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A COHOMOLOGICAL PAIRING OF HALF-FORMS 

P, L. ROBINSON 

ABSTRACT. Blattner and Rawnsley have constructed half-forms for regular 
polarizations of arbitrary index. We show how to pair these half-forms into a 
line bundle fashioned purely from the symplectic data, with no assumption on 
the intersection of the polarizations. Our pairing agrees with the regular BKS 
pairing when the polarizations are positive. 

Introduction. Half-forms and their pairings arise in geometric quantization, 
where they serve in the construction and comparison of representations of Poisson 
algebras of functions on a symplectic manifold. Half-forms were first defined for 
positive polarizations [3]. In this context, half-form pairings were presented initially 
for transverse polarizations [3] and later for polarizations with regular intersection 
[1, 8]. In [2] it is shown how to define half-forms for arbitrary polarizations. Our 
purpose here is to exhibit half-form pairings in this general setting. We shall develop 
the implications for geometric quantization in a later article. 

Fundamental to our pairing is the consideration of a symplectic construction and 
its relationship with the metaplectic representation. 

Let (V,11) be a symplectic vector space; equip the direct sum V# = V EB V with 
the symplectic form 11# given by +11 on the first factor and -11 on the second. 
Let W be an infinite-dimensional irreducible unitary projective representation of 
V on a Hilbert space H, with multiplier tkl1 for some positive real number h. W 
determines a (two-sided) irreducible unitary projective representation W # of V # on 
the Hilbert space H# of Hilbert-Schmidt operators on H, with multiplier tkl1#. 
Conjugation also defines a map from the group MpC(V, 11) of automorphisms of W 
to the group Mpc (V #,11#) of automorphisms of W #; moreover, this map factors 
through the symplectic group Sp(V,l1) and takes values in the metaplectic group 
Mp(V#, 11#), to define a map e: Sp(V, 11) -+ Mp(V#, 11#). 

Let F and G be arbitrary polarizations of (V, 11); the external direct sum FEBG c 
V¥ is then a polarization of (V #' 11#). The vacuum states for F and G are one-
dimensional cohomology spaces for F and G, considered as abelian Lie algebras, 
with coefficients in the symplectic spinors [' defined by W; the vacuum state for 
F EB G is fashioned likewise from cohomology with coefficients in the symplectic 
spinors [# defined by W#. A Kiinneth theorem for this cohomology provides a 
pairing of the vacuum states for F and G into the vacuum state for FEB G. 

Let (E, w) be a symplectic vector bundle; fiberwise application of # produces a 
symplectic vector bundle (E#, w#). The map e endows (E#, w#) with a canonical 
metaplectic structure; this allows us to globalize the pairing of vacuum states and 
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define a half-form pairing for arbitrary polarizations of (E, w). For polarizations 
F and G of (E, w), our pairing takes its values in the bundle of half-forms for the 
polarization F EB G of (E#, w#). 

Some elementary algebra of symplectic vector spaces is presented in §1; this 
material is quite standard. A brief account of the metaplectic representation and 
symplectic spinors is contained in §2; details may be found in [7]. In §3 we recall 
the definition of vacuum states for arbitrary polarizations and pair them using 
techniques from the cohomology of Lie algebras. Mpc and metaplectic structures 
form the subject matter of §4: we discuss their existence and classification and recall 
how they give rise to bundles of half-forms. Finally, the constructions of §§3 and 4 
are combined in §5 to define our pairing of half-forms for arbitrary polarizations. 

1. Symplectic algebra. Let (V, 0) be a real symplectic vector space: a real 
vector space V equipped with a nonsingular alternating real bilinear form O. We 
assume throughout that V is of dimension 2m. The symplectic group Sp(V,O) 
consists of all linear automorphisms 9 of V satisfying O(gx, gy) = O(x, y) whenever 
x,yEV. 

Complexification of V and complex-bilinear extension of 0 give rise to a com-
plex symplectic vector space (V C , OC). A Hermitian form (of zero signature) is 
defined on VC by H(x, y) = iOC(x, y) for x, y E V C; here, an upper bar denotes 
conjugation in VC relative to V. 

A polarization of (V, 0) is a Lagrangian in (V C , OC): thus, a complex subspace 
F of VC such that dimc F = m and 

X,y E F ===> OC(x,y) = O. 

The real part FnF of F is the null space of H on F; we write r(F) = dimc(FnF). 
The complex dimension of a maximal subspace of F on which H is positive-definite 
(respectively, negative-definite) will be denoted p(F) (respectively, q(F)). We refer 
to (p( F), q( F), r( F)) as the type of F and say that F is 

real iff 0 = p(F) = q(F); 
positive iff 0 = q(F); 
strictly positive iff 0 = r(F) = q(F). 

The symplectic group Sp(V, 0) acts on the space Lag(VC, OC) of all polarizations 
of (V,O) as follows: if 9 E Sp(V, 0) and F E Lag(VC, OC) then 

g. F = {gc(v) I v E F}. 

Orbits for this action are characterized by type [5, 10]: if F and G are polarizations 
of (V, 0) then F and G lie in the same orbit under Sp(V, 0) iff 

(p(F), q(F), r(F)) = (p(G), q(G), r(G)). 

On the direct sum V# = V EB V we define a nonsingular alternating bilinear form 
0# by 

O#(Xl EB Yl, X2 EB Y2) = O(Xl' X2) - O(Yl, Y2) 

for Xl, X2, Yl, Y2 E V. In this way we produce a symplectic vector space (V #,0#) 
of which the diagonal 

V", = {v EB v I v E V} 
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is a distinguished Lagrangian. A natural morphism 

¢ : Sp(V, 0) ---+ Sp(V#, 0#) : 9 1-+ g# 

of Lie groups is defined by 

g# (x ffi y) = (gx) ffi (gy) 

for x, y E V. 
Let F and G be polarizations of (V,O). The (external) direct sum 

F ffi G c V C ffi V C = Vi 
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is then a polarization of (V#, 0#) whose type is the sum of those for F and G; in 
particular, q(F ffi G) = q(F) + q(G). 

2. The metaplectic representation. Let W be an irreducible unitary pro-
jective representation of the additive group of V on a Hilbert space H; let W have 
multiplier i~ 0 where h = 27rn is a positive real number. If x, y E V then 

W(x)W(y) = exp {2~n O(x, y)} W(x + y). 

Let 9 E Sp(V,O) and define Wg(v) = W(gv) for v E V; Wg is then also an 
irreducible unitary projective representation of V with multiplier .kO. According 
to the uniqueness theorem of Stone and von Neumann, Wg is unitarily equivalent 
to W: there exists a unitary operator U on H such that 

(2.1) v E V=> UW(v)U- 1 = W(gv). 

Since W is irreducible, U is unique up to scalar multiples; moreover U uniquely 
determines g. 

We denote by MpC(V, 0) the subgroup of the unitary group Aut H consisting 
of all unitary operators U on H satisfying (2.1) for some 9 E Sp(V, 0) and write 
u(U) = 9 when (2.1) holds. MpC(V, 0) is a Lie group and 

1---+ U(l) ~ Mpc(V,O) ~ Sp(V,0) ---+ 1 

is a central short exact sequence. See [8 and 9]. 
The group of unitary characters on MpC(V,O) is infinite cyclic; as generator 

we may take the unique unitary character TJ: MpC(V, 0) ---+ U(1) that restricts to 
U(l) C MpC(V, 0) as the squaring map. The kernel of TJ is a connected double cover 
of Sp(V, 0) and so deserves to be called the metaplectic group Mp(V, 0). Inclusion 
of Mpc(V, 0) in Aut H defines a faithful unitary representation of Mpc(V, 0) on H; 
this is known variously as the harmonic, oscillator, Segal-Shale-Weil, or metaplectic 
representation. 

W differentiates on its dense space [ C H of smooth vectors, to give W: V ---+ 
End [ satisfying 

(2.2) 
. . 1 

[W(x), W(y)] = in O(x, y)I 

for x, y E V; inW therefore gives a representation of the canonical commutation 
relations. [ is naturally provided with the structure of a Frechet space; we equip 
the conjugate-linear dual [' with the weak-star topology and refer to its elements 
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as symplectic spinors. The Hilbert structure embeds H in [', and [ c H c [' is 
a rigged Hilbert space in the sense of Gelfand. W extends continuously to [' and 
then complexifies to yield 

(2.3) WC : V C ---+ End ['. 

See [3 and 8]. 
Any unitary operator on H stabilizing [ extends to an automorphism of ['; the 

metaplectic representation of Mpc(V, 0) therefore extends to ['. If U E Mpc(V, 0) 
with a(U) = 9 and v E V C then 

(2.4) UWC(v)U- 1 = WC(gv), 

as follows by differentiation, extension, and complexification of (2.1). 
Let H# denote the Hilbert space of all Hilbert-Schmidt operators on H; recall 

that the linear endomorphism T of H is Hilbert-Schmidt iff the series LiEI IITei 112 
converges for (ei}iEI a complete orthonormal system in H. 

For T E H# and x, y E V we define 

W#(x EB y)T = W(x)TW(y)-l. 

(2.5) THEOREM. W # is an irreducible unitary projective representation of V # 
with multiplier tk 0# . 

PROOF. That W# is irreducible and unitary is standard; that W# has the stated 
multiplier is a matter of routine verification. D 

In terms of W # we define the central circle extension Mpc (V #,0#) of 
Sp(V#,O#). 

For U E Mpc(V, 0) we define U# E Aut H# by 

U#(T) = UTU- 1 

whenever T E H#. If a(U) = 9 and x, y E V then 

U#W#(x EB y)U;/T = UW(x)U-1TUW(y)-lU- 1 

= W(gx)TW(gy)-l = W#(g#(x EB y))T 

whenever T E H#. As a consequence, U# lies in MpC (V# , 0#) and a(U#) = g# = 
¢(g). 

(2.6) THEOREM. There exists a unique Lie group morphism () making the 
diagram 

commute. 

PROOF. If A E U(l) c Mpc(V, 0) then A# is the identity on H#; the map 

MpC(V, 0) ---+ MpC (V# , 0#): U 1-+ U# 

therefore factors through Sp(V, 0) to define 

(): Sp(V, 0) ---+ Mpc(V #,0#). 
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Since Sp(V,O) is connected and semisimple it has no nontrivial characters. In 
particular, if 1J is the standard unitary character of MpC(V#, 0#) then 1J 0 () is 
trivial; it follows that () takes its values in Mp(V#,O#). This proves existence. 
Two candidates for () must differ by a character of Sp(V, 0) and therefore coincide, 
hence uniqueness. D 

If a, b E H then a ® b will denote the rank-one operator on H defined by 

(a ® b)(e) = (e, b)a 

for e E H, where (-, .) is the Hilbert structure on H. The linear span of {a ® bla, b E 
H} is dense in H#. 

Let c# C H# c ciF be the rigged Hilbert space defined by W #: thus, c# 
is the space of smooth vectors for W # and ciF its antidual. The linear span of 
{a ® b I a, b E c} is dense in the Frechet space c#; elements of ciF are therefore 
determined by their effect on the vectors a ® b for a, b E C. 

If a, {3 E c' then we define a ® 73 E ciF by 

(a ® 73) (a ® b) = a(a){3(b) 

for a, b E C. This defines a sesquilinear map 

(2.7) 

which will be useful later. 

3. Vacuum states for polarizations. Let F be a polarization of (V, 0); view 
F as an abelian complex Lie algebra. By virtue of the commutation relations (2.2), 
WC defines a representation of F on c'; in this way, c' becomes an F-module. The 
Lie algebra cohomology H*(F; c') of F with values in c' is that of the complex 

j-l j j+l 

(3.1) --7 1\ F* ® c' ~ 1\ F* ® c' ~ 1\ F* ® c' --7 

with 
j 
"k'C -d,(Vo, ... ,Vj) = .L.,..(-1) W (Vk),(VO, ... ,Vk, ... ,Vj) 
k=O 

for 1 E Aj F* ® c'; vo, ... , Vj E F, where ~ denotes omission. This cohomology has 
been computed by Blattner and Rawnsley, with the following result. 

(3.2) THEOREM [2]. Hj (F; c') is a complex line if j = q(F) and is zero 
otherwise. D 

We refer to the complex line Hq(F) (F; c') as the vacuum state for the polariza-
tion F. 

(3.3) REMARK. Note that HO(F; c') is naturally the space (c'V of invariant 
vectors for F, defined by 

(C')F = {j E c' I v E F '* WC(v)f = O}. 
It is a particular consequence of (3.2) that this space vanishes unless F is positive, 
in which case it is one-dimensional. D 

Denote by Sp(V, 0; F) the stabilizer of the polarization F under the action of 
Sp(V, 0) on Lag(Vc, OC). Denote by MpC(V, 0; F) the full preimage of Sp(V, 0; F) 
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in Mpc(V, 0) under a. Let U E MpC(V, 0; F) with a(U) = g. By virtue of (2.4), 
U acts on the complex (3.1) and so on the cohomology H*(F; E'); in particular, U 
acts on the complex line Hq(F)(F; E') as multiplication by a scalar TF(U), Write 
DetF(U) for the complex determinant of gC on F. 

The characters TF and DetF of MpC(V, 0; F) are related to the standard unitary 
character TJ as follows. 

(3.4) THEOREM [2]. (TF)2. DetF = TJ. 0 

Let G be another polarization of (V, 0). The canonical isomorphisms 

j ( 8 t) A (F EEl G)* = 8~j A F* 0 A G* 

define sesquilinear maps 
8 t 8+t 

A F* x A G* --t A (F EEl G)* 

which tensor up with (2.7) to yield sesquilinear maps 

(3.5) 

for all nonnegative integers s, t. 
The vacuum states for F, G and FEEl G arise from complexes analogous to (3.1). 

The complexes for F and G are paired into that for FEEl G via the maps (3.5). 
These pairings satisfy a Leibniz rule relative to the differentials in the complexes; 
they therefore induce pairings in cohomology. In view of (3.2) the only nontrivial 
cohomology pairing is that of the vacuum states. We thus have the following 
theorem of Kiinneth type. 

( 3.6) THEOREM. There is a canonical nonsingular sesquilinear pairing of vac-
uum states 

Hq(F)(F; E') x Hq(G)(G; E') --t Hq(F EEl G; EiF) 

where q = q(F EEl G) = q(F) + q(G). 
PROOF. We need only demonstrate nonsingularity. Choose a maximal subspace 

F~ c F on which H is negative-definite and let F+ be the H-orthocomplement of 
F _ in F; F' = F _ EEl F + is then a positive polarization and according to [2] the 
nonzero vectors in q(F) q(F) 

A F"':_ 0 (E,)F' C A F* 0 E' 

are closed but not exact relative to the complex (3.1). Apply this to both F 
and G. Choose nonzero vectors ¢ E 1\ q(F) F::", 't/J E 1\ q(G) G*--, 0: E (E,)F', (3 E 

(E,)G'; ¢01ft and 0:0,8 are then basis vectors for 1\ q (F_ EElG-)* and (EiF)F'fBG'. ¢00: 
and 't/J 0 (3 are paired to 

q 

(¢ 01ft) 0 (0: 0 ,8) E A (F EEl G) * 0 EiF; 

this vector is closed but not exact. 0 
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It is important to determine how MpC(V, 0) acts on these vacuum state pairings. 
Let U E MpC(V, 0) with a(U) = g. Via the standard actions of 9 and g# and the 
(extended) metaplectic actions of U and U #' U maps the complexes for F, G, FEB G 
to those for gF, gG, gF EB gG = g#(F EB G). These operations of MpC(V, 0) respect 
the differentials and pairings of the complexes; the induced natural operations of 
MpC(V,O) on cohomology respect the natural cohomology pairings. These argu-
ments yield the following result. 

(3.7) THEOREM. The diagram 

HS(F; [') x Ht(G; [') -----4 Hq(F EB G; [it.) 

u·l l~' 
H8(gF; [') x Ht(gG; [') -----4 Hq(g#(F EB G); [ilJ 

commutes when s = q(F), t = q(G), q = q(F EB G), where horizontal arrows 
denote the natural cohomology pairings and where vertical arrows denote the natural 
operations oj Mpc(V, 0) on cohomology. D 

4. Structures on symplectic vector bundles. Let (E, w) be a real symplec-
tic vector bundle of rank 2m over the manifold X. The symplectic frame bundle of 
(E, w) is the principal bundle Sp(E, w) on X whose fiber over x E X is the set of 
all linear isomorphisms b: V...:::.. Ex such that 

Vl,V2 E V=> Wx(bVl,bv2) = 0(Vl,V2) 

and on which the structure group Sp(V, 0) acts by composition on the right. 
An Mpc structure for (E,w) is a principal Mpc(V,O) bundle P on X together 

with a principal bundle map P --+ Sp( E, w) equivariant with respect to the mor-
phism a: Mpc(V,O) --+ Sp(V, 0). The Mpc structures PI and P2 for (E,w) are 
equivalent iff there exists an isomorphism P1"':::"P2 of principal MpC(V, 0) bundles 
respecting the projections on Sp( E, w). We denote by Mpc [E, w] the space of equiv-
alence classes [P] of Mpc structures P for (E, w). 

Mp (or metaplectic) structures for (E, w) are defined analogously, replacing 
MpC(V,O) by Mp(V, 0). Note that any Mp structure extends naturally to an Mpc 
structure via inclusion of structure groups. 

At a later point we shall discuss questions of existence and classification for these 
structures; for the present we consider some consequences of their existence. 

The extended metaplectic action of MpC(V, 0) on [' associates to each Mpc 
structure P for (E,w) a bundle ['(P) of symplectic spinors; this bundle comes 
equipped with a fiberwise operation WC of the complexification EC, arising from 
the projective representation (2.3) of V C on ['. Since both E C and ['(P) are 
associated to P, if x E X and p E Px then p defines isomorphisms 

VC"':::"E~, [' "':::"['(P)x, 

and we set 
W~(pv) = po WC(v) 0 p-l 

for v E V C ; that WC is well defined follows from (2.4). 
A polarization of (E, w) is a complex subbundle F of E C such that the fiber Fx 

is a polarization of the symplectic vector space (Ex, wx) for each x E X; we assume 



258 P. L. ROBINSON 

throughout that F is regular in the sense that the type of Fx is independent of 
x E X. The canonical bundle of F is the complex line bundle 

m m 

KF = I\(FO) c I\(EC )* 

where FO is the annihilator of F, given by 

F~ = {f E (E;;)* I v E Fx '* f(v) = O} 
for x E X. 

Let P be an Mpc structure and F a polarization. Fiberwise, ['(P) is an F-
module via Wc; we may therefore form the cohomology bundle Hp(F; [') of F 
with values in ['(P). The following derives from (3.2). 

(4.1) THEOREM [2]. H~(F; [') is a complex line bundle if j = q(F) and is 
zero otherwise. 0 

(4.2) REMARK. The isomorphism class of H~(F)(F; [') depends only on F and 
the equivalence class of P; moreover, when F is positive the dependence on F 
disappears. See [2] and (5.7). 0 

Let P( rJ) be the Hermitian line bundle on X associated to P via the standard 
unitary character rJ of Mpc(V, D). The following comes from (3.4). 

( 4.3) THEOREM [2]. There is a canonical isomorphism 

H~(F)(F; [') (9 H~(F)(F; [') (9 KF ~P(rJ); 

thus, H~(F)(F; [') (9 KF is a canonical square root of P(rJ) (9 KF. 0 

We call H~(F) (F; [') (9 KF the bundle of half-forms for F defined by P. 
(4.4) REMARK. If P is the extension of an Mp structure then P( rJ) is trivial and 

H~(F) (F; [') (9K F is a square root of KF; hence the terminology of half-forms. 0 
At this point we pause to discuss questions of existence and classification. 
(E,w) always admits Mpc structures, and MpC[E,w] is naturally a principal 

homogeneous space for H2(X; Z); furthermore, MpC[E, w] has a natural base-point 
(the neutral class) to which the Mpc structure P belongs iff ['(p)F = H~(F; [') 
is trivial for F a positive polarization. See [7 and 8]. 

(E, w) admits Mp structures iff the second Stiefel-Whitney class w2(E) is zero, 
and Mp[E,w] is naturally a principal homogeneous space for Hl(X; Z2) when 
nonempty; in general, Mp[E, w] has no base-point. See [3 and 4]. 

We can apply the i-operation to each fiber of (E, w); this produces a symplectic 
vector bundle (E#, w#). 

The Whitney product formula for E# = EffiE gives 

w2(E#) = wl(E)2 = 0 

since E is orientable. From this it follows that (E#, w#) admits metaplectic struc-
tures. In fact, much more is true. 

(4.5) THEOREM. (E#,w#) admits a canonical metaplectic structure, Q. 
PROOF. As a principal Mp(V#,D#) bundle, Q is associated to Sp(E,w) via 

the canonical map (): Sp(V, D) ---+ Mp(V#,D#); the commutative diagram in (2.6) 
shows Q to be naturally an Mp structure for (E#, w#). 0 
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(4.6) REMARK. It is readily verified that the extension of Q to an Mpc structure 
is neutral: indeed, if F 6. = E5{ is the diagonal polarization of (E#, w#) then 
H8 (F 6.; c#) is trivial, being associated to Sp( E, w). 0 

5. Half-form pairings. Let F and G be polarizations of (E, w). The (external) 
direct sum F EB G is then a polarization of the symplectic vector bundle (E#, w#). 
Note that we make no assumptions regarding the nature of the intersection F n G. 

Recall from (4.5) that (E#,w#) is naturally provided with a metaplectic struc-
ture Q, whose extension to an Mpc structure we denote also by Q. Using Q we 
define the half-form bundle 

for FEB G, where 
q = q(F EB G) = q(F) + q(G). 

We stress that this complex line bundle is constructed entirely from the symplectic 
data (E, w), F, G. 

Let P be an Mpc structure for (E,w). Using P we define the half-form bundles 

H~(F)(F; c') 0 K F, H~(G)(G; c') 0 KG 

for F, G. We shall pair these half-form bundles into that for FEB G defined by Q. 
Let x E X; let s E H~(F) (F; c')x and t E H~(G) (G; c'k A choice of p E Px 

determines isomorphisms of typical fibers with those of associated bundles and so 
picks out p-ls E Hq(F)(p-1 Fx; c') and p-It E Hq(G)(p-IGx; c') in the cohomol-
ogy of the polarizations p-l Fx and p-IGx of (V, 0); p-l sand p-It give an element 
of Hq(p-l Fx EB p-IGx; c#) via the pairing in (3.6); we define (s, t) to be the image 
of this element in H~(FEBG; c#)x under the isomorphism determined by the frame 
b E Sp(E, w)x lying below p, regarding b as an element of Qx by association; this 
definition is independent of the choice p E Px by virtue of the commutative dia-
gram in (3.7). In this way we obtain a canonical nonsingular sesquilinear pairing 
of vacuum states, thus: 

(5.1) 

Since there is a canonical isomorphism 

(5.2) 

we deduce the following result. 

( 5.3) THEOREM. There is a canonical nonsingular sesquilinear pairing of the 
half-form bundles H~(F)(F; C')0KF, H~(G)(G; C')0KG into the half-form bundle 
H~(F EB G; c#) 0 KFtBG. 0 

This is our half-form pairing; it can be reformulated as a canonical isomorphism 
of complex line bundles 

(5.4) H~(F)(F; c') 0 KF 0 H~(G)(G; c') 0 KG -:. H~(F EB G; c#) 0 KFtBG. 

We emphasize the fact that the receiving space for this half-form pairing is fashioned 
from the symplectic data alone. 
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Note that since Q is metaplectic, H~(F EB C; cit.) 0 KFffiG is a canonical square 
root of KFffiG: see (4.4). This is as we should expect of a half-form pairing. As a 
corollary we recover the following result due to Rawnsley [5]. 

(5.5) THEOREM. IfF and C are arbitrary polarizations of(E, w) then c[KF] == 
c[KG] mod2 where c[·] denotes Chern class. 

PROOF. Since KF 0 KG is isomorphic to KFffiG and KFffiG is a square, it 
follows that 

but 
C[KF 0 KG] = c[KF]- c[KG]. 0 

We close by remarking on particular cases. 
Suppose F and C are positive polarizations; assume F and C to be transverse in 

the sense that F n G = O. In this case Hg(F EB G; cit), or equivalently Cit(Q)FffiG, 
is canonically trivial; this can be verified as follows. Let x E X. By association, 
each b E Sp(E,w)x becomes an element of Qx' The vacuum states (C')b~lFx and 
(C')b~lGx for the transverse positive polarizations b- 1 Fx and b-1Cx of (V, 12) admit 
a canonical sesquilinear pairing into C which extends the inner product on H; this 
is proved in [3] for real polarizations and in [6, 7, 8] for the general positive case. If 
rjJ E (C')b~l Fx and'ljJ E (C')b~lGx pair to 1 E C then b(rjJ07jj) is a canonical element 
of Cit(Q)~ffiG defined independently of rjJ, 'ljJ, and bE Sp(E, w)x. 

( 5.6) THEOREM. If (F, C) is a transverse pair of positive polarizations then 
Hg(F EB C; cit) is canonically trivial. 0 

(5.7) REMARK. From (5.1) and (5.6) it is clear that if P is an Mpc structure then 
the line bundles H~(F; c') = C'(p)F are isomorphic for all positive polarizations 
F: we may always take C to be a fixed strictly positive polarization. 0 . 

Now suppose the pair (F, C) of positive polarizations to be regular in the sense 
that F n G has constant rank; then F n G = DC for a subbundle DeE on which 
w is identically zero [1]. In this case Hg(F EB C; c-itJ = Cit(Q)FffiG is canonically 
isomorphic to the trivial line bundle Dl(D) of densities on D; a proof of this runs 
as follows. For x E X denote by D;; the space of all v E Ex such that Wx (v, w) = 0 
whenever w E Dx. The quotient bundle D.L j D has a natural symplectic structure 
w D; moreover, F D = F j DC and CD = C j DC are transverse positive polarizations 
of (D.LjD,WD). It is shown in [6, 7, 8] that when D i= D.L, each Mpc struc-
ture P for (E,w) induces an Mpc structure PD for (D.LjD,WD) with a canonical 
isomorphism from the symplectic spinors C'(P)D annihilated by D to the bundle 
c'(PD) 0 Dl/2(D), restricting to an isomorphism c'(P)Z~C'(PD)ZD 0 Dl/2(D) 
whenever Z is a positive polarization of (E,w) with DC c Z. Apply this to both F 
and C. In view of (5.1) and the fact that the half-densities D1/ 2 (D) pair naturally 
into Dl(D) we obtain a canonical isomorphism 

cit(Q)FffiG ~+ C#(QD)FDffiGD 0 Dl(D), 

where QD is the canonical metaplectic structure for (( D.L j D) #' (w D) #). According 
to (5.6) the bundle Cit.{QD)FDffiGD is canonically trivial since FD n CD = 0; thus 
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C#(Q)E'ffiG is canonically isomorphic to D1(D). This argument fails if G = F = F, 
since then D = D~; in this case, a sesquilinear self-pairing of C'(p)F into D1(D) 
comes directly from (3.4) and we may again apply (5.1). In any case, we have 
justified the following result. 

(5.8) THEOREM. If (F, G) is a regular pair of positive polarizations with F n 
G = DC then Hg(F EB G; cit.) is canonically isomorphic to D1(D). D 

(5.9) REMARK. With the same hypotheses, KFffiG = KF 0 KG is canonically 
isomorphic to D- 2 (D); see [1, 4]. Our half-form pairing thus takes values in D- 1(D) 
and accords with the regular pairing obtained previously in [1 and 8]. D 

(5.10) REMARK. (5.8) can be established without the auxiliary Mpc structure P, 
along the following lines. w# is zero on DEBD C E#; the quotient (DEBD)~ /(DEBD) 
is canonically isomorphic to (D~ / D)# as a symplectic vector bundle. The canonical 
Mpc structure QD on (D~ / D)# agrees with that induced on (D EB D)~ /(D EB D) 
from the canonical Mpc structure on E#; we thus have a canonical isomorphism 

cit(Q)FffiG --=+ Cit(QD)FDffiGD 0 D1/2(D EB D). 

C#(QD)E'DffiGD is canonically trivial by (5.6) while D1/ 2 (D EB D) is canonically 
isomorphic to D1(D); hence (5.8). D 

Finally, we note that in general the bundle H~(F EB G; c#J need not even be 
trivial: it suffices to take F to be positive, to let G = F, and to suppose that 
2c[KF] is nonzero. 
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