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ON SCRAMBLED SETS FOR CHAOTIC FUNCTIONS 

A. M. BRUCKNER AND THAKYIN HU 

ABSTRACT. Some recent research has raised questions concerning the possi-
ble sizes of scrambled sets for chaotic functions. We answer these questions 
by showing that a scrambled set can have full measure, but cannot be resid-
ual although a scrambled set can be second category in every interval. We 
also indicate relationships that exist between chaotic functions and transitive 
functions. 

1. Introduction. A number of problems involving the way a process evolves 
with time give rise to rather simple looking difference equations. This may happen, 
for example, when one wishes to estimate the size of some future generation of 
a population purely on the basis of its present size. The model Xn+l = f(xn) 
indicating the size Xn+l of the (n + l)st generation in terms of the nth can be 
studied in terms of a function f mapping the interval [0,1] onto itself and analyzing 
the behavior of the iterates x, f(x), f(f(x)), .... Often f vanishes at the end-points 
of the interval and achieves a single maximum at some interior point of [0,1]. The 
interested reader may consult [LY and VSK] for discussions of such problems and 
for extensive reference lists. 

An investigator dealing with such problems may hope for essential stability of 
the iterates; that is, that the sequence x, f(x), f(f(x)), ... converges to some fixed 
point of f, indicating that the population will stabilize at some size independent of 
x (x =1= 0, 1). If that fails, the investigator would at least hope for predictability: if 
the initial population is xo, which the investigator estimates reasonably accurately 
as Yo, he would hope that the sequence of iterates remain close together. In that 
case, a slight error in the estimate for the initial population will result in no more 
than a slight error in the estimates of future generations. Unfortunately, it often 
happens that neither of these wishes is satisfied. The investigator usually observes 
various sorts of chaotic behavior, all of which are predictable from the model. 

In recent years, a number of authors have studied various sorts of chaotic behav-
ior of functions of the type we mentioned. They have also asked whether certain 
even more chaotic behavior is possible. In the present paper we answer some of 
their questions, and discuss other related types of behavior. In §2, we provide the 
necessary definitions, review some of the recent work that motivated this paper and 
provide some results that we shall need in the sequel. In §3, we obtain affirmative 
answers to questions posed in [S2]. These questions relate to the size (in terms of 
Lebesgue measure) possible of so-called scrambled sets. Then in §4, we study the 
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analogues of these questions when the size of a set is measured by (Baire) category 
rather than measure. We also indicate the relationships that exist between two 
types of behavior, "chaotic" and "nomadic" (or "transitive"). 

2. Preliminaries. Let f be a function mapping the interval 10 = [0,1] onto 
itself. Let x E 10 . By the orbit of x (under I), we mean the sequence {r(x)}~=o, 
where fO(x) = x, fl(X) = f(x), and in general r+1(x) = J(r(x)), n = 0,1, .... 
We shall use the notation O(x) for the set that is the range of the sequence {r(x)}. 
If I ~ 10 is an interval, we will denote by 0(1) the orbit of the interval I (under 
I); i.e., 0(1) = U~=O r(I)· Similarly, the inverse orbits of x and of I (under I) 
are defined by 0-1(X) = {y: r(y) = x for some n = 0,1,2, ... } and 0- 1 (1) = 
{O-l(X): XEI}. 

We shall be concerned primarily with so-called chaotic functions and their scram-
bled sets. While these notions have been studied by a number of authors, no entirely 
consistent use of the terms has evolved. The definitions we give below represent a 
strong form of chaotic behavior suitable for our purposes. 

Let f be a continuous function mapping 10 onto 10. 
DEFINITION 2.1. A set S ~ 10 is called scrambled for f provided for every 

x, yES with x -:f. y, 

(1) lim sup Ir(x) - r(y)1 = 1 
n-->oo 

and 

(2) liminflr(x) - r(y)1 = 0. 
n-->oo 

DEFINITION 2.2. The function f is called chaotic if there is an uncountable 
scrambled set for f. 

REMARK. Other authors have replaced (1) with the weaker requirement that 
limsuPn-->oo Ir(x) - r(y)1 > 0, but at the same time have required something 
about the behavior of points in their scrambled sets vis-a.-vis periodic points. Kan 
[K] uses the term "extremally scrambled" when (1) is satisfied. Because of re-
quirement (1), we restrict ourselves in §§3 and 4 to functions mapping 10 onto 10 . 

The recent articles [K, 81, 82] give examples of chaotic functions whose scrambled 
sets have positive measure or full outer measure. The question arises naturally 
[82] whether a scrambled set can have full measure. We shall answer this question 
affirmatively by an example in §3. 

We shall also make use of functions exhibiting a type of related behavior. 
DEFINITION 2.3. A function f: 10 -+ 10 is called nomadic if there exists x E 10 

such that 0 (x) is dense. 
Other authors have used other terms (e.g. "transitive") to express this phe-

nomenon. Since we shall make use of results in [BCR] , where the term "nomadic" 
was used, we retain that term. 

PROPOSITION 2.4. The function f: 10 -+ 10 is nomadic if and only if 0(1) is 
dense for every interval I ~ 10 , 

PROOF. If f is nomadic, then it is clear that 0(1) is dense for each interval 
I ~ 10 , 

To prove the converse, observe first that our hypothesis implies that if J is an 
arbitrary interval in 10, then 0-1(J) is dense. Now let {Jdk=1 be a countable 
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base for the topology of [0, 1J. Let A = n~=l 0-1(Jk). Since 0-1(Jk) is dense and 
open for every k, A is a dense set of type Gh in [0, 1J. If x E A, then O(x) is dense. 
Thus f is nomadic. 

3. Scrambled sets of full measure. We turn now to a construction of a 
function 9 possessing a scrambled set of full measure. The function 9 is strictly 
increasing on [0, ~ J and strictly decreasing on [~, 1 J. It provides affirmative answers 
to two questions of Smital [S2J. 

We shall make use of a function which has been studied by several authors. We 
begin with a brief review of this function, indicating the properties of this function 
which we shall need. Define f: 10 -+ 10 by 

{ 2x 
f(x) = 2(1 - x) 

if 0:::; x :::; ~, 
if~:::;x:::;l. 

It is convenient to consider the binary expansion of points in [0, 1J. One can then 
verify easily (see [BeR]) that: 

(1) If x = .OX2X3X4··· (binary expansion), then f(x) = .X2X3X4···. 
(b) If x = .lx2x3x4··· (binary expansion), then f(x) = .Y2Y3Y4···, where Yi = 0 

if Xi = 1 and Yi = 1 if Xi = o. 
(c) If every finite sequence of D's and l's appears in the binary expansion of x, 

then x has a dense orbit. Thus, almost every x E [0, 1 J has a dense orbit. 
Smital [SI] has shown that f has a scrambled set of full outer measure, but that 

any measurable scrambled set for f must have zero measure. 
Our construction of a function 9 possessing a scrambled set of full measure will 

involve a number of steps. We first show that the function f has a scrambled set S 
of Borel type G ha that has cardinality of the continuum in every interval. A suitable 
transformation then results in the function g. The main problem in obtaining S 
arises from the following considerations. If S is a scrambled set for f and x f- yare 
in S, then the binary expansions for x and Y must contain arbitrarily long strings 
of D's and l's (see (a) and (b) above). These strings must be positioned properly 
so that the definition of scrambled set is satisfied for x and y. These requirements 
must be achieved by every pair (x, y) in S. We shall achieve this by representing 
certain points in 10 by "wedges." 

THEOREM 3. 1. There exist a continuous function g: 10 -+ 10 such that 9 is 
increasing on [0, ~ J and 9 is decreasing on [~, 1], and a corresponding scrambled set 
T with T E Fa and AT = 1. 

PROOF. We shall prove the theorem by the following five major steps: 
(1) Let L be the lattice of pairs of positive integers and 0 < ~ < 1 be a fixed 

irrational number. Let A be the family of positive, finite slopes of all rays emanating 
from (0, ~), lying in the first quadrant, and containing no points of L. If r, sEA 
with r < s, let Wrs = {(x,y) E L: rx + ~ < Y < sx + O. Let L be enumerated 
diagonally, h, l2, ... , as follows: 

(1,1), (1, 2), (2, 1), (1, 3), (2,2), (3, 1), (1,4), (2,3), (3,2), .... 

Let W be the system of a finite union of wedges. Thus an element of W consists of 
the union of a finite number of "wedges," 
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Now to each WE W, we associate that number Xw E [0,1] whose binary expansion 
has a 1 in the ith position if and only if the ith lattice point Ii is in W. Let 
8 = {xw : W E W}. Then 

(i) Card 8 = c. 
(ii) For any finite set of integers i1 < i2 < ... < in, there exists some W E W 

containing Ii" li2' ... ,lin corresponding to i1, i2, ... ,in but no other lattice point 
Ij with j :::; in. It follows that 8 is dense in [0,1]. Since a slight variant of Win (ii) 
leads to a different W' E W which still meets the requirement in (ii), 8 is actually 
c-dense; i.e., each interval I ~ [0, 1] contains c points of 8. 

(iii) If WI, W 2 E W with W1 i=- W2 and x = Xw" Y = xw2, then there exist 
arbitrary long finite sequences of consecutive integers n, n + 1, ... ,N and m, m + 
1, ... ,M such that Xi = Yi = ° for i = n, ... ,N and Xi = 1 with Yi = ° (or Xi = ° 
with Yi = 1) for i = m, ... , M, and such that Xm-1, Ym-1 are either both ° or both 
1. 

(2) Let 

{ 2x 
f(x) = 2(1 - x) 

ifO:::;x:::;~, 
if~:::;x:::;l 

be the function we discussed in the beginning of this section. Properties (a) and 
(b) there together with (iii) imply that 

Ir(x) - r(y)1 :::; 2N1_n and Ifm(x) - fm(Y)1 ::::: 1 - 2M _1m_ 1' 

It follows that 8 is a scrambled set for f. 
(3) Let 8 1 consist of those x E 8 requiring no more than one wedge in their 

representations; i.e., x E 8 1 if there exists T, sEA such that x = XW,,' Let 
A1 = (A x A) n {(T,S): T < s} = {(T,S) E A x A: T < s}. Then A1 is a Ch of 
cardinality c in the complete space R2 and is therefore an absolute Ch [0]. Then 
(Tn,Sn) ~ (T,S) in A1 if and only if Xn ~ x E 8 1, where Xn = xWrn,sn and 
x = xWr,s' Thus 8 1 is homeomorphic to A1 and is therefore an absolute Ch [0]. 
Similarly, if 

8n = {x: x = xw, where W = Wr,s, U·,· U Wrnsn , 
with T1 < S1 < T2 < ... < Tn < Sn, consists of n wedges}, 

then 8n is homeomorphic to An = {(T1' S1, T2" .. , Tn, Sn): T1 < S1 < .,. < Tn < Sn, 
and Tk, Sk E A for k = 1,2, ... , n}, and thus 8n E Ch. Since 8 = U:=1 8n , 8 E Cha , 
Note each 8n is nowhere dense: an x with long strings of O's and l's alternating in 
binary expansion cannot be in 8n . Hence 8 is a scrambled, c-dense first category 
Cha subset of [0,1]. 

(4) Let {In} be an enumeration of the rational intervals in [0, 1]. For each n, 
the set 8 n In is c-dense in In and is of type Cha . Thus, there exists a nonempty 
perfect set Pn ~ 8 n In. Let P = U:=1 Pn , Then P is of type Fa and is c-dense in 
[0, 1]. Furthermore, since P ~ 8, P is a scrambled set for f, 

(5) Let h be a homeomorphism of 10 onto itself such that h(P) = T has measure 
one, and h(~) = ~ (such a homeomorphism exists by [G]), Let 9 = h 0 f 0 h- 1 . 

Then T is a scrambled set for 9 and )"T = 1. Furthermore 9 increases on [0, ~] and 
decreases on [~, 1]. 
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REMARKS. The homeomorphism h can be chosen to be arbitrarily close to the 
identity. (One only needs to subdivide 10 into sufficiently small subintervals and 
require that h map each subinterval onto itself.) Thus g can be chosen uniformly 
close to f. 

Let S, T be the scrambled sets appearing in Theorem 3.1. If xES, then 0 and 
1/2n , n = 0,1, ... , are the only limit points of {r(x)}. In particular, S contains 
no points of dense orbit under f. Similarly T contains no points of dense orbit of g. 
Let D f and Dg denote sets of points having dense orbits under f and g respectively. 
Then AS = 0, ADf = 1, AT = 1, ADg = O. 

Furthermore, note that f must be one-to-one on a scrambled set. Similarly, fn 
must be one-to-one. Thus our example shows that it is possible for a continuous 
function and all its iterates to be one-to-one on a set of full measure without being 
one-to-one on 10 , 

4. Category analogues. We say in §3 that there exists a function g possessing 
a scrambled set of full measure. The function g we defined is nomadic. Two 
questions arise naturally: 

(1) Does the category analogue of Theorem 3.1 hold? I.e. does there exist a 
continuous function possessing a scrambled set that is residual in Io? 

(2) What relationships exist between nomadic functions and chaotic functions? 
We address both these questions in this section. First we show that if a scrambled 

set has the Property of Baire, then it must be first category. Since the Property of 
Baire is the category analogue of a set being measurable, this raises the question of 
whether a scrambled set can be second category if it lacks the Property of Baire. We 
show this is possible by showing that every continuous function f with P nomadic 
possesses a scrambled set that is second category in every interval. (This statement 
fails if one weakens the requirement that P be nomadic to the requirement that f 
be nomadic.) Finally, we observe in Corollary 4.9 that a continuous f is chaotic if 
and only if P is nomadic. 

PROPOSITION 4.1. Let f be continuous on an interval [a, b] and let S be a 
residual subset of [a, b]. If f is one-to-one on S, then f(S) is residual in f([a, b]). 

PROOF. Let H be a dense set of type Go contained in S. Then f(H) is a Borel 
set, being the one-to-one continuous image of a set of type Go. Thus, if f(H) is 
not residual in f([a, b]), then there exists an open interval J such that f(H) n J 
is first category. Let I be a component interval of the open set f-1(J) and let 
H* = H n I. Since f(H*) is a first category subset of J, there exist nowhere dense 
sets B 1 , B 2 , ... such that 

00 00 

f(H*) = U Bk <;;: U Bk <;;: J. 
k=l k=l 

Then H* <;;: U~l (f-1 (Bk) n 1). Since H* is residual in I, the same is true 
of U%"=1(f-1(Bk) n I). This implies that there is a k such that the closed set 
f- 1 (Bk) n 1 contains an interval L. But H* is residual in Land f is one-to-one on 
H*, so the set f (L) is a nondegenerate interval. This is impossible since f (L) c B k, 

a nowhere dense set. Thus the proof is complete. 
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THEOREM 4.2. Let f: 10 -+ 10 be continuous and let S be a scrambled set for 
f. If S has the Property of Baire, then S is first category. 

PROOF. We argue by contradiction. Suppose S is a second category scrambled 
set possessing the Property of Baire. Then there exists an interval J such that S 
is residual in J. We show first that f must be monotonic on J. If not, there exist 
points a < b < c in J such that f(a) = f(c) :f:. f(b). Without loss of generality, 
assume max{f(x): x E [a,b]} = f(b). Since f is one-to-one on S, it follows from 
Proposition 4.1 that f(S n [a,b]) and f(S n [b,c]) are residual subsets of f([a,b]). 
Thus these two sets have a nonempty intersection, which is impossible since f is 
one-to-one on S. Now let ° < 8 < !. We claim that f is monotonic on [8,1 - 8]. 
Let x :f:. y be points of S n J. Since S is a scrambled set, there exists n such that 
Ir(x) - r(y)1 > 1 - 8, say r(x) < 8 and r(y) > 1 - 8. It now follows from 
Proposition 4.1 that r(S n J) is residual in [8,1 - 8]. If f is not monotonic on 
[8,1- 8], then f cannot be one-to-one on the set r(S n [8, 1- 8]); i.e., r+1 is not 
one-to-one on S n [8, 1- 8]. This is impossible since S n [8, 1- 8] is a scrambled set 
for f. Thus the claim is proved. Since ° < 8 < ! is arbitrary, we have shown that 
f is monotonic on 10 . However, a monotonic function cannot have scrambled sets. 
This is a contradiction to the hypothesis that S is a scrambled set for f. Thus S 
must be first category in 10 . 

If we drop the requirement that S have the Property of Baire, the conclusion that 
S is first category no longer follows. Our next theorem shows this, as well as es-
tablishing a connection between nomadic functions and chaotic functions. Observe 
that the requirement that P be nomadic implies also that f is nomadic. 

THEOREM 4.3. Let f be continuous on 10 = [0,1]. Suppose P is nomadic. 
Assuming the Continuum Hypothesis, there exists a set S of second category in 
every interval such that if x, yES with x :f:. y, then the set {r (x) - r (y)} is 
dense in [-1,1]. 

The proof of Theorem 4.3 depends on three propositions that may be of interest 
in themselves. The authors are grateful to the referee for pointing out that the 
hypotheses for Proposition 4.4 suffice. Originally we had stronger hypotheses which 
led to weaker versions of the remaining results. 

PROPOSITION 4.4. If f is continuous on 10 = [0,1] and P is nomadic, then 
to every 8 > ° and every open interval lela there corresponds a positive integer 
N such that fk(I) ::J [8,1 - 8] for every k 2': N. 

PROOF. Since f is nomadic, there is a fixed point Xo for f in (0,1). Let J 
be a nondegenerate closed interval such that Xo is an end-point of J and J c 
f([O, xo]) n f([xo, 1]) n (0,1). (If no such interval existed, then prO, xo] would be 
contained in [0, xo] and P would not be nomadic.) For each positive integer n, let 
I n = r(J). Each set I n is an interval containing Xo. Now f is nomadic, so there 
exists a positive integer M such that f M (J) ::J J. Let H = J U J1 U ... U J M -1. 

Then H is an interval containing J and 

f(H) = f(J) U f(Jd U··· U f(JM-d = J1 U··· U JM · 

Since JM ::J J, f(H) ::J H. 



ON SCRAMBLED SETS FOR CHAOTIC FUNCTIONS 295 

Now let Hk = fk(H). Then the sequence {Hk} is an expanding sequence of 
intervals, Hk+1 ::J Hk, k = 1,2,3,.... Since each such interval contains Xo and 
since f is nomadic, there exists MI such that fk(H) ::J [8,1- 8] for all k ;::: MI. 

We now show that there exists M2 such that fM2 (1) ::J H. Since f is nomadic, 
0(1) has at most two components [BCR, Theorem 10]. But P is also nomadic, 
so there must exist a point z 1= xo, z E (0,1), such that f(z) = Xo. It follows that 
some iterate of f maps f onto an interval containing Xo and that some later iterate 
f M2 satisfies fM2 (1) ::J H. Thus fk(I) ::J [8,1- 8] for all k;::: N = MI + M2. 

PROPOSITION 4.5. Let f be continuous on fo with P nomadic. Define a 
function 9 on fo x fo to fo x fo by g(x, y) = (f(x), f(y)). Then there exists a set A 
that is dense and of type G/j in fo x fo such that each point in A has a dense orbit 
relative to g. 

PROOF. Let U = UI X U2, V = VI X V2 be open rectangles whose closures are 
contained in (0,1) x (0,1). By Proposition 4.4, there exists a positive integer N 
such that fN(Ud ::J VI and fN(U2) ::J V2. Thus gN(U) ::J V. Hence the inverse 
orbit of V under 9 is dense. Since V is open and 9 is continuous, this set is also 
open. Now let VI, V2 , ... be a countable base for the topology of (0, 1) x (0,1) with 
Vi ~ (0,1) x (0,1). Let A = nr=l O-I(Vk), where O-I(Vk) is the inverse orbit of 
Vk under g. Then A is a dense G/j and each point of A has a dense orbit relative 
to g. 

PROPOSITION 4.6. Let f be continuous on fo with P nomadic. Then there 
exists a residual set B such that if x E B, there exists a residual set Bx C B such 
that ify E Bx with y 1= x, then the set {r(y) - r(x)} is dense in [-1,1]. 

PROOF. Let A be the set of Proposition 4.5. By the Kuratowski-Ulam Theorem 
[0], there exists a residual set B C fo such that if x E B, then Bx = {y: (x, y) E A} 
is a dense G/j in fo. But, if (x, y) E A, then the set gn(x, y) is dense in fo x fo by 
Proposition 4.5. This implies that {r(x) - r(y)} is dense in (-1,1). Since B 
and Bx are residual sets, so is Bx n B, so there is no loss of generality in assuming 
Bx C B. 

We are now ready for the proof of Theorem 4.3. 
PROOF OF THEOREM 4.3. Let Band Bx have the meanings indicated in 

Proposition 4.6. We assume the Continuum Hypothesis. Let n be the first un-
countable ordinal. Well-order the second category sets of type G/j in fo by n: 

Go, G I , ... , G"" ... , 0: < n. 
Let Xo E Go n B, and choose Xl 1= XO, Xl E G I n B xQ • Suppose we have chosen 
x(3 for all (3 < 0: such that x(3 1= x"'j for I < (3, x(3 E G(3 n B x , for all I < (3. 
Consider the set S'" = (G", nn"'j<",Bx,) - {x(3: (3 < o:}. This set is a countable 
intersection of dense sets of type G/j, thus S'" is also a dense G/j. Let x'" E S'" and 
let S = {x",: 0: < n}. We show that S has the desired properties. 

To see S is second category in every interval, we need only note that S intersects 
every second category set of type G 15. (If S were first category in some interval f, 
then f - S would be residual in f and would therefore contain a G/j set dense in f. 
This set would be a second category G/j missing S.) Now, let X,y E S, say x = x"" 
y = x(3 with 0: < (3. Then y E Bx so {r(y) - r(x)} is dense in [-1,1] as required. 
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REMARK. Let D = {x: O(x) is dense}. Then D is a dense Go. Let T = D n S. 
Then T is second category in every interval and is scrambled for f. If p is a periodic 
point for f, then lim sUPn--> = Ir(p) - r(x)1 > ° for every x E T. This condition 
is sometimes part of the requirement of a scrambled set [K, SI]. 

REMARK. Propositions 4.5 and 4.6 and Theorem 4.3 are not valid in general 
without the assumption that P be nomadic. One need only consider a nomadic 
function with a cut-point [BCR], that is a point z such that f([O, z]) = [z,l] and 
f([z, l]) = [0, z] and 0-1(Z) = Z. It is clear that if x < y < z for such a function, 
then limn-->= sup Ir(y) - r(x)1 < l. 

Nonetheless, in that case, weaker conclusions are possible since the function P 
is nomadic on [0, z] and on [z, 1] and has infinitely many fixed points. (See Theorem 
11 of [BCR] for some results concerning behavior of nomadic functions with cut 
points.) Thus P exhibits chaotic-like behavior on each of the two intervals. More 
specifically, P exhibits the behavior of Theorem 4.3 on each of these intervals. In 
particular, if x and y are in [0, z], then {r(x) - r(y)} are dense in [-z, z] and 
have similar behavior for x, y E [z,I]. 

Theorem 4.3 showed that continuous functions with P nomadic are chaotic. We 
now obtain a converse. 

THEOREM 4.7. Let f: 10 --+ 10 be continuous. If there exists a set S, dense in 
10 such that lim SUPn--> = I r (x) - r (y) I = 1 for all x =1= y in S, then P is nomadic. 

PROOF. Let K be a compact set with interior points such that P(K) C K. 
We show K = 10 . This implies that P is nomadic [BCR]. Let U be an interval 
contained in K, let x, yES n U and let e > 0. Choose 8 such that ° < 8 < e 
and f([8, 1 - 8]) => [e,1 - e]. By the definition of S, there is a positive integer 
N such that IfN (x) - fN (y)1 > 1 - 8. Thus fN (U) => [8,1 - 8] => [e,1 - e] and 
fN+l(U) => f([8, 1 - 8]) => [e,1 - e] because of the definition of 8. One of the 
numbers N or N + 1 is even, say N. Then since U C K, K => fN(U) => [e, 1- e]. 

This inclusion K => [e,1 - e] is valid for every e > 0, thus K = 10 . Thus the 
only compact invariant set for P with interior is 10 , as was to be shown. 

Combining Theorems 4.3 and 4.7 we obtain Theorem 4.8. 
THEOREM 4.8. Assume the Continuum Hypothesis. Let f be continuous on 

10 . Then there exists a dense set S such that for x, yES (x =1= y), 
lim sup Ir(x) - r(y)1 = 1 

n-->= 

if and only if P is nomadic. In that case there is a set T of second category in 
every interval such that for X,y E T (x =1= y), the set {r(x) - r(y)} is dense in 
[-1,1]. 

In particular, we obtain the following corollary that relates nomadicity to chaos. 
COROLLARY 4.9. Under the Continuum Hypothesis, a continuous function f 

defined on 10 is chaotic if and only if P is nomadic. 
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