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SETS OF UNIQUENESS IN COMPACT, 
O-DIMENSIONAL METRIC GROUPS 

D. J. GRUBB 

ABSTRACT. An investigation is made of sets of uniqueness in a compact 0-
dimensional space. Such sets are defined by pointwise convergence of sequences 
of functions that generalize partial sums of trigonometric series on Vilenkin 
groups. Several analogs of classical uniqueness theorems are proved, including 
a version of N. Bary's theorem on countable unions of closed sets of uniqueness. 

Introduction. The theory of sets of uniqueness in the case of classical trigono-
metric series has a long history and many beautiful results. In recent years, some 
of these results have been carried over to the context of Walsh series. The goal of 
this paper is to generalize the Walsh series results to the case of infinite, compact, 
O-dimensional metric groups. The methods will be quite different from those usu-
ally used in the study of Walsh series. Where before, problems were transferred 
to the unit interval for consideration, now everything can be done on the group 
itself. This simplifies many of the proofs and provides a substantial change in the 
philosophy of approach to uniqueness problems. 

Our main concept is that of a quasi-measure, Any regular, Borel measure may 
be regarded as a quasi-measure. but not conversely. We will characterize positive 
measures among the quasi-measures and use this characterization to obtain our 
uniqueness results. 

One of the remarkable facts about this theory is that no explicit group structure 
is needed in its development. The first section is therefore devoted to defining the 
basic concepts, such as quasi-measures and partial sums of trigonometric series, in 
the context of infinite, compact, O-dimensional, metric spaces with a certain type 
of martingale structure. 

ACKNOWLEDGMENTS. I would like to thank Karl Stromberg for his guidance 
and Ben Lange for many fruitful discussions. 

1. Basic definitions. Let X be a compact, O-dimensional, metric space. Sup-
pose that a sequence of covers of X, {Cn}~=o, is given such that 

(a) Elements of a given Cn are disjoint and clopen, 
(b) Each element of Cn is properly contained in some (unique) element of Cn~ 1 

for n ~ 1, 
(c) Co = {X}, 
(d) U:::"=o Cn is a base for the topology of X. 
For x E X and n ~ 0, denote by U(n, x) that element of Cn which contains x. 

Since each Cn is a cover by disjoint sets, U(n, x) is well defined. 
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We also assume that a Borel probability measure, '\, is given on X such that 
(e) For n 2': 0 and U, V E Cn, we have '\(U) = '\(V) > O. 
Thus, all elements of Cn are given the same mass by ,\. We let an denote this 

common mass, so U E Cn implies '\(U) = an. 
From now on, we assume that X, the sequence {Cn}~=o, and the measure ,\ are 

fixed. 
NOTATION. We let ~A denote the characteristic (indicator) function for a subset 

A of X. 
DEFINITION 1.1. Let TP(X) be the linear span of ~u where U ranges over 

U:=o Cn· Since each such U is elopen, TP(X) is a linear subspace of C(X), the 
continuous, complex-valued functions on X. Since U:=o Cn generates the topology 
of X, this subspace is dense in the uniform norm on C(X). We call elements of 
TP(X) trigonometric polynomials. The reason for this terminology will become 
apparent later. 

DEFINITION 1.2. Let QM(X) = TP(X)* be the linear space dual of TP(X). 
Call elements of QM(X) quasi-measures. If 8 is a quasi-measure and f is a trigono-
metric polynomial, we let (8,1) denote the value of 8 at f. One way of defining a 
quasi-measure is to specify (8, ~u) for U E U~o Cn. The matching condition 

(1.1 ) 

for U E Cn must be checked for well-definedness of the quasi-measure. 
If 8 is a quasi-measure, we define the real and imaginary parts of 8 by 

(1.2) 

and 

(1.3) (1m 8, ~u) = Im(8, ~u) 

for U E U:=o Cn. Then Re 8 and 1m 8 are both quasi-measures and 8 = Re 8 + 
iIm8. 

DEFINITION 1.3. If 8 is a quasi-measure, x an element of X, and n 2': 0, we 
define the nth partial sum of the Fourier series of 8 at x to be 

(1.4) 

Recall that U(n,x) is the element of Cn which contains x and an = '\(U(n,x)). 
Notice that sn(8) is constant on elements of Cn, which shows that sn(8) is a 
trigonometric polynomial for all n 2': O. Also, notice that Sn (Re 8) and Sn (Im 8) 
are real valued. 

Finally, we give several examples which serve to motivate our terminology and 
to provide the main justification for this paper. 

EXAMPLES. Let G be an infinite, compact, O-dimensional, metric group, not 
necessarily abelian. Using the metric and connectivity properties, it is possible to 
find a sequence of elopen, normal subgroups {Hn}~=o of G such that 

(a') Ho = G, 
(b') Hn+l S Hn for n 2': 0, and 
(c') n:=o Hn = {e}, where e is the identity of G. 

If we let Cn = {xH n: x E G}, we obtain a sequence of covers {Cn } ~o satisfying 
conditions (a)-(d). In this case U(n,x) = xHn. 
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If we let >. be Haar measure on G, then condition (e) above is also satisfied. 
(2) If the group of the previous example is abelian (in other words, if G is a 

Vilenkin group), we let r be its Pontryagin dual. Then r is countable and discrete. 
If we let H;, denote the annihilator of Hn in r, i.e., 

(1.5) H;, = bE r: , = 1 on Hn }, 

then, 
(a") Hd- = {I}, where 1 is the constant character, 

" -L -L (b ) Hn S Hn+1 for n 2: 0, and 
( ") Uoo -L C n=oHn = r. 
In this setting, there is already a definition of trigonometric polynomials as finite 

linear combinations of characters. To see that our definition is equivalent to the 
standard one, the following identities are used: 

(1.6) ~xHn = >.(Hn) L ,(x)" 
iEH* 

(1. 7) 
To understand the concept of a quasi-measure in this setting, let q: r -+ C be 

any complex-valued function on r. We may define mq E QM( G) by setting 

(1.8) 
(mq, ~xHJ = }!..~1 (L q(!),) d>' 

xHn EHJ. i k 

= L q(!),(x)>.(Hn). 

The second equality holds since 

(1.9) 1 ,d>' = { ,(x)>.(Hn) 
xHn 0 

if,EH;" 
if, tic H;'. 

This shows that the limit above exists. The matching condition (1.1) is satisfied 
because of the additivity properties of the integral. If we call q the Fourier transform 
of m q , then 

(1.10) Sn(mq ) x) = L q(!),(x) 

i EH* 
is actually a partial sum of the Fourier series of m q . This provides the motivation 
for our terminology in the general case. 

(3) A particular case of the previous example which has been studied is G = 
I1;;'=o Zj(p). If we choose Hn = I1~n Zj(p), properties (a')~(c') are fulfilled. In 
this case, quasi-measures were defined and studied in [1]. For the case p = 2, the 
results may be understood in terms of Walsh series. Quasi-measures in this case 
were studied in [2]. 

2. Convergence properties. Let /1 E M(X), the set of Borel measures on X. 
We may regard /1 as a quasi-measure via 

(2.1) (/1, f) = Ix fd/1 for f E TP(X). 
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Then 

(2.2) Sn(ll, x) = (11, ~U(n,x))jan = Il(U(n, X))jA(U(n, x)). 

Note that if 11, v E M(X) and Sn(ll, x) = Sn(v, x) for all x E X and n ;::: 0, then 
11 = v, since then Il(U(n, x)) = v(U(n, x)) for all x in X and n ;::: o. 

We may regard elements of Ll(A) as measures, and thus as quasi-measures via 

(2.3) (f, g) = (fdA, g) = Ix fg dA for g E TP(X). 

In the case of the Fourier series of a continuous function, the following result is 
obtained. See [3] for the Walsh series case. 

THEOREM 2. 1. If fEe (X), then Sn (I) converges to f uniformly. 

PROOF. 

If(x) - sn(f, x)1 = If(X) - ~ 1 fdAI 
an U(n,x) 

= ~ 11 (f(x) - f)dAI :s ~ 1 If(x) - fldA 
an U(n,x) an U(n,x) 

:S sup{lf(x) - f(y)l: y E U(n, x)} 

Since X is compact and metric, f is uniformly continuous. The last term there-
fore goes to 0 as n goes to 00. This convergence is uniform in x. 0 

While this is a very easy result, it underlies some fundamental differences between 
the classical Fourier series and the present field of investigation. In the classical 
theory, even pointwise convergence of a Fourier series cannot be guaranteed, let 
alone uniform convergence. Essentially, the present case has a "Dirichlet kernel" 
that acts like a "Fejer kernel." 

Our next result requires a standard martingale convergence theorem for its proof. 
The result needed is Theorem 20.56 on p. 369 of [4]. 

THEOREM 2.2. Let 11 E M(X). Write 11 = Ils + fdA where Ils1.A and f E 
Ll(A). Then 

(a) limn --;= sn(ll, x) = f(x) A-a.e. 
(b) limn --;= ISn(ll, x)1 = +00 Ils-a.e. 
In particular, the Fourier series of a A-integrable function converges A-a.e. to 

that function. 

PROOF. Each cover en generates a finite a-algebra of subsets of X, call this 
a-algebra Mn. Then Mn S Mn+l and B(X), the Borel sets on X, is the smallest 
a-algebra containing every Mn. 

If Iln is the restriction of 11 to Mn, and An is a similar restriction of A, then 
the Radon-Nikodym derivative of Iln with respect to An is simply sn(ll) by formula 
(2.2). The result follows from the martingale result. 0 

NOTE. This theorem is proven in a different way (and in a much more general 
context) in §44 of [5]. 
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3. Characterizing positive measures among quasi-measures. 

THEOREM 3.1. Let 8 E QM(X) and assume that there is a real number M 
such that 

(3.1) 

Then 8 E M(X). 8ee Theorem 6 of [6] for the Walsh series case. 

PROOF. Define I1n E M(X) by I1n = Sn (8).A.. Then Ill1n II :::; M for all n ~ O. By 
Alaoglu-Bourbaki, there is a weak* cluster point, 11, of {l1n}~o in M(X) = C(X)*, 
the Banach space dual of C(X). 

Then for U E Ck , X E U, and n ~ k, 

(8, ~u) = L {(8, ~v): V E Cn,v ~ U} = L {ansn(8, y): U(n, y) ~ U} 

= i sn(8)d.A. = Ix ~usn(8)d.A. -+ Ix ~udl1 = (11, ~u), 
where the convergence is of an appropriate subsequence. Thus 8 = 11 as quasi-
measures. D 

Next, we find a simple characterization of the positive measures in terms of their 
Fourier series. 

THEOREM 3.2. Let 8 E QM(X) be such that each sn(8) is real valued and 
assume 

(3.2) lim sn(8,x) ~ 0 for each x E X. 
n->CXl 

Then 8 E M+(X), i.e. 8 is a positive measure. 

PROOF. First, notice that for Q: > 0, sn(Q:.A.) = Q: for all n ~ O. Thus 

lim sn(8 + Q:.A., x) ~ Q: > 0 for all x E X. 
n->CXl 

If we show that 8 + Q:.A. E M+(X), we may let Q: go to 0 to get 8 E M+(X). We 
may therefore assume that strict inequality holds in formula (3.2). 

Under this assumption, fix x E X and n ~ O. For each y E U(n, x), we may find 
ky ~ n such that sky (8,y) > O. 

Then, since U(n, x) is compact and {U(ky, y)}YEU(n,x) covers U(n, x), we may 
find a finite subcover. Since two elements of U:=o Cn are either disjoint or one 
contains the other, this cover may be chosen with disjoint elements {U(kJ,YJ)};=l' 
Then 

p p 

ansn(8,x) = (8'~U(n,x)) = L(8'~U(kj,yj)) = LakjSkj(8,YJ) > O. 
J=1 

Thus sn(8, x) > 0 for every n ~ 0 and x E X. 
Now, 

J=1 

Ix I Sn(8, x)ld.A.(x) = Ix sn(8, x)d.A.(x) = L {ansn(8, y): U(n, y) E Cn} 

= L{(8, ~U(n,y)): U(n,y) E Cn} = (8, ~x) for n ~ O. 
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By Theorem 3.1, we have 8 E M(X). For U E Cn, 8(U) = (8, ~u) = 
ansn(8,x) > 0 for x E U. Thus 8 is a positive measure. 0 

EXAMPLE. The limit hypothesis above cannot be relaxed at even one point of 
X without some additional hypothesis being added. To see this, pick Xo E X, and 
let p, = -bxo ' where bxo is the unit point mass at Xo. Then 

if Xo E U(n, x), 
if Xo 1:- U(n, x). 

Then limn-><Xl Sn(P" x) = 0 for x -=1= xo, yet p, 1:- M+ (X). The problem here is 
that we allow discrete measures as candidates in our discussion. To remedy this 
situation, we first give a lemma to increase understanding of the nature of discrete 
measures. 

LEMMA 3.3. Let p, E M(X). Then 

(3.3) 

In particular, continuous measures are characterized by the condition 

lim ansn(P" x) = 0 for all x E X. n-><Xl 

PROOF. Since n:=oU(n,x) = {x}, limn-><Xlansn(p"x) = limn-> <Xl p,(U(n, x)) 
= p,( {x}). 0 

Now we have 

THEOREM 3.4. Let 8 E QM(X) be such that each sn(8) is real valued. Suppose 
that there is a countable set C of X such that 

(a) limn-><Xl sn(8, x) 2: 0 for x 1:- C, and 
(b) limn-><Xl ansn(8, x) = 0 for x E C. 
Then 8 E M+(X). 

PROOF. Let p, be any measure concentrated on C with p,( {x}) > 0 for x in C. 
Then, for a > 0, sn(ap,) is real valued and limn-><Xl Sn(ap" x) 2: 0 for x E X. Thus 
sn(8 + ap,) is real valued and limn-><Xl sn(8 + ap" x) 2: 0 for x 1:- C. 

But 

lim ansn(S + ap" x) = lim ansn(8, x) + lim ansn(ap" x) 
n-+CX) n-+oo n-+oo 

= ap,({x}) > 0 for x E C. 

This shows that limn-><Xl sn(8 + ap" x) > 0 for x E C also. By Theorem 3.2, 
8 + ap, E M+(X). Letting a go to 0 gives the result. 0 

Two corollaries of the last theorems are of independent interest. They are both 
essentially uniqueness results. 

COROLLARY 3.5. Let 8 E QM(X) be such that limn-><Xl sn(8, x) = 0 for all 
x EX. Then S = o. 

PROOF. Use Theorem 3.2 on the real and imaginary components of both 8 and 
-8. 0 
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COROLLARY 3.6. Let 8 E QM(X) be such that limn---+(X) ansn (8, x) = 0 for all 
x E X. Iflimn---+(X) sn(8, x) = 0 except for countably many x E X, then 8 = O. 0 

4. Uniqueness. In this section, we will derive several analogs of classical 
uniqueness theorems (see Chapter 9 of [7]) as well as generalizations of several 
results on Walsh series. Our main results are Theorem 4.2, which is essentially a 
theorem on the uniqueness of the expansion of an integrable function in terms of a 
trigonometric series, and Theorem 4.6, which is an analog of N. Bary's theorem that 
a countable union of closed U-sets on the circle group is again a U-set. Previously, 
these results were obtained by transferring consideration to the unit interval. Then 
a detailed analysis of dyadic derivatives of indefinite integrals provided the theo-
rems. In this section, we circumvent this procedure by remaining on the original 
space but using the results from the last section. 

To start this program, we need a lemma. 

LEMMA 4.1. If f is a A-integrable function which is upper semicontinuous on 
X, then 

lim sn(f, x) ~ f(x) for all x E X. n---+(X) 
PROOF. Assume f is upper semicontinuous, Xo EX, and f (xo) < a. Find no 

such that x E U(no, xo) implies f(x) < a. Then for n 2': no, 

sn(f, xo) = ~ r fdA < a. 
an }U(n,xo) 

Thus limn---+(X) sn(f, xo) ~ a. Taking the infimum over a > f(xo) gives the 
result. 0 

The next result generalizes Theorem 3 of [8] (see also [9]), which covers the 
Walsh series case. 

THEOREM 4.2. Let 8 E QM( X) be such that Sn (8) is real valued for every 
n 2': 0, g: X ----> R be in Ll(A), and C <;;: X be countable. If 

(a) limn---+(X) ansn(8, x) = 0 for x E C, 
(b) limn---+(X) ISn(8,x)1 < 00 for x tJ- C, and 
(c) g(x) ~ limn---+(X) sn(8, x) for x tJ- C, 

then 8 E Ll(A). 

PROOF. Let I ~ 9 be a A-integrable function which is upper semicontinuous. 
Then 

lim sn(8 - I, x) 2': lim sn(8,x) - lim sn(f,x) 2': g(x) - f(x) 2': 0 for x E C. 
n-+oo n-+oo n--+oo 

Also, 

By Theorem 3.4,8 - f E M+(X). Thus 8 E M(X). Write 8 = 8a + 88 where 
8a < < A and 88 -.1A. Then, by Theorem 2.2, 

lim ISn(8, x)1 = +00 88 -a.e. n---+(X) 
By assumption (b), 8 8 is concentrated on C, so 8 8 is discrete. But now, 

Lemma 3.3 and assumption (a) show 88 = O. Thus 8 = 8a E Ll(A). 0 
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This theorem is an analog of a classical result, but the only case where it was 
known for totally disconnected groups was the Walsh series case. Even there the 
proofs were long and tedious because of the transfer to the unit interval. 

The next result is also an analog of a classical result. For the case G = 
I1~=0 Z/(p), see [1], from which the proof is adapted. 

THEOREM 4.3. Let 8 E QM(X), U E CNo' and assume limn-->oo sn(8, x) = 
o A-a.e. on U. If, furthermore, limn-->oo ISn(8, x)1 < 00 for all x E U, then (8, ~v) = 
o for all V s;;: U, V E Cm, m 2:: No. In particular, if U = X E Co, 8 = O. 

PROOF. It is enough to show that (8, ~u) = 0 since any V as above satisfies the 
same hypotheses as U. Set Uo = U and bn = a;l. 

Let 0 < C < 1. Set Cl = c/2aNo' By Egorov's Theorem, there is a compact 
subset E of U such that A(E) > (1 - c)aNo and sn(8, x) --t 0 uniformly on E. 
Thus, there is an Nl > No such that ISNl (8, x)1 < Cl for x E E. 

Set Zl = {V E CN l : V n E =I- 0}. By property (e) of §1, with IZll as the 
cardinality of Zl, 

Thus, 

(1) 

Since SNl (8) is constant on elements of CNl , 

(2) 

Now pick U1 E CNl such that 

(3) 1(8, ~uJI = max{I(8, ~v)l: V s;;: Uo, V E CNl \Zd· 
If U Zl = Uo, pick any U1 E CNl with U1 s;;: Uo· 

Since sn(8, x) --t 0 A-a.e. on Ul, induction and the above argument shows that 
there are sequences (Cj)J=l, Nj > Nj_l, Zj s;;: CNi' and Uj E CNi such that 

(4) 

(5) 

(6) 

(7) 

Cj = C / (2jaNi_l if (bNpaNp_l -IZpl)) , 
p=l 

1 - bNi _l aNi IZjl < c, 

ISNj(8,x)1 < Cj for x E UZj, and 

1(8, ~uj)1 = max{I(8, ~v)l: V s;;: Uj-l,v E CNi \Zj} 
unless U Zj = Uj-l, in which case Uj is any element of CNi contained in Uj-l. 

Now, 

1(8, ~u)1 :::; L {1(8, ~v)l: V E Zd + L {1(8, ~v)l: V s;;: Uo, V E CNl \Zl} 
:::; aNl cllZll + (bNl aNa - IZll) 1(8, ~Ul) I 

since (8,~v) = aNl sNl(8,x) for x EVE CNl and I{V: V E CNllV s;;: U}I 
bNlaNo' But aNl1Z11:::; aNa, so 

(8) 
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Continuing in this manner and recalling (4), we get 
(9) 

1(8, ~u)1 ~ cIaNo + c2aNl (bN1 aNo - !Zl I) + ... 
j-l j 

+ CjaNj_1 II (bNkaNk_l -IZkl) + 1(8, ~uj)1 II (bNkaNk_l -IZkl) 
k=l k=l 

j 

= c(1 - TJ) + 1(8, ~uJI II (bNkaNk_l -IZkl)· 
k=l 

Choose Xo E n~l Uj by compactness. Then (8,~uJ = aNjSNj (8,xo) by defi-
nition, so 

j 

1(8, ~u)1 ~ c(1 - TJ) + ISNj (8, xo)laNj II (bNkaNk_l - IZkl) 
k=l 

(10) j 

= c(1 - Tj) + ISNj (8, xo)laNo II (1 - aNkbNk_llZkl) 
k=l 

~ c(1 - 2-J) + MaNocj, 

where M = sup{lsn(8, xo)l: n :::: a}. Let J ----+ 00 to get 1(8, ~u)1 ~ c. Let C ----+ 0 to 
get (8, ~u) = 0, as desired. 0 

This theorem is the key step in our proof of an analog of Bary's theorem on 
the union of closed U-sets. Before we state and prove this result, we need some 
terminology and some lemmas. 

Up to now, we have ignored the multiplicative structure of TP(X). Quite ob-
viously, it is closed under pointwise multiplication. This fact allows us to define a 
module structure on QM(X) as follows. 

DEFINITION. Let j E TP(X) and 8 E QM(X). Define j8 E QM(X) by 

(f8,g) = (8,jg) for 9 E TP(X). 

This evidently defines a linear functional on TP(X) and so an element of QM(X). 
Our next lemma is a simple form of a Rajchman result. 

LEMMA 4.4. Let 8 E QM(X) and U E Cn. Then jor m :::: n, sm(~u8, x) = 
~U(x)sm(8, x) jor all x E X. 

PROOF. 

sm(~u8, x) = (1/am)(~u8, ~U(m,x))(= (8, ~U~U(m,x))(1/am) 
= { 0(1/am)(8, ~U(m,x)) if x E U, 

if x Et U, 
= ~U(x)sm(8, x). 

The third equality follows since m :::: n and x E U implies U(m, x) <;;; U while m :::: n 
and x Et U implies U(m, x) n U = 0. 0 

DEFINITION. Let A <;;; QM(X). A subset E of X is called a set of uniqueness 
for A (a U-set for A, or simply a U-set) if 8 E A and sn(8,x) ----+ 0 for all x Et E 
implies 8 = O. ' 
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Thus Corollary 3.5 says that the empty set is a U-set for QM(X), while Theo-
rem 4.3 says that every A-null set is a U-set for the collection of quasi-measures S 
such that limn--+oo ISn(S, x)1 < 00 for all x E X. 

If A is a linear subspace of QM(X), we say that A satisfies condition (L) if 
(a) every A-measurable U-set for A is A-null, and 
(b) SEA and U E U:=OCn implies ~uS E A. 

See [l1J for an investigation of the Walsh series case. 
We close this section with our analog of Bary's theorem. See [7J for the classical 

case and [11, 12J for the Walsh series case. First we need a lemma. 

LEMMA 4.5. Let A S;; QM( X) satisfy condition (L). Let E be a closed U -set 
for A with E S;; U E Cm . If SEA with 

(i) limn--+oo ISn(S, x)1 < 00 for x E U\E, and 
(ii) limn-+oo sn(S, x) = 0 A-a.e. in U, 

then limn--+oo Sn (S, x) = 0 everywhere in U. 
PROOF. Let x EVE CJ with V S;; U and V n E = 0. For n 2: j, Lemma 4.4 

gives 
Sn(~VS, y) = ~V(y)sn(S, y) for all y E X. 

Thus, by (i), 
lim ISn(~vS,Y)1 < 00 for all y E X. 

n--+oo 

By (ii), 
lim Sn (~v S, y) = 0 A-a.e. in X. 

n--+oo 

By Theorem 4.3, ~vS = O. Thus, for our fixed x, 

sn(S, x) = ~V(x)sn(S, x) = sn(~vS, x) = 0 for n 2: j. 
Since E is closed, 

lim sn(S, x) = 0 for all x E U\E. 
n--+oo 

Applying Lemma 4.4 again, we see that 

lim sn(~uS, x) = 0 for all x E X\E. 
n--+oo 

Since ~uS E A and E is a U-set for A, ~uS = O. The lemma follows. 0 
Now, our version of Bary's theorem. 

THEOREM 4.6. Let A S;; QM(X) satisfy condition (L). Then the countable 
union of closed U -sets for A is again aU-set for A. 

PROOF. Call U-sets for A simply U-sets. 
Let {En} :::"=0 be closed U -sets, and set E = U~o En. By part (a) of condition 

(L), A(E) = O. Assume S E A\{O} with limn--+oosn(S,x) = 0 for x tt. E. We will 
obtain a contradiction. 

Set N = {x E X: sn(S,x) is unbounded}. By Theorem 4.3, N i= 0, and 
N = n;:'=l U~l{X E X: ISn(S,x)1 > k} is a Gfj in the compact space X. 

Since sn(S, x) -+ 0 for x tt. E, N S;; E. Thus N = U:=o(N n En). Each 
N n En is closed in N, so the Baire category theorem gives an open set U such that 
o i= Un N S;; N n Eno for some no, i.e. some Eno is somewhere dense in N. We 
may take U to be in the base U:=o en for the topology of X. 
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Now, Un N S;;; N n Eno S;;; Eno n U. But Eno n U is a U-set, being a subset of 
the U -set Eno' It is also closed since both Eno and U are. But 

lim sn(S,x) = 0 A-a.e. in U, 
n--->oo 

and 
lim ISn(S, x)1 < 00 for x E U\N S;;; U\(Eno n U). 

n--->oo 

By Lemma 4.5, limn--->oo sn(S,x) = 0 everywhere in U. But this contradicts the 
fact that Un N -I- 0. D 

COROLLARY 4.7. If A S;;; QM( X) satisfies condition (L) and if singletons are 
U -sets for A, then any countable set is aU-set for A. D 
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