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CONVERGENCE OF SERIES 
OF SCALAR- AND VECTOR-VALUED RANDOM VARIABLES 

AND A SUBSEQUENCE PRINCIPLE IN L2 

S. J. DILWORTH 

ABSTRACT. Let (dn );:='=l be a martingale difference sequence in Lo(X), where 
X is a uniformly convex Banach space. We investigate a necessary condition 
for convergence of the series I:;:='= 1 andn. We also prove a related subsequence 
principle for the convergence of a series of square-integrable scalar random 
variables. 

Introduction. Let (dn)~=1 be an orthonormal sequence of independent random 
variables and let (an)~=1 be a sequence of real numbers. In [14] Marcinkiewicz 
and Zygmund proved that if Eldnl ~ {j > 0 for all n ~ 1 then L:=1 a~ < 00 

whenever L:=1 andn converges almost surely. This theorem has been extended 
to the case of martingale difference sequences by Chow [4]. In §1 the almost sure 
convergence of the series L:=1 andn is considered when (dn)~=1 is a bounded 
sequence in Lo. Necessary and sufficient conditions are given on such a sequence of 
independent random variables to be able to conclude that L:=1 a~ < 00 whenever 
L:=1 andn converges almost surely. The same question is treated in §2 for a vector-
valued martingale difference sequence (dn)~=1 in Lo(X) (here X is a Banach space). 
When (dn)~=1 is adapted to a regular sequence of a-fields and X is a q-convex 
Banach space, necessary and sufficient conditions on (dn)~=1 are given to be able 
to conclude that L:=1 lanl q < 00 whenever L:=1 andn has bounded partial sums 
almost surely (or with high probability). 

In §3 the theorem of Chow mentioned above is used to deduce a subsequence 
principle for random variables in L2 which is related to some theorems of Revesz. 
A consequence of this is that any orthonormal sequence (¢>n)~=1 which is bounded 
away from zero in probability will contain a subsequence (¢>nk )~=1 with the fol-
lowing property: L~=1 a~ < 00 whenever L;::1 ak¢>nk converges almost surely (or 
merely whenever L~=1 ak¢>nk has bounded partial sums with high probability). 
The section closes with an abstract version of a theorem of Zygmund on lacunary 
Fourier coefficients. 

The last part gives some vectorial extensions of a theorem of Aldous and Fremlim 
[1] stating that L:=1 a~ < 00 whenever L:=1 andn converges in Ll and (dn)~=1 
is a uniformly integrable normalized martingale difference sequence. Some subse-
quence principles are then obtained for martingale difference sequences in LJ(X) 
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376 S. J. DILWORTH 

when X is a q-convex Banach space. A rather more complete picture is given for 
sequences in Lp (X) for p > l. 

1. Almost sure convergence of a series of independent random vari-
ables. We start with some notation. Let (0,1, P) be a probability space. If A E 1, 
then I(A) denotes the indicator function of A. The term "random variable" is used 
to mean an element of Lo(O). We say that a set S of random variables is bounded 
in probability if S is a bounded subset of Lo(O), i.e., if for each s > 0 there exists 
M such that P(lfl > M) < s for all f E S. We write Ef for the expectation of f 
when f E L 1(0) and var(f) for the variance of f when f E L2(0). 

THEOREM 1.1. Let (dn);;:"=l be a sequence of independent random variables 
which is bounded in probability. Then the following are equivalent: 

(i) (dn)~l contains no subsequence converging in probability; 
(ii) 2.::=1 a;' < 00 whenever 2.::=1 andn converges almost surely. 

PROOF. We first assume (i) and deduce (ii). Since (dn );;:"=l is bounded in 
probability and contains no subsequence converging in probability it follows that 
there exists s > 0 such that for all real numbers a and for all sufficiently large n 
we have P(ldn - al > s) > s. Suppose that (an );;:"=l is a real sequence such that 
2.::=1 andn converges almost surely. Then there exists M > 0 such that 

P (~~~ I~ akdkl > M) <~, whence P (~~~ landnl ~ 2M) > 1- ~. 
By Kolmogorov's three series theorem 

00 

La; var(dnI(landnl ~ 2M)) < 00. 
n=l 

But s 
P({landnl ~ 2M} n {Idn - E(dnI(landnl ~ 2M))12 s}) > 2 

for all sufficiently large n, and so var(dnI(landnl ~ 2M)) > s3/2 for all sufficiently 
large n. Thus 2.::=1 a;' < 00, which proves (ii). 

Now suppose that (i) fails. Then there exists a subsequence (dnk )'k=l and a real 
number b such that P(ldnk - bl > 2-k) < 2-k. Let 2.:%"=1 ak be any conditionally 
convergent series of real numbers. By the Borel-Cantelli lemma 2.:%"=1 ak(dnk - b) 
converges almost surely, and so 2.:%"=1 akdnk converges almost surely. 0 

REMARK. Let (dn );;:"=l be a uniformly integrable sequence of independent ran-
dom variables in L1(0) with Eldnl = 1 and Edn = O. Then (dn);;:"=l must satisfy (i), 
and so we deduce the theorem of Chow and Teicher [5, p. 117] that 2.::=1 a;' < 00 
whenever 2.::=1 andn converges almost surely. 

COROLLARY 1. 2. Let (dn);;:"=l be a sequence of independent random variables 
which is bounded in probability. Then the following are equivalent: 

(i) 2.::=1 a;' < 00 whenever 2.::=1 andn converges almost surely; 
(ii) 2.::=1 a;' < 00 whenever 2.::=1 and7r(n) converges almost surely for some 

permutation 7r of N. 

PROOF. Clearly (ii) implies (i). Suppose that (i) holds; then by Theorem 1 
(dn );;:"=l contains no subsequence which converges in La. If 7r is a permutation 
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of N, then (drr (n));;:"=1 also contains no subsequence which converges in Lo. So 
2::'=1 a;' < 00 whenever 2::'=1 and1r(n) converges almost surely. D 

In the next corollary let (X, 1111) denote a quasi-Banach function space of random 
variables in Lo(O); that is, (X, 1111) has the following properties: 

(i) 9 E X and Ilgll = IIIII whenever I E X and 9 and I have the same distribution; 
(ii) the inclusion mapping of X into Lo(O) is continuous (the quasi-norm is 

assumed to satisfy Ilx + yl! :::; C(llxll + Ilyll) for all x, y E X and some constant 
C:::: 1). 

A sequence (Xn );;:"=1 in X is said to satisfy a lower q-estimate, where 0 < q < 00, 

if 

for some C > 0 and for all real sequences (an );;:"= 1 . 

COROLLARY 1.3. Let (dn );;:"=1 be a sequence of independent random variables 
in X which is bounded in probability and contains no subsequence convergmg m 
probability. Then (dn );;:"=1 satisfies a lower 2-estimate. 

PROOF. Let (d~1));;:"=1 and (d~2));;:"=1 be independent copies of (dn);;:"=1' The 
symmetry of (d~1) - d~2));;:"=1 and the first property of X imply that 

for all 1 :::; m :::; nand reals a1, ... , an. It follows that (d~1) - d~2) );;:"=1 is a Schauder 
basis of its closed linear span [d~1) - d~2)1;;:"=1 (see e.g. [12]). Now suppose that 
the series 2::'=1 an(d~1) - d~2)) converges in X. Then by the second property of 
X the series converges in Lo and so converges almost surely because the terms are 
independent. Since (d~1) - d~2));;:"=1 is bounded away from zero in probability it 
follows from Theorem 1 that 2:~1 a;' < 00. Now define 

T: [d~l) - d~2)1;;:"=1 ---; l2 by T (~an(d~1) - d~2))) = (an)~=l' 

Then T is bounded by the Banach-Steinhaus theorem, and so (d~l) - d~2));;:"=1 
satisfies a lower 2-estimate. But 

whence (dn );;:"=l satisfies a lower 2-estimate. D 
REMARK. Consideration of a sequence of constant random variables shows that 

the hypothesis that (dn)~=1 contains no subsequence which converges in probability 
cannot be eliminated. If (dn);;:"=1 is bounded in X, then (dn);;:"=1 is bounded in 
probability by the second property of X. Finally, the hypotheses are met by a 
nondegenerate independent identically distributed sequence. 
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2. Almost sure convergence of a vector-valued martingale with respect 
to a regular sequence of a-fields. Let X be a Banach space. Then Lo(X) 
denotes the collection of all equivalence classes of measurable functions f: [2 ~ X 
having essentially separable range. For 0 < p ~ 00, Lp(X) is the collection of those 
functions f such that 

II flip = (/ IfIPdP) lip < 00 if 0 < p < 00 

and 
Ilflloo = esssupllf(w)11 < 00 if p = 00. 

Let (In)~=o be an increasing sequence of a-fields contained in 1 and let (dn)~=l be 
a sequence in Ll(X), Say that (dn)~l is a martingale difference sequence (with 
respect to (In)~=o) if dn is measurable with respect to In and E(dnllln- l ) = 0 for 
all n > 1. An increasing sequence of atomic a-fields (i.e., a-fields generated by a 
countable set of disjoint atoms) (In)~=o is said to be regular (see e.g., [21, p. 83]) 
if there exists a constant 0: such that P(En+d/ P(En ) 2': 0: for all n 2': 0 and for all 
atoms En E In, En+l E In+l such that P(En ) > 0, P(En+d > 0 and E n+l C En 
(this is called the Vitali-Chow condition in [16]). 

Note that when (In)~=o is regular and f is merely measurable with respect 
to In then E(fll In-d still makes sense. Further, a real martingale difference 
sequence with respect to a regular filtration (In)~=o is regular in the sense of 
Marcinkiewicz and Zygmund (regular MZ); that is, there exists 8 > 0 such that 
8El/2(d~llln_d ~ E(ldnlllln-d [21, p. 80]. A regular MZ martingale difference 
sequence is said to be normed if E(d~llln-d = 1 almost surely. The convergence 
of martingale transforms of normed regular M Z martingale difference sequences is 
considered in [4] and [9]. 

PROPOSITION 2.1. Let (dn)~=l be a martingale difference sequence in Lo(X) 
with respect to a regular sequence of a-fields (In)~=o' Suppose further that (dn)~=l 
is bounded away from zero in probability. Then there exists TJ > 0 with the following 
property: whenever (an)~=l is a real sequence such that 

then there exists a martingale difference sequence (dn)~=l which is bounded away 
from zero in probability such that O:::Z=l akdk)~=l is uniformly bounded in Lcxo(X). 

PROOF. Choose c > 0 such that (dnI(A))~=l is bounded away from zero in 
probability whenever P(A) > 1 - c. Suppose that (an)~=l is a real sequence such 
that 

There exists M > 0 such that 
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For each n ::::: 1, define en thus: for W E A, where A is an atom of ' n - ll let 
en{w) = sUPwEA Ilandn{w)ll· Then {en)~=l is a predictable sequence. It follows 
from the regularity of {In)~=o that 

P (sup en{w) > 2M) :::: -.!:.P (sup Ilandnil > 2M) < '!l. 
n;::O:l a n;::O:l a 

Define the stopping time 

Then 

T{W) = inf { n: en{w) > 2M or lit akdkll > M} . 

P{T{W) < 00) :::: P (!~~ en{w) > 2M) + P (!~~ lit akdkll > M) 
<'!l+TJ<e 

a 

provided TJ is sufficiently small. Let In = dnI{T :::: n). Then II 2::~=1 akJkl1 :::: 3M 
and (Jk)k=l is bounded away from zero in probability. 0 

We now need to recall some facts from the theory of Banach spaces. The modulus 
of convexity 8x{e) of a Banach space X is defined for all 0 < e :::: 2 by 

8x{e) = inf {l-ll{x + y)/211: Ilxll = Ilyll = 1, Ilx - yll = e}. 

X is said to be uniformly convex if 8x {e) > 0 for all 0 < e :::: 2. Suppose that 
2 :::: q < 00; X is said to be q-convex if X admits an equivalent norm whose 
modulus of convexity 8 satisfies 8{e)::::: Ceq for some C > O. In particular, the 
function space Lp{8, L., /1), where (8, L., /1) is a measure space, is max{2, p)-convex 
for each 1 < p < 00. More generally, every superrefiexive Banach space (see [10] 
for some characterizations of superrefiexivity) is q-convex for some 2 :::: q < 00 [17]. 

Finally, recall that a sequence {Xn)~=l is said to be a monotone basic sequence 
(e.g., [12]) if 

and all scalars all . .. , am. 

THEOREM 2.2. Let X be a q-convex Banach space and let (dn)~=l be a mar-
tingale difference sequence in Lo{X) with respect to a regular sequence of a-fields 
{In)~=o. Then the following are equivalent: 

(i) {dn)~=l is bounded away from zero in probability; 
(ii) there exists TJ > 0 such that 2:::=1 lanl q < 00 whenever 

PROOF. Let (fn)~=l be any sequence in Lo{X) and {an)~=l any sequence of 
scalars. It is easily seen that if (fn)~=l is not bounded away from zero in probability 
then there is a subsequence (fnk )k=l such that 2::~1 akfnk converges almost surely. 
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Thus (ii) implies (i). Suppose that (i) holds; then there exists 'rJ > 0 satisfying the 
conclusion of Proposition 2.1. Let (an );;:"=1 be a real sequence such that 

There exists a martingale difference sequence (dn );;:"=1 bounded away from zero in 
probability such that (2=~=1 akdk);;:"=1 is uniformly bounded in Loo(X). In partic-
ular, (dn );;:"=1 is a monotone basic sequence in L2(X) with 

L 2 (X) is itself q-convex (see [8]) and a monotone basic sequence in a q-convex space 
satisfies a lower q-estimate [17], and so 2:=:=1 lanl q < 00. 0 

COROLLARY 2.3. Let X be a q-convex Banach space and let (dn );;:"=1 be a 
dyadic martingale difference sequence in La (X) which is bounded away from zero in 
probability. Then 2:=:=1 lanl q < 00 whenever 2:=:=1 andn converges almost surely. 

3. Subsequence principles for square-integrable random variables. The 
following result is an immediate consequence of a summability theorem of Chow [4, 
Theorem 3]. 

THEOREM A. Let (dn );;:"=1 be a martingale difference sequence which is nor-
malized in L 2 (0) and satisfies Eldnl :::: c for some c > 0 and for all n :::: 1. Then 
there exists c > 0 such that 

~~~ P { I; akdk I > K } :::: c for all K > 0 

whenever 2:=:=1 a~ = 00. In particular, 
00 

whenever L:: a;' = 00. 
n=1 

We use Theorem A to deduce the following subsequence principle for almost sure 
convergence of square-integrable random variables. 

THEOREM 3.1. Let (fn);;:"=1 be a normalized sequence in L 2 (0) having no sub-
sequence convergent in L1(0). Then there exists f E L 2(0), c > 0, and a subse-
quence (fnk);;:"=1 with the following properties: 

(i) 2:=%"=1 ak(fnk - I) converges almost surely and in L 2 (0) whenever 2:=~1 a~ < 
00; 

(ii) P(suPn21 I 2:=~=1 ak(fnk - 1)1 = 00) > c whenever 2:=:=1 a~ = 00. 
PROOF. Bounded subsets of L 2 (0) are weakly sequentially compact, and so 

there exist f E L 2 (0) and a subsequence (fnk)k=l such that (fnk - I)k=l is weakly 
null. Since (fn);;:"=l has no subsequence convergent in L1 (0) we may assume that 
Ilfnk - fill> 2c for some c > 0 and for all k :::: 1. By a well-known argument 
(e.g., [3, p. 243]) we may also assume by passing to a further subsequence that 
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there exists a martingale difference sequence (gk) of simple functions such that 
2::~1 Ilfnk - f - gkl12 < c. By Theorem A there exists E> 0 such that 

f: a~ < 00 whenever P (sup It akgk I = 00) < E. 
k=1 n21 k-1 

By Holder's inequality (fnk - f)k=1 is uniformly integrable, and so there exists 
c > 0 such that J Ifnk - fII(A) dP < c for all k 2': 1 whenever P(A) < c; moreover, 
we may assume that c ::; E. Suppose now that (ak):;'=1 is a real sequence and that 

Then there exists M > 0 such that P(A) > 1 - c, where 

So 
2MP(A) 2': / lak(fnk - f)II(A)dP 2': clakl· 

Hence sUPk>1 lakl < 00, and it follows that 2::;;0=1 adfnk - f - gk) converges abso-
lutely almost surely. So 

P (sup It akgkl = 00) < c ::; E, 
n21 k=1 

whence 2:::=1 a~ < 00. This completes the proof of (ii). 
Property (i) is a well-known theorem of Revesz (see [18]) and follows easily 

from the martingale convergence theorem (see [3]). Indeed, 2:::=1 angn converges 
almost surely and in L2 (0) whenever 2:::=1 a~ < 00, and so the same is true of 
2::;;0=1 ak(fnk - f). 0 

REMARK. The hypothesis that (fn)':':=1 contains no subsequence convergent in 
L1 is used only in the proof of property (ii). Revesz proved in [19] that something 
like property (ii) could be made to work for the case in which (fn)~1 is a uniformly 
bounded sequence in Loo(O). 

Combining Theorem 3.1 with the proof of "(i) implies (ii)" in Theorem 2.2 gives 
the following result. 

THEOREM 3.2. Let (fn):;;:=1 be weakly null in L2(0). Then the following are 
equivalent: 

(i) (fn):;;:=1 contains a subsequence which is bounded away from zero in probabi-
lity; 

(ii) there exists c > 0 and a subsequence (fnk )~1 with the following properties: 
(a) 2::;;0=1 akfnk converges almost surely and in L2(0) whenever 2::;;0=1 a~ < 00; 
(b) P{SUPm21 I 2::~1 akfnk I = oo} > c whenever 2::;;0=1 a~ = 00. 
REMARK. The last result applies, in particular, to an arbitrary orthonormal 

system in L2(0). In this setting (i) corresponds to the fact that every orthonor-
mal system (¢n):;;:=1 contains a subsystem (¢nk )k=1 that is a system of conver-
gence (meaning 2::;;0=1 ak¢nk converges whenever 2::;;0=1 a~ < 00 (see [2, p. 156])). 
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Whereas (ii) resembles the fact that a lacunary trigonometric series 
00 

2:)ank cosnkt + bnk sin nkt) 
k=l 

diverges almost everywhere when 2::;::l(a~k +b~k) = 00 [22, p. 203J. (An increas-
ing sequence of positive integers (nkH~o=l is lacunary if nk+1/nk > t for some t > 1 
and for all k.) 

To conclude this part we prove an abstract version of a related theorem of Zyg-
mund on lacunary Fourier coefficients [23, p. 132J. Let (<Pn)~=l be a uniformly 
bounded orthonormal system in L 2(0, 1). For f E L 1(0, 1), let J(n) = f f<Pn dt for 
alln21. 

THEOREM 3.3. Let (<Pn)~=l be a uniformly bounded orthonormal system. Ev-
ery sequence of positive integers (nk)k=l contains a subsequence (nUk=l such that 
2::%"=1 J(nU 2 < 00 whenever f E Lp(O, 1) for some p > 1. Moreover, there exists 
f E L 1(0, 1) such that 2::%"=1 J(nk)2 = 00. 

PROOF. By [11, Corollary 6J and a diagonal argument the subsequence (nUk=l 
may be chosen so that (<PnJk=l is equivalent to the unit vector basis of l2 in Lp 
for all p > 2; that is, there exists Cp > ° such that for all m 2 1 and for all scalars 
a1, ... , am, we have 

~p (~a~r $11~ak~n~lIp $cp(~a~r 
By the results of [l1J the same is true for all p > 0. Let P(f) = 2::%"=1 J(nU<Pn~. 
Then P is an orthogonal projection on L2 and so is bounded. Since the L2 and 
Lp norms are equivalent on the closed linear span of (<PnJ k= 1 it follows that P is 
bounded on Lp(O, 1) for all p 22. For 1 < p < 2, P: Lp(O, 1) --+ Lp(O, 1) is bounded 
because it is the adjoint of P: Lq(O, 1) --+ Lq(O, 1), where l/p + l/q = 1, which is 
bounded. This proves the first part of the proposition. 

To show the last part, suppose on the contrary that 2::%"=1 J(nk? < 00 for all 
f E L1, and so, in particular, that 2::%"=1 J(niY < 00. But then by the Banach-
Steinhaus theorem P is a bounded projection on L 1 (0, 1) whose range is [rpnd~l' 
which is impossible because L1 (0, 1) contains no complemented subspace isomorphic 
to a Hilbert space. 0 

REMARK. A Rademacher-like property of subsequences of random variables in 
Lp is also proved in [15, Lemma 2.1J. 

4. Convergence in L1 (X). The following is a vectorial generalization of [1, 
§4J. Since the proof is essentially the same it has been omitted. 

PROPOSITION 4.1. Let (dn)~=l be a uniformly integrable martingale difference 
sequence normalized in L1(X), Suppose that (an)~=l is a real sequence such that 
2::::'=1 andn converges in Ll(X), Then there exists a martingale difference sequence 
(dn)~=l' bounded away from zero in L 1 (X), such that (2::~=1 akdk )':=l is uniformly 
bounded in Loo(X). 
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THEOREM 4.2. Suppose that X is a q-convex Banach space and that (dn )~= 1 

is a uniformly integrable martingale difference sequence normalized in L1 (X). Then 
(dn)~=l satisfies a lower q-estimate. 

PROOF. This follows from Proposition 4.1 together with the proof of Theorem 
2.2. 0 

THEOREM 4.3. Suppose that X is aq-convex Banach space and that (dn)~=l is 
a martingale difference sequence normalized in L1 (X). There exists a subsequence 
(dnk )k"=1 which satisfies a lower q-estimate. 

PROOF. If (dn)~=l is uniformly integrable then (dn)~=l satisfies a lower q-
estimate. Otherwise, by the results of [20], one can extract a subsequence (dnk )1:'=1 
equivalent to the unit vector basis of the sequence space it· Then (dnk )k"=1 satisfies 
a lower 1-estimate, and a fortiori a lower q-estimate. 0 

It is possible that Theorem 4.3 remains valid for arbitrary sequences in L1(X) 
which are not relatively compact, and this is the case in Lp(X) for 1 < p :::; q. For if 
X is q-convex then Lp(X) is q-convex for 1 < p :::; q, and so it follows from the next 
proposition that any normalized sequence (fn)~=l in Lp(X) which is not relatively 
compact contains a subsequence satisfying a lower q-estimate. 

PROPOSITION 4.4. Suppose that X is a q-convex Banach space and that 
(Xn)~=l is a normalized sequence in X which is not relatively compact. Then 
(Xn)~=l contains a subsequence satisfying a lower q-estimate. 

PROOF. By passing to a subsequence we may assume that (Xn)~=l contains 
no norm convergent subsequence. Since X is reflexive its bounded subsets are 
relatively weakly sequentially compact, and so we may further assume that there 
exists x in X such that (xn - X)~=l is weakly null (and bounded away from zero). 
By [6, Proposition 2.4] (xn - X)~=l contains a subsequence (Xnk - X)k"=l satisfying 
a lower q-estimate, and by [1, §2] there exists m 2 1 such that (xnk)k"=m satisfies 
a lower q-estimate. 0 

ACKNOWLEDGMENT. I am grateful to the referee for many helpful suggestions 
and for supplying the far superior proof of Proposition 2.1. 
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