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GLOBAL SOLVAZBILITY ON COMPACT NILMANIFOLDS 
OF THREE OR MORE STEPS 

JACEK M. CYGAN AND LEONARD F. RICHARDSON 

ABSTRACT. We apply the methods of representation theory of nilpotent Lie 
groups to study the convergence of Fourier series of smooth global solutions to 
first order invariant partial differential equations D f = g in Coo of a compact 
nilmanifold of three or more steps. We investigate which algebraically well-
defined conditions on D in the complexified Lie algebra imply that smooth 
infinite-dimensional irreducible solutions, when they exist, satisfy estimates 
strong enough to guarantee uniform convergence of the irreducible (or primary) 
Fourier series to a smooth global solution. This extends and improves the 
results of an earlier two step paper. 

O. Introduction and preliminaries. Let N be a nilpotent Lie group, f \ N 
a compact nilmanifold, and D a differential operator, left-invariant on N, and 
viewed on f \ N. If 9 E COO(f \ N) and if g", is the orthogonal component of gin 
some irreducible subspace corresponding to the irreducible unitary representation 
7f, then g", E COO(f \ N) too [2]. Modulo unitary equivalence, we may think of 
g", as being a COO-vector in any concrete realization, or model, of 7f. We will 
determine algebraically well-defined conditions on first order and suitable higher 
order D under which the global solvability of D I = 9 in Coo (f \ N) is equivalent 
to the solvability of 7f(D)/", = g", in the Coo-vectors for each 7f in the spectrum 
of f \ N. In one sense, we will be presenting algebraic conditions on D for the 
reduction of a global (geometrical) problem on f \ N to a collection of purely 
group (representation) theoretic problems, none of which needs to be regarded as 
living on the manifold f \ N. Operators D admitting such a reduction are called 
globally regular (Definition (0.1)). In effect, we will prove global regularity for 
suitable operators by showing that if the smooth solutions I", of 7f(D) I", = g", exist 
for each 7f, then they can be summed uniformly to a smooth global solution of 
D f = g. (Globally regular operators are usually neither locally solvable nor onto 
Coo(f \ N)! [12].) In order to make the necessary estimates on I"" we construct a 
suitable Schrodinger model of 7f, which, for convenience, is not in the Hilbert space 
L2(f \ N). 

In this paper, we extend to nilmanifolds of three or more steps (and correct) 
some of the results for two step nilmanifolds presented in [7]. 

In order to describe the main results, it will be helpful to review the classical 
situation on a torus T2 of two dimensions (the situation being similar for Tn with 
n> 2). Let D = ex8/8x + (38/8y and suppose, for simplicity, that ex and (3 are real. 
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Then D is globally regular if and only if (3/0. is not a (transcendental) Liouville 
number. The problem with Liouville numbers is that, in solving for the Fourier 
transform of the solution function, small divisors occur. Now, every nilmanifold 
r \ N contains the structure of a torus, r[N, N] \ N, although this torus does not 
reflect any of the nonabelian structure of N. The only representations in (r \ N)~ 
which are not infinite dimensional are the one-dimensional characters of r[N, N]\N. 
Since the presence of this torus is inescapable, we denote, for each g E Coo (r \ N), 
the sum of the one-dimensional components of g by go. Then global regularity 
is informally taken to mean that the solvability of D I = g is equivalent to the 
solvability of 7r(D)I7r = g7r in Coo-vectors for each infinite-dimensional 7r E (r \ N)'"; 
modulo the solvability of D 10 = go in Coo of the torus r [N, N] \ N. In order to state 
the formal definitions and summarize the new results, we need a few preliminaries. 

Let 91 denote a finite-dimensional real nilpotent Lie algebra, and N = exp 91 
the corresponding Lie group. Then Malcev proved there exists a discrete subgroup 
r c N which is cocompact, meaning that the nilmanifold r \ N is a compact 
homogeneous space, of cosets of the form rn, if and only if 91 has rational structure 
constants with respect to some suitable basis. Such a r is never normal when N is 
nonabelian. If r exists, the rational basis of 91 can be selected from log r. If r \ N 
is a compact nilmanifold, a subspace V c 91, is called rational if and only if it is 
spanned by vectors which are finite linear combinations with rational coefficients 
of elements of a rational basis of 91. A subgroup MeN is called rational if and 
only if 9.J1 = log M is a rational subspace of 91, and this is equivalent to r n M \ M 
being compact [13]. 

If r \ N is a compact nilmanifold and M is a normal rational subgroup of N, then 
Malcev proved the existence of one-parameter coordinate subgroups d1 (t), ... , dk (t), 
where k = dim(M \ N), with the following properties. If Nk = M ~ dk(R), a 
semi direct product with M normal, and if Ni = NiH ~ di(R), then Nl = N. Also, 
di(n) E r for each nEZ, the integers [13]. 

Let N denote the space of equivalence classes of all irreducible unitary repre-
sentations on N. Then Kirillov proved that the elements of N are in one-to-one 
correspondence with the so-called Kirillov orbits of Ad* N acting in 91*, the lin-
ear dual of 91. If 7r E N corresponds to an orbit ON(7r) = (Ad* N)A, we may 
write 7r = 7rA, and we may speak of A E N, for convenience. If A E ON(7r), there 
is a subalgebra 9.J1 c 91, of maximal dimension so as to be subordinate to A, in 
the sense that A([9.J1,9.J1]) = O. Then A determines a character of M = exp 9.J1 by 
XA(m) = exp[iA(logm)], and XA induces 7r, in the sense of Mackey. The Mackey 
induced representation space is 

{f: N -+ Clf(mn) = XA(m)f(n), 
for all mE M, n E N, and iii E L2(M \ N)}, 

and 7r A (n) acts by right translation on this space. 
The following definition, theorem, and proof are contained in [18, §3]. They are 

included here since we will refer later to certain details of the proof. 
DEFINITION O. Let 91 be any nonabelian nilpotent Lie algebra and A E 91* ~ 

{O}. A maximal subordinate subalgebra 9.J1A for A is called special if there is a 
decomposition 91 = RX 1 EB ... EB RXk EB 9.J1 A, where the vectors Xl, ... , X k , called 
the external vectors, have the following properties. 
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(i) 91J = RX) EB ... EB RXk EB 9J1A is a sub algebra of 91 for each j = 1, ... ,k + 1, 
where by 91k+1 we mean 9J1A, and 911 = 91. 

(ii) For each j = 1, ... , k, there is an ideal 211) of ':'1J with A(211)) = {O}, such 
that 91)/211) has I-dimensional center, on which the image of A is nontrivial. 

(iii) For each j = 1, ... , k there is a vector Y J E 91J/211) such that [X), Y)] 
spans the center of 91) /211 J' and the image 9J1 A of 9J1 A lies in the centralize~ 3 (Y )), 
which equals 91J+1. If j = k, we have 9J1A = 3(Y k). 

THEOREM o. Let 91 be any nilpotent Lie algebra and A E 91* ~ {o}. Then 
there exists a special maximal subordinate subalgebra 9J1A for A. If there exists a 
cocompact discrete subgroup feN = exp 91, and if A(log f) c Q, the rational 
numbers, then 9J1A, the external vectors, and Y1 , ... , Yk (preimages of Y 1,···, Y k) 

can all be taken to be rational. 

PROOF. Let 3(21), where 21 is an algebra, denote the center of 21, whereas 
3(Y), where Y is a vector, denotes the centralizer of Y. If 91/ ker(AI3(91)) has 
I-dimensional center, then we let 2111 = ker(AI3(91)). Otherwise, we factor out 
ker(AI3(91/ker(AI3(91)))), etc., until we obtain an ideal 2111 c 911 = 91 such that 
911/2111 has I-dimensional center, on which A is nontrivial. The existence of 2111 is 
guaranteed by the fact that A of. 0, and because dim(91) < 00. If A is rational, so 
is 2111. 

By Kirillov's structure theorem [12], for nilpotent Lie algebras with I-dimen-
sional center, there are vectors Xl and Y 1 in 911/2111 with Y 1 in the next to the 
last stage of the lower central series of 911/2111, for which A([X 1, Y 1]) of. 0 (by abuse 
of notation, we regard A as acting on 911/211d. By the Malcev structure theory 
[13], in the case of A rational, we can pick the preimages Xl and Y1 rational as well. 
In either case, we can decompose 911 = RX 1 EB3(Y d, as in Kirillov [12]. We denote 
912 = 3(Y d. If 912 is abelian, then 912 = 9J1A the special maximal subordinate 
sub algebra. If not, we proceed as follows, noting that 912 is automatically rational 
if A and Y1 are rational. 

Next we find an ideal 2112 in 912 , 2112 ~ 2111, just as we found 2111 C 911 above. 
In 912/2112, we find X 2 and Y 2 just as we found Xl and Y 1 above. Thus we have 
912/2112 = RX2 EB 3(Y 2) and 912 = RX2 EB 913 , where the pre images X 2 and Y2 

can again be taken to be rational in the case of rational A. If 913 is abelian, then 
913 = 9J1A. If not, we continue this process, which must terminate in finitely many 
steps, since dim(91) < 00. Now 91 = RX1 EB·· . EB RXk EB 9J1A, where 9J1A is clearly 
subordinate to A. It remains only to show that 9J1A is of maximal dimension so as 
to be subordinate to A. 

If we denote BA(X, Y) = A([X, Yj), then the dimension of a maximal subordinate 
subalgebra is always the dimension of the algebra minus ~ rank(BA ), and it is also 
always the dimension of the algebra minus ~ the dimension of the coadjoint orbit. 
The maximality of 9J1A in 91k implies the maximality of 9J1A in 91k, since ad* 211k 
does not enlarge the orbit. But now 9J1A is maximal in 91k-1 also, since the 
dimension of the algebra is increased by 1 and the rank of B A is increased by 
2. Hence, by induction, we conclude that 9J1A is a special maximal subordinate 
subalgebra for A. This proves Theorem o. 

We will denote by (f\Nrthe subspace of N occurring in the discrete direct sum 
decomposition of L2(f \ N). By the combined results of C. C. Moore [15] and the 
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second author [18], 7r E (f \ N)~ if and only if if there is a rational A E ON(7r), and 
a rational special maximal subordinate subalgebra 9J1A, such that A: 10g(fnMA) -+ 

Z. Henceforth, we consider only such rational A. In particular, A: log(f n 3(N)) -+ 

Z. (3(N) is rational, by [13].) The multiplicity m(7r) with which 7r occurs in the 
7r-primary summand)l71: C L2(f\N) is known explicitly, but here we need only the 
fact that m(7r) < 00 [18]. 

If )171: = H7I:,l EB ... EB H7I:,m(7I:) is an irreducible decomposition, the spaces H7I:,j 
are not canonical. Nevertheless, we will use irreducible decompositions because 
of the convenience of their Schrodinger models, which we will construct. If 9 E 
L2(f\N), we will write 9 = I:7I:E(nN)!\ g7l:, the primary Fourier decomposition into 
components, and g71: = I:;;J;) g7l:,q for some particular irreducible decomposition. 
Auslander and Brezin proved that, if 9 E Coo(f \ N), then each g7l:,q E Coo(f \ N), 
which implies in turn that g71: E Coo(f \ N). Furthermore, the sums 9 = I: g71: = 
I: g7l:,q both converge uniformly, if 9 E Coo (f \ N). Furthermore, if we begin with 
some functions g7l:,q E H:;:q = H7I:,qnCoo(f\N), then I:7I:,q gq = 9 E Coo(f\N) if, 
and only if, I:q IIUg7l:,qll~ < 00, for each fixed U E U(!J1), the universal enveloping 
algebra of!J1 [2]. If D is a left-invariant differential operator on N, viewed on f\N, 
it follows that D f71: = g71: can be solved in )1:;0 if and only if D f7l:,q = g7l:,q can be 
solved in H:;:q for each irreducible component g7l:,q of the 7r-primary function g7l:' 

The following lemma is already known, but we include a proof for completeness. 

LEMMA 1. Let!J1 ::J !J11 ::J ... ::J !J1k ::J {O} be the lower central series of a 
nilpotent Lie algebra !J1 of step 3 or more (k ;::: 2). Let A E !J1*, AI!J1k :::f. O. Then 
there exists a maximal subordinate subalgebra 9J1 for A which contains !J1k-1. 

PROOF. Let 9J1 be any maximal subordinate subalgebra for A. Let Y E !J1k-1 ~ 
9J1. There is X E 9J1 such that [X, Y] 1- ker(A), and by the Jacobi identity X 1-
!J11 :2 !J1k-1 (if k ;::: 2). Since 9J1 conains the center, the span (9J1, Y) is a subalgebra 
of!J1. Let 9J1' = 3(Y) = centralizer of Y in (9J1, Y) (modulo ker(AI!J1k))' Then 9J1' 
has codim = 1 in (9J1, Y), so dim(9J1') = dim(9J1), and 9J1' is subordinate to A. If 
there is still a Y' E !J1k-1 ~ 9J1, we note by Jacobi that [!J1k-1, Y'] = 0, so Y' may 
also be added to 9J1'. Eventually, 9J1' ::J !J1k-1' 

LEMMA 1'. Under the hypothesis of Lemma 1 there exists a special maximal 
subordinate subalgebra 9J1 for A which contains !J1k-1. 

PROOF. We will retrace the proof of Theorem 0, showing how to guarantee that 
9J1A ::J !J1k-1. Sincd AI!J1k :::f. 0, !J1/!ID1 will still have a k-stage lower central series, 
where !ID1 is as in the proof of Theorem O. (Caution: We are no longer using the 
symbol !J1j as in Theorem 0, however.) Hence Y1 , chosen as in the proof of Theorem 
0, will also lie in !J1k-1. Let Zl = [Xl, Y1]. By Jacobi's identity, 3(Yd::J !J1k-1. If 
!J1k-1 :::f. RY 1, then there exists a (k - I)-fold bracket product A E 3(Y d ~ RY 1· 
If A is in the center of 3(Y d, then A E RZ1 EB !ID2 constructed as in the proof 
of Theorem O. Otherwise, we simply choose Y 2 = A, in the proof of Theorem O. 
Since [!J1, A] is central in !J1 and hence in 3(Y d too, Kirillov's Structure Theorem 
provides that 3 (Y 1) = RX 2 + 3 (A), where 3 (A) is the centralizer in 3 (Y 1)' At the 
J'th stage of the construction, any remaining central elements of !J1k-1 will be in 
the corresponding Zj + !ID j, and any noncentral A E !J1k-1 ~ RY 1 EB ... EB RY j-1 
can be chosen to be Y j. This process cannot terminate until some Ith stage at 
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which !)1k-1 C RY 1 ffi ... ffi RYI ffi WI ffi RZ1 ffi ... ffi RZI. Since 9JlA contains 
Y1 , ... , Yk, ZI,"" Zk, WI,"" W k, as in the proof of Theorem 0, we have 9JlA ::) 
!)1k-1. This proves Lemma 1'. 

COROLLARY. If!)1 is of step 3, i.e. !)1 ::) !)11 ::) !)12 ::) {O}, then there exists a 
(special) maximal subordinate 9J1 for A which contains !)11 = [!)1, !)1]-the commu-
tator of !)1-so that 9Jl is an ideal in !)1. 

Now let f \ N be a compact nilmanifold and let 9 E COO(f \ N). Let go denote 
the sum of all the 1-dimensional primary components of g, so that go really lives 
on the torus fiN, N] \ N. (On this torus, the phenomenon of small divisors is 
inescapable, but none of the nonabelian structure of N is present here.) Let 7r E 

(f\ N)~ be infinite dimensional, and let ).I7r = H7r ,1 ffi· .. ffiH7r ,m(7r) be an irreducible 
decomposition of the 7r-primary subspace of L2(f \ N). We write g7r = g7r,l + ... + 
g7r,m(7r) for the corresponding components of g, all of which are in 

Coo (f \ N) n ).I7r = ).I~ = H::'l ffi ... ffi H::'m( 7r)' 

(0.1). DEFINITION. A left-invariant differential operator D is called globally 
regular on f \ N if the following three conditions imply that the f 7r ,q 's can be chosen, 
if necessary, in such a way that L:7rE(r\N)A L:;;J~) f7r,q converges uniformly to a 
function f E Coo (f \ N) such that D f = g: 

(i) 9 E COO(f \ N). 
(ii) For each infinite-dimensional 7r E (f \ N)~ and J' E {1, ... ,m(7r)} there exists 

f7r,q E H::'q such that Df7r,q = g7r,q' 
(iii) There exists fo E COO (f[N, N] \ N) such that Dfo = go. 
Note that the function g7r,q E H7r ,q can just as well be regarded as a Coo-vector 

97r,q in any realization of the irreducible representation 7r. From this viewpoint, if D 
is globally regular, then the solution in COO (f\N) of D f = 9 E COO(f\N) is reduced 
(except for the problem on the torus fIN, N] \N) to the solution of 7r(D)i7r,q = 97r,q 
in the Coo-vectors of the chosen realization of 7r. Thus the global geometrical 
problem on f \ N is replaced by a purely group (representation) theoretic problem 
(together with a well-understood classical problem on a torus). This viewpoint is 
also critical to the proofs we present here since we will obtain our estimates on the 
f7r,q by solving 7r(D)i7r,q = 97r,q in a suitable Schrodinger model of 7r. The freedom 
of choice of this model grants us the flexibility needed to obtain our estimates. 

Note that global regularity carries no implication that D is onto COO(f \ N). 
(See [19].) Global regularity means only that if 7r(D)i7r,q = 97r,q can be solved in 
the Coo-vectors for 7r, for each component g7r,q of 9 E COO(f \ N), and if D fo = go 
can be solved in Coo of the torus, then D f = 9 can be solved in Coo (f \ N). 

It follows from the definition of global regularity that suitable compositions of 
finitely many globally regular operators are again globally regular. 

PROPOSITION 1. Let D = Dn 0 Dn- 1 0 ... 0 D1 be a composition of n globally 
regular operators having the property that ker(Di+d S;;; range(Di 0 Di - 1 0··· 0 Dd, 
i = 1, ... , n - 1. Then D is globally regular too. 

PROOF. It will suffice to give the prooffor n = 2. Suppose, for each A E (f\N)-: 
there is a smooth solution fA to DfA = gA, where L:A gA = 9 E COO(f \ N). 
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Then, for each A, D2 (Dl /A) = gA and, by hypothesis, there exists hA E ker(D2 ) 

such that D2(hA + Dl/A) = gA and LA(hA + Dl/A) = h E C=(f \ N). Then 
there exists kA E C=(f \ N) such that DlkA = hA + DdA, and, since Dl is 
globally regular, there exists kA E C= such that LA kA = k E C=(f \ N) and 
DkA = D2(hA + Dl/A) = gA for each A. This proves the proposition. 

We remark that the range of each Di seems to be very large-nearly all of C= , 
as indicated by the examples in [19]. 

Our theorems about global regularity will be stated for D = X + iY in the com-
plexified Lie algebra 91c. Then many compositions of globally regular first order 
operators will again be globally regular. 

Let V be a real (finite-dimensional) vector space and E = {e 1, ... , en} a basis of 
V. Then a = alel + ... + anen is called a non-Liouville vector in V with respect 
to E if there exist positive constants d and C such that 

Ik· al- l = Iklal + ... + knanl- l ~ C(ki + ... + k~Y = Clkl d 

for all integers kl' ... ,kn such that kl al + ... + knan -I O. 
REMARK 1. If a E V is a non-Liouville vector with respect to a basis E of V, 

then a is also a non-Liouville vector with respect to any basis E' of V rationally 
equivalent to E. 

PROOF. Let E = QE' = q-lQE', where Q is a rational matrix and Q is an 
integer matrix such that qQ = Q for some integer q. Then IQT a . kl = la . Qkl ~ 
CIQkl- d ~ C'lkl-d . 

If a compact nilmanifold f \ N has been specified, we call a vector in 91 non-
Liouville if it is non-Liouville with respect to any (every) rational basis selected 
from logf. 

As in [21, p. 18] one can show that the set of all Liouville vectors (= the comple-
ment of the set of all non-Liouville vectors) has Lebesgue measure zero in 91 c:::: Rn. 

We call a vector in 91 algebraic if and only if it can be expressed as a linear 
combination of vectors in log f with coefficients which are algebraic numbers. 

Of course, every algebraic vector is non-Liouville (see e.g. [3, p. 79]). (Note 
that rational vectors are non-Liouville under our definition above, since we require 
Ik· al- l to be polynomially bounded only when k· a -I 0.) 

(0.2). DEFINITION. X E 91 is said to have the non-Liouville (resp. algebraic, 
rational) supplementation property (relative to r) if for each stage 91 j of the lower 
central series of 91, adx 91j contains a finite set Zi, ... ,Z/n of non-Liouville (resp. 
algebraic, rational) vectors relative to log f such that every rational subspace V 
of 91j +l of co dimension 1 in 91j +l can be complemented to 91j +l by some zt, 
1 ~ i ~ m. 

REMARK 2. The rational supplementation property simply means that adx 
maps each stage of the lower central series of 91 onto the next. 

Clearly, there are Liouville vectors that have the rational supplementation prop-
erty. On the other hand, we have the following 

PROPOSITION 2. Let Xl,'" ,Xn Lie-generate a rational nilpotent Lie algebra 
91. If X = alXl + ... + anXn is a non-Liouville vector (relative to the basis 
B of 91 consisting of Xl, ... ,Xn , and a sufficient set of their commutators) such 
that {at, ... , an} is linearly independent over Q, then X has the non-Liouville 
supplementation property (relative to the discrete subgroup generated by exp B). 
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PROOF. Fix r ::; k = length of the lower central series. Let the r-fold bracket 
products, Bl = [Xii [Xli [Xkl ... ]]], l = 1, ... , m, be a basis of '.)1r. Let V = (linear) 
span of n:=;:l 6sB/, 1 ::; 8 ::; m - 1, all ~/s E Q} be a rational subspace of '.)1r of 
codimension 1. Then the m - 1 by m matrix (68) is of rank m - 1. Let 80 be the 
number of a column the algebraic complement of which in (6s) is of full rank. Let 
Zso E '.)1r be defined by replacing Xiso in the definition of Bso by the vector X: 

n m 

(0.3) Zso = [X[Xjso [Xkso ···lll = I>:¥i [Xi [Xj'o [Xkso ···lll = L /31B1· 
i=1 1=1 

We notice that /3so = Q:iso + a rational linear combination of the other Q:i'S; hence 
/3so =I- O. Also, none of the formulas for /31, l =I- 80, resulting from (0.3), contains 
any term with Q:iso. In order to prove that RZso EEl V = '.)1r, we will show that the 
m by m matrix obtained by augmenting (6s) by a row consisting of /31, ... ,/3m is 
of rank m. Indeed, the determinant of this matrix, when expanded along the row 
of /3j'S, is of the form 

= (_l)jo+1 det[(~ls)S#so]Q:iso 

+ a rational linear combination of the Q:i'S with i =I- i so . 

This is nonzero, since the Q:j'S are linearly independent over Q, and the coefficient 
of Q:i.o is =I- O. As in the proof of Remark 1 we can show now that Zso is a non-
Liouville vector. Thus Zso' 80 = 1, ... , m, as defined by (0.3) is the finite set of 
non-Liouville vectors of Definition (0.2) complementing every rational subspace V 
of codim 1 in '.)1r. 

Now we are ready to summarize the new results in this paper. In Theorem 1 (§1) 
we prove that every real field with the (non-Liouville or rational) supplementation 
property (Definition (0.2)) is globally regular on every compact nilmanifold. This 
confirms an informal conjecture made by Roger Howe. In Theorem 2 (§1) we show 
that if X is a non-Liouville vector field in the next to the last step of the lower 
central series of '.)1, then D = X is globally regular. The hypothesis that X be 
non-Liouville cannot be relaxed as Example 1 shows. Example 2 illustrates some 
of the obstructions that one encounters in dealing with an arbitrary non-Liouville 
vector field X. All the other theorems, in §§2-4, deal with complex vector fields 
D = X + iY with X, Y E '.)1, [X, Y] central (or 0). Thus in Theorem 1c (§2) 
we prove that D is globally regular if X and Y commute and have property (Pk ), 

k = 1, ... ,n (see (2.6)), which is a stronger hypothesis than the requirement that 
both X and Y have (non-Liouville) supplementation. Example 4 of §2 explains 
that such a stronger requirement is in fact needed. Theorem 2c (§2) states that D 
is globally regular if both X and Yare non-Liouville vectors and are in the next 
to the last step of the lower central series of a metabelian algebra '.)1. For 3-step 
(and lower) compact nilmanifolds r \ N, we show in Theorems 3 and 4 (§§3 and 4) 
that D is globally regular if X has the (non-Liouville) supplementation property, 
Y is a non-Liouville vector and is in the next to the last step of the lower central 
series of '.)1 (which is the commutator ['.)1, '.)1] if '.)1 is of step 3, and '.)1 itself if '.)1 is 
of step 2) provided [X, Y] (which then has to be central) is a non-Liouville vector 
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and some commutativity relations between X and 91 and Y and 91 hold. In the 
case of a step 3 algebra 91 and a noncentral [X, Y] there is an example, suggested 
to us by 1. Corwin, in which D is not globally regular, even though X has the 
supplementation property and Y is an algebraic vector tf. [91,91]. The key thing 
there is that X and Y generate a step 3 subalgebra of 91. 

We elaborate upon that example in §5. It would be interesting to determine, 
in that context, what happens if X and Y generate a step 2 sub algebra of 91. We 
are unable to settle this question. Example 2( c) of §5 indicates that 7f A (D) then is 
closely related to the not everywhere locally solvable operator a/ax + ixa/ay. 

If 91 is of step 2, the above mentioned theorems yield the following three condi-
tions, each of which alone is sufficient to imply that D = X + iY is globally regular 
on every step 2 compact nilmanifold f \ N. 

1 0. X and Y satisfy (Pt) (Corollary 2 of §4). 
2°. X has the non-Liouville supplementation property, and both Y and [X, Y] 

are non-Liouville vectors (Theorem 4, §4). 
3°. All the 3 vectors X, Y and [X, Y] are non-Liouville or, in particular, both 

X and Yare algebraic vectors (Corollary 1 of §4). 
The relevance of the above step 2 theorems to what has been stated in our 

step 2 paper [7] is as follows: Statements 1° and 2° correct Theorems (3.5) and 
(3.13); statement 3° is new. To be more specific, statement 2° is precisely what is 
called Case I of Theorem (3.5) there (p. 542) when Y = O. We obtain the same 
result here by different method. Case II of Theorem (3.5) when Y is central is 
still statement 2° and then the assumption, necessary as Example 1 of §1 here 
demonstrates, that "Y is algebraic (or non-Liouville)" is missing there. In Case III, 
X, Y tf. [91,91] the assumption of Theorems (3.5) and (3.13) there that "D E 91c 
has the supplementation property" meaning [X,91] + [Y,91] = [91,91] requires the 
additional hypothesis that X be algebraic (or non-Liouville) in case [X,91] -=I- [91,91] 
and that Y be algebraic (or non-Liouville) too in case [Y,91] -=I- [91,91], as can be 
seen from Example 1 again. Also our proofs here correct an error in Cases II 
and III of Theorem (3.5). There the exponential function in the integrand did 
not behave as claimed in all cases. Thus if [X,91] -=I- [91,91] and [Y,91] -=I- [91,91] 
we need the assumption that both X and Yare algebraic (or non-Liouville) and 
then we do not need any supplementation! However, we still need [X, Y] to be 
algebraic or non-Liouville (statement 3°). If, on the other hand, [X,91] = [91,91] 
and [Y,91] -=I- [91,91] (or resp. [Y,91] = [91,91] and [X,91] -=I- [91,91]) we need Y 
(or resp. X) to be non-Liouville, statement 2°, and then again we need to assume 
that [X, Y] is algebraic (or non-Liouville). Finally, if both [X,91] = [91,91] and 
[Y, 91] = [91, 91] we do not need either X or Y to be algebraic, but we still need a 
stronger hypothesis to prove that D is globally regular (see Example 2 of §2). The 
stronger hypothesis we assume is that X and Y satisfy (Pl ), and of course that 
[X, Y] is non-Liouville---statement 1°. 

As for the methods of proofs we use throughout the paper, roughly speaking, 
the idea is this. "X having the supplementation property" implies 7fA(X) = a/ax 
in a suitably chosen Schrodinger model for 7fA E (f \ N)"': This differentiation can 
of course be converted into a multiplication by i~ by means of a partial Fourier 
transform. "X being in the next to the last step of the lower central series of 91" 



GLOBAL SOLVABILITY ON COMPACT NILMANIFOLDS 351 

implies 7rA(X) = iAx (again in a suitable model for 7rA), that is we embed in !)1 a 3-
dim Heisenberg algebra spanned by {Xl, Y1 , Zd with either X identified with Xl or 
with Y identified with Y1 . If now D = X + iY is a complex vector field, [X, Y] = 0, 
and some extra commutativity conditions on !)1 hold, the two variables x of 7rA(X) 
and y of 7rA(Y) are in fact separated, i.e. a 5-dim Heisenberg algebra spanned by 
{Xl, X 2 , Y1 , Y2 , Z} can be embedded in !)1 with either X identified with Xl and Y 
identified with Y2 (Theorem 3) or with X identified with Xl and Y identified with 
X2 (Theorem Ie) or with X identified with Y1 and Y identified with Y2 (Theorem 
2e), and 7rA(D), acting on HA c::: £2(RP) can be viewed as a multiplication by a 
polynomial in two variables. In our problems of global regularity of D we deal with 
the estimates in terms of the Sobolev norms of some Schwartz functions divided 
by polynomials. The way those estimates depend on A E (r \ N)~ turns out to be 
essential for our problem. If on the other hand [X, Y] i- 0 is central, 7rA(D) can 
be reduced to the form a/ax - AX rather than a multiplication by a polynomial, 
which again corresponds to embedding in !)1 a 3-dim Heisenberg algebra spanned 
by X, Y and [X, Y]. Using appropriate integral estimates adapted from [7] we can 
show global regularity of D. 

We are happy to thank 1. Corwin, F. Greenleaf, R. Fabec and 1. Baggett for 
their helpful suggestions and comments on the subject of this paper. F. Greenleaf, 
in particular, found a substantial error in an earlier version. 

1. Real fields on n-step nilmanifolds. 

THEOREM 1. Let N be any I-connected nilpotent Lie group possessing a co-
compact discrete subgroup r [13]. If X E !)1 has the non-Liouville (or rationa~ 
supplementation property (relative to r), then D = X is globally regular on r \ N. 

PROOF. Let 7r E (r \ N)---; the set of irreducible unitary representations of N 
in the spectrum of r \ N. The proof is accomplished by establishing inductively 
that, independent of global solvability questions, 7r(D) satisfies certain Sobolev-
type estimates for every infinite-dimensional 7r E (r \ N)---; in a suitable concrete 
model of 7r. It is the formula for the estimates that is treated inductively, not the 
global regularity. Let A be any member of the Kirillov orbit of 7r which is rational 
on log r and integral on the center [13]. (The theorem is already known for 2-step 
groups-Case I of Theorem (3.5) of [7].) If A were trivial on the center 3, then 
we could factor 3 out-it is easy to see that 7r(D) would not be affected by such a 
factoring process. So we can assume without loss of generality that A is nontrivial 
on 3n!)1k. Let Zl, ... , Zm be the set of non-Liouville vectors in adx !)1k-1 described 
in Definition (0.2). Then there is some 1 :s:; J :s:; m such that A(Zj) = Aj i- o. We 
remark that Zj = D:1el + ... + D:nen for a fixed rational basis e1, ... , en of !)1k, and 
there are constants C > 0 and (integer) d> 0 (independent of A) such that 

(1.1 ) 

for all (integral on !)1k) A E (r \ N)---; A(Zj) i- O. (If D simply had rational 
supplementation, we would have picked a rational basis Zl, ... , Zr of !)1k rather 
than the set Zl, ... , Zm of non-Liouville vectors. Then we could replace (1.1) by 

( 1.1') 
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for some suitable constant M), using the fact that the set {A(Z))I7rA E (f \ N)--; A 
integral on 3, and A(Z)) t- O} is bounded away from 0.) 

By hypothesis, there is a vector 1';' in the next to the last stage of the lower 
central series of!)1 such that [X, lj] = Zj. Let !)1 = !)1/ker(AI3) if it has I-dim 
center, or !)1/2lJ1 as in the beginning of the proof of Theorem 0, §O, otherwise; so 
[X, Y j ] = Z), and !)1 = RXEB3(Yj ), where 3(Yj ) is the centralizer of Y j . Without 
loss of generality, we can take a maximal subordinate sub algebra 9J1A for A such 
that 9J1A = RZjEBRYjEBRXl EB·· 'EBRXi , and 3(Yj ) = 9J1A EBRXi +1 EB·· 'EBRXn , 

where the basis vectors Xl, ... ,Xn are chosen at our convenience and fixed. Pass 
one-parameter coordinate subgroups through expZ), exp Y), expX, and expXi , 

i = 1, ... ,n, and we may write 

N = MA )<l exp(RXi+d )<l ••• )<l exp(RXn ) )<l exp(RX), 

a sequence of nested semidirect products [18]. In the corresponding Schrodinger 
model of 7r in L2(Rn+l-i), we have 7r(D) = 7r(X) = a/at, 7r(Y j ) = iA.)t, and 
7r(Zj) = iA.), where t denotes the coordinate in exp(RX). Taking the Euclidean 
partial Fourier transform A with respect to the variable t we have 

A _ A _ a 
X = n(X) = i~ and Y) = n(Y)) = -A.)a~ 

where ~ denotes the dual variable of t. 
Let the component of g E coo(f\N) in the qth irreducible 7r-subspace (noncanon-

ical) be denoted gA,q E coo(f \ N). Let ?JA,q denote the corresponding Schwartz 
function in L 2(Rn+l-i), and fJA,q the (Euclidean) partial Fourier transform of the 
Schwartz function 9A,q [21]. If there is an /A,q E COO(f\N) such that D/Aq = gA,q, 
or jj h,q = 9A,q, then 

(1.2) bh,q = fJA,q 

and 

(1.3) 

is the unique Schwartz solution of (1.2), where the (n - i)-tuple SA denotes the 
coordinates of the second kind with respect to X i +1 , ... ,Xn . 

Next, observe that since h,q E S(Rn+l-i) it must be that fJA,q(SA, 0) = 0, and 
by Taylor's formula 

(1.4) Ih,q(SA' 01 = I~ (:~) fJA(SA, ~o)IICll = l~fJA,q(SA' ~o)IIA.)I-l 
for some ~o between 0 and ~. To estimate the L2(f \ N) norm of /A,q or, which is 
the same, the L2(Rn+l-i) norm 11·11 of fA,q we notice that by (1.4) 

(1.5) Ilh,ql12 = J dS A {[II + If.i'2 1 } IfJA,q(SA, ~)12C2 d~ 
-:; J 2sup IYJfJA.q(SA, ~W >.;2 dSA + IlfJA.qI12. 

f. . 
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Applying the R 1-Sobolev inequality 

(1.6) 

to h(O = ~'9A,q(SA'~) in (1.5) and replacing a/a~ of (1.6) by -Aj1YJ we obtain 

(1.7) Ili>.,qI12 ~ 4Aj2(IIYJ9A,qI12 + Aj21IY/gA,qI12) + 119A,qI12. 

To get estimates on U /A,q, for each U E U(91), we begin by writing bu iA,q = 
U9A,q + [b, U]i>.,q' Now, if it happens that [D, [D, Ull = 0, then we substitute 
iA,q = 9A,q/ PA in the right side above and we obtain 

U h,q = (U9A,q + [b, U]9A,q/ PA)/ PA, 

and so 
" " " 2 UjA,q = (DU9A,q + [D, U]9A,q)P; . 

But, if (ad D)2U =1= 0, then we apply the same reasoning to [b, U]iA,q as we used 
previously for U iA,q' Hence 

U iA,q = (U9A,q + {[b, U]§A,q + [b[b, UlliA,q}p;1 )P.:;1. 

If (adD)3U = 0, then we substitute h,q = 9A,q/PA and obtain 
" '2' '" '" 3 U /A,q = (D U9A,q + D[D, U]9A,q + [D[D, Ull9A,q)P; . 

Proceeding inductively, we see that, if m:2: 1 is such that (adD)rnU = 0, then 

(1.8) 

where 
hrn = [D[D . .. [D, U]· . 'llgA,q + D[D . .. [D, U]· . 'jgA,q 

+ ... + Drn-2[D, UjgA,q + Drn- 1UgA,q E c=(r \ N), 
and PA = i( Here the first bracket involves m - 1 D's with the number of D's 
inside the brackets decreasing by 1 in each successive summand. 

Also we notice that if PA (~o) = ° then all the (partial) derivatives of order less 
than m of the Schwartz function hrn = PAU h,q vanish at ~o. (Of course, here 
PA(~O) = ° if and only if ~o = 0, but later we will refer to this argument in the 
context of a more general PA.) Hence all the nonzero terms in Taylor's expansion 
of hrn at ~o contain (partial) derivatives of hrn of order at least m and we have the 
estimate 

Ihrn(SA' ~)I ~ I: (oo!)-1 D~hrn(SA' ~a)II(~ - ~o)al, 
lal=rn 

for suitable ~a' 
Thus dividing the above inequality by PA , for PA = i~, ~o = 0, a = m, and 

-1 ' 
D~ = - \ ~. we get 

(1.9) Ihrnp;rn(SA' ~)I ~ (m!)-1 sup l~rnhrn(SA' ~)IIAJI-rn. 
E 
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Now we esimate the L2(Rn-i) norm of hmPAm in exactly the same manner as we 
estimated Ilf~,qI12 in (1.5) but using now (1.9) instead of (1.4) and we get 

(1.10) IIU JA,q112 ::; 4(m!)-1 Aj2m(111Thm112 + Aj211~m+lhmI12) + Ilhml1 2. 

(If m = 1 and U = I then hI = 9)..,q and (1.10) is just (1.7).) 
If X has the rational supplmentation property, (1.1') "eliminates" the Ai'S from 

(1.10). If it has the non-Liouville supplementation, we apply (1.1) to get 

Aj2mllYThml12::; C211(A(ed2 + ... +A(en)2)mdYThmI12 
= c211<pJ,A,qI12, 

and 

Aj2(m+1)II~m+1hmI12 ::; C211(A(ed2 + ... + A(en)2)(m+1)d~m+lhmI12 
= C211~J,A,qI12, 

where <PJ,A,q and 1/JJ,A,q are defined by the equations above, and where <PJ 
LA,q <PA,q and 1/JJ = LA,q 1/JA,q are in COO(f \ N). Thus, denoting by III· III the 
norm in L2(f \ N), we have (recalling the j which was fixed early in the proof) 

A,q 

J=l {A,q:A(Zj)#O} 

::; L Cr(III<pJII12 + 1111/JJII12) + 2mlllhmll12, 
J 

i.e. f = LA,q /A,q E COO(f \ N) and D is globally regular. 
REMARK 1. Suppose D = X + iZ with X E ')1 satisfying the hypothesis of 

Theorem 1 and Z E 3. Then, in the notation of Theorem 1, b = i~ - A(Z). We 
could replace (1.3) by 

(1.3') JA,q(SA'~) = 9A,q(SA' ~)(i~ - A(Z))-l, 

and then (1.3') would yield the estimate IJA,q(SA, ~)I ::; 19A,q(SA, ~)IIA(Z)I-I or, 
more generally, by (1.8), IUh,ql ::; IhmIIA(Z)I-m, provided A(Z) =I- O. If now Z 
were a non-Liouville vector, as in (1.1) we would have 

IA(Z)I-m = IA(Z)I-m ::; Cm(A(et}2 + ... + A(en)2)md 
= Cm(A(et}2 + ... + A(en)2)md 

with some rational basis el, ... , en of 3. Hence 

{A,q:A(Z)=O} 

while the sum over those A such that A( Z) = 0, is finite by the estimates of the 
proof of Theorem 1. What we have just shown can be stated as the following 
slightly modified version of Theorem 1. 
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THEOREM 1'. Let N be any 1-connected nilpotent Lie group possessing a cocom-
pact discrete subgroup r. If X E 91 has the non-Liouville supplementation property 
and Z E 3(91) (center of 91) is a non-Liouville vector then D = X + iZ is globally 
regular on r \ N. 

The hypothesis of Theorem l' that Z be a non-Liouville vector cannot be relaxed, 
even if 91 is only two-step, as the following example shows. 

EXAMPLE 1. Let 91 be spanned by {X, Y1, Y2, Zl, Z2}, where all nontrivial 
bracket products are generated by [X, Yj ] = Zj, j = 1,2. Let D = X + iZ, 
where Z = Zl + o:Z2 with some fixed real number 0:. Let N = exp 91 and let r 
be the discrete cocompact subgroup of N generated by expX, exp Y1 and exp Y2 . 

Let 7r E (r \ N)~be infinite dimensional, and A E ON(7r) with A(Zj) = Aj E Z, 
j = 1,2. Then there is a Schrodinger model of 7r in L2(R) derived from the Mackey 
induced representation space using the maximal subordinate subalgebra 9Jt spanned 
by {Y1, Y2, Zl, Z2}. In this model 7r(X) = djdt, 7r(lj) = iA}t, and 7r(Zj) = iAj, 
j = 1,2. Taking the (Euclidean) Fourier transform A we obtain n-( X) = i ~, n-(lj) = 
-Aj(8 j 8~), n-(Zj) = iAj, and n-(D) = i~-(A1 +o:A2). Hence iA(~) = gA(~)( i~-A1-
O:A2)-1 is the unique Schwartz solution of n-(D)JA = gAo If 0: is a Liouville number, 
which corresponds to Z being a Liouville vector in the center 3 of 91, we can find, 
for each integer p > 0, a pair (Alp, A2p) such that IA1p + O:A2Pl < (IA1pl + IA2pl)-p. 
Let Ap E (r \ N)~be such that Ap(Zj) = Ajp, j = 1,2. Define g = Epgp where 
gp E HAp, P = 1,2, ... , in such a way that gp(~) = (IA1pl + IA2PI)-p/2cjJ(() with 
some fixed cjJ E CCXl(R), cjJ(~) = 1 on a neighborhood of ~ = 0 and cjJ(~) = 0 outside 
a compact neighborhood of zero. Then g E CCXl(r \ N), but Ep lip(OW diverges. 
By the Sobolev inequality (1.6) 

00 = L lip(OW :S LSup lip(~W :S L 2(llipl12 + Aj21IYj i pll) 
p pep 

:S 2111fll12 + 2111 Yjf111 2. 

Thus f = Ep fp 1- CCXl (r \ N) and D is not globally regular on r \ N. 
The hypothesis of Theorem 1 (and also that of Theorem 1') that X has the 

non-Liouville supplementation property can be replaced by a number theoretic 
condition, as illustrated by Example 2. The example also shows what obstructions 
one encounters in attempting to prove a general theorem of this sort. 

EXAMPLE 2. Let the Lie algebra 91n be spanned by the vectors X, Y1 ,··., Yn - 1 , 

Z, where Z is central. Let the only nontrivial bracket products be generated by 
[X, lj] = Yj+l, 1 :S j < n -1, and [X, Yn - 1] = Z. We call Nn = exp 91n the n-step 
chain group. Let r be a cocompact discrete subgroup of N n such that X and Y1 , 

the generators of 91n , are in log r. If 9Jt is spanned by {Yl, ... , Yn-l, Z}, and if 
A(Z) -I 0, then 9Jt is a r-rational subalgebra of 91n and is maximal subordinate 
to A. If we now let n = 3, and D = Y1 + (1Y2 + ,Z (E 9Jt), we will show that D 
is globally regular on r \ N3 if (12/2 - , is not a Liouville number. (In particular, 
if both (1 and, are algebraic numbers, then (J2 /2 - , is non-Liouville.) Here 
[D,911] = {O} ~ RZ = 912 , and consequently D does not have any form of the 
supplementation property. 
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All the nonequivalent unitary irreducible representations in the spectrum of 
r \ N3 which are nontrivial on the center can be parametrized by pairs of inte-
gers (a, c) with a =I 0 that correspond to integral A E 1)13/ Ad N3 with A( Z) = a, 
A(Yd = c, A(Y2 ) = O. All those representations, say 7rac , can be realized on L2(R) 
in such a way that (cf. [4, p. 119]) 7rac(X) = d/dx, 7rac (yd = 27ri(c + ax2/2), 
7rac (Y2) = 27riax, and 7rac(Z) = 27ria. Thus 

7rac(D) = 27ri(c + ax2/2) + (3ax + 1a] = a7ri(x - x+)(x - x_), 
with x± = -(3 ± ((32 - 21- 2c/a)1/2. Therefore 

lac(x) = 9ac(x)[7ria(x - x+)(x - x_)r1 

is the unique Schwartz solution of the equation 7rac (D)lac = 9ac and we can write 

lac(x) = [7ria(x+ - L)]-1[9ac(X)(X - X+)-l - 9ac(X)(X - x_)-l], 
if x+ - L = 2((32 - 21- 2c/a)1/2 =I 0, 

or 
lac (x) = 9ac(X)(X - (3)2/ 7ria otherwise. 

Now, if (32/2 - 1 is not a Liouville number, there exist a positive constant K and 
a positive integer p such that 1(32 - 21- 2c/al ;::: K-2(27ra)-2(p+1) for all integers 
c and a, a =I O. Hence 

Ilac(x)1 :::; KI9ac(x)(27ra)P /(x - x+)1 + KI9ac(x)(27ra)P /(x - x_)1 
= KIZP9ac (x)I/lx - x+1 + KIZP9ac(x)I/lx - LI· 

If x+ and x_ are complex roots, then for all real x, 
Ix - x±1 ;::: ((32 - 21- 2c/a)1/2 ;::: K- 1(27ra)-p-l, 

and we have the estimate IZP9ac(x)I/lx - x±1 :::; KIZ2P+19ac(x)1 which implies the 
corresponding norm estimate IIZP9ac/(X - x±)11 :::; KIIZ2p+19acll. If x+ and x_ 
are real, we notice that 9ac(X±) = 0 and we use Taylor's expansion of ZP9ac(X) at 
x = x± to get to estimate 

(1.12) IZP 9ac (x)I/lx - x±1 :::; sup IXZP9ac (x)l· 
x 

To estimate II lac II, as in (1.5) we break the integral J ... dx over R into two integrals: 
one over the interval Ix - x± I :::; 1 and the other one over its complement Ix - x± I > 
1, we apply (1.12) to the integrand of the first integral and then use Sobolev's 
inequality (1.6) with h(x) = XZP9ac(X). The resulting estimate is 

Illacl1 2 :::; 8K2(IIXZP9ac I12 + IIX2 ZP9ac 112) + 2K211 ZP9ac11 2. 

Next we proceed as we did in (1.8) to obtain the estimates on (j lac, U E U(1)13), a, 
c integers, a =I O. The remaining oo-dimensional representations of N3 which are 
in the spectrum of r \ N3 correspond to integral A E 1)13/ Ad N3 which are 0 on the 
center RZ of 1)13, and therefore can be viewed as representations of the quotient 
group N3 = N 3/ expRZ isomorphic to the 3-dimensional Heisenberg group. On 
this quotient group N 3, D = Y 1 + (3Y 2 already has the rational supplementation 
property: [D, 1)13] = RY 2, and is thus globally regular by Theorem 1. 
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Conversely, if /32 /2-, is a Liouville number that can be rapidly approximated by 
rationals from the right, i.e. if there exists an infinite sequence of rational numbers 
Pn/qn, (Pn, qn) = 1, such that 0 < Pn/qn - /32 /2+, < q;;n, then D = Y1 +/3Y2 +,Z 
is not globally regular. (Clearly there exist such Liouville numbers; that they do 
not comprise the whole set of Liouville numbers follows from the properties of 
convergents of continued fractions.) To show this we may actually assume that 
there is a sequence {Pn / qn} of rational numbers such that 0 < Pn / qn - /32 /2 + , < 
(qn + IPnl)-n. Let 9 = L~=1 gn E COO(f \ N) be such that each gn is in an 
(irreducible) representation space H" C L2 (f \ N) of 7r qnPn and corresponds to 
9n(X) = (qn + IPnl)-n/27jJ(x) in the L2(R) realization of H", as described above 
(7jJ(x) E COO(R), 7jJ(-/3) = 1, 7jJ 20, compactly supported). We have the following 
estimates on the solutions in of 7rqnPn (D)in = 9n: 

sup lin(x)1 = sup 19n(X)/[7riqn(x - x+)(x - x_)]1 
2 19n( -/3)/7rqn(/32 - 2,- 2Pn/qn)1 2 (qn + IPnl)n-n/2-1, 

where x± = -/3 ± i(Pn/ qn - /32 + 2,) 1/2, and the sup is taken over all x E R. As in 
Example 1, this shows that f = L fn t/:. COO(f \ N). (Note that the right sidedness 
of the Liouville number was used to insure that neither x+ nor x_ is real.) 

On the chain group Nn , any D without the supplementation property acts in the 
representation space of 7rA realized on L2 (R) as a multiplication by a polynomial, 
say PA (x). Example 2 exhibits that the crucial thing for the global regularity of 
such D then is how rapidly the distances from the real line of the complex roots of 
PA(x) vary with A E 913/ Ad' N3 "as A --+ 00". We will finish this section with the 
following 

THEOREM 2. Let N be any I-connected nilpotent Lie group possessing a co-
compact discrete subgroup f. Let D = Y E 91k - 1 -the next to the last step of the 
lower central series of 91, the Lie algebra of N. Suppose Y is a non-Liouville vector 
(relative to r). Then D is globally regular on f \ N. 

PROOF. The hypothesis in Theorem 1 that X has supplementation was to 
assure the existence of Y) in 91k - 1 such that [X, Y)] = Z), so that we could 
build a Schrodinger model for the representation 7r A in which 7r A (X) = a/ax, 
7rA(YJ ) = iA(Z))x, and 7rA(Z)) = iA(Zj). We can now reverse the roles of X and 
Yj in this picture. That is, we start with D = Y E 91k - 1 and a rational basis 
Z1, ... ,Zn of 91k . Then for given A, if A( Z)) #- 0, either Y is in the center of 91 (a 
quotient of 91 with one-dimensional center spanned by Z)), in which case we get 
the estimates on 7rA(D) using (1.1) as we did in (1.11), with m = 1, and noting 
that the passage from 91 to 91 does not affect these estimates, or else Y E 91k - 1 ~ 

center of 91. It is in the former case that we need non-Liouville, while in the latter 
case, there exists Xj E 91 such that [Xy, Y] = Zj. We again build a Schrodinger 
model for 7rA in which 7rA(Xj ) = a/ax, 7rA(Y) = iA(Z))x, and 7rA(ZJ) = iA(Z)). 
Again, lA(X) = 9A(x)[iA(Zj)x]-1 is the only Schwartz solution of 7rA(D)ih = 9A, 
and we can use 7rA(Xj ) = a/ax in Taylor's formula and Sobolev's inequality that 
are needed for the estimates on (; lA, U E U(91), as in the proof of Theorem 1, 
noticing that IA(Zj)I- 1 ::; MJ for all integral on 9J1 such that A(Zj) #- O. 

We mention also the following modification of Theorem 2. 
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THEOREM 2'. Let N be any 1-connected nilpotent Lie group possessing a co-
compact discrete subgroup f. Let D = Y + iZ with Y E I)1k-l and Z E the center 
of 1)1. Suppose that both Y and Z are non-Liouville vectors (relative to r). Then 
D is globally regular on f \ N. 

PROOF. Let A E (f\N)"": If, after reducing 1)1 to 1)1 with one-dimensional center 
3, Y E 3, then 1l"A(D) = iA(Y) - A(Z), iA = 9A(iA(Y) - A(Z))-l, and we use 
either the estimate IlAI ::; 19AIIA(Z)I-1 if A(Z) "f. 0, or we use IlAI ::; 19AIIA(Y)I-1 

if A(Z) = 0, and the proof goes now as in Theorem l' using (1.1). If, on the other 
hand, Y <I. 3, then 1l"A(D) = iA(Zj)x - A(Z), again we proceed as in the proof of 
Theorem l' when A(Z) "f. 0, while if A(Z) = 0, we are in the situation of Theorem 
2; cf. the comment at the beginning of the proof of Theorem 1, §1. 

2. n-step nilmanifolds-complex fields. We can "complexify" Theorem 2 
as follows. Suppose D = Y1 + iY2 with Yt, Y2 E I)1k-t, both non-Liouville vectors. 
If 1)1 is of step 3 or more, then [Y1 , Y2] = O. If 1)1 is of step 2, I)1k-l = 1)1, and we 
simply assume that [Yt, Y2] = O. Let Zt, ... , Zn be a fixed rational basis of IJtk, 
A E 1)1*, rational (as remarked after Theorem 0), A(Zj) "f. 0 for some j, be given. 
After reducing to one-dimensional center, we may assume that Y 1, Y 2 E I)1k-l ~ 
3. (Otherwise we would use the estimates from the proof of Theorem 2', noting 
that these estimates are independent of the passage from N to N.) Therefore, 
there exists Xj E 1)1 such that [X j, Y 1] = Z j. We construct a Schrodinger model 
for 1l"A choosing Xj to be the first external vector. Since Y2 E I)1k-l, we have 
[Xj ,Y2] E I)1k ~ center(l)1) = RZj , so [Xj ,Y2] = QjZj for some Qj E R. If 
Y 2 E center of 3 (Y d, then in our model 

(2.1) 1l"A(Yd = iA(Zj)x, 1l"A(Xj ) = :X' 
1l"A(Y2) = iA([Xj, Y2])x, and 1l"A(Zj) = iA(Zj). 

Thus 1l"A(D) = {iA(Zj) - A([Xj, Y2])}x and we can use the same estimates on iA, 
unique Schwartz solution of 1l"A(D)iA = 9A, as we did in the proof of Theorem 
2 (we notice that liA(Zj) - A([Xj,Y2])1- 1 ::; IA(Zj)l-l). If on the other hand, 
Y 2 <I. center of 3(Yd, then there exists Vj E 3(Yd such that [V j ,Y2] = Zj in 
3(Y d, and we pick Vj to be the second external vector in our model. In this model 
1l"A(Yd = iA(Zj)x, 

(2.2) 

and 

1l"A(Vj) = :v + iA([Xj, Vj])x 

provided [Xj , Vj] is central. Hence 

1l"A(D) = iA(Zj)x - {A(ZJ)v + A([Xj, Y2])x} == PA(X,V), 

and IPA(x,v)12 = (A(x,v),(x,v)), where the real symmetric matrix A = (~~), 
and a = A(ZJ)2 + A([Xj, Y2])2, b = A(Zj)A([Xj, Y2]), and c = A(Zj)2. Then the 
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minimum eigenvalue of A is positive and is readily calculated to be 

(2.3) CAl = 2(ac - b2){a + C + ((a - C)2 + 4b2)1/2}-1 
= 2A(Z))4{2A(Z))2 + A([X), Y2])2 

+ IA([Xj, Y2])1 (A([X] , y2])2 + 4A(Zj)2)1/2} -1. 
Then 

IPA(X,VW::::: CA)(X2 +v2), for all real x and v. 
In order to obtain L2-estimates on lA, the unique Schwartz solution of 7rA(D)iA = 
!lA, we proceed as in the proof of Theorem 1, with small modifications. First, 
PA(x,v) = ° iff x = v = ° implies that ih(SA,O, O) = 0. Instead of (1.4) we now 
apply Taylor's formula on R2 combined with the expressions (2.2) for the partial 
derivatives a/ax and a/avo Thus by elementary inequalities we have 
(2.4) 

IlA,q(sA,v,xW ~ (Ix (a;:) (sA,vo,xo)1 + Iv (a;vA) (SA,v1,Xd /) 2. PA(V,x)-2 

~ cAJ (sup IX)iiA(SA, v, xW + sup IcV) + i[X), V)]YIA(Z))-1)9A(SA, v, xW) 
1 ( - 2 - 2 - - - 2 2) ~CA) SUpIX)9AI +2suP!V)9AI +2supl[X),V)]Y19AI M) 

where M) = Sup{IA(Z))1- 1 : A E (f \ N)---' A(Zj) =I- O} as in (1.1'), and all the 
suprema are taken over v, x E R. We notice that for any Schwartz hA, by (2.3), we 
have 

cAJlhAI2 ~ ~Mf{2A(Z))2 + A([X), y2])2 + 2IA([X), Y2])A(Z])I}lhAI2 
34--2 ---2 

~ 2M] (IZ)hAI + I[X), Y2]hAI ). 

Applying this inequality to hA equal subsequently to X]9A, V)9A, and [X)VJi"i\9A' 
we get from (2.4) 

- 2 Ih,q(sA' v, x)1 
2 

3 4~ - - 2 - - 2 - - - - 2 2 
~ 2M) L...t(sup IUjkX)9AI + 2 sup IU)kV)9AI + 2 sup lU)k[X] , V)]Y19AI M)) 

k=1 
with U)1 = Z) and U)2 = [Xj, Y2]. Next, instead of f··· d~ in (1.5) we use 
f f ... dv dx and then we break this double integral into two integrals, one over the 
unit disk x2 + v2 ~ 1 and the other one over its complement, x2 + v2 ::::: 1. (Here 
we are using (2.3).) And finally, instead of (1.6) we use the R2-Sobolev inequality 

which we apply to each of the summands in (2.4). (We note that ICA)I- 1 grows at 
most polynomially in A.) For the estimates on fj iA,q, U E U (!)1), we proceed as 
in (1.8) with the same modifications as described above. All this procedure works 
fine, except that for a general !)1 it is hard to tell whether we can actually pick X) 
and Vj so that [X), V)] needed in (2.1) is central. It surely is central if!)1 is of step 
two, and we have the following proposition. 
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PROPOSITION 1. Let N be a simply connected step 2 nilpotent Lie group, and 
r a cocompact discrete subgroup of N. If X, Y E 1)1 commute, and both are non-
Liouville vectors, then D = X + iY is globally regular on r \ N. 

Another natural class of groups for which [XJ' Vj] = 0 is that of nilpotent semidi-
rect products of Abelian groups (metabelian groups). For let 1)1 = Q( t>< ~ with 
Q( ~ RP, ~ ~ Rq. Then, if the above constructed XJ and V; are such that 
Xj = 6 + 'Y/l and ,,~. = 6 + 'Y/2 with some ~i E Q(, 'Y/i E ~, i = 1,2, we can simply 
replace them by X; = 6 and VJ = 6. We summarize these facts as the following 

THEOREM 2c. Let N be a metabelian nilpotent Lie group with a cocompact 
discrete subgroup r. Let D = Y1 + iY2 with Yl , Y2 E I)1k-l -the next to the last 
step of the lower central series of 1)1, the Lie algebra of N. Suppose both Yl and Y2 
are non-Liouville vectors (relative to r). Then D is globally regular on r \ N. If N 
is of step less than 3 assume moreover that Y1 and Y2 commute. 

Of course Xj and Vj may commute even if 1)1 is not metabelian. 
EXAMPLE 1. Let 1)1 be the nilpotent Lie algebra of strictly upper triangular 

n x n real matrices, n ;:::: 4. Then 1)1 is of step n - 1 and the next to the last 
stage of 1)1 is spanned by the two vectors El,n-l and E 2 ,n (Ekl denotes the matrix 
which has 1 on the crossing of kth row with lth column and zeros otherwise) and 
the one-dimensional center by Enn. D = El,n-l + iE2 ,n is globally regular on any 
nilmanifold r \ exp 1)1 such that El,n-l, E 2 ,n are non-Liouville with respect to the 
r rational basis. The (commuting) external vectors Xl and VI can be chosen to be 
-En-l,n and E l ,2 respectively. 

This covers (infinite-dimensional 'iT corresponding to) A in general position: 
A(Eln ) #- O. However there are also exceptional orbits with dim 'iT = 00. For 
these, A(Eln ) = 0 and passage to the quotient puts El,n-l and E 2 ,n in the center 
of 1)1, and so the required Sobolev estimates for such A are easier, and do not require 
a choice of V;. 

We will now quote two examples of 3-step nilpotent metabelian groups which 
will also be useful to illustrate our next theorems. 

EXAMPLE 2. 1)1 = Q( t>< ~ where Q( = RXI EB RX2 , ~ = R-span of {Ul , U2 , U12 , 

Y1 , Yz, Z} with all nontrivial bracket products generated by [Xj, UJ] = ~, [Xj,~] 
= Z, and [XJ' Ud = Y3 - J, j = 1,2 [17]. Here 1)11 = [1)1,1)1] = RY1 EB RYz EB RZ 
is the next to the last stage of the lower central series and N = exp 1)1. 

EXAMPLE 3. 1)1 = subalgebra of 1)1 of Example 2 that does not contain U1Z , and 
N = expl)1. 

In each of these two examples D = Yl + iYz is globally regular, the commuting 
external vectors being Xl and X 2 , if Yl and Yz are non-Liouville with respect to 
some r-rational basis. 

REMARK. We notice that the model we just built to prove Theorem 2c, shows 
that for D = Xj +iV;, j-fixed, [Xl' V;] = 0, we can produce estimates similar to the 
ones we obtained for D = Y1 + iYz. To see this we apply the (Euclidean) Fourier 
transform to (2.2) obtaining 

1TA(Xj ) = i~, 1TA(Yd = -A(Zj) tc 1TA(Vj) = i'Y/, 
1TA(Y2) = --A(ZJ) t'Y/ - A([Xl) Y2 ]) t( and 1TA(D) = i~ - 'Y/. 

(2.5) 
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Now we can repeat the argument of Theorem 2e using %~ = -A(ZJ)-lYl 
and %ry = -A(ZJ)-1(Y2 - YdXJ, Y2 ]A(ZJ)-1 r In particular we have sufficient 
L2-estimates on fA for the global regularity of D = Xl + iVl in Example 3, and in 
Examples 4 and 5 to follow, provided A(Z) i= 0 there. 

Now we would like to determine the algebraic conditions on (commuting) vector 
fields X, V E 91 that would guarantee the existence of a Schrodinger model for 1r A 

satisfying (2.1), which would in turn, as described above, imply global regularity 
of D = X + iV. To make X the first external vector in our model, as in the 
proof of Theorem 1, we pick YJ E 91k-l, and a non-Liouville ZJ E 91k such that 
[X,~] = ZJ assuming therefore that X has the non-Liouville supplementation 
property. Next, to use Vasa second external vector we need two things: (1°) V 
to be in the centralizer of YJ in 91, and (2°) V to bracket a vector, say Yj, in the 
next to the last step of the lower central series of 3(Y d, or of 91 in particular, onto 
Z J. The following condition-a property of a pair of vectors X and V, stronger 
than the requirement that both X and V have the non-Liouville supplementation 
property-is sufficient for 1° and 2° above to hold (cf. also Example 4 at the end 
of this section). 

(2.6) Property (Pk ). There exists a set Zl, ... ,Zm of non-Liouville vectors in 91k 
such that every rational subspace V of 91k of co dimension 1 can be supplemented 
to 91k by some ZJ, 1 ::; j ::; m, and also a set of vectors Yl , ... , Y m, Y{ , ... , Y';" in 
91k - l such that for each 1 ::; j ::; me [X, YJ] = ZJ, [V, Yj] = ZJ and either [V,~] = 0 
or [X, Yj] = 0, for all j = 1, ... , m. (By Remark 1 of §O, Property (Pk ) is invariant 
under rational automorphisms of 91.) There is also, in this context, a stronger 
version of the rational supplementation property for the pair of vectors X and V 
(which implies (Pk )): 

[X, 91k - l ] = 91k and [V, ker(adx 191k-d] = 91k or 
[V, 91k-d = 91k and [X, ker(adv 191k -d] = 91k. 

Thus we have the following complex version of Theorem l. 

THEOREM Ie. If X and V E 91, an n-step nilpotent Lie algebra, commute and 
have Property (Pk) or (Pk), k = 1, ... ,n - 1, then D = X + iV is globally regular 
on every compact nilmanifold f \ N, N = exp 91. 

We notice that the pair Xl, VI of Example 1 satisfies (P~-l). Also, the pair 
Xl, X2 of Examples 2 and 3 satisfies (P~). In Example 2 (Pd holds but (pn does 
not. In Example 3 neither (PI) nor (pn is satisfied, nevertheless D = Xl + iX2 

there is globally regular if Xl and X 2 are algebraic. This is because X 1 and X 2 
both are algebraic vectors in the step 2 Lie algebra 91 = 91/RZ and we are in the 
situation of Theorem 2e. In fact, we can state the following 

COROLLARY. Let N be a 3-step nilpotent Lie group possessing a cocompact dis-
crete subgroup f. If X l ,X2 E 91 satisfy (P2 ) (or (P~)), [Xl ,X2 ] = 0, and both 
Xl and X 2 are non-Liouville vectors (with respect to log f), then D = Xl + iX 2 is 
globally regular on f \ N. 

We end this section with the example showing that the assumption that both X 
and V have the supplementation property is not sufficient for global regularity of 
D=X+iV. 
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EXAMPLE 4. Let!)1 be the 2-step nilpotent Lie algebra spanned by Xl, X 2, 
Y, Z with the commutation relations generated by [Xj, Y] = Z, j = 1,2. Let 
N = exp!)1 and let r, a discrete cocompact subgroup, be such that log r contains 
Xl, X 2, Y, Z. Let D = Xl + i(X2 + (3Z), where (3 is a Liouville number. Then, 
clearly, both Xl and X2 + (3Z, have supplementation. However, the algebra !)1 is 
in fact a direct product of a Heisenberg algebra spanned by Xl, Y, Z, and of R 1 

spanned by X 2 - Xl. Therefore the center of !)1 is spanned by Z and Z2 = X 2 - Xl, 
and the infinite-dimensional representations of N corresponding to A E !)1* integral 
on the center act on L2(R) with 'lTA(Xd = ajax, 'lTA(Y) = iA(Z)x, 'lTA(Z) = iA(Z), 
'lTA(Z2) = iA(Z2)' Consequently, 

'lTA(D) = (1 + i) :x - [A(Z2) + (3A(Z)], 

which, after applying the Fourier transform, becomes 

As in Example 1 of § 1 we can show that D is not globally regular on r \ N. 

3. 3-step nilmanifolds, [X, Y] = O. In this section we will prove the following 
"complex combination" of Theorems 1 and 2. As we needed Property (Pk ) in 
Theorem Ie and !)1 to be metabelian in Theorem 2e, here we also need some 
additional commutation properties of !)1. 

THEOREM 3. Let N be a 3-step nilpotent Lie group with Lie algebra !)1 and a 
cocompact discrete subgroup r. If X, Y E !)1 commute, X has the non-Liouville 
supplementation property, Y E [!)1,!)1] is a non-Liouville vector and moreover, 
[ker(ad~:), Y] = [!)1, Y] then D = X + iY is globally regular on the compact nil-
manifold r \ N. 

Since the proof of Theorem 3 for some A E (r \ N)~ requires the estimates on 
step 2 quot.ient groups of N, we will state and prove its stronger step 2 version first. 

THEOREM 3'. Let N be a step 2 nilpotent Lie group with Lie algebra !)1 and 
a cocompact discrete subgroup r. If X, Y E !)1 commute, X has the non-Liouville 
supplementation property, and Y is a non-Liouville vector, then D = X + iY is 
globally regular on r \ N. 

PROOF OF THEOREM 3'. Let A E (r\N)~and let Zl,"" Zn be a rational basis 
of 3. We reduce !)1 to an algebra !)1 with I-dimensional center 3 spanned by Zj, 
say. We may assume Y 1-- 3, otherwise we would have applied the estimates from 
the proof of Theorem I' which are unaffected by the passage from !)1 to !)1. (It is in 
using Theorem I' that we need Y non-Liouville.) There exists Xj E !)1 such that 
[Xj, Y] = Zj. We choose Xj to be the first external vector in our construction of 
the Schrodinger model for 'lTA with a special maximal subordinate to A subalgebra 
!)]t. Clearly X E 3(Y). Two cases are now possible. 

Case 1. X E 3(3(Y)-). Then 'lTA(Xj) = ajax, 'lTA(Y) = iA(Zj)X, 'lTA(X) = 
iA([X,Xj])x, and 'lTA(D) = {iA([X,Xj]) - A(Zj)}x, A(Zj) -10. We use the same 
estimates as we used in (2.1). 
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Cas~II. X¢:. 3(3(Y)-). W~choose ~ to be the second external vector. There 
exists Y j E 3(Y)- such that [X, Y j ] = Zj. In this model 

8 
7rA(Xj ) = 8v' 7rA(Y) = iA(Zj)v, 7rA(~) = iA([Xj, ~])v + iA(Zj)x, 

7rA(X) = :x +iA([X,Xj])v, and 7rA(D) = :x +iA([X,Xj])v - A(Zj)v. 

Taking the Euclidean partial Fourier transform ~ with respect to the x variable, we 
get 

1fA(Xj ) = :v' 1fA(Y) = iA(Zj)v, 1fA(X) = i~ + iA([X, Xj])v, 

1fA(Yj ) = iA([Xj, Yj])v - A(Zj) :( and 

1fA(D) = i(~ + A([X,Xj])v) - A(Zj)v == PA(~' v). 

As in (2.3), IPA(~' v)12 2': CAj(e+V2) for all real ~ and v, where the lowest eigenvalue 
C Aj of the quadratic form IPA (~, v W satisfies the inequality 

CAj 2': A(Zj)2{A([X, Xj])2 + A(Zj)2 + 1} -1. 

Now we apply the argument of §2 stated after (2.3) with 818v = 7rA(Xj ) and 
818~ = 1fA{ -A(Zj)-1(Yj + iA(Zj)-1[Xj, Yj]Y)}. 

PROOF OF THEOREM 3. Let Z1, ... ,Zm be the set of non-Liouville vectors in 
')12 described in Definition (0.2) and let A E (f\N)be such that A( Zj) =1= 0 for some 
1 ::; j ::; m. (Otherwise we would have applied Theorem 3'.) We may assume that 
Y is not in the center of ')1. (Otherwise we would use the estimates from the proof 
of Theorem 1', which are unaffected by the passage from ')1 to ')1.) Hence there 
exists Xj in ')1 ~ [')1, ')1] that brackets Y onto Zj. We choose XJ (any preimage of 
Xj in ')1) in ker(adi) to be the first external vector in our construction of a special 
9JlA. Now X E 3(Y). By the non-Liouville supplementation property of X, there 
exists ~. E [')1, ')1] such that [X,~] = Zj. We notice that Y j E lJY)- since Y ~d 
Yj ' both being in [')1, ')1] of a step 3 algebra ')1, commute. Also, [Y j, 3(Y)-] = RZj, 
the center of 3(Y)-. Thus X can be chosen to be the second external vector. Let 
N = exp 9Jl A ... exp RSk ... exp RX exp RXj be the parametrization of N obtained 
by this construction. A has already been used in passing to the quotient algebra ')1. 
However, by applying Ad* exptXj , we can make A(Y) = 0, and since X E 3(Y), 
we will not disturb this arrangement if we use Ad * exp t' X to make A(Y2 ) = 0 too. 
Also, A remains rational on the center. Thus we have 

8 
7rA(Xj ) = 8v' 7rA(Y) = iA(Zj)v, 7rA(lj) = iA([Xj, Yj])v + iA(Zj)x, 

and 

7rA(X) = :x + i { ~v2 A([[Xj, X], Xj]) + v (t. skA([[X, Xj]Sk]) + A([X, X j ])) } . 

(Here we use the fact that 9JlA can be taken both to be special and to contain [')1, ')1] 
simultaneously.) Taking the Euclidean partial Fourier transform with respect to the 
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x-variable we obtain 

1TA(Xj ) = :v' 1TA(Y) = iA(Zj)v, 1TA(~) = iA([Xj, ~])v - A(Zj) :~, 
and 

1TA(X) = i { ~ + ~v2 A([[Xj, XjXj ]) + v (t, skA([[X, XJ], Sk]) + A([X, XJ])) } . 

Hence alav = 1TA(Xj ), ala~ = 1TA {-A(Zj )-l(iA(Zj )-1 [Xj, Yj]Y +~)} and 1TA(D) 
acts on L2(R1+2) as a multiplication by a polynomial PAj(SA, ~,v). 

Letting 

we get 
IPAJ(SA'~' v)12 = A(Zj)2v2 + (Av + ~)2 = Q(A(v), v, O. 

Introducing a dummy variable VI, and letting CA,] (VI) be the mlllimum 
eigenvalue of the quadratic form Q(A(vl),v,~) in (v,~), we have Q(A(vl),v,O 2: 
CA,j(v l )(v2+e). Now we let VI = v, and we use (2.3) with a = A(ZJ)+A2, b = A, 
and C = 1 to calculate CA,]' The radical in the resulting denominator in (2.3) is less 
than A(Zj)2 + A2 + 1, so we have CA,j 2: A(Zj)2(A(ZJ)2 + A2 + 1)-1. 

We get the L2(Rl+2) estimates on fA in essentially the same manner as in (2.3) 
of §2, the only difference being that in (2.4), before taking the sup, instead of 
Mj of (1.1') we use (1.1) and we write the multiplication by A as an action of 
1TA(Uj) + A(Zj)-l1TA(l-j) for some Uj, l-j E U(91). Since 1TA( -iX) = A· v +~, and 
1TA(X]) = alav, we have 

1TA([Xj , -iX]) = v :vA + A. 

But v(alav)A = (vI2)A([[Xl,X],Xj]) so 

A = 1TA([Xj , -iX] + ~A(Zj)-l[[X],X]Xj]Y) = 1TA(U]) + A(Zj)-l1TA(l-j), 

because 1TA([[Xj ,X],Xj ]) = iA([[Xj,X],Xj]), and 7l'A(Y) = iA(Zj)v. 
REMARK 1. The assumption [ker( adi-) , Y] = [91, Y] forces [[X, X]], X] to be 0 

in the Schrodinger model we construct. Without this assumption we would have 

a {v2 7l'A(X) = ax + i 2([[Xj ,X],Xj ]) + xvA([[X,Xj],X]) 

+v [t, skA([[X, Xj], Sk]) + A([X, Xj])] } . 

We were unable to get satisfactory estimates when the "xv" -term is present; nor 
were we able to provide a simpler than the described above parametrization of a 
3-step 91. 

REMARK 2. If in Example 2 of §5 we consider the operator D = Xl + iY2 the 
hypothesis on ker adi- in Theorem 3 is satisfied. 
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4. 3-step nilmanifolds, [X, Y] central. In this section we will prove a version 
of Theorems 3 and 3' of the previous section for [X, Y] i= 0, central. We remark 
that the proof of this case is quite different from that used in the case of [X, Y] = O. 
However, the case [X, Y] = 0 must be proved first, since it is an essential preliminary 
to proving the case with [X, Y] i= O. The reason for this is that, even if [X, Y] i= 0, 
there are A E (r\N)~such that A([X, Y]) = 0, which forces us to fall back upon the 
commuting case which is already proved. Also, Part II of the proof of Theorem 4 in 
the present paper corrects an oversight in part (B) ofthe proof of Theorem (3.13) in 
[5]. The right-hand side of inequality (3.16) on p. 548 there should have contained 
terms of the form IUn ··· Ut!A.q(SA, 0)1. Consequently, what we call Lemma 1 in 
this section is missing there. 

THEOREM 4. Let N be a step 3 or step 2 nilpotent Lie group with Lie algebra 
91 and a cocompact discrete subgroup r. If X, Y E 91, if X has the non-Liouville 
supplementation property, and Y is in the next to the last step of the lower central 
series of 91 (which is the commutator [91,91] if 91 is of step 3 and 91 itself if 91 
is of step 2), then D = X + iY is globally regular on the compact nilmanifold 
r \ N provided both Y and [X, Y] are non-Liouville vectors. By the assumption, 
Z = [X, Y] is central. Moreover, if 91 is of step 3 with the center more than 1 
dimensional we assume that [ker(ad3.:), Y] = [91, Y]. 

PROOF. Let A E (r \ N)~ and assume A := A(Z) i= O. Otherwise we would 
have applied the estimates of Theorem 3, or 3' to iA on the quotient group N /W, 
where W = exp Wand W is the smallest rational subspace of 91 containing Z. 
Since ker(AI3) is a rational subspace containing Z, it follows that W C ker(AI3). 
Since W C 3, W is also a (rational) ideal of 91. Notice that in case of 3 being 1 
dimensional, N /W is of step 2 and we apply Theorem 3', while in case of dim W < 
dim 3, N /W may still be of step 3 thus forcing us to apply Theorem 3 with its 
additional assumption [ker(ad3.:), Y] = [91, Y], or actually with [ker(ad~), Y] = 
[91, Y] where 91 = 91/W. We choose X to be the first external vector in our 
construction of 9J1 A, and thus we have 

(4.0) 

and 7rA(D) = a/ax - AX. Hence 

(4.1) iA(SA, x) = exp ( A;~) (lax 9A(SA, t) exp ( _~t2) dt + C(SA)) , 

where C(SA) is a constant depending on SA, is the general solution of 7rA(D)iA = gAo 
We will break the proof now into two parts, I and II, depending on whether A is 
positive or negative. 

PART I (A > 0). We are interested in the solutions iA of the form (4.1) which are 
in the Schwartz space S(Rd). This, in particular, means that limx--->±oo iA(SA,X) = 
0, which implies 

[= (-At2) [-= C(SA) = - 10 gA(SA, t) exp -2- dt = - 10 
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- roo [.A(x2 - t 2 )] fA ( SA, x) = - J x ilA ( SA, t) exp 2 dt 

= r .... 1-00 
As a rule, we will work with the first integral if x ~ 0 and with the second one if 
x < O. To get the estimates on the L 2 (Rd ) norm of lA, we will need the following 
estimate on gA (S A, x), which we obtain as in [7, p. 545] except that instead of b 
there, which came from (1.1'), we use (1.1). In the notation of (1.1), but replacing 
n by m and d by k, take the SUPt and obtain, by Sobolev's inequality, with Sobolev 
constant 2, 

1 

(4.3) IgA(SA, tW ~ 2c4k 2: II(ei + ... + e~)4k Xl(Z2 + y2)kgA(SA' ')11 2 
1=0 . {t-4k , for It I ~ 1, 

1, for It I < 1, 

where Ilh(sA, ')11 2 = f~oo Ih(sA' t)J2 dt. Of course (4.3) has nothing to do with 
solvability of fr(D)iA = gA, and works for any gA E S(Rd); thus it is also true for 
UgA, for all U E U(I)'t). 

Now let I)'t :) 1)'t1 :) ... :) I)'tk :) {O} be the lower central series of I)'t: so [I)'t, I)'ti] == 
l)'ti+1. If U E I)'t, define the rank of U to be k - i, where i = Max{jiU E I)'tj}. 
Clearly rank([U, V]) < rank U for any U, V E I)'t. Thus U E 3 if rank U = O. If the 
monomial A = Urn'" U1 E U(I)'t) = the universal enveloping algebra of I)'t, define 
the rank of (the factorization of) A to be I:~ rank Ui. 

If D fA,q = gA,q, then 
n 

(4.4) D(Un ··· UdA,q) = Un'" U1gA,q + 2: Un'" Ul+1[D, U!lUl- 1'" U1fA,q 
1=1 

and 
rank(Un ... Ul+dD, UdUl- 1 ... Ud < rank(Un ... Ud· 

Observe that rank (Un'" Ud = 0 '* Un'" U1 E U(3). 
Inductive hypothesis. If rank(Un ... Ud ~ N, then, for each k = 1,2,3, ... , 

N+1 
(IN) IUn ·" UdA,q(SA, x)1 ~ 2: Min(1, x-4k+1) 

1=1 

'" (~- 2 2 4k - 2 - 2 k - 2) 1/2 '~CPl ~llxr(e1 +,,·+ern ) (Z +Y) Up1gA(SA,·)11 , 

where the sum I:p is finite, and rank Upl = l. (In fact, each Up1 is a product of 
U/s, [D, UJ]'s and [D[DUj]]'s, 1 ~ j ~ n.) The constants Cpl depend on c of (1.1), 
on the Sobolev constant, on k, and on U1 , ••. , Un, but do not depend on A. 

REMARK. (IN) implies the desired estimate on the L2(Rd) norm of Un'" UdA 
(= L2(r \ N) norm of Un'" U1 fA) if k is sufficiently large-we just square (IN) 
and integrate it dSA dx over Rd. We will show now that the estimates (IN) hold. 
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Initial case. For N = ° (IN) reads 

(10) IUn ··· UdA(SA, x)1 ::; Min(l, Ixl-4k+1 ) 

_ ~>p (~IIX"(;; + ___ + <;')"(2' + Y')'Up9A('A, -)11') '/2, 

which is a square root of (4.3) combined with (4.2), plus the observation that 
exp[A(x2 - t2)/2] ::; 1 under the integral sign of (4.2) and that Un··· U1 commutes 
with D. 

Inductive step. To see that (In) => (IN +1), let U = Un··· U1 be of rank N + l. 
By (4.3), i1 = u!A is the unique Schwartz solution of 

n 

7fA(D)i1 = U9A + L Un··· [15, Uq] ... UdA == hA 
q=1 

and therefore is given by (4.2) with 9A there replaced by the above hA . That is, 

(4.5) U!A(SA,X) = [X {U9A(SA,t)+t Un ... [D,Uq] ... UdA(SA,t)} 
00 q=1 

. exp[A(x2 - t 2 )/2] dt. 
The first term of the above sum is estimated by an expression of the same form 
as the one on the right-hand side of the inequality (10). For the other terms we 
apply (IN) to each Un··· [15, Uq] ... UdA, q = 1, ... , n (which are of rank::; N), 
and we group the terms. The integration with respect to t of Min(l, Itl-2k+1) in 
(4.4) changes the constants Clp and increases l by l. 

PART II (A < 0). Here we can pick C(SA) of (4.1) to be 0, so that 

(4.6) - r [A(X 2 - t 2 )] fA(SA'X) = io 9A(sA,t)exp 2 dt. 

Since we have picked a solution, we do not know a priori that the function fA de-
fined by (4.6) is Schwartz. Clearly it is in coo(Rd). We know, by the hypothesis 
(cf. Definition (0.1)), that there is a function C(SA) for which the function fA cor-
responding to C(SA) under (4.1) is Schwartz. And !A defined by (4.6) differs from 
fA by exp(Ax2/2)c(SA). Clearly, C(SA) = fA(SA,O) is Schwartz on Rd-1. Hence 
exp(Ax2/2)c(SA) E S(Rd), and iA must be Schwartz being a difference of two 
Schwartz functions. Now (4.4) and (4.1) yield the following expression for UiA, 
U = Un· .. U1 E U(IJ1), rank(U) = N: 

(4.5') U!A(SA,X) = l X {U9A(SA,t)+ tUn ... [D,Uqj ... UdA(SA,t)} 
o q=1 

. exp[A(x2 - t2 )/2] dt 
+ U !A(SA, 0) exp(Ax2 /2). 

Taking the sup over t of each of the summands of the integrand in (4.4'), next 
applying the integral estimate 

/fo x exp [A(X2 2- t2
)] dt/ ::; 1- A- 1 (A < 0, x E R), 
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and then the Sobolev inequality (1.6) to SUPt IUgA(SA, t)l, we obtain 

IU !A(SA, x)1 :S (1 - A-I) s~p (IUgA(SA, t)1 + ~ IUn ... [b, Uq] ... ul!A (SA, t)l) 

- - (AX2) + U!A(sA,O)exp 2 

:; (1- >. -') (2 t, IIX' Uy, (,', -) 112 + ~ ,~p IUn - - -Ii'), U,I- --ud, (,', t)l) 
+ U !A(SA, 0) exp(Ax2 /2). 

Next we return to (4.5') for each summand on the right involving iA(SA, t). We 
iterate this procedure until there is no !A(SA, t) on the right-hand side. Then we 
obtain 

where the sum L:p is finite, rankUpl = I (each Upl being a product of U/s, [D, Uj]'s 
and [D[D, Uj]L 1 :S j :S n), and the constants Cpl do not depend on A. 

To get an L2-estimate on UiA, we add two copies of (4.7), one with y2U in 
place of U, and the other with Z2U replacing U. This gives the A2(1 + x2) factor 
on the left-hand side of the following inequality (4.8): 

(4.8) I(A2 + A2X2)U!A(X,SA)I:S IliFu!A(.,SA)lloo + Ily2u!ACSA)1100 

:S a finite linear combination (with coefficients of the form const. A -I) of the terms 
of the form IlxrUlpgA(-, sA)II, r = 0, 1, and of the form IUpl!A(SA,O)I. 

Next, we square (4.8), divide by ).4(1 + x2)2, which allows us to integrate the 
right-hand side of the so transformed (4.7) dx ds A over R d to get 

Ilu!A11 2 :S finite linear combination of IIXrUl,pgAI1 2 . ).-2q 

1 - - 2 2 and of IUlp!A(SA,O)1 ds A · A- q. 
Rd-l 

By (1.1), A-I can be absorbed into Upl. Since L:A IIXrUlqgAI1 2 < 00, for 9 E 
Coo (f \ N), all we need to show to complete the proof of Theorem 4 is that 
L:A II UiA(SA,0)lli2(SA) < 00 for every fixed U E U(91). 

LEMMA 1. L:AfRd-lIUiA(SA,OWdsA < 00, for all U E U(91). 

We will reduce that proof of Lemma 1 to the following 

LEMMA 2. L:A fRd-l IUgA(S,X,0)1 2 dSA < 00, for every U E U(91) and 9 E 
COO(f \ N). 
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PROOF OF LEMMA 2. 

! IU9A(SA,0)1 2 dSA 'S ! s~p IU9A(SA, tW dSA 
I I 

'S ! c 2: IIX1U9A(SA, .)11 2 dS A = C 2: IIX1UgAI12. 
1=0 1=0 

Since X1Ug E COO(f \ N), the sum over A E (f \ N)~ of the above inequality is 
finite. (We notice that SUPt IU9A(t, sA)1 is sA-measurable.) 

PROOF THAT LEMMA 2 =? LEMMA 1. First we observe that any U E !J1 can be 
written U = aX + W for some a E Rand W E 3(Y). Let U = Um ··· UI E U(!J1) 
with U) = a)X + W), a) E R, W) E 3(Y), j = 1, ... , m. Then 

U = (amX + W m)··· (aIX + W d 
= a (finite) linear combination of mixed products 

of X's and W /s 
= a (finite) linear combination of (ordered) products 

- --k 
of the form V p ... V IX with k 2: 0, 

and some V) E 3 (Y) (V) not necessarily = W)) 

since 3 (Y) is an ideal in !J1. 
Therefore it is sufficient to prove Lemma 1 for U E U (!J1) of the form U 
Vp··· V2VI Xk, k 2: 0, V) E 3(Y), and in fact we will show that 

LEMMA 3. Vp ... VIXkfA(SA,O) = vgA(SA,O) for some l/ E U(!J1), fA given by 
(4.6), and V) E 3(Y), 1 'S j 'S p. 

Step 1. XYP!A = a linear combination of the terms of the form iryq lA, q 'S 
p + 1, and YP gA . 

PROOF OF STEP 1 (INDUCTION ON p). For p = 0, it follows from (4.0) and 
(4.6) that xfA = gA - iY fA. Next we notice that Xyp+1 = (Y X + [X, Y])Yp = 
Y(XYP) + ZYP and we apply the inductive hypothesis to XYP. 

Step 2. 

(4.9) X k fA = U9A + a finite linear combination of yp ir fA, 
for some U E U(!J1). 

PROOF OF STEP 2 (INDUCTION ON k). For k = 1 this is just the p = ° case of 
the proof of Step 1. All we need to check now is that X(Yp i r fA) is again of the 
form (4.9), but this is just Step 1 applied to i r fA. 

Step 3. (Vp ... VdA)(SA,O) = 0. 
PROOF OF STEP 3. In our Schrodinger model for 7rA, since 9J1A contains the 

commutator [!J1, !J1], each ~. is of the form ~. = s) (0/ oV)) +iP)(sA, x), where 0/ OV) 

is a directional derivative in the SA-space, Pj is a real polynomial, and s) = 1 if 
Vy 1- 9J1A and s) = ° if Vj E 9J1A. Hence 

- - r ogA ). X - t -x () [ (2 2)J Vy!A(SA,X) = 10 s) OV) (SA,t) ·exp 2 dt+iPJ(SA,X)!A(SA,X), 
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and clearly Vp'" VdA(SA,O) = 0, since h itself is given by (4.5). 
PROOF OF LEMMA 3. Since all the ~'s commute with Y, by Step 2, we have 
- - -k- - - - - - -Vp'" VlX h(SA,O) = Vp'" Vl(UgA + a linear combination of yP ZT h)(SA, 0) 

= Vp'" V1UgA(SA, 0) 
+ a linear combination of (YP(Vp'" VlZ T h))(SA,O) 

with p:::: 1 

+ a linear combination of Vp'" vdT iA(SA, 0). 

In the above sum the last term is zero by Step 3, and the second term is zero since 
Y is just a multiplication by i).,x. 

COROLLARY 1. Let N be a simply connected 2-step nilpotent Lie group, f a 
cocompact, discrete subgroup of N. If X, Y E 'J1 both are algebraic (resp. non-
Liouville) vectors, then D = X + iY is globally regular on f \ N (resp. provided 
[X, Y] is a non-Liouville vector too). 

PROOF. Let A E (f \ N)-: If A([X, Y]) = 0, this is Proposition 1 of §2 applied 
to N / exp ill), where ill) is the smallest rational subspace of 'J1 containing Z. If 
A([X, Y]) i- 0, after reducing 'J1 to 'J1 with I-dimensional center spanned by Z = 
[X, Yl-, either X or Y can be used as the first external vector and we obtain the 
estimates now as in the proof of Theorem 4. (If X and Y are algebraic, then [X, Y] 
is algebraic too.) 

COROLLARY 2. Let N be a simply connected 2-step nilpotent Lie group, and f 
a cocompact, discrete subgroup of N. If X, Y E 'J1 satisfy (Pd, then D = X + iY 
is globally regular on f \ N provided [X, Y] is a non-Liouville vector. 

PROOF. If A([X, Y]) = ° for A E (f \ N)--: then this is Theorem Ie applied to 
N / exp ill), ill) being the smallest rational subspace of 'J1 containing [X, Y], as in 
the beginning of the proof of Theorem 4. If A([X, Y]) i- 0, we choose X to be the 
first external vector and the rest of the proof is the same as that of Theorem 4. 

5. Examples and further developments. In [7] we gave an example, based 
on a suggestion by Corwin (cf. [4]), to show how global regularity could fail in a 
3-step group for D = X + iY, where X and Y generate the 3-step chain group. If 
the Kirillov orbits had been flat, then that parameter, summation over which yields 
the counterexample, would have been eliminated. In our next example, we show 
however that flattening the Kirillov orbits, by the addition of 1 to the dimension 
of the group [20] does not correct this analytic failure. (This should be compared 
also with Example 2 in §1.) Thus the fact that all 2-step groups have flat orbits 
does not seem to be relevant to the problem of global regularity. 

EXAMPLE 1. Let 'J1 be the Lie algebra spanned by the vectors V, W, X, Y, 
and Z with all nonzero bracket products generated by [W, X] = Y, [W, Y] = Z, 
[V, Xl = Z. Thus 'J1 is of step 3 with flat Kirillov orbits and I-dimensional center 
[20]. W and X generate a step 3 sub algebra of 'J1. Let N = exp 'J1. There is a series 
of representations 7r A EN, )., E R ~ {O}, realized on L 2 (R 2 ) in such a way that 
7r>..(W) = 8/8w and 7r>..(X) = 27ri).,(v + w2 /3) [8]. Let f be a cocompact discrete 
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subgroup of N such that Z E logf. Then 7r>. E (f \ N)~for'\ = ±1, ±2, .... Let ¢ 
and'I/J be Coo(R) nonnegative functions such that 

¢(w) = {~ 

'I/J(v) = { ~ 

for 0 S w S 3, 
for w t/: [-1,4]' 
for - n - 1 S v S -n, 
for v t/: [-2 - n, -n + 1]. 

Fix E > 0 and n > 0 and for each positive integer ,\ define 

Y>.(w, v) = ¢(w)'I/J(v)e27r>.cv 

and let g>., ,\ = 1,2,3, ... , be the corresponding functions in Coo(f \ N), each in a 
different primary summand of L2(f \ N). Then g = L>. g>. is smooth on f \ N, for 
00 00 

I: IIUg>.II£2(nN) = I: IIUYAII£2(R2) 
00 

s I: II (differential operator with polynomial 
>'=1 

in w,v and'\ coefficients) ¢(w)'I/J(v)112e27r>'c(-n+1) 
00 

s I: I(polynomial in ,\)le27r>'c(-n+1) < 00 

>'=1 
for every fixed U E U (91) and n > l. 

Let D = W + iX. Then 

and 
_ [':>0 [(w3 _ t3) ] J>.(w,v)=-}w y>.(t,v)exp27r'\ 9 +v(w-t) dt 

is the only Schwartz solution of 7r>.(D)i>. = Y>.. I>. is indeed Schwartz, since Y>. is 
compactly supported, and exp(27r '\w3 /9) ---7 0 as w ---7 -00. On the other hand, by 
a change of variables t = w + U, if 0 S w S 1 and -1 - n S v S -n 

1/- ( )1 27r>'cv o /,( )100 A.( ) [-27r'\(U3 +3U2W+3UW 2 )] -27r>'vU d >. w,v = e 'P v 'P W + U exp e U 
o 9 

[ (u3 + 3u2w + 3uw2 ) ] 2: sup exp 27r'\( EV - 9 - vu 

2: exp[27r'\( -E - nE - 3 + n)] 

where the sup is taken over 0 S w S 1, 1 Sus 2. For n = 5 and E = i we thus 
have li>.(w,v)1 2: exp27r'\ and 11J>.IIL2(r\N) = Ili>.II£2(R2) 2: exp27r'\, i.e. L~=l J>. 
does not converge in L2(f \ N). This completes the Example 2. 

Parts (a) and (b) of the next Example 2 (which in fact is an "implant" of Example 
2 of §1 on the group N of Example 2 of §2) indicate how the assumptions of 
Theorems 2c and 3, respectively, can possibly be relaxed. Part (c) of Example 2 
deals with Theorem 4. 
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EXAMPLE 2. Let Nand f be as in the Example 2 of §2 and let A E (f \ N)~ 
be such that A(Z) i= O. Then 1l"A(X)) = a/aX), 1l"A(Y)) = iA(Z)x), 1l"A(U)) = 
iA(U)) + iA(Z)x;/2, j = 1,2, and 1l"A(UI2 ) = iA(U2) + iA(Z)XIX2 [17]. Consider 
now the following operators: 

(a) DI = Xl + i(U2 + ,82Y2 + 12Z), 
(b) D2 = (UI + ,8IYI + lIZ) + i(U2 + ,82Y2 + 12Z), 
(c) D3 = Xl - iU12 · 

For A as above we thus have 
(a) 1l"A(Dd = a/aXI - A(Z)(X2 - X2+)(X2 - X2-), 
(b) 1l"A(D2) = iA(Z)[(XI - X1+ )(XI - Xl-) + i(X2 - X2+ )(X2 - X2-)] where xJ± = 

-,8J ± (,8; - 21) - 2A(U))/A(Z))1/2, J' = 1,2, 
(c) 1l"A(D3 ) = a/aXI + A(Z)XIX2 + A(UI2 ). 
The operator DI is such that Xl has supplementation, and U2 + ,82Y2 + 12Z t/:. 

[91,91] and does not have supplementation. Using estimates similar to those of 
Example 2 of §2 one can show that DI is globally regular provided neither ,8i /2 -12 
nor ,82 is a Liouville number. (The requirement on ,82 is needed for global regularity 
of Dl on N / exp RZ, which follows now from Theorem 3'.) 

The operator D2 is such that neither its real nor its imaginary part have supple-
mentation, U) + ,8)Y) + l)Z t/:. [91,91], J' = 1,2. Again, the estimates of Example 2 
and of Proposition 1, both of §2, show that D2 is globally regular, provided neither 
of the following four numbers, ,8; /2 - 1), ,8), j = 1,2, is Liouville. 

Finally, the operator D3 is such that Xl has supplementation, Ul2 t/:. [91,91] is 
an algebraic vector, and [Xl, Ud is not central in 91. Applying to 1l"A(D) of (c) the 
Euclidean partial Fourier transform with respect to the X2 variable we obtain 

(c') 7rA(D3 ) = a/aXI + iA(Z)x1a/ary + A(UI2 ), which (for A(U12 ) = 0) is the 
nonhypoelliptic and nonlocally solvable operator of Mizohata [14, Appendix] and 
Nirenberg and Treves [16]. We were unable to settle the question of global regularity 
of D3. (Clearly, D3 is globally regular on N/ expRZ by Theorem 4.) 
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