2) be vrperiodic. Let k be large enough so 
that qt(a) and qt-l(a) are nonzero in Ext Ak(Z/2) and Ext Ak_JZ/2), respectively. 
For ease of notation, denote qt(a) by a' E ExtA (Z/2). Now, since a is vrperiodic 

k 

in Ext A(Z/2), we have vra' * 0 in Ext Ak jZ/2), for all s where vr * 0 there. 
Consider the action of the map y: on this class. Since a' is the projection of a class 
from Ext A (Z/2), y:(a' . bl_ l ) = a' . y:(b)g-I' because the map Yk is an A-mod-
ule map. 

Now y:(a'l_l) = a'g-I' and if we consider the map kt" on this class we have 
kt,,(a'g-I) = R(a')gN in ExtAk(PN), by the definition of root invariant, where N is 
the maximal N such that kt"yt(a') * O. 

Recall that Y:(Vrl-l) = V;:lgq-l, where q = 2m +i+1, by Theorem (3.4) and the 
fact that Yk commutes with the natural projections. (Note that for m sufficiently 
large, q == -1 (mod2k+l).) Thus, Y:(Vra'LI) = v;:la'gq_I' and if we consider k'tt 
on this class, we have k;-N(v;:la'gq-l) = v;:IR(a')gq_N in ExtA/Pq_N), where q 
and N are as above. Thus R(a') is vi+l-periodic in ExtA/Z/2), completing the 
proof of Theorem A. 
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