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ABSTRACT. By giving necessary and sufficient conditions for two isotype sub-
modules of a p-local balanced projective group to be equivalent, we are able to 
introduce a general theory of isotype submodules of p-Iocal balanced projec-
tive groups (or IB modules). Numerous applications of the above result are 
available particularly for the special class of I B modules introduced by Wick 
(known as SKT modules). We first show that the class of SKT modules is 
closed under direct summands, and then we are able to show that if H ap-
pears as an isotype submodule of the p-local balanced projective group G such 
that G / H is the coproduct of count ably generated torsion groups, then H is 
an SKT module. Finally we show that I B modules satisfy general structural 
properties such as transitivity, full transitivity, and the equivalence of p"'-high 
submodules. 

1. Introduction. The recent developments in the study of summands of mixed 
simply presented groups have generated answers to old problems, introduced new 
techniques for study of mixed abelian groups, and initiated new problems and 
conjectures along with interesting parallels to the study of simply presented p-
groups. Much of the success attributed above has been achieved by formulating 
the proper types of subgroups so that a third axiom of count ability (or Axiom 3) 
characterization of the aforementioned mixed groups is possible (see [9, 5, 6, and 
11]). The restricted study of p-Iocal groups (that is, modules over the ring Zp of 
integers localized at a fixed prime p) has provided a proving ground for the more 
complicated global setting, but it has turned out that the global analogues are not 
formulated so simply in terms of well-known notions as in the local case. Moreover, 
certain structure theorems are possible for p-Iocal groups that do not generalize 
to the global case, and so study of p-Iocal groups is of separate interest. In this 
note we will investigate isotype submodules of p-Iocal balanced projective groups 
(or I B modules). This topic initially appeared in [10], and the results developed 
there were used to obtain a characterization of the balanced projective dimension 
of p-Iocal abelian groups, when that dimension is finite. 

All groups and modules in this paper will be assumed to be p-Iocal and abelian. 
A subgroup H of G is said to be isotype provided pO: H = pO:GnH for each ordinal 0: 

and nice if pO: ( G / H) = pO: G + H / H. If H satisfies both of the properties mentioned 
above, then H is said to be balanced and gives rise to the balanced short exact 
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sequence 0 ~ H ~ G ~ G / H ~ o. A group G is said to be balanced projective 
provided it satisfies the projective property with respect to all balanced short exact 
sequences. The torsion balanced projectives are simply the totally projective groups, 
and the class of isotype subgroups of totally projective groups (or IT groups) was 
investigated in [3 and 4]. It is the appearance of an Axiom 3 characterization of 
balanced projective groups [9] and of Theorem 1.1 below which suggests that the 
ideas in [4] can be extended to yield results on the structure of I B modules. 

As usual in the study of simply presented groups, the notion of height will be of 
central importance. Recall that if G is a p-Iocal group, then x E G has height 0: 

provided x E paG\pa+1G, and x has height 00 if x E paG for all ordinals 0:. We 
will write Ixlc to denote the height of x computed in G. More generally, we can 
view the height function as a valuation and view G as a valuated group [12]. We 
will deviate slightly from [12] and use Hill and Megibben's treatment of valuations 
[4]. If G is a p-Iocal group, a valuation I * I on G is a function from G to the set of 
ordinals adjoined with 00 satisfying the following properties: 

(1) 101 = 00 and Inxl = Ixl if (n,p) = 1, 
(2) Ix + yl 2: min{lxl, Iyl}, and 
(3) Ipxl 2: Ixl and Ipxi > Ixl if Ixl is an isolated ordinal. 

Two immediate consequences of the foregoing definition are Ix + yl = min{lxl, Iyl} 
whenever Ixl i= Iyl and for any ordinal 0:, there is associated a subgroup G(o:) = 
{x E G: Ixl 2: o:}. A valuated group G is said to be c-valuated [4] provided the 
valuation, in addition to properties (1)-(3), satisfies 

(4) Ixl 2: 1 for all x and if Ixl > 0: 2: 1 with 0: an isolated ordinal, then x = Py 
for some yEA with IYI 2: 0:. 

This latter condition can be summarized as G = G (1) and G (0: + 1) ~ pG (0:) 
whenever 0: 2: 1 is isolated. 

The theory of c-valuated groups is explored in some depth in [4], and it will 
be necessary to highlight the results especially important to our study. Every 
subgroup B of a c-valuated group G is valuated by restriction, and B is itself c-
valuated (and is said to be a c-valuated subgroup) if B n G(o: + 1) ~ p(B n G(o:)) 
for all isolated ordinals 0: 2: 1. The quotient G / B is always c-valuated by the 
induced c-valuation Ix + BI = sUPbEB Ix + bl· Any p-Iocal group G is c-valuated 
by the maximum valuation Ixl = Ixlc + 1, and the c-valuation on G / B induced by 
this c-valuation will be given the special name of coset valuation. The following 
fundamental result from [4] illuminates the close relationship between the general 
category of c-valuated groups and the theory of I B modules. 

THEOREM 1. 1 (HILL AND MEGIBBEN). If A is any c-valuated group, then 
there exists an isotype submodule H of a p-local balanced projective group G such 
that A ~ G / H by a map preserving c-valuations when G / H is endowed with the 
coset valuation. 

A subgroup K of a p-Iocal group G is No-separable [3] provided the coset valuation 
on G / K never assumes limit values of cofinality greater than w. If G is a group 
of length T and H is a subgroup of G, then an ascending chain H ~ K1 ~ ... ~ 
Ka ~ ... ~ G, where Ka is No-separable in G with Ka+1/ Ka countable for each 
0:, K{3 = Ua<{3 Ka whenever (3 is a limit ordinal, and G = Ua<r K a , is called a 
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composition series of 'No-separable submodules over H. The following theorem is 
the highlight of the early development of the theory of I B modules. 

THEOREM 1.2 [IOJ. If H is an isotype submodule of the p-local balanced projec-
tive group G, then H is itself balanced projective if and only if G has a composition 
series of 'No-separable submodules over H. 

We say that a direct sum EB I Ai is a valuated coproduct (or simply a coproduct) 
if I LI ail = minI lail whenever each ai E Ai and only finitely many of the terms 
in the sum are nonzero. If {Xi} I is an independent set of elements of infinite order 
generating a valuated coproduct such that Ipkxil ~ IXil + k for each i and each 
k < w, then we say that EB I (Xi) is a free valuated subgroup, and if I Xi I = I Xi I G, 
then the inequality ~ can be replaced by =. If a p-Iocal group G has such a set 
X = {xih with G/(X) torsion, then X is called a K-basis for G. More generally, 
G is said to be a K-module provided every finitely generated submodule is a finite 
extension of a (necessarily finitely generated) free valuated submodule. Following 
[9], we say that a submodule N of Gis K-nice if N is nice and G/N is a K-module. 
It was shown in the preceding reference that G is balanced projective if and only if 
G satisfies Axiom 3 with respect to K-nice submodules. Moreover, this condition 
is equivalent to G possessing a K-basis and satisfying Axiom 3 with respect to nice 
submodules. It was shown in [10J that G is balanced projective if and only if there 
exists a K-nice composition series for G; that is an ascending chain 

0= No ~ N1 ~ ... ~ No ~ ... ~ G 

of K-nice submodules with NOH/No countable for each ordinal (x, N{3 = Uo<{3 No 
for all limit ordinals (3, and G = Uo<r No for 7 the length of G. 

Following Warfield [16], we say that a p-Iocal group M is a A-elementary balanced 
projective group (where A is a limit ordinal) if p>' M ~ Zp and M/p>' M is torsion 
totally projective. Under a careful correlation between uniqueness and existence 
theorems for balanced projectives, Warfield was able to show that every balanced 
projective can be written as a direct sum of A-elementary balanced projective groups 
for various limit ordinals A, a totally projective group, and a divisible group. One 
of the consequences of this is that G has a K-basis X, and following [7J we realize 
that (X) is nice in G with G / (X) totally projective. 

The theory of balanced projective groups has become one of the most satisfac-
tory in the study of mixed groups since they are classified by a complete set of 
invariants and admit the above three distinct yet equivalent descriptions. Each of 
these descriptions will be used in varying degrees in the results which follow. In §2 
we present the "main theorem" for I B modules and related results. For Hand K 
isotype submodules of a balanced projective group G, we are able to formulate nec-
essary and sufficient conditions for H to be mapped onto K by an automorphism 
of G. We present some applications of this result in §3 by focusing on a special 
class of I B modules, and we close by listing some properties that are common to 
all I B modules in §4. 

2. The equivalence theorem for I B modules. Two submodules Hand K 
of a group G are said to be equivalent if there is an automorphism of G mapping 
H onto K. The notion of equivalence has received a lot of attention in the litera-
ture, and Theorem 3.1 in [4], which states necessary and sufficient conditions for 
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two isotype subgroups of a totally projective p-group to be equivalent, has had a 
profound impact on the study of IT groups. We have generalized that theorem to 
I B modules, and several applications are available in the same spirit. Our proof 
includes a revision of the torsion analogue since it is important for the reader to 
see that our generalization is natural. 

For Gap-local group, the o:th Ulm-Kaplansky invariant of G is written fe(o:) 
and defined to be dim[p'-"G[p]jpo+1G[p]], and if .A is a limit ordinal, the .Ath Warfield 
h-invariant of G is written he(.A) and defined as dim[pAG/(p·X+1G + TA)], where 
TA represents the torsion part of pAG. Divisible p-local groups can be classified 
by the invariants fe(oo) = dimpCXlG[p] and he(oo) = dim[pCXlG 0 Q], where Q 
is the quotient field of Zp. Totally projective groups are determined uniquely by 
their Ulm-Kaplansky invariants [2], and balanced projective groups are classified 
by the Ulm-Kaplansky and Warfield h-invariants [16]. The author [9] has proved 
the latter statement by using the same techniques Hill used in [2], and so both 
results can be resolved by considering relative invariants. The notation used in 
[14] and [9] is especially fruitful in our development. Suppose A is a submodule of 
the p-local group G, 0: is an ordinal, and .A is a limit ordinal, and denote 

A(o:) = (p'-"+lG + A) np'-"G[p] 

and 
AA+n = p>.+nG/[(pA+n+1G + A + TA+n ) n pA+nG] 

for n a nonnegative integer. Then the o:th Ulm-Kaplansky invariant of G relative 
to A and the .Ath Warfield h-invariant of G relative to A are defined as fe(o:, A) = 
dim [p'-"G[p]/A(o:)] and he(.A, A) = dim[limp>.+nG/A>.+n], respectively. 

--+ 

THEOREM 2. 1. Isotype submodules Hand K of the balanced pTOJ'ective module 
G are equivalent if and only if the following three conditions are satisfied: 

(1) Hand K have the same Ulm-Kaplansky invariants, 
(2) Hand K have the same Warfield h-invariants, 
(3) G / H ~ G / K by a map preserving coset valuations. 

The relevance of the theory of c-valuated groups to the study of I B modules is 
now evident through Theorem 1.1 and Theorem 2.1. It is the abstracted proper-
ties of the coset valuation that display all of the information about the structure 
of an isotype submodule of a balanced projective beyond the Ulm-Kaplansky and 
Warfield h-invariants. We will actually prove the following generalization of Theo-
rem 2.1. 

THEOREM 2.2. Let A and B be K -nice submodules of the p-local groups G and 
G', respectively, such that both G / A and G' / B are balanced projective, and suppose 
Hand K are isotype submodules of G and G' containing A and B, respectively. 
Then each height preserving isomorphism r: A ----t B extends to an isomorphism 'IjJ 
from G to G' with 'IjJ(H) = K if and only if the Ulm-Kaplansky invariants of H 
relative to A and of K relative to B agree, the Warfield h-invariants of H relative 
to A and of K relative to B agree, and there is an isomorphism cP: G / H ----t G' / K 
preserving coset valuations. Moreover, if the stated conditions are satisfied, then 'IjJ 
can be chosen so that it induces cP. 

PROOF. Since the three stated conditions are clearly necessary, we will assume 
they are satisfied and will establish the existence of the desired extension 'IjJ of r. 
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We begin by defining for arbitrary submodules M <;;:; G and N <;;:; G' the following 
submodules for each ordinal Q: 

MH(Q) = (po<+lG + M) n pO< H[p], 
NK(Q) = (po<+lG' + N) n pO< K[p], 
M;; = (po<+lG + M + Tp"H) n pO< H, 
N:: = (pO<+ 1 G' + N + Tp" K) n pO< K. 

The notation Tp" Hand Tp" K will be used to denote the torsion parts of pO< H and 
pO< K, respectively. The key to proving this theorem is in the family () of all triples 
(M, N, 7r), where M and N are K-nice submodules of G and G' containing A and 
B, respectively, and satisfying the following four conditions: 

(i) 7r: M --+ N is a height preserving isomorphism extending T, 

(ii) 7r(x) + K = ¢>(x + H) for all x E M, 
(iii) pO< H[P]/MH(Q) ~ pO< K[p]/NK(Q) for all ordinals Q, and 
(iv) li!!;p>.+nH/MJ!+n ~ li!!;p>.+nK/Nf+n for all limit ordinals A. 
Observe that (A, B, T) E () since Hand K are isotype in G and G' and contain 

A and B, respectively, and since the relative invariants of H to A and of K to 
B agree. Recalling that G / A and G' / B are balanced projective and remembering 
the argument used in the proof of the uniqueness theorem for balanced projectives 
exploiting Axiom 3 [9], it is clear that we need only prove that for any extension 
M' = (M,y) of M with (M,N,7r) E (), there is a triple (M',N',7r') in () for some 
appropriate N' <;;:; G' with 7r' extending 7r. The proof of this takes on two mutually 
distinct cases: when y + M has finite order and when y + M has infinite order. 

Case 1. Suppose y + M has finite order with lYle = Q. Since M is nice in G, 
we can assume that py E M and y is proper with respect to M. We will obtain the 
desired extension 7r' of 7r by finding a y' E G' satisfying the following five conditions: 

(1) Iy'le' = Q, 

(2) py' = 7r(py), 
(3) y' is proper with respect to N, 
(4) y' + K = ¢>(y + H), and 
(5) there is an isomorphism Mk(f3)/MH(f3) --+ Nk(f3)/NK(f3) for all ordinals 13, 

which is induced from (iii). 
Two separate cases are considered. 
Case a. Suppose Ipyle > Q + 1 and Iy + HI > Q + 1, where Iy + HI denotes the 

coset valuation on G / H. Since ¢> preserves coset valuations, ¢>(y + H) = w + K 
where Iwle' > Q. By (ii), it follows that pw - 7r(py) E K n po<+2G' = po<+2 K. 
By replacing w by w + k for some k E K if necessary, we are able to assume that 
pw = 7r(py), Since Iy + HI > Q + 1, there must exist some h E H such that 
Iy + hie > Q, and so Ihle = Q and Iphl e > Q + 1. Thus ph = ph' for some 
h' E po<+l H. We claim that h - h' E pO< H[P]\(po<+lG + M); for if this is not the 
case, then we could write h - h' = g' + m for g' E pO< + 1 G and m EM. But then 
h = g' +m, where g' = g' +h' E po<+lG, and so Iy+mle = Iy+h+m-hle > Q, and 
this contradicts y being proper with respect to M with lyle = Q. Now there exists 
a v E po<+lG such that 8 = Y - v E pO<H[p]\(po<+lG + M) because of the above 
claim and the fact that Iy + hie> Q, and this implies that y + h - h' = v E po<+lG. 
Hence, by condition (iii), there exists some 8' E pO<K[p]\(po<+lG' +N). Now choose 
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y' = w + s' and observe that (1), (2), and (4) hold for this choice of y'. Since y is 
proper with respect to M and v E po+lG, s is also proper with respect to M. By 
(iii) again we have that s' is proper with respect to N = 7r(M), and so y' satisfies 
(3) since W E pc>+IG'. Finally (5) holds since if {3 = 0:, the quotient in (5) is cyclic 
of order p, and if (3 =f. 0:, the quotients in (5) are trivial. 

Case b. Suppose that Ipylc = 0: + lor Iy + HI = 0: + 1. Since ¢ preserves coset 
valuations, ¢(y+H) = w+K for some wE pC>G'. By (ii), PW-7r(py) E Knpc>+lG' 
= pc>+IK, which implies that p(w + k) = 7r(py) for some k E pC>K. This time we 
simply take y' = w + k so that at least (2) and (4) are satisfied. Since y' E pC>G', it 
follows that IpYlc = 17r(py)lc' = Ipy'lc' and ly+HI = 1¢(y+H)1 = ly'+KI ~ ly'lc'. 
Thus for either of the conditions defining Case b, it will follow that ly'lc' = 0: (which 
is (1)). Now if y' fails to be proper with respect to N, then we can return to Case 
a; for if Iy' + 7r(x)lc' > 0: with x E M, then Yl = Y + x is an element of M' such 
that IYlic = 0:, IPYllc > 0: + 1, and IYl + HI > 0: + 1. Thus we may assume that 
y' satisfies (3), and so it remains to prove (5). But y' satisfies (5) vacuously since 
if this is not the case, then we are also able to return to Case a. 

Case 2. Let y + M have infinite order, and assume without loss of generality that 
Iylc = >., a limit ordinal. Since ((y) EEl M) / M is a finitely generated submodule of 
G / M with M K-nice in G, there must be a valuated coproduct (fi) EEl M containing 
a multiple of y with IpnYlc = Iylc + n for each n < w. By Case 1, we may replace 
y by Y if necessary, and as in that case, we obtain the desired extension 7r' of 7r by 
finding a y' E G satisfying the following four conditions: 

(1) ly'lc' = >., 
(2) (y') EEl N is a valuated coproduct with Ipny'lc' = >. + n for each n < w, 

(3) y' + K = ¢(y + H), and 
(4) there is an induced isomorphism [M'/Ml~ ~ [N'/Nl~ for all limit ordinals 

1, where [M' /Ml~ denotes the direct limit ~(M')~+n/M~+n' The proof of this 
case will also be separated into two subcases. 

Case c. Suppose Iy + HI > >. + 1. There must be some h E H such that 
Iy - hlc ~ >. + 1. Hence y - h = 9 E pA+IG, and so h E pAG n H = pA H. Now 
we claim that pnh 1. Mf+n for any n < w. If pnh = 9 + m for some 9 E pA+n+lG 
and m EM, then pny - m E pA+n+lG which contradicts (y) EEl M being a valuated 
coproduct with Ipnylc = >. + n for each n < w. Now the image of h under the 
natural map pA H --+ ~ pA+n H / M f+n is nonzero, and so by (iv), there must 
be a nonzero element of ~pA+n K/Nf+n which is the image of some k E pA K 
under the natural map pAK --+ ~pA+nK/Nf+n' Hence pnk 1. Nf+n for any 
nonnegative integer n. Now suppose that ¢(g + H) = gl + K, and note that 
>. + 1 S; Iglc < Ig + HI = Igl + KI· Since>. + 1 is an isolated ordinal, there exists 
some kl E K such that gl +kl E pA+1G'. Set y' = gl +k1 +k. It is easy to see that 
(3) holds for this choice of y' since ¢(y+H) = ¢(g+H) = gl +K = y' +K. Moreover, 
since gl + kl E pA+lG' and Iklc' = >., it follows that ly'lc' = l(gl + kd + kl c ' = >., 
which is (1). If Ipny' + zl ~ >. + n + 1 for some n < wand some ZEN, then 
pny' +z = g' E pA+n+1G', and this implies that pnk = [g' +pn(gl +kdl-z E NAn' 
which contradicts the choice of k. Hence y' satisfies (2), and we need to argue that 
(4) holds. When {3 = >., then [M'/Mlf and [N'/Nlf are both cyclic of order p, 
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and so the isomorphism is induced as desired, and when (3 -=I- ..\, then both [M'IMlf{ 
and [N'INW are trivial. 

Case d. Suppose that Iy + HI = ..\ + 1 (which says that y is proper with respect 
to H). By (ii), we can choose w such that Iwici = ..\ and 1>(y + H) = w + K. 
Now suppose y' = w does not have all the desired properties (1)-(4). The only 
possible problem is for ((w) EB N)IN not to be a free valuated submodule of G'IN. 
Thus Ipn + zl 2: ..\ + nm + 1 for some n < w and some zEN. Now there exists a 
9 E p>-.+1G and (since Iy + HI = ..\ + 1) an hE pA H such that pn(y + 9 + h) E M, 
and it is not difficult to see that pr h ¢:. M f!+r for each r < w (since otherwise we 
would contradict our choice of y because 9 E pA+1G). Hence there exists some 
k E pAK such that pTk ¢:. Nf+r for each r < w, and we replace w by w + k. Now 
(w+k)EBN is a valuated coproduct with Ipm(w+k)lcl = ..\+m for each m < w since 
pnw + z E pA+n+1G' and pTk ¢:. Nf+T for each r < w. Since 1>(Y + H) = w + k + K, 
the proof is complete. 

It is often the case that the conditions of Theorem 2.2 stipulating that Hand K 
have the same Ulm-Kaplansky and Warfield h-invariants either cannot be assumed 
or cannot easily be checked. Nevertheless, if G I Hand G' I K are isomorphic under a 
map preserving coset valuations, then some information can still be obtained which 
relates H to K. We will call Hand K similar if there exists a balanced projective 
group B such that H EB B ~ K EB B. 

COROLLARY 2.3. If Hand K are isotype submodules of the p-local balanced 
proJ'ective groups G and G', respectively, and if G I H ~ G' I K as valuated groups 
endowed with the coset valuation, then Hand K are similar. 

PROOF. We may assume that both G and G' are reduced. Let J.l be a limit 
ordinal greater than the lengths of G and G', and let ~Jl = max{~o, cardinal 
associated with J.l}. Now define two functions f and h from the ordinals to the 
cardinals as follows: 

wd 

f(a) = { ~Jl if a < J.l, 
otherwise, 

otherwise. h(a) = { ~Jl if a is a limit ordinal < 11, 

By Warfield's definition [15], (I, h) is an admissible pair, and so by Theorem 4.1 in 
that paper there exists a balanced projective group B with Ulm-Kaplansky invari-
ants f and Warfield h-invariants h. Hence H EB B ~ K EB B by Theorem 2.2. 

When isomorphism is not required in Theorem 2.2, the hypotheses can be weak-
ened and the argument needed is not nearly as delicate. 

THEOREM 2.4. Suppose A and Hare submodules of the p-local group G such 
that A ~ H, A is K-nice in G, and GIA is balanced proiective. If K is an isotype 
submodule of the p-local group G' and if there exists a homomorphism 1>: G I H ~ 
G' I K that does not decrease coset valuations, then any homomorphism T: A ~ K 
that does not decrease heights (as computed in G and G', respectively) extends to a 
homomorphism 'l/J: G ~ G' that induces 1>. 

PROOF. Let 1 be the family of all homomorphisms 'l/J: N ~ G' extending T 

that do not decrease heights such that if C is the collection of K-nice submodules 
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of CIA satisfying Axiom 3, then N IA E C and ¢(z + H) = '0(z) + K for all zEN. 
Zorn's lemma can be applied in the obvious way, and so we can choose a maximal 
member of 1, which we will denote '00: No ----+ C'. If No -I- C, then we can choose 
x E C\No and (by the countable extension property) an N ~ C with N I A E C and 
NI(No,x) countable. If z E N\No and z + No has finite order, then without loss 
of generality we may assume that pz E No and z is proper with respect to No. If 
¢(z + H) = y + K, then py - '0o(pz) E K n petHC' = petH K, and so by replacing 
y by y + k for some k E pet K if necessary, we may assume that py = '0o(pz). 
Thus '01: (No, z) ----+ K defined by '01(W + tz) = '0o(w) + ty for all t E Zp with 
(t, p) = 1 and W E No is an extension of T which does not decrease heights satisfying 
¢(w' + H) = '01(W') + K for all w' E (No,z). If z + No has infinite order, then 
we may assume that No EEl (z) is a valuated coproduct with IpnzlG = IzlG + n for 
each n < w. If ¢(z + H) = y + K, then by choosing k E K with Iy + klG' 2: IzIG, 
it follows that '01: (No,z) ----+ K defined by 'l/Jt(w + tz) = '0o(w) + t(y + k) for 
all w E No and t E Zp is an extension of T which does not decrease heights with 
¢(w' + H) = '01(W') + K for each w' E (No,z). A countable process will ensure 
that there exists an extension '0: N ----+ K of T that does not decrease heights with 
¢(z+H) = '0(z)+K for all zEN. But NIA E C, and so we conclude that No = C. 

COROLLARY 2.5. Let Hand K be submodules of the balanced projective module 
C with K isotype in C. Then each homomorphism ¢: C I H ----+ C I K which does 
not decrease coset valuations is induced by an endomorphism of C. 

3. SKT modules. In this section we will present some applications of Theorem 
2.2 by considering a special class of I B modules. Following Warfield [15], a p-group 
is said to be an S-group if it appears as the torsion part of a p-local balanced 
projective group, and following Wick [17], we say that a p-local group M is an 
SKT module if it is isomorphic t& a direct sum of an S-group and a balanced 
projective module. Wick introduced the class of SKT modules as a class of p-
local groups which contains the balanced projectives and the S-groups and can be 
classified by known invariants. Moreover, SKT modules satisfy a natural projective 
property which allows one to study them homologically. A short exact sequence 
o ----+ A ---+ B ----+ C ----+ 0 is said to be ch-pure provided both the sequence and the 
sequence of cotorsion hulls 0 ----+ c( A) ----+ c( B) ----+ c( C) ----+ 0 are balanced short 
exact sequences. For a reduced module M, the cortorsion hull of M is defined as 
Ext(QIZp, M) and denoted c(M). The module c(M) is also reduced, and M can be 
embedded as an isotype submodule with c(M)/M torsion-free and divisible. A p-
local group C is said to be ch-pure projective if it enjoys the projective property with 
respect to all ch-pure sequences. Wick [17] has shown that C is ch-pure projective 
if and only if C is a summand of an SKT module (which may not necessarily be 
reduced). Later Stanton [13] attempted to prove that all summands of an SKT 
module are also SKT modules, but his proof (although it contains the right idea) 
is not correct. Later Hunter and Walker [8] put together an admirably smooth 
proof that summands of S-groups are S-groups, but they did not salvage the whole 
problem. The summand problem of Stanton is important to our development, and 
so we will present a proof in the spirit of [8]. If B is a submodule of the p-local 
group A, then we will denote [B: A] to be the subgroup of all elements a E A with 
pka E B for some nonnegative integer k. 
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proof that summands of S-groups are S-groups, but they did not salvage the whole 
problem. The summand problem of Stanton is important to our development, and 
so we will present a proof in the spirit of [8]. If B is a submodule of the p-local 
group A, then we will denote [B: A] to be the subgroup of all elements a E A with 
pka E B for some nonnegative integer k. 
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THEOREM 3. 1. Suppose A is a reduced p-local group that has a K -basis X with 
AI (X) a (reduced) S -group. Then A is an SKT module. 

PROOF. By Lemma 3 and §2(B) in [8], there is a free valuated submodule Y 
of c(AI (X)) such that [Y: c(AI (X) )l!Y is totally projective. Now the reduced 
part AI(X) of c(A)/(X) contains AI(X) and is cotorsion since it is an epimorphic 
image of the cotorsion group c(A). Hence c(AI(X)) ~ AI(X) since AI(X)IAI(X) 
is torsion-free and divisible. Thus there exists a free valuated submodule Y I (X) 
of AI (X) with [Y I (X): AI (X) l!Y I (X) totally projective. But then [Y: A] IY is 
totally projective with the extension Y of (X) splitting since (X) is necessarily nice 
in Y by Theorem 8 in [12]. Hence Y = (Y') EB (X), and by Theorem 31 in [7], Y is 
nice in [Y: A]. It follows that [Y: A] is balanced projective, and so by Warfield's 
description [16], we can decompose [Y: A] = T EB EBxEX Kx EB EBxEYI KX' where 
Kx is a A-elementary balanced projective module with (x) = pA Kx for some limit 
ordinal A and T is a totally projective group. Finally A = TEBEBxEX KxEBEBXEYI Tx, 
where Tx is the torsion part of K x, and so A is an SKT module. 

COROLLARY 3.2. A summand of an SKT module is an SKT module. 

PROOF. Suppose M = K EB S = A EB B, where K is a balanced projective and S 
is an S-group. We need to show that A and Bare SKT modules. By Theorem 6.6 
in [1], we may assume there exist K-bases YA for A and YB for B which are 
contained in K with YA U YB a K-basis for K. But then AI(YA) EB BI(YB ) ~ 
KI((YA) EB (YB)) EB S is an S-group since KI((YA ) EB (YB)) is totally projective. 
Hence A I (Y A) and B I (YB ) are S -groups by Theorem 7 in [8], and so A and Bare 
SKT modules by Theorem 3.1. 

Corollary 3.2 will not only consolidate Wick's study of ch-pure projectives, but it 
will also be important in our study of these nontrivial mixed I B modules. Often an 
SKT module can be recognized as an isotype submodule H of a balanced projective 
group G with a special quotient G I H. We will soon see that a p-local group H is 
an SKT module if and only if H appears as an isotype submodule in a balanced 
projective group G with G I H a coproduct of c-valuated countable torsion groups 
when G I H is endowed with the coset valuation. 

THEOREM 3.3. Suppose A is a limit ordinal and H is an isotype A-dense sub-
module of the p-local balanced projective group G which has length A. Ifcof(A) = W, 

then H is balanced projective and is isomorphic to G, and if G I H is torsion 
(regardless of the cofinality of A), then H is an SKT module. 

PROOF. When cof(A) = W, then any submodule K is No-separable in G if it 
satisfies H eKe G since H is A-dense. Since G is balanced projective, it has a 
K-nice composition series 

0= No C N1 C ... c No: c ... c G, 

and from this we can form the No-separable composition series 

H = No + H C N1 + He· .. c No: + He· .. c G 

over H. It follows that H is balanced projective by Theorem 1.2. Since Hand 
G clearly have the same Ulm-Kaplansky and Warfield h-invariants, we also have 
H~G. 
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Now suppose cof(A) ?: wand G / H is torsion. Since H is A-dense in G, G / H = 
EB Di, where each Di ::::: Z(pOO) and the direct sum is a valuated coproduct with 
each nonzero element of G / H under the coset valuation assuming the limit value 
A. For each i, select a A-elementary S-group Ki embedded as an isotype A-dense 
subgroup of the totally projective group Gi so that Gd Ki ::::: Di as e-valuated 
groups when Gd Ki is endowed with the coset valuation. Now set K = EB Ki and 
G' = EB G i , and observe that G / H ::::: G' / K as e-valuated groups endowed with 
the coset valuation. By Corollary 2.3, H is isomorphic to a summand of the SKT 
module B EB K, where B is balanced projective and K is an S-group, and so H is 
also an SKT module by Corollary 3.2. 

THEOREM 3.4. A p-loeal group H is an SKT module if and only if H appears 
as an isotype submodule of a p-local balanced projective group so that G / H is a 
coproduct of countable torsion e-valuated groups when G / H is endowed with the 
coset valuation. 

PROOF. Since the stated condition is clearly necessary (since each S-group 
appears as an isotype subgroup of a totally projective group with cokernel a d.s.c.), 
we will write G/H = EBI Gi, where each ei is a countable torsion e-valuated group, 
and show that H is an SKT module. By Theorem 2.8 in [4], there is an isotype 
subgroup Ki of a totally projective group Gi such that Gd Ki ::::: Gi in the category 
of e-valuated groups when Gd Ki is endowed with the coset valuation. Moreover, 
with G' = EB Gi and K = EB K i , it is clear that G / H ::::: G' / K by a map preserving 
coset valuations. By Corollary 2.3, H is isomorphic to a summand of K EB B for 
some balanced projective group B. But K is necessarily an S-group since each Ki 
is by Theorem 2.11 in [4], so we conclude that H is an SKT module by Corollary 
3.2. 

Theorem 3.4 is not as strong as it would appear since there exists an SKT 
module H which appears as an isotype submodule of a balanced projective group 
G such that G / H is torsion-free. Furthermore Hill and Megibben have produced 
an example (5.3 in [4]) of an S-group H which appears as an isotype subgroup of 
a totally projective p-group G such that G / H is a reduced totally projective group 
of length exceeding W1. Anomalies such as these are typically constructed when 
one begins with a e-valuated group A having a particular structure and then uses 
Theorem 1.1 to embed an isotype submodule H in a balanced projective G with 
G / H ::::: A as e-valuated groups when G / H is endowed with the coset valuation. 

We consider the p-local divisible group Q as being generated by elements ... ,X-i, 

X-i+1, ... ,Xo, Xl, ... ,Xi, ... such that pXj = Xj-1 for all j E Z. Hence if Q is e-
valuated with the maximum valuation, then every element has value 00. There are 
two other types of e-valuations one can place upon Q. The first is where every 
nonzero element is assigned the limit value A, and the second is where there exists 
some j such that IXjl = A + 1, IXil = A for all i > j, and IXil = A + k for all 
i < j with k = j - i + 1. We will call these nonmaximum e-valuated Q's as being 
of type A and A + 1, respectively. If G1 and G2 are two e-valuated Q's of type 
A + 1, then clearly G1 ::::: G2 by a map preserving valuations, and so we will speak 
of this Q as being the unique (up to isomorphism) e-valued Q of type A + 1. This 
analysis of e-valuated Q's is perfectly analogous to Hill and Megibben's treatment 
of e-valuated Z(pOO)'s [4]. 
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PROPOSITION 3.5. If H is an isotype submodule of the p-local balanced projec-
tive group G such that when endowed with the coset valuation G / H is a c-valuated 
Q of type 00 or A + 1, then H is an SKT module. 

PROOF. If G/H is the maximum valuation c-valuated Q, then H is balanced 
projective since it is a summand of G, so suppose G / H is a c-valuated Q of type 
A + 1. Select a A-elementary S-group K which is embedded as the torsion part 
of the A-elementary balanced projective group G'. Now G' / K is a c-valuated Q 
of type A + 1 when endowed with the coset valuation, and so by Corollary 2.3, 
H ffi B ~ K ffi B for some balanced projective group B. It follows that H is an SKT 
module by Corollary 3.2. 

Of course, H will be an SKT module if it appears as an isotype submodule of a 
balanced projective group G so that G / H is a coproduct of c-valuated Q's having 
type A + 1 for various limit ordinals A. A natural question remains which pertains 
to the structure of H if G / H is a c-valuated Q of type A. Is H also an SKT module? 
The answer to this question is in the negative as our next example shows. 

EXAMPLE 3.6. H cannot be an SKT module if it appears as an isotype sub-
group of a balanced projective group G so that G I H endowed with the coset valu-
ation is a c-valuated Q of type A with cof(A) > w. 

PROOF. First observe that if there exists one SKT module H such that G / H 
is Q of type A, then any such H will also be an SKT module by Corollary 2.3 and 
Corollary 3.2. So clearly if such an example exists, where H is not SKT and G / H is 
a Q of type A, then it can come from Theorem 1.1. To prove that this H is not SKT 
requires a closer analysis of Hill and Megibben's proof of Theorem 1.1. For each 
nonzero x E Q we choose N x = 61/<>, pi M I , G x = 61/<>, M I , and 7T"x: N x -+ Q 
mapping each pi MI onto the cyclic group (x). Here MI is a ,-elementary balanced 
projective for, ranging over all limit ordinals less than A. Now set N = 610# N x 

and G = 610# Gx , and observe that 7T" induced by all the 7T"x'S can be lifted to 
an epimorphism </>: G -+ Q since GIN is totally projective and N is nice in G. 
Finally, H = ker </> is isotype in G and Q ~ G / H as c-valuated groups when G / H is 
endowed with the coset valuation. Therefore H is A-dense in G, but actually more 
can be said from our construction; namely that G = H + (paG n N) for each a < A. 

Now suppose H = K ffi S, where K is balanced projective and S is an S-group. 
Now K is isotype in G, and since K is balanced projective, K is complete in its 
A-topology since it is the direct sum of modules having length less than A. (Recall 
that the A-topology is formed by taking po. K for each a < A as a neighborhood 
subbasis about the origin.) Choose any zEN which is not in H, and for each a < A 
select ha E H and go. E (paG n N) such that z = ha + go.. Now each ha E H n N, 
and so each ha E K since ha has no gaps in its height sequence. Hence {ha}a<>. 
yields a Cauchy net in the A-topology on K since 

for every (3 :::; a and since K is isotype in G. Since K is complete, the net {ha } 

converges to k for some k E K, and so Iha - kl = a for every a < k. But then 
Iz - kl = I(z - ha ) - (k - ha)1 ~ a for every a < A, and so Iz - kl = A. but this is 
clearly a contradiction since the coset valuation on G / H assumes only the value A 
for nonzero cosets. We conclude that H is not an SKT module. 
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4. Properties of I B modules. In this final section, we will list properties 
I B modules share that are not necessarily true for arbitrary p-Iocal modules. One 
can think of these properties as being inherited from the balanced projective. For 
example, I B modules are transitive, fully transitive, and any two pD:-high submod-
ules of an I B module are equivalent. A p-Iocal group C is transitive if for any 
two elements x, y E C with Ipnxlc = IpnYlc for each n < w, there exists an auto-
morphism of C carrying x onto y, and C is fully transitive if for any two elements 
x, y E C with Ipnxlc :::; IpnYlc for each n < w, there exists an endomorphism of 
C mapping x onto y. The fact that I B modules are transitive follows immediately 
from Theorem 2.2 and the fact that I B modules are fully transitive follows from 
Theorem 2.4. 

THEOREM 4.1. I B modules are transitive and fully transitive. 

The argument used to prove Theorem 4.1 in [4] will carryover routinely to prove 
the following proposition. 

PROPOSITION 4.2. A p-local group C is an I B module if and only if both pac 
and C/pD:C are IB modules for some ordinal a. 

Recall that a sub module H of C is pD:-high in C for some ordinal a if H is 
maximal with respect to the property that H n pD:C = o. The study of pa_high 
subgroups is abundant in the literature. 

THEOREM 4.3. Any two pD:-high submodules of an IB module are equivalent. 

PROOF. Suppose Hand K are pD:-high subgroups of the p-Iocal group C which 
appears as an isotype submodule of the balanced projective group T. We can restrict 
ourselves to the case where a is infinite, and so we write a = A + n for some n < w 
and some limit ordinal A ;:::: w. It is well known that under the circumstances H is 
isotype in C (and hence in T) with pA H bounded. It is also true, however, that H 
is A-dense in C even though elements of infinite order may occur. Indeed, it is clear 
that C[pTn] ~ H + pf3C for all f3 < A and all m < w, so suppose x E C has infinite 
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pkx + pkh = pkg, where hE Hand 9 E pf3C. Hence x + h - g E C[pk] ~ H + pf3C, 
and so x E H + pf3C. Since f3 was arbitrary < A, it follows that H is A-dense 
in C. Noting also that Hand K will necessarily have the same Ulm-Kaplansky 
and Warfield h-invariants, we give a sketch of the rest of the proof since it can be 
completed precisely as in Theorem 4.5 in [4]. 

We can decompose pAT = pAH EEl C and pAC = pAH EEl B with B = C n C, and 
since pA Hand pA K are both maximal pn-bounded summands of pAC, it follows 
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(pAT + C) / K which extends the isomorphism C / H -+ C / K. Finally we extend 0 
to a coset valuation preserving isomorphism ¢: T / H -+ T / K, and so Hand K are 
equivalent under an automorphism of T (and hence under one of C) by Theorem 
2.1 and the way ¢ was chosen. 
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C / H -+ C / K extending the correspondence b + H -+ b + K (for bE B), and since 
pAT+H = HEElC andpAT+K = KEElC, there is an isomorphism 0: (pAT+C)/ H -+ 
(pAT + C) / K which extends the isomorphism C / H -+ C / K. Finally we extend 0 
to a coset valuation preserving isomorphism ¢: T / H -+ T / K, and so Hand K are 
equivalent under an automorphism of T (and hence under one of C) by Theorem 
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