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ABSTRACT. Let (R, {A, B}) be a marked open Riemann surface of genus one. 
Denote by (T, {AT, BT }, i) a pair of a marked torus (T, {AT, BT }) and a con-
formal embedding i of R into T with i(A) and i(B) homotopic respectively to 
AT and BT . We say that (T,{AT,BT},i) and (T', {AT"BT' },i') are equiva-
lent if i' 0 i-I extends to a conformal mapping of Tonto T'. The equivalence 
classes are called compact continuations of (R, {A, B}) and the set of moduli 
of compact continuations of (R, {A, B}) is denoted by M = M(R, {A, B}). 
Then M is a closed disk in the upper half plane. The radius of M represents 
the size of the ideal boundary of R and gives a generalization of Schiffer's 
span for planar domains; in particular, it vanishes if and only if R belongs 
to the class 0 AD. On the other hand, any holomorphic differential on R 
with distinguished imaginary part produces in a canonical manner a compact 
continuation of (R,{A,B}). Such a compact continuation is referred to as a 
hydrodynamic continuation of (R, {A, B} ). The boundary of M parametrizes 
in a natural way the space of hydrodynamic continuations; i.e., the hydrody-
namic continuations have extremal properties. 

Introduction. A Riemann surface Ro is called a continuation (or prolongation, 
extension) of another Riemann surface R, if there exists a conformal injection of R 
into Ro. See Bochner [3] and Sario-Oikawa [22], for example. We are specifically 
interested in the case where R is an open Riemann surface of finite genus and Ro is 
a closed Riemann surface of the same genus. The existence of such Ro (for a given 
R) is a classical result, and the totality of those Ro's for a fixed R is also studied 
by many authors in the framework of Teichmiiller space theory. Cf. Heins [9], Ioffe 
[11, 12], Oikawa [15, 16], Renggli [19], and Timmann [31]. 

In the present paper we shall restrict ourselves, as in [9], only to the case of genus 
one. Then, we obtain a refinement of Heins' result; we give a complete description 
of the moduli set of compact continuations of a fixed open Riemann surface of genus 
one. (In [9] Heins considered the moduli space rather than the Teichmiiller space. 
But here we are concerned with the latter.) 
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To explain our results, let R be an open Riemann surface of genus one with a 
fixed canonical homology basis {A, B} modulo dividing cycles (cf. [2]). (We may 
assume that An B consists of a single point.) The system {A, B} is also a set of 
generators for the fundamental group of the Ken3kjart6-Stoi1ow compactification of 
R (cf. [20]). Hence, following the standard terminology for compact surfaces, we 
shall call the pair (R, {A, B}) a marked open Riemann surface. 

By a marked realization of (R, {A, B}) we mean a triple (T, {AT, BT }, i), where 
(T, {AT, BT }) is a marked torus in the ordinary sense and i is a conformal embed-
ding of R into T with i(A) and i(B) homotopic respectively to AT and BT. Two 
marked realizations (T, {AT, BT }, i) and (T', {AT" BT,}, i') are said to be equiva-
lent if i' 0 i- 1 extends to a conformal mapping of Tonto T'. Each equivalence class 
is called a compact continuation of (R, {A, B}). Since equivalent marked realiza-
tions have the same modulus (with respect to their markings), we can speak of the 
modulus of a compact continuation. We denote by M(R, {A, B}) the set of moduli 
of compact continuations of (R, {A, B}). 

For any t, -1 < t :::; 1, there exists a unique holomorphic differential (Pt on R 
such that Im[e-!7rit¢t] is distinguished [2] and fA ¢t = 1. Furthermore, we know 
[26] the existence of a marked realization (Tt, {At, B t }, it) of (R, {A, B}) such that 
the transplant of ¢t by it 1 extends to the normal holomorphic differential ¢Tt on 
Tt with respect to the basis {At, Btl. The compact continuation represented by 
(Tt, {At, Btl, id will be referred to as the hydrodynamic continuation of (R, {A, B}) 
with respect to ¢t, since ¢t is associated with a stationary flow of an ideal fluid on 
R. The ideal boundary of R is then realized on Tt (via it) as a set of arcs on the 
streamlines of the flow with which ¢Tt is associated. (We may always assume At 
is geodesic with respect to the metric I¢Tt I. Then it(R) is a torus with geodesic 
parallel slits of inclination !7rt with At. The total area of these slits is equal to 
zero.) 

Now our results are as follows. 
(I) M(R, {A, B}) is a closed disk in the Teichmiiller space of genus one (the 

upper half plane). 
(II) To each boundary point of M(R, {A, B}) there corresponds a unique hydro-

dynamic continuation of (R, {A, B}), and vice versa. 
(III) To an interior point of M(R, {A, B}) there correspond in general more than 

one compact continuation of (R, {A, B} ). 
(IV) The radius p(R) of M(R,{A,B}) vanishes if and only if R E DAD. The 

quantitya(R) := p(R)/7r gives a generalization of Schiffer's span for planar regions. 
In the proof of (I)-(IV), our preceding results [26, 27] will be very useful. Similar 

results had been obtained by Grotzsch [6]. Our method is completely different from 
his, however. 

1. Preliminaries. 
1.1. Along the line of Riemann, Klein and Hilbert, the class of single-valued 

meromorphic functions which describe stationary dipole flows of an ideal fluid on 
a planar surface has played an important role in the theory of conformal mapping. 
Each function in this class is referred to as a "Stromungsfunktion" (see [10]) or, for 
short, an "S-function" [26]. In fluid dynamics it is usually called a complex velocity 
potential. Such a function furnishes a one-to-one conformal mapping of the surface 
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considered onto a so-called (extremal) parallel slit region. (Cf. [2, 10, 21, 22, and 
29].) 

In [26, 27], we have been concerned with a generalized "Stromungsfunktion"; 
it describes a general multipole stationary flow on a surface of positive finite genus 
and is not necessarily single-valued. Indeed, the important thing for physical phe-
nomena is the (single-valued) derivative with respect to any fixed local parameter-
more precisely the differential-rather than the (multiple-valued) complex velocity 
potential itself. Even if the complex velocity potential is not single-valued, it still 
determines a uniform ("einformig" in the sense of Klein) flow on the surface. There-
fore, in the present paper too, we shall understand the term "S-function" in this 
wider sense. 

Now we shall give a formal definition of an S-function in a modern terminology. 
Let R be an open Riemann surface, f a single- or multiple-valued meromorphic 
function on R, and t a real number, -1 < t ::; 1. We call f an Srfunction if 
Im[C~7ritdf] is a distinguished harmonic differential of Ahlfors (see [2, p. 313]). 
When it is not necessary to refer to t explicitly, we use the term S-function. 

If f is an Srfunction, then C~7ri(t+l)df is a canonical semi exact differential of 
Kusunoki, and vice versa. In case that Im[C~7rit f] (resp. Re[e-~7rit f]) is single-
valued on the whole surface, f is an Srfunction if and only if Im[e-!7rit fl (resp. 
Re[e-!7ritf]) is a (Q)L 1- (resp. Lo-) principal function of Sario. See [21 or 22]. 

The present work heavily depends on the following theorem [26, 27]: 

THEOREM 1. Let R be an open Riemann surface of finite genus g and <I> an St-
function on R, -1 < t ::; 1. Then there is a closed Riemann surface Ref! of genus g, 
a conformal embedding i: R ----+ Ref!, and a single- or multiple-valued meromorphic 
function <l> on Ref! such that 

(1) Ref!\i(R) is of zero area, 
(2) i*(d<l» = d<I>, i*(d<l» being the pull-back of d<l> via i, 
(3) every component of Ref!\i(R) is a possibly branched arc (or a single point) on 

the trajectories of the quadratic differential e-7rit (d<l» 2, and 
(4) <l> is single-valued if and only if <I> is. 

REMARK. Ref! is not always uniquely determined by R and <I> , but depends on 
(2g - 2 - d)-real parameters, where d is the degree of the divisor of d<I>. Cf. [27]. 

1.2. In this paper we shall deal with the case g = 1. By Theorem 1 and the 
above remark, we have then 

THEOREM 1'. Let <I> be a regular S -function on an open Riemann surface R 
of genus one. Then there exists a conformal injection i of R into a torus T such 
that the transplant of d<I> by i-I extends to a holomorphic differential on T. If J. is 
another conformal injection of R into a torus S such that the transplant of d<I> by 
j-l extends to a holomorphic differential on S, then there is a conformal mapping 
f ofT ontoS withfoi=J· (onR). 

Now, fix a canonical homology basis {A, B} of R modulo dividing cycles. (We 
may assume that An B consists of a single point.) We may regard {A, B} as a set 
of generators for the fundamental group of the Kerekjart6-Stoi1ow compactification 
of R (see Richards [20]); The pair (R, {A, B}) will be thus called a marked open 
Riemann surface. 
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Let (T, {AT, BT }) be a marked torus in the ordinary sense; T shall be a torus 
and {AT, BT } a set of generators for the fundamental group of T. We may assume, 
without loss of generality, that AT and BT are geodesics with respect to the metric 
Idwl, where dw is an arbitrarily fixed holomorphic differential on T. Specifically, we 
can take dw as the normal differential of the first kind with respect to {AT, BT }: 
fAT dw = 1. If we set 

T = T(T, {AT, Br}) = r dw, JBT 
then T is the modulus of T with respect to the marking {AT, BT } and 1m T is, as 
is well known, always positive. 

If there exists a conformal injection i of R into T such that i(A) and i(B) 
are homotopic respectively to AT and BT, we call the triple (T, {AT, BT }, i) a 
marked realization of (R,{A,B}). Two marked realizations (T,{AT,Br},i) and 
(T',{ATI,BTI},i') of the same (R,{A,B}) are defined to be equivalent, if there 
exists a conformal mapping f of Tonto T' with f 0 i = i'. Each equivalence 
class will be called a compact continuation of (R, {A, B}), and the compact con-
tinuation represented by a marked realization (T, {AT, BT}, i) will be denoted by 
[T, {AT, BT }, i]. We denote by C(R, {A, B}) the space of all compact continuations 
of (R, {A, B}). 

Since equivalent marked realizations obviously define the same point in the 
Teichmiiller space of genus one and so have the same modulus, we can speak of 
the modulus of a compact continuation. We set T[T, {AT, BT }, i] = T(T, {AT, BT }) 
for [T,{AT,BT},i] E C(R,{A,B}) and denote by M(R,{A,B}) the set of those 
T[T, {AT, BT }, iJ, [T, {AT, BT }, i] E C(R, {A, B}). In [9] Heins proved that 
M(R, {A, B}) is a compact set. One of our aims is to prove that it is a closed 
disk in the upper half plane. 

As we shall see later, for each t E (-1, 1] there is a unique holomorphic differential 
cPt = d<Pt such that <P t is an Srfunction and fA d<Pt = 1. Furthermore, by Theorem 
1', there is a torus Tt and a conformal embedding it of R into Tt such that the 
transplant of d<Pt by i;-l extends to a holomorphic differential cPTt on Tt . It is 
obvious that {it (A), it (Bn is a set of generators for the fundamental group of 
Tt· Let At = ATt and Bt = BTt be geodesics (with respect to the metric IcPTt I) 
homotopic respectively to it(A) and it(B). Then (Tt , {At, Bd, it) yields a marked 
realization of (R,{A,B}). Using Theorem 1, we know that Tt\it(R) is a null 
set whose connected components are geodesic parallel slits of inclination ~7rt with 
At. It is not difficult to see that any marked realization of (R, {A, B}) equivalent 
to (Tt , {At, Bd, id has the same properties. The compact continuation that is 
represented by (Tt , {At, Bd, it) is referred to as the hydrodynamic continuation of 
(R, {A, B}) with respect to d<Pt . Its modulus is given by fBt cPTt = fB d<Pt . We shall 
prove later that the set of moduli of hydrodynamic continuations of (R, {A, B}) is 
precisely the boundary of M(R, {A, B}). 

2. Some elementary lemmas. Let (R, {A, B}) be a marked open Riemann 
surface of genus one. In this section we shall state some lemmas. 

LEMMA 1. For every t E (-1, 1] there exist holomorphic differentials cPf and 
cPf such that 

(i) Re[e-!7fit cPf] and Re[e-!7fit cPf] are distinguished harmonic differentials, and 



MODULI OF COMPACT CONTINUATIONS 

(ii) 

r..!,A . I J A 'Pt = zat , 

i ¢f = 1 + ib~, 
for real numbers a~, a~', b~ and b~'. 

r..!,A l' /I J B 'Pt = - + zat , 

Is ¢f = ib~ 

303 

Such differentials ¢t and ¢f (and hence the numbers a~, a~', b~ and b~') are 
uniquely determined by {A, B} and t. 

This lemma was established in [25]. 
The following lemma is a generalization of the famous bilinear relation due to 

Legendre and Riemann. For the proof, see [25]. 

LEMMA 2. Let ¢, 'IjJ be holomorphic differentials on R whose imaginary parts 
are both distinguished. Then 

(i) 

(ii) 

1m (i ¢ Is 'IjJ - Is ¢ i 'IjJ ) = 0, 

-21m (i ¢ Is 1)) = 11¢111 ~ 0, 

where II¢IIR = (fIR ¢ 1\ 1)*)1/2 is the Dirichlet norm of ¢. 
The same holds for holomorphic differentials ¢, 'IjJ whose real parts are both dis-

tinguished. 

From the above lemma easily follows the next lemma. 

LEMMA 3. For every t E (-1,1] 
(i) a~ = b~, and 
(ii) a~ > 0, b~' > o. 
LEMMA 4. For every t E (-1,1] there exists a unique holomorphic differential 

¢t on R such that 
(i) Im[e-11l"it¢t] is distinguished, and 
(ii) IA ¢t = 1. 

PROOF. By Lemma 3, 0: := IA ¢t is a nonvanishing purely imaginary number. 
Then 0:-1¢t is clearly a desired differential. Uniqueness follows from Lemma 2. D 

LEMMA 5. Let ¢, 'IjJ be square integrable holomorphic semiexact differentials on 
R and suppose that ¢ is exact on R\A. Then 

if Re'IjJ is distinguished , 
if 1m 'IjJ is distinguished, 

There seem to be no explicit references to Lemma 5. But we can prove it easily 
by noting that 
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and 

Each lemma in this section can be easily rephrased in terms of S-functions. 

3. Extremal slit tori. 
3.1. In this section we shall prove the following theorem. 

THEOREM 2. Let [T", {A", B" }, i,,] be the hydrodynamic continuations of 
(R,{A,B}) with respect to diP" andsetT"=T[T",{A,,,B,,},i,,], 1/=0,1. Then 

(I) 
1m TO ::; 1m T[T, {AT, BT}, i] ::; 1m T1 

for every [T, {AT, Br}, i] E C(R, {A, B}). 
(I') 1m T[T, {AT, BT }, i] = 1m T" holds if and only if 

1/ = 0,1. 

(II) Every component of To \io (R) (resp. T1 \ i 1 (R)) is a closed arc which is 
geodesic parallel (resp. geodesic orthogonal) to Ao (resp. A1)' 

(III) The area of T" \i" (R) vanishes for 1/ = 0, 1. 

PROOF. Take an arbitrary compact continuation [T, {AT, BT }, i] of (R, {A, B}) 
and consider the normal holomorphic differential ¢T on T with respect to {AT, BT}. 
The pull-back ¢ := i* (¢T) of ¢T is a holomorphic semiexact differential on R, which 
is evidently square integrable. Furthermore, 

i ¢= 1 and L ¢=T[T,{AT,Br},i]. 

Set ¢o = diPo· Then, applying Lemma 5 to ¢o - ¢ and ¢o, we have 

(¢o - ¢, ¢O)R = -2L (¢o - ¢) i Im¢o = O. 

Hence, we have 
0::; 11¢0 - ¢llh = 11¢I!h -11¢ollh· 

Since 11¢llh = II¢TII;(R) ::; II¢TII} = 2ImT[T, {AT,BT},i] and II¢ollh = 2lmTo, we 
have 

1m TO::; 1m T[T, {AT, BT}, i]. 
Equality holds if and only if ¢ = ¢o, which means 

[T, {AT, Br}, i] = [To, {Ao, Bo}, io]. 
Thus we have proved that [To, {Ao, Bo}, i o] is the unique solution to the problem 
of minimizing 1m Tin C(R, {A, B}). We have also proved that To \io(R) is of zero 
area (with respect to the metric I ¢To I). 

Each component of To \io(R) is, by Theorems 1 and 1', on a (horizontal) trajec-
tory of the quadratic differential (¢To) 2 . This means that each component is an arc 
which is geodesic parallel to Ao. Some arcs may reduce to single points. 

Thus we have proved the theorem for 1/ = O. The other extremal problem (1/ = 1) 
can be dealt with in the same manner. 0 

Similar results can be proved for any hydrodynamic continuation. See §5.2. 
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3.2. We have also proved the following 
THEOREM 2'. Define L;: C(R,{A,B}) -+ R by 

L; [T, {AT, Br}, i] = II¢Tlli(R), 
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where [T, {AT, Br}, i] E C(R, {A, B}) and ¢T is the normal differential of the first 
kind on T with respect to {AT, BT }. Then L; has its minimum (resp. maximum) for 
[To, {Ao, Bo}, io] (resp. [Tl' {Al' Bd, id). The minimum (resp. maximum) value 
is attained by [To, {Ao, Bo},io] (resp. [Tl' {Al,Bd,i l ]) only. 

Theorems 2 and 2' are analogous to the well-known theorems for extremal slit 
annuli. See Carleman [4], Reich-Warschawski [17], Rengel [18], Sakai [23] and 
Thao [30]; cf. [21 and 22], too. Our theorems also have a close connection with 
Grotzsch's differential geometric approach [7, 8]. Cf. Jenkins [13], too. 

The importance of Theorems 2 and 2' lies not only in such an analogy to classical 
results as above, but also in the useful applications to the theory of continuations 
of an open Riemann surface. See, e.g., the proof of Proposition 1 below. 

4. Moduli of hydrodynamic continuations. To proceed further, we have 
to compute the B-period Tt of ¢t in Lemma 4, -1 < t :S 1. Let ¢~, ¢{! be the same 
as in Lemma 1. We first prove the following 

PROPOSITION 1. p(R):= (a~b~ - a~b~ - 1)/2a~ is nonnegative. 
PROOF. Observe first that (1 + ib~)-l¢{! is identical with 

¢s, s = (2/1f) tan-l(1/b~) E (-1,1], 
so that we have 

1m Ts = Im[ib~/(1 + ib~)] = b~/(1 + b~2). 
Since 

1m TO = Im[(a~ + i)/a~] = 1/a~, 
we have by Theorem 2 

1/a~ :S b~/(1 + b~2). 
Because b~ = a~ by Lemma 3, it follows immediately that 

p(R) = (a~b~ - a~b~ - 1)/2a~ 

is nonnegative. 0 
The differentials ¢~ and ¢{! form a basis (over reals) for the space of holomorphic 

differentials on R with distinguished real parts (cf. [25]). Therefore there are two 
real numbers ~,'rJ such that 

ie--!7rit¢t = ~¢~ + 'rJ¢~. 
Comparing the A-period of both sides, we have 

~ = (cos 11ft - b~ sin 11ft) / a~ , 
Hence, the B-period Tt of ¢t is equal to 

. 1 'rJ = sm 21ft. 

- ie!7rit { a~-l (-1 + ia~)( cos 11ft - b~ sin 11ft) + ib~ sin ~1ft } 

= {a~/a~ + i/a~} + ip(R) + p(R) exp[(t -1 )1fi]. 
Since p(R) is nonnegative by Proposition 1, we know that 

Tt = {TO + ip(R}} + p(R) exp[(t - ~ )1fi] 
moves on the full circle K of radius p(R) with the center at T* := TO + ip(R), when 
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t ranges over (-1, 1]. We have hence proved 

THEOREM 3. Let cf>t be the regular St -function on R with J A dcf>t = 1, Tt the 
modulus of the hydrodynamic continuation of (R, {A, B}) with respect to dcf>t, -1 < 
t ~ 1. Then the set {Tt I -1 < t ~ I} coincides with the circle K: {IT-T*I = p(R)}, 
where 

p(R) = (a~b~ - a~b~ - 1)/2a~ (~O) 

and r* = ro + ip(R). More precisely, t parametrizes K by 

rt = r* + p(R)exp[(t - !)1Ti], 

COROLLARY. (1) Rer! = Rero. 
(2) p(R) = -it(rl - ro)· 
(3) r* = ~(rl + TO), 

-1 < t ~ 1. 

5. Extremal property of hydrodynamic continuations. 
5.1. Now we shall sharpen Theorems 2 and 3 as follows. 

THEOREM 4. The setM(R,{A,B}) is contained in the disk {lr-r*1 ~ p(R)}. 
Furthermore, r E M(R,{A,B}) satisfies Ir - r*1 = p(R) if and only if it is the 
modulus of a hydrodynamic continuation of (R, {A, B}). 

PROOF. Let [T, {AT, BT }, i] be an arbitrary point of C(R, {A, B}) and r its 
modulus. Let ¢T be the normal differential of the first kind on (T, {AT, BT }), ¢ := 
i* (¢T) its pull-back to R via i. Then 

Observe that, for every t E (-1,1]' 

i e-!7rit(¢t - ¢) = 0, 

and Im[e-!7rit¢t] is distinguished. Hence we can apply Lemma 5 and obtain 

(¢t - ¢,¢t)R = (e-!7rit(¢t - ¢),e-!7rit¢t)R 

= -2L e-!7rit(¢t - ¢) . i Im[e-!7rit¢t] 

= 2e-!7rit(rt - r) sin !1Tt. 

It follows by simple computations that 

o ~ II¢t - ¢llk = 2 Re(¢t - ¢,¢dR + 1I¢llk -11¢tllk 
~ -2 Im[e-7rit (rt - r)]. 

Since rt = r* + p(R)exp[(t - ~)1Ti] by Theorem 3, we have Im[e-7rit (T* - r)] ~ 
p(R). This inequality holds for every t E (-1,1], so that Ir - T* I ~ p(R). Thus we 
have proved the first assertion. 

As for the second assertion we only need to prove the only if part, since the if 
part was established in Theorem 3. Let [T, {AT, BT}, i] E C(R, {A, B}) and assume 
r := r[T, {AT, BT }, i] satisfies Ir - r*1 = p(R). Then r = rt for some t E (-1,1]. 
It follows immediately from inequality (*) that the pull-back of the normal holo-
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morphic differential on (T, {AT, BT}) is identical with 1>t. Hence [T, {AT, Br}, i] 
is the hydrodynamic continuation with respect to 1>t. 0 

5.2. From Theorems 3 and 4 we can conclude that hydrodynamic continuations 
have extremal properties (cf. Theorem 2 too). Consider, for instance, the extremal 
problem to maximize 1m ~ in C(R, {A, B}). By Theorems 3 and 4 we know that 
there is a unique solution. The solution is given by the hydrodynamic continua-
tion [T#, {A#, B#}, i#] such that each component of T#\i#(R) is a slit which is 
geodesic parallel to B# (B# is assumed, as usual, to be geodesic). This extremal 
problem is dealt with by Grotzsch. See [6]. By computations--or by simple geo-
metric observation~we see that the coordinate origin, TO, and T# are collinear, T# 
being the modulus of the solution. 

Let T# be a complex number with 1m T# > 0 and assume (i) the coordinate 
origin, T#, and T1 are collinear, and (ii) \T# - T*\ = p(R). Then the hydrodynamic 
continuation [T#, {A#, B#}, i#] with modulus T# minimizes 1m ~ in C(R, {A, B}) 
and each component of T# \i#(R) is a slit which is geodesic orthogonal to B#. 

6. The complete description of the moduli set M(R, {A, B}). 
6.1. We shall now show that every point in the disk {\T-T*\ ~ p(R)} is obtained 

by some [T, {AT, Br}, i] E C(R, {A, B}). To this end we begin with a special case 
where R is the interior of a compact bordered Riemann surface R. Let 8R denote 
the border of R and let {31, {32, ... , {3 N be the contours with 8 R = {31 + {32 + ... + (3 N . 

Let h, k be two positive numbers with h + k = 1 and set q>hk = hq>o + kq>l, 1>hk = 
dq>hk. 

Note that q>o, q>1 and q>hk are single-valued near 8R. Their boundary values are 
determined modulo additive constants. In other words, the image curve q>hd{3i) is 
determined only up to euclidean translations. Since the convexity of a plane curve 
is preserved under euclidean motions, it makes sense to speak of the convexity of 
q>hk({3i). 

LEMMA 6. LettE(-l,l] andh,k>O, h+k=1. Set 

and 
s = (2/,Tr) tan- 1((kjh) tan ~7rt), -1 < s ~ 1. 

Then 
(1) hcos ~7rt 1>0 + iksin ~7rt 1>1 = Re17ris 1>-s, and 
(2) Re[e1 7ritq>hk] = rRe[e1 7ris q>_s] + const. on {3i (1 ~ i ~ N), q>-s being an 

(arbitrarily fixed) integral of 1>-s· 

PROOF. To prove (1) we set ¢ := hcos ~7rt 1>0 + iksin ~7rt 1>1. Then we know 
1m ¢ = 0 along 8R and furthermore fA ¢ = e17ris . These two conditions character-
ize the differential Re17ris 1>-s (see Lemma 4), so that assertion (1) follows. 

Assertion (2) is an easy consequence of (1), for we have Re[e17rit1>hk] = Re¢ on 
8R. 0 

From this lemma we can conclude, as in [2] (see p. 181 ff.), that the equation 
Re[e17ritq>hk] = b has at most two solutions on (3i for each b E Rand i = 1,2, ... , N. 
This means that each q>hk({3i) is a convex (analytic) curve. 
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6.2. We shall next show the following lemma. 

LEMMA 7. Let h, k > 0, h + k = 1. Then 

r darg<Phk = -1, J (3i 
1:::; i:::; N. 

PROOF. Set F = <p!/<Po. Then F is a single-valued (nonconstant) meromorphic 
function on R, which is holomorphic on R. Applying the argument principle to F, 
we see that FIR, the restriction of F onto R, takes on no purely imaginary values. 
Hence, either Re F > 0 throughout R or else Re F < 0 throughout R. 

We may assume that A is so chosen that io(A) is a geodesic with respect to the 
metric induced by the transplant of <Po by iOI. Then we have 

1 = L <PI = L F<po = L (ReF)<po· 

This shows that Re F > 0 throughout R. Consequently 

r darg<Phk = r darg<po = -1. 0 J {3i J {3i 

By Lemmas 6 and 7 we have 

PROPOSITION 2. Let h, k > 0, h+k = 1, and let R be the interior of a compact 
bordered Riemann surface of genus one. Then each contour of R is mapped by 
iI>hk = hiI>o + kiI>1 onto a negatively oriented convex analytic curve. 

By considering each contour separately, we obtain a torus Thk , a naturally 
defined conformal embedding ihk : R -+ Thk such that the transplant of <Phk by 
i-,;1 extends to a holomorphic differential 'l/Jhk on Thk . Since the marking {A, B} 
of R is easily transferred to a marking {Ahk' Bhd of Thk via ihk, we have ob-
tained a marked realization (Thk, {Ahk' Bhd, ihk ) of (R, {A, B}). Furthermore, 
T[Thk, {Ahk' Bhd, ihk] = hTo + hI, for we have 

It follows that any point on the vertical diameter of the disk {IT - T*I :::; p(R)} is 
the modulus of a compact continuation of (R, {A, B}). 

The same reasoning as above clearly applies to any pair <Pt and <Pt+!, -1 < t < O. 
Hence we have proved 

PROPOSITION 3. If R is the interior of a compact bordered Riemann surface of 
genus one, M(R, {A, B}) is a closed disk in the upper half plane. 

6.3. Let Whk be any (but fixed) integral of 'l/Jhk. We know (see, e.g., Siegel [28, 
p. 50 ff.]) that W hk is a single-valued univalent holomorphic function on the simply 
connected surface Thk \(Ahk UBhk ) which is obtained by cutting Thk along Ahk and 
Bhk . Hence iI>hk is a single-valued univalent holomorphic function on R\(A U B), 
so that iI>hk ((3i)' i = 1,2, ... , N, are mutually disjoint convex curves and anyone 
of them lies outside the others. 
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Each component of Thk \ihk(R) is a convex set. Any marked realization equiva-
lent to (Thk, {Ahk , Bhd, ihk) evidently has the same property. So, [Thk , {Ahk , Bhd, 
ihkJ may be called a compact continuation with convex complements. The proof of 
Proposition 3 actually shows that every interior point of the disk {IT - T* I :::; p(R)} 
is the modulus of a compact continuation with convex complements. 

6.4. To pass to the general open case (R, {A, B}), we take an exhaustion {Rn,}~=l 
of R by regular regions of genus one. We may assume Rl => Au B. Let ¢~n) = 
dq,~n) be the holomorphic differentials on R" such that q,~n) are Srfunctions and 
f ",(n) = 1 For h k > 0 h + k = 1 we set q,(n) = hq,(n) + k<I>(n) ",(n) = d<I>(n) A 'Pt . " , hk 0 1 , 'Phk hk . 
It is known that {¢~~)}~=l converges to ¢hk locally uniformly on R. 

We cut R along A, B and denote by if the resulting surface, that is, if = 
R\(A u B). If we set Rn = if n R", then if = U:=l Rn. As was noted earlier, <I>~~) 
are single-valued univalent holomorphic functions on Rn. We may assume that 
{<I>~~)}~=l converges to <I>hk locally uniformly on if. Then, by a theorem of Hur-
witz, <I>hk is univalent on if. In particular, <I>hk gives rise to a compact continuation 
of (R, {A, B}), whose modulus is clearly hTo + kTl' We can now repeat the argu-
ment preceding Proposition 3 and see that every point in the disk {IT-T*I :::; p(R)} 
is the modulus of a compact continuation of (R, {A, B}). 

Combining these results together with those in §5, we have the following refine-
ment of Heins' theorem (cf. [9]). 

THEOREM 5. For any marked open Riemann surface (R, {A, B}) of genus 
one M(R, {A, B}) is a closed disk in the upper half plane. Furthermore, T E 
M(R,{A,B}) is the modulus of a hydrodynamic continuation of (R,{A,B}) if 
and only if T is a boundary point of M(R, {A, B}). This correspondence between 
8M(R, {A, B}) and the space of hydrodynamic continuations is one-to-one. 

7. Nonuniqueness. We have already shown that every boundary point of 
M(R, {A, B}) arises from a unique element in C(R, {A, B}), which is actually a hy-
drodynamic continuation of (R, {A, B}). As for the interior points of M(R{A, B}), 
this is not the case in general. Namely we have 

PROPOSITION 4. There exists a marked open Riemann surface of genus one 
which has (at least) two distinct compact continuations with the same modulus. 

PROOF. Take an arbitrary torus T with a canonical homology basis {A, B}. Let 
D be a non convex closed connected set of positive area on T such that DnA = 
DnB = 0. Remove D from T and denote by R the resulting open Riemann surface 
of genus one. By Theorem 5 we know that M(R{A, B}) is a closed disk of positive 
radius and [T, {A, B}, iJ corresponds to an interior point T of M(R, {A, B}), where 
i is the restriction of the identity mapping (of T) to R. 

On the other hand, the same point T is also realized by a compact continuation 
[T',{A',B'},i'J of (R,{A,B}) such that T'\i'(R) is a convex set. See §6.3. It is 
easily seen that [T,{A,B},iJ i= [T', {A',B'},i'J since any conformal mapping of a 
torus onto another preserves the convexity of subsets. 0 

Similar problems to ours are discussed by Ioffe. See [11 and 12J. He also 
considers the case of higher genera; however, he always restricts himself to the 
compact bordered surfaces. 
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8. Span. 
8.1. The radius p(R) of the disk M(R, {A, B}) represents the size of the ideal 

boundary of R. Indeed, we have the following 

THEOREM 6. p(R) = 0 if and only if R E OAD. 

This theorem immediately follows from Theorem 5 and the well-known unique-
ness theorem which asserts REO AD if and only if C(R, {A, B}) consists of a single 
point. See Mori [14] and Oikawa [16]. Cf. also [1, 2, 21, and 22]. 

8.2. Let {Rn}~=1 be the same as in §6.4. Then Cauchy's theorem yields 

o = iaRn ~1 $0 + (i $1 L $0 - L $1 i $0) 

= 1 ~1$0 + (TO - Tt}, aRn 
n = 1,2, .... Hence, by the corollary to Theorem 3, we have 

THEOREM 7. 

p(R) = Re {~ r ~1$0} = lim Re {~r ~1$0}' 
7r 27rZ JaR n-+oo 27rZ } aRn 

This theorem shows an analogue between u(R) := p(R)/7r and Schiffer's span 
for planar regions [24]. To see this, let us recall the (usual) definition of the span 
s(G, s") of a plane region G with respect to the reference point s" in G. Suppose 
fo (resp. it) is the normalized horizontal (resp. vertical) slit mapping of G with 
respect to S". Namely, fo(s") = it(s") = 00 and their Laurent expansions about s" 
shall be of the form l/(z - s") + ak(z - s") + aic(z - s")2 + ... , k = 0, 1. Then, s(G, s") 
is defined as ao - al [24], which is known to be real. Next, we observe that s(G, s") 
is also represented as 

Re {-21 . r it dfo} = lim Re {-21 . r it dfo } , 
7rZ } ac n-+oo 7rZ } aC n 

where {Gn } ~= 1 is a regular exhaustion of G. (This fact is, though a simple conse-
quence of Cauchy's theorem, scarcely found in the literature.) Thus we have seen 
that (J(R) and s(G, s") have similar expressions. 

Other generalizations of Schiffer's span are also known; see Rodin-Sario [21] and 
Sario-Oikawa [22], for example. However, they are closely related to the degenera-
tion of H D- or K D-functions rather than AD-functions. Also they usually depend 
on the reference point used and the choice of local parameter about that point, 
while our span (J(R) needs no reference point. 
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