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PROBLEM OF BOLZA 
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RESUME. On etudie Ie probleme generalise de Bolza en calcul des variations. 
Presented at the International Conference on the Calculus of Variations held 
to honour the memory of Leonida Tonelli, Scuola Normale Superiore, Pisa, 
March 1986. On obtient des conditions necessaires en forme hamiltonienne, 
sous des hypotheses moins exigeantes qu'anterieurement, en particulier sans 
qualification sur les contraintes. Le lien avec les problemes de controle optimal 
est developpe, ainsi que l'apport de ces conditions a la theorie de la regularite 
de la solution. 

ABSTRACT. We obtain necessary conditions in Hamiltonian form for the gen-
eralized problem of Bolza in the calculus of variations. These are proven in part 
by an extension to Hamiltonians of Tonelli's method of auxiliary Lagrangians. 
One version of the conditions is of a new character since it is obtained in the 
absence of any constraint qualification on the data. A new regularity theorem 
is shown to be a consequence of the necessary conditions. 

1. Introduction. The generalized problem of Bolza consists of minimizing the 
functional J defined by 

J (x) := f (x (b)) + lb L (t, x (t), x'(t)) dt 

over the arcs x (i.e., absolutely continuous functions from [a, b] to Rn) satisfying 
x(a) E C, x(b) E D. What distinguishes this from a classical problem of Bolza 
in the calculus of variations is the lack of regularity assumptions, and especially 
the fact that the Lagrangian L is allowed to be extended-valued (i.e., to assume 
the value +00). The fact that at this level of generality the problem subsumes a 
variety of constrained variational problems and problems of optimal control has 
been extensively studied and is now well known (see for example [1, 3, 6]). 

An important theme in the study of the problem has been the attempt to analyse 
it as much as possible through the Hamiltonian, the function H defined by 

H(t,x,p):= sup {(p,v) - L(t,x,v): vERn}. 
The reason in part is based upon the hope that for certain classes of problems for 
which L is intractable, H may actually be relatively well behaved. In his cogent 
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article, Rockafellar [6] carried out this program as regards the issue of existence. 
Necessary conditions for optimality were broached by Clarke [2], and sufficiency 
was addressed by Zeidan [8]. The hypotheses employed in the necessary conditions 
were primarily the "strong Lipschitz condition" on H, and a constraint qualification 
( "calmness") defined in terms of the asymptotic behavior of the problem under 
perturbation of the endpoint constraints. While they are appropriate for several 
classes of problems that arise, these hypotheses are somewhat restrictive, and one 
of our purposes here is to relax them substantially. In particular, we obtain for the 
first time necessary conditions for the generalized problem of Bolza in the absence 
of any constraint qualification whatever. 

In a recent article, Clarke and Vinter [5] obtain substantial new results on the 
regularity of the solution to variational problems in which the Lagrangian is well 
behaved (for example, locally Lipschitz, or continuously differentiable). They em-
ploy in part a technique of "auxiliary Lagrangians" inspired by Tonelli's work. The 
present article extends some of their results to the significantly broader context 
of the generalized problem (which includes variational problems with various side 
constraints as special cases). In view of the program stated above, it is fitting that 
one of the techniques employed is that of "auxiliary Hamiltonians" . 

§§2 and 3 state and prove the principal necessary conditions (Theorem 2.1) in 
the presence of calmness. In §4, we show how to combine these conditions with 
Rockafellar's theory of proximal subgradients to treat the problem in the absence 
of the calmness hypothesis, and we specialize the results to two important special 
cases. 

2. Necessary conditions in the calm case. We consider the problem of 
Bolza described in the introduction, that of minimizing the functional J (x) over 
all arcs x satisfying x(a) E C, x(b) E D. The basic technical hypotheses (present 
at all times) are that C and D are closed, that f is locally Lipschitz, and that the 
Lagrangian 

L(t,x,v): [a,b] x Rn x Rn -+ Ru {+oo} 
is L x B-measurable, lower semicontinuous in (x, v) and convex as a function of 
v. (The measurability requirement means that L is measurable with respect to 
the a-field generated by products of Lebesgue subsets of [a, b] and Borel subsets of 
Rn x Rn.) 

Now let the arc z be a (strong) local solution to this problem. This means that 
for some EO > 0, for some set 0 given by 

0= {(t,y) E [a,b] x Rn : Iy - z(t)1 ~ Eo}, 
we have J(z) ~ J(x) whenever x is an arc satisfying the boundary constraints as 
well as 

(t, x(t)) E 0 for all t E [a, b]. 
Let us redefine L(t,x,v) as +00 for Ix - z(t)1 > EO, which affects neither the 
hypotheses nor the conclusion of the theorem while rendering z a global solution. 
For clarity, we shall also retain the explicit constraint (t, x(t)) E O. With a slight 
abuse of notation, an arc x satisfying this constraint (for all t in [a, bJ) is said to lie 
in O. 

Let H be the Hamiltonian corresponding to L as defined in the introduction. H 
is said to satisfy the basic growth condition (see Rockafellar [6]) provided that for 
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every bounded subset S of Rn and for each fixed p E Rn there exists a summable 
function <P: [a, b] -+ R such that 

H(t,x,p) ::; <p(t) for all (t,x) E [a,b] X S. 
This mild condition generalizes classical ones employed in existence theory by 
Nagumo and Tonelli and later by Cesari and Olech (see [6]). 

We designate by A the Banach space of arcs endowed with the norm 

Ilxll a := Ix(a)1 + lab Ix'(t)1 dt. 

(Clearly A is isomorphic to Rn x U[a, b].) C designates the Banach space of 
continuous functions x from [a, b] to Rn endowed with the norm 

Ilxlloo := max Ix(t)l. 
a:St:Sb 

The following result [6] plays a central role in this article. 

ROCKAFELLAR'S SEMICONTINUITY THEOREM. Let H satisfy the basic growth 
condition on 0. Then for all real numbers 0 and r the set {x E A: J(x) ::; 
0, Ilxll oo ::; r} is compact in the weak topology of A and also in the strong topology 
of C. In particular, J(.) is lower semicontinuous relative to the norms of A and C 
and lower semicontinuous sequentially relative to the weak topology of A. 

An immediate consequence of the theorem is that J admits a minimizing arc 
whenever there is a minimizing sequence which is bounded in the supremum norm. 
(Note that in our present setting Ilxll oo is always bounded if J(x) is finite, since 
L(t,x,v) is +00 for (t,x) lying outside the compact set 0.) 

We now define, for any positive M, 

h(t, M) := sup{H(t, y,p): (t, y) E 0, Ipl ::; M}. 
Rockafellar [6] proves that (under the basic growth condition), h(·, M) is integrable 
for each M, and that H(t, y, p) is L x B-measurable and upper semicontinuous in 
(y,p) [6, Proposition 4]. In what follows, oH shall always refer to the generalized 
gradient taken with respect to the (y, p) variables. We next assume the following 
weak Lipschitz condition: 

(HI) 

For certain constants Cl,C2 and for some integrable function k1(t) 
on [a, b], the following holds: 

1<p1 ::; {I + IpIHk1(t) + cll7{il} + c2IH(t,y,p)1 
for all (<p,7{i) in oH(t,y,p), for all (t,y) in the interior ofO, for all 
p. 

When the constants Cl and C2 of (HI) are required to be zero, we obtain the strong 
Lipschitz condition of [2]; note that if H were a smooth function, the key inequality 
of (HI) would reduce to 

IHxl ::; {1 + IpIHk1(t) + cIIHpl} + c21HI· 
In analogy with h we proceed to define 

hx(t, M) := sup {1<p1: <p E oxH(t, y, p), (t, y) E lnt 0, Ipl ::; M}, 
hp(t, M) := sup {17{i1 : 7{i E opH(t, y, p), (t, y) E lnt 0, Ipl ::; M}. 
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The following imposes an integrability condition in t of the data 

(H2) for each M, hx (', M) and hp (" M) lie in L1[a, b]. 
In the presence of the basic growth condition, it follows from (H2) that for almost 
each t, H(t,',') is locally Lipschitz on Int 0 x Rn, and that the Lipschitz rank is 
integrable in t for p restricted to bounded sets. Conversely, if for every bounded 
subset S of Rn, H(t,',') is Lipschitz on IntO x S with Lipschitz constant k(t) 
such that k(·) lies in L1[a, b], then (H2) is true. This equivalence makes clearer 
the meaning of hypothesis (H2), and demonstrates that it holds automatically if H 
is a locally Lipschitz function of (x,p) not depending on t (i.e., if the problem is 
autonomous) . 

Let us now define the problem (P) as that of minimizing J(x) over the arcs x 
lying in 0 and satisfying x(a) E C, x(b) ED. We imbed (P) in a family of problems 
(P oJ, where for each Q in Rn, (P oJ is the problem of minimizing J (x) over the arcs 
x in 0 satisfying x(a) E C, x(b) E D + Q. We define V(Q) to be the infimum in 
(P a); thus V(O) = J(z). 

(P) is said to be calm provided that we have 

1· . f V(Q) - V(O) 
Imm I I > -00. 
a-+O Q 

Note that if D = Rn then (P) is automatically calm, since (P a) and (P) coincide, 
so that V is constant. 

We denote by clNc the multifunction whose graph is the closure of that of 
Nc. It is known that clNc(x) agrees with the usual normal cone [3] Nc(x) under 
mild regularity hypotheses, for example if C is convex or defined classically by 
(nondegenerate) equalities and/or inequalities, or if the tangent cone T c( x) has 
nonempty interior. 

To summarize, the hypotheses are the basic technical ones, the basic growth 
condition, calmness, and (H1)-(H2). 

THEOREM 2. 1. Under the hypotheses above, the solution z admits an arc p on 
[a,b] such that (-p'(t),z'(t)) E BH(t,z(t),p(t)) a.e., p(a) E clNc(z(a)), -p(b) E 
Bf(z(b)) + ND(z(b)). 

REMARK. It is possible to work within the framework of the Bolza problem 
treated in [2], which involves the minimization of 

K(x) := A(x(a), x(b)) + lb L(t, x(t), x'(t)) dt 

where A is lower semicontinuous and extended-valued. This appears more general 
than the problem we have been considering, since A may be taken to be f(x(b)) 
when (x(a), x(b)) lies in C x D and +00 otherwise, but a passage in the other 
direction is also possible. To effect it, we extend the state x in Rn to a state 
(y,x,r) in Rn x Rn x R, and we define a new Lagrangian M(t,y,x,r,w,v,s) to be 
equal to L( t, x, v) if wand s are 0, and +00 otherwise. We also define 

C = {(y,x,r): y = x}, D = epi(A), f(y,x,r) = r. 
It is routine to verify that the extended arc (z( a), z( t), A( z( a), z( b))) solves this new 
problem, and that its Lagrangian and Hamiltonian satisfy the hypotheses of the 
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theorem if the original data do. The calmness of the extended problem is equivalent 
to the condition 

1· . f W(a, (3) - W(O, 0) 
ImlIl > -00 

(a,{3)-+(O,O) I(a, (3)1 
where W (a, (3) is defined to be the infimum over x of the perturbed functional 

A (x(a) + a, x(b) + (3) + lab L(t, x(t), x'(t)) dt. 

In this context the Hamiltonian inclusion of the theorem is joined by the transver-
sality condition (p(a), -p(b)) E 8A(z(a)), z(b)). This condition may be more precise 
than that of the theorem when A stems from f, C and D as indicated above, to the 
extent that No fails to be closed at z(a); the price however is that a joint calm-
ness condition in both endpoints is needed. (When H satisfies the strong Lipschitz 
condition as in [2], this joint calmness can be shown to be equivalent to the one in 
the theorem.) 

3. Proof of Theorem 2.1. 
Step 1. Reduction to the free endpoint case. We now show how to reduce to the 

case in which D = Rn. This hinges upon showing that for some m, z solves the 
new problem (Q) of minimizing J(x) + mdD(x(b)) over the arcs x lying in [2 and 
satisfying x(a) E C. If this is false, there is for each positive integer i such an arc 
Xi satisfying 

Let d i in D satisfy 
dD(Xi(b)) = Idi - xi(b)l, 

and set ai := xi(b) - di. Then Xi is feasible for the problem (Pa ) corresponding to 
a = ai, and the above gives 

This implies 
1· . f V(a) - V(O) __ 
ImlIl 1 1 - 00, a-+O a 

contradicting the calmness hypothesis. 
Thus z solves the free endpoint problem (Q). However, the assertions of the 

theorem applied to (Q) (which is automatically calm) imply those for (P). To see 
this, only the transversality at b needs to be studied, since the other assertions are 
identical. The transversality for (Q) gives -p(b) E 8U + mdD}(z(b)). The right 
side is contained in 8f(z(b)) + m8dD(z(b)) by [3, 2.3.3], which is itself contained 
in 8f(z(b)) + ND(z(b)) by [3, 2.4.2]. The transversality condition for (P) ensues. 

We now continue the proof of the theorem supposing that D is Rn. 
Step 2. A family of auxiliary Lagrangians and Hamiltonians. We shall construct 

auxiliary Lagrangians LM with special properties, and later certain problems in 
terms of L M , whose solutions will converge to z as M ----> 00 (along a sequence). 
Let us define, for any M::::: 1, 

kM(t) := Iz'(t)1 + M + hp(t, M) 
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where hp has been previously defined. Note that kM (·) belongs to Ll. We set 

HM(t,x,p):= min {H(t,x,q)+kM(t)lp-ql}. 
Iql:":M 

It follows readily that HM(t,x,') is convex [3, lemma, p. 237]. We let LM be the 
associated Lagrangian: 

LM(t, x, v) := sup{p· v - HM(t, x,p)} 
p 

(LM may be thought of as +00 for (t, x) lying outside 0). Our hypotheses imply 
readily (see [6]) that LM is L x B-measurable, and lower semicontinuous in (x, v). 
Further properties are given by the following: 

PROPOSITION 3.1. (i) HM satisfies the strong Lipschitz condition, and coin-
cides with H for Ipl :::; M. 

(ii) LM(t,x,v) is given by 

sup sup {p. v - H(t, x, q) - kM(t)lq - pi} 
p Iql:":M 

and is finite iff Iv\ :::; kM(t). 
(iii) There is an integrable function !PI (.) such that for all M 2 1, 

LM(t,x,v) 2 !Pl(t) for (t,x) EO, vERn. 

(iv) LM(t, z(t), Zl(t)) :::; L(t, z(t), Zl(t)) a.e. 

PROOF. The strong Lipschitz condition for HM is easily proven directly from 
the fact that H(t,·,·) is locally Lipschitz, together with (H2). If Ipl, Iql :::; M, we 
have 

H(t, x, q) + kM(t)lp - ql 2 H(t, x,p) 
by definition of kM(t), which implies the remaining assertion in (i). 

The expression for LM in (ii) follows by substituting the defining expression 
for HM into that of LM. If Ivl :::; kM(t), the quantity in braces is easily seen 
to be majorized by kM(t)lql - H(t, x, q), whence LM(t, x, v) is finite. When Ivl 
exceeds kM(t), it is easy to see that (for any q) the supremum in p is +00, whence 
LM(t,x,v) = +00. 

If we set p = q = ° in (ii) we derive 

LM(t,x,v) 2 -H(t,x,O), 

which implies (iii). We turn finally to (iv). Let p and q be fixed. We calculate 

p. Zl(t) - q. Zl(t) :::; IZ'(t)lIp - ql :::; kM(t)lp - ql. 

This implies that the supremum in (ii), for v = Zl(t) and for q given, is attained for 
p = q. We conclude 

LM(t,z,Z')= sup {q.z'-H(t,z,q)} 
Iql:":M 

which is (iv). Q.E.D. 

:::; sup {q. Zl - H(t, z, q)} = L(t, Z, Zl), 
q 
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Step 3. A family of optimization problems. For each M ;::: 1, we define a problem 
of Bolza (PM) as follows: to minimize 

JM(X) := f(x(b)) + lab LM(t, x(t), x'(t)) dt + ~ lab Ix(t) - z(t)12 dt 

over all arcs x in A satisfying x(a) E C. Recall that LM is +00 when (t, x) is 
outside 0, so that the constraint (t, x(t)) E 0 is implicit. With this observation, 
it is easy to see that the compactness criterion of Rockafellar applies to give the 
existence of a solution XM to (PM). Since z is itself feasible for (PM), we have (in 
light of Proposition 3.1(iv)) 

JM(XM) :::; JM(Z) :::; J(z). 
PROPOSITION 3.2. The set {XM: M;::: I} is relatively weakly compact in A. 

PROOF. We shall define a Lagrangian Lo and associated Hamiltonian Ho satis-
fying the basic hypotheses and basic growth condition, and such that Lo :::; LM for 
every M ;::: 1. Then, for each M, 

JO(XM) :::; JM(XM) :::; J(z), 
where Jo(x) is given by 

f(x(b)) + lab Lo(t, X, x') dt. 

Thus the set in the statement of the proposition will be a subset of the set {x E 
A: Jo (x) :::; J (z)}, which is weakly compact by Rockafellar's semicontinuity theo-
rem (§2), and the result will follow. 

We define Ho first, via 

Ho(t, x,p) := supHM(t, x,p) = sup inf {H(t, x, q) + kM(t)lp - ql} 
M M Iql:SM 

for (t, x) E 0, and we set Ho = -00 outside O. Note that by Proposition 1, 
HM(t, x,p) = H(t, x,p) for M ;::: Ipl, so that Ho(t, x,p) is also expressible as 
sUPM:Slpl HM(t,x,p). For each M with M :::; Ipi we have (by taking q = 0 in 
the infimum defining H M) 

HM(t,x,p):::; H(t,x,O) + kM(t)lpl 
:::; H(t, x, 0) + klpl (t)lpl :::; h(t,O) + klpl (t)lpl. 

It follows that the last term, which defines an integrable function on [a, bj, also 
majorizes Ho(t,x,p), which therefore satisfies the basic growth condition. It is 
routine to verify that Ho is L x B measurable. 

We define Lo as the Lagrangian corresponding to Ho: 
Lo(t,x,v) = sup{(p, v) - Ho(t,x,p)}. 

p 

The condition Ho ;::: HM translates as Lo :::; LM, and so the proof of Proposition 
3.2 is complete. Q.E.D. 

In view of Proposition 3.2 we may pick a sequence Mi tending to 00 with the 
property that for some arc y we have 

x~ ----+ y' (weakly in £1), 
Xi ----+ Y (uniformly), 
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where Xi, Li , Ji, Hi will be used to designate XM, LM, JM, HM for M = Mi' It 
follows that y itself also lies in 0 and satisfies y( a) E C. Since z is itself feasible for 
each (PM)' we have (in light of Proposition 3.1(iv)) 

Ji(xd :S Ji(z) :S J(z). 
The terms Ji(Xi) are also bounded below (by Proposition 3.1(iii)), so there is 
no loss of generality in supposing that limi->oo Ji (Xi) exists (finitely), as well as 
limi->oo J: Li(t, Xi, X~) dt. 

PROPOSITION 3.3. 

rb L(t, y, y') dt :S lim rb Li(t, Xi, X~) dt 1a 1,---+'00 ia 
PROOF. The left side is precisely J:supp{(p,y') - H(t,y,p)}dt, which equals 

(see [6, Proposition 6]) supp (. )ELOO J: { (p, y') - H (t, y, P )}dt. For given P in Loo, the 
integral above is majorized by liminfi->oo J:{(p,x~) - Hi(t,xi,p)}dt, by Fatou's 
lemma, and because x~ converges weakly to y' in L1. We deduce 

rb L( t, y, y') dt:S sup lim inf rb {(p, x~) - Hi (t, Xi, p)} dt J a pELoo t->oo J a 

:S lim sup SUp rb {(p,x~) - Hi(t,xi,p)} dt 
i-+oo pELOO J a 

= lim sup rb sup{(p,x~) - Hi(t,xi,P)} dt 
'l.----l-OO la p 

= lim rb Li(t, Xi, X~) dt, 
1.----+00 1a 

as required. Q.E.D. 
In view of Proposition 3.3, we have 

J(y) + ~ lb Iy(t) - z(t)1 2 dt :S i~~ Ji(Xi) :S J(z). 

It follows that y = z, since otherwise yEO would be strictly better for P than 
the solution z itself. In consequence, for i sufficiently large, the arc Xi lies in 
the interior of the tube 0, so that Xi is a (strong) local solution to the problem 
of minimizing Ji(X) subject to x(a) E C. Since Hi satisfies the strong Lipschitz 
condition (Proposition 3.1(i)), the necessary conditions of [3, Theorem 4.2.2] are 
available. These affirm the existence of an arc Pi such that 

(-p~, x~) E 8Hi(t, Xi, Pi) - (Xi - Z, 0) a.e., 
Hi(t,Xi,Pi) = Pi' X~ - Li(t'Xi'X~) a.e., 

The last relation gives a bound on Ipi(b)1 independent of i (namely, the Lipschitz 
rank K f of J). For i sufficiently large, we have Mi > K f' so that for t near b we 
have IPi (t) I < Mi' Let Si be the largest subinterval (7, b] such that this inequality 
holds on (7, b]. Then by Proposition 3.1(i) we have 

(-p~, x~) E 8H(t, Xi, Pi) - (Xi - Z, 0) a.e. in Si' 
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We now invoke the condition (HI) on H to derive from this 

Ip~1 ::::: k1(t)[1 + IPil] + cdl + Ipil]lx~1 + c2IH(t, Xi,Pi)1 + IXi - zl 
::::: [1 + IPil][k1 (t) + c1Ix~l] + c21Pi Ilx~1 + ILi(t, Xi, x~)1 + IXi - zI. 

From Proposition 3.2 we may deduce the existence of a constant C3 such that for 
all i, 

lb IxW)1 dt ::::: C3. 

It is clear from this that once the lemma below is established, a straightforward 
application of Gronwall's lemma to the differential inequality above leads to a bound 
on Pi independent of i: 

IPi(t)1 ::::: C4 for t in Si' 
Then for all i large we have Mi > C4 and hence Si = [a, b], so that 

(-p~,x~) E 8H(t,xi,pi) - (Xi - z,O) a.e. on [a,b]. 

Recall that Xi-Z converges uniformly to zero. An application of [3,3.1.7] then yields 
a subsequence of Pi converging to an arc P satisfying all the required conditions. 
Here is the missing result. 

LEMMA. There exists a number N such that 

lb ILi(t, Xi, x~)1 dt ::::: N for all i. 

To see this, let IP1 be the function put forward in Proposition 3.1, and note 

lbILi(t,xi,xDI dt::::: lbILi(t,xi,x~)-1P1Idt+ lbI1P1(t)ldt 

= lb [Li(t,xi'X~) -IP1]dt+ IIIP1111. 

The right side converges, whence the required conclusion. Q.E.D. 

4. Necessary conditions without calmness. In the absence of a constraint 
qualification such as calmness, it is well known from standard examples in the 
calculus of variations and optimal control theory that the conclusions of Theorem 
2.1 cannot hold, that some possibility of an "abnormal" form of the necessary 
conditions must be admitted. Roughly speaking, abnormal necessary conditions are 
obtained when a scalar multiplier associated to the objective functional vanishes; 
see [3] for appropriate versions of this in mathematical programming and control 
theory. Based on experience and analogy, we are led to expect that in abnormal 
necessary conditions for the Bolza problem (P), there would enter a term related to 
the objective integrand AL, for some nonnegative A. The associated Hamiltonian 
H).. would then be given by 

H)..(t,x,p):= sup{(p, v) - AL(t,x,v)}. 
v 

The usual Hamiltonian H would correspond to H 1. The difficulty is that the 
abnormal case A = ° gives rise to a Hamiltonian Ho rather devoid of useful content 
(i.e., the indicator of the set {O}). In this section we will deal with this difficulty by 
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defining suitably aHo, rather than Ho itself. The approach is based on the identity 
H)..(t,x,p) = >..H(t,x,p/>,,) for >.. > O. By taking derivatives in the right-hand 
expression before carefully letting>.. decrease to 0, we can obtain a closed convex 
set leading to meaningful necessary conditions, the first such for the general problem 
of Bolza in the absence of a constraint qualification (calmness). We denote the set 
so obtained by aHo(t,x,p), but emphasize that aHo is now to be understood as a 
single symbol which describes a special process of obtaining derivative information 
from H).. as >.. goes to zero. Of course, this symbol also unifies the notation in the 
theorem to follow. We continue to posit the basic hypotheses, the basic growth 
condition, and (Hl) (H2). Let (t, x) by any point in Int n. 

DEFINITION. Let k: Rn x Rn -+ R U {±oo} be given by 

k(O'., (3) := lim limsup inf HO(t, X,P/E:i m', f3') 
)..10 (x,p)-+(x,p) I(QI,,B')_(Q,,i3)I~).. 

0:10 

where HO designates the generalized directional derivative in (x, p) [3, p. 25]. As a 
function of (0'., (3), HO (t, x, Pi 0'., (3) is positively homogeneous, subadditive, and lower 
semicontinuous, and it can be shown that k inherits these properties. We define 

(*) aHo(t,x,p):= {(q,v): ((q,v), (0'.,f3)) ~ k{O'.,(3) for all (0'.,f3)}. 

If k{O'.,(3) is -00 for some value of (0'.,f3), then clearly aHo{t,x,p) is emptYi 
otherwise it is a nonempty closed convex set whose support function is k [3, 2.1.4]. 

As we now see, aHo(t,x,p) is closely related to the set r(t,x,p) defined by 

cl co {lim[E:i 1>i, ~i]: (!Pi, ~i) E aH{ t, Xi, pi/ E:i), (Xi, Pi) -+ (x, p), E:i 1 O} . 

PROPOSITION 4.1. We always have aHo(t, x,p) ::J r{t, x,p), and if every se-
quence [E:i!Pi, ~i] as in the definition of r is bounded, we have equality. 

PROOF. We have observed that k is the support function of aHo when the latter 
is nonemptYi thus (q,v) lies in aHo iff k{O'.,(3) majorizes (0'.,f3)' (q,v) for all (0'.,f3). 
Let I = lim[E:i!Pi, ~i] be a point of the type described in defining r. To prove the 
required inclusion, it suffices to show that each such I belongs to aHo, which is 
equivalent to verifying that k( 0'., (3) majorizes I . (0'., (3) for each (0'., (3). To see this, 
let>.. be a positive number and let (a', f3') be a point within>.. of (0'., (3). Then 

HO(t,xi,pi/E:iiE:iO'.',f3')?,: [!pi'~i]' [E:iO'.',f3'] 
?': [E:i!Pi, ~i]' [0'., f3]- >"1 (E:i!Pi, ~i)l· 

This leads easily to the requird inequality. Now let the extra hypothesis held, and 
let any (0'., (3) be given. For certain sequences Xi, Pi, E:i, O'.i and f3i converging to 
x, p, 0, 0'., and f3 respectively, we have 

k(O'.,f3) = limH°(t,xi,Pi/E:iimi,f3i) = lim[E:iO'.i,f3i]· [!pi'~i] 

for certain points (!Pi, ~i) belonging to aH{t, Xi, pi/E:i) (by [3,2.1.5]). For a suitable 
subsequence (E:i!Pi, ~i) converges to an element I of r{t, x, p), whence k( 0'., (3) equals 
I' (0'., (3), proving that aHo(t, x, p) is contained in r(t, x, p). Q.E.D. 

The following gives a simple criterion assuring that aHo is empty, a superlinear 
growth condition on H in the p variable. 
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PROPOSITION 4.2. Let H(t,x,p) be locally Lipschitz in (x,p) and satisfy the 
following condition for some p =I- 0: 

1. H(t, X, Ap) _ 
_ 1m \ - 00. 
x----;.x 1\ 
p---->p 

'x---->oo 

Then 8Ho(t,x,p) = 0. 

PROOF. We shall prove this by showing that k(O, -p) is -00. Let Ai be a 
sequence decreasing to 0, and choose (Xi,Pi) in (x,p) + AiB and Ci in the interval 
(0, Ai) such that 

inf HO(t, xi,pi/ci; Cia, f3) + Ai 
(a,,B)E(O,-p)+'x;B 

2: lim sup inf HO(t, x,p/c; ca., f3). 
(x,p)---->(x,p) (a,,B)E(O,-p)+'x;B 

e10 

It follows then that we have 

liminfHO(t,xi,pi/ci;O,-pi) 2: k(O,-p). 
t---->oo 

For some element (!pi, 'l/Ji) of 8H(t, xi,pi/ci) we have 

HO(t, xi,pi/ci;O, -Pi) = ((0, -Pi), (!pi, 'l/Ji)) = -(pi, 'l/Ji), 

and the convexity of H(t, Xi,') gives 

H(t,xi,O) - H(t,xi,pi/cd 2: -(Pi,'l/Ji)/Ci; 

whence 
-(pi, 'l/Ji) :::; cih(t, 0) - ciH(t, xi,pi/ci)' 

The last term goes to -00 as i ----> 00, by hypothesis, whence k(O, -p) = -00. Q.E.D. 

THEOREM 4.1. If z solves (P), where all the hypotheses of Theorem 2.1 hold 
except calmness, then there exists an arc p and a scalar A equal to 0 or 1 such that 
A + Ilplloo > ° and 

(-p'(t), z'(t)) E 8H,X(t, z(t),p(t)) a.e., 
p(a) E clNc(z(a)), -p(b) E A8f(z(b)) + clND(Z(b)). 

PROOF OF THE THEOREM. We define a family of parametrized problems (Qa): 

minimize J(x) + lb Ix - Zl2 dt : X E A, x(a) E C, x(b) E D + a, 

and we let W(a) be the associated value function. Note that z is the unique solution 
to (Qo). It follows easily from Rockafellar's semicontinuity theorem (§2) that W is 
lower semicontinuous, and that (Qa) admits a solution whenever W (a) is finite. It 
is known (Rockafellar [7]) that W admits proximal subgradients arbitrarily near O. 
More precisely, there exist points ai converging to ° such that W ( ai) converges to 
W(O) and such that, for some vector ~i and for some positive scalar Ci, one has 

W(a) - W(ad 2: (~i' 0.- ai) - cila - ail2 
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for a near ai. Now let Xi be a solution to (QQJ for a = ai. It follows once more 
from the semicontinuity theorem that {Xi} is relatively weakly compact in A, so 
we may select a subsequence (we do not relabel) converging to an element Xo of A. 
Clearly, Xo is feasible for (Qo), and semicontinuity yields 

J(xo) + lb Ixo - zl2 dt ::; lim W(ai) = W(O) = J(z), 

whence Xo = z, and Xi satisfies Ilxi - zll(X) < EO for i large. 
Fix i large. We denote by di an element of D having the property that xi(b) = 

di + ai. Now let X be any arc in 0 satisfying x(a) E C, and let d be any element of 
D. Observe that x(b) lies in D + a where a := x(b) - d. If x(b) is near xi(b) and d 
is near di , then the point a is near ai, so the proximal subgradient inequality may 
be invoked to obtain 

J(x) + lb Ix - Zl2 dt 2: W(a) 2: W(ai) + (r;i, a - ai) - Ei la - ail 2 

= J(Xi) + lb IXi - zl2 dt + (r;i, x(b) - xi(b)) 

+ (r;i, di - d) - Eilx(b) - d - xi(b) + di l2. 

Fix X = Xi in this relation. We obtain 

(r;i, di - d) - Eildi - dl 2 ::; 0 for di near D, 

which implies r;i E -ND(di ). Now fix d = di ; then we deduce that Xi is a local 
minimum for the (free endpoint) problem of minimizing 

-(r;i' x(b)) + Eilx(b) - xi(bW + J(x) + lb Ix - zl2 dt 

over the arcs X satisfying x(a) E C. This is a problem to which Theorem 2.1 applies; 
we deduce the existence of an arc Pi such that 

(-p~, x~) E aH(t, Xi, Pi) - 2(Xi - Z, 0) a.e., 
pi(b) E -r;i + af(Xi(b)) C ND(Xi(b)) + af(Xi(b)), 

Pi(a) E Nc(Xi(a)). 

The rest of the proof consists of passing to the limit; the case in which r;i is bounded 
will lead to normal conclusions (). = 1), otherwise we will get abnormal ones (). = 0). 

We note that the weak Lipschitz condition (HI) implies the differential inequality 

Ip~1 ::; {I + IPi IHkl (t) + cllxm + c2IH(t, Xi, pdl + 21 xi - zI. 
Case 1. {r;i} is bounded. 
In this case it follows that pi(b) is bounded. Almost exactly as in the last step 

of the proof of Theorem 2.1, we combine this fact with the differential inequality 
above via Gronwall's lemma to obtain a bound on IlplI(X). Once armed with this, 
the same sequential compactness of the Hamiltonian inclusion invoked in the proof 
of Theorem 2.1 leads to the required arc p, with), = 1. 

Case 2. {r;d unbounded. 
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We may suppose !c;il > 1 for large i. Let us define the arc qi via qi = pi/!c;il. The 
differential inequality for Pi implies 

We have 

so 

With this observation, we obtain much as before a uniform bound on Ilqill<Xl (note 
that qi(b) is bounded by construction; in fact, Iqi(b)1 converges to 1). For a 
suitable subsequence therefore (we do not relabel), we may suppose that qi con-
verges uniformly to an arc p, and q~ weakly to p'. Since Ip(b)1 = 1, necessarily, 
we have Ilpll<Xl > O. We already know that Xi converges to z, so that we have 
p(a) E clNc(z(a)), -p(b) E clND(z(b)). We need only verify that a.e., (-p',z') 
belongs to aHo(t,z,p), which is equivalent to verifying that a.e., k(o:,(3) majorizes 
[-p', z']· [0:, (3]. 

Let t lie in the set offull measure in which x~(t),p~(t) exist and the Hamiltonian 
inclusion for (Xi, pd holds for each i. Set Ci = !c;i 1-1, let A be any positive number, 
and let (0:', (3') lie within A of (0:, (3). Then 

HO (t'Xi' :>ci O:',(3') 2 ((cio:',(3'),(-p~,xm = ((o:',(3'),(q~,xm 
2 ((0:, (3) , (q~, xm - AI(q~, x~)1 

since (-pi,xi) belongs to aH(t,xi,qi/ci) (note that qi/ci = Pi). It follows from 
the Hamiltonian inclusion and (H2) that a.e. for fixed t, I( -q~, x~)1 is bounded by 
a quantity {}(t). An application of the lemma below shows that provided t belongs 
to a further set of full measure, we have 

lim sup inf HO (t, Xi, q, ; ciO:', (3') 2 ((0:, (3), (-p', z')) - A{}( t) , __ <Xl C, 

where the infimum is over (0:',(3') within A of (0:,(3). Since Xi(t),qi(t),ci converge 
to z(t),p(t),O respectively, we obtain k(o:,(3) 2 [-p',z']· [0:,(3] as required. 

LEMMA. Let fi be a sequence of functions from [a, b] to Rn converging weakly 
in Ll to f. Then for almost every t one has 

limsup(v, fi(t)) 2 (v, f(t)) for all v in Rn. ,--<Xl 
To see this, suppose the conclusion is false on a set A of positive measure. Then 

we can find a measurable function v(t) defined on A such that 

limsup(v(t), fi(t)) < (v(t), f(t)), tEA, 
i-+CX) 



398 F.H.CLARKE 

and by homogeneity we can also arrange for v to lie in LOO and satisfy I (v(t), fi(t))1 ::; 
1. Then 

0= lim sup r (v(t), fi(t) - f(t)) dt 
>--+00 J A 

(since fi converges weakly to f) 

::; r limsup(v(t), fi(t) - f(t))dt < 0 J A >--+00 

(by Fatou's lemma). 

This contradiction proves the lemma and completes the proof of the theorem. 
Q.E.D. 

REMARK. Let V be the value function of §2, and suppose that z is a (locally) 
unique solution to the Bolza problem. Then any bounded sequence of proximal 
subgradients of V as above can be used as in the proof of the theorem to produce 
necessary conditions in normal form. A necessary and sufficient condition for the 
existence of such a sequence is 8V (0) =I- 0, so that this condition is now seen to be a 
constraint qualification assuring that normal necessary conditions hold. Calmness 
is a stronger condition which implies the nonemptiness of 8V(O). 

We now proceed to illustrate the use of the theorem in two well-known contexts. 
The first example will confirm that we recover the appropriate necessary conditions 
in the case of optimal control problems, and the second example will add to the 
regularity results of [5] by providing an additional set of hypotheses under which the 
basic problem in the calculus of variations has a solution with bounded derivative. 

Let U be a compact subset of Rm, and let cp and g by C 1 mappings from Rn x U 
to Rn and R respectively. Given two closed subsets C and D of Rn, the standard 
optimal control problem we consider is that of minimizing J: g(x(t), u(t)) dt over 
the arcs x (states) and measurable function u (controls) satisfying 

x'(t) = cp(x(t), u(t)) a.e., u(t) E U a.e., x(a) E C, x(b) ED. 

We assume that the set {[cp(x, u), g(x, u) + 8]: u E U,8 2: O} is convex for each x, 
a standard hypothesis in existence theory [3, Theorem 5.4.4]. 

The problem above is equivalent to [3, Theorem 5.4.1] the generalized problem 
of Bolza in which Land H are given by 

L(x,v):= inf{g(x,u): u E U,cp(x,u) = v}, 
H(x,p) := max{ (p, cp(x, u)) - g(x, u): u E U}. 

It follows easily that these data satisfy the hypotheses of Theorem 4.1. Suppose 
therefore that x is a solution to the problem (i.e., that for some corresponding 
control u, (x, u) solves the optimal control problem). According to the theorem, 
there is an arc p satisfying the transversality conditions p( a) E cl N c( x( a)), -p( a) E 
clND(x(b)) and either (-p', x') E 8H(x,p) a.e. or else (-p', x') E 8Ho(x,p) a.e., 
and in the latter case p is nonzero. The first situation corresponds to standard 
necessary conditions in normal form as would necessarily be the case in the presence 
of calmness [3], so let us examine the second case by calculating 8Ho(x,p). 

The set r of Proposition 4.1 is generated by limits of points [c~, 'Iji] where (~, 'Iji) 
belongs to 8H(x',p'/c). The set of such (~,'Iji) is given by [3, Theorem 2.8.2, 
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Corollary 2] 

co {[CPx(X', U')*p' Is - gx(X', U'), cp(X', U')]: u' E M(x',p'/s)} 
where M(x,p) denotes the points u' in U at which the maximum defining H(x,p) 
is attained. It follows that (s~, '¢) admits an a priori bound, and that any limit of 
a series of such points as x' -> x, p' -> p and s 1 0 lies in the set 

co{[CPx(x,u')*p,cp(x,u')]: u' E N(x,p)}, 
where N (x, p) denotes the set of points u' in U at which the maximum of (p, cp( x, v)) 
over v in U is attained. 

It follows from Proposition 4.1 that the last set above is precisely 8 Ho (x, p). To 
see why this leads to the expected sort of condition, define 

h>.(x,p) := max{ (p, cp(x, u)) - Ag(X, u): u E U}, 
a function which makes sense for any A, including O. Then Theorem 4.2 amounts 
to saying that p satisfies (-p',x') E 8h>.(x,p) a.e. for A either 1 or 0, and that p is 
nontrivial in the latter case. This is precisely what one would hope to get. 

The second special context is that of the basic problem in the calculus of vari-
ations, where C and D are singletons and L is a Lagrangian of classical type. To 
simplify, we again posit smoothness. To be precise, we suppose that L(t, x, v) is 
measurable in t, continuously differentiable in (x, v), and strictly convex in v. We 
further suppose that L satisfies the following growth conditions: 

(4.1) \Lx(t, x, v)\ ~ [1 + \Lv(t, x,v)\Hm(t) + d1\vlJ + d2\L(t, x, v)\, 
(4.2) el\v\1+r +e2 ~ L(t,x,v) ~ e3\v\1+ a +e4 
where m(·) is summable and all constants are positive. 

Tonelli's existence theorem asserts that a solution x to the problem exists. We 
assert that the solution x(·) is Lipschitz on [a, b], which is a new result (cf. [5]). 
The proof will follow from analyzing the necessary conditions provided by Theorem 
4.1. The example in [4] shows that the conclusion is false in the absence of (4.1). 
We proceed first to verify the hypotheses of the theorem. 

The measurability and lower semicontinuity requirements on L are clearly sub-
sumed by the present hypotheses. By conjugacy and (4.2), H satisfies a global 
condition 

h\p\l+<7 + h ~ H(t, x,p) ~ h\p\1+T + f4 
for certain positive constants, which implies the basic growth condition. Let 
v*(t, x,p) denote the unique v at which the maximum defining H(t, x, p) is achieved: 

max {(p, v) - L(t,x,v): vERn} = (p,v*) - L(t,x,v*). 
Then H(t,x,·) is differentiable and Hp(t,x,p) = v*(t,x,p). 

LEMMA. v* is bounded on bounded subsets of [a, b] x Rn x Rn. 

To see this, we observe 

sup{(p,w) - e3\w\1+a - e4} ~ sup{(p,w) - L(t,x,w)} = (p,v*) - L(t,x,v*). 
If x, p lie in a bounded set this provides 

L(t, x, v*) - (p, v*) ~ M 
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for some constant M, which yields 

ellv*IHr + e2 -lpllv*1 ~ M, 
proving the lemma. 

Let us now verify (HI). It follows from [3, Theorem 2.8.2] that H(t,',') is contin-
uously differentiable, with derivative (cp,'t/J) at (x,p) given by cp = -Lx(t,x,v*), 't/J 
= v*. Note also that p equals Lv (t, x, v*). In consequence, (HI) amounts to requir-
ing 

ILx(t, x, v*)1 ~ {I + ILv(t, x, v*)I}{ kl (t) + cllv* I} + c21 (p, v*) - L(t, x, v*)I· 
But the growth hypothesis (4.1) on L gives 

ILx(t, x, v*)1 ~ {1 + ILv(t, x, v*)I][m(t) + d1lv*1] 
+d2 1(p, v*) - L(t, x,v*)1 + d2 1(p, v*)I}, 

which implies the required type of condition upon replacing p once again by 
Lv(t, x, v*). We turn now to (H2). 

Since Hp(t, x,p) = v*(t, x,p) the lemma implies that hp(" M) is bounded. As 
for hx(t, M), we observe from (HI) that for each p with Ipl ~ M, Hx(t, x,p) is 
bounded above by 

{I + M}{kl (t) + cllv*(t, x, p) I} + c2IH(t, x, p)1 
~ {I + M}{k1(t) + cllv*(t, x,p)l} + c2{hlpll+r + f4}. 

Since v* is bounded by the lemma, it follows that hx (-, M) is integrable. 
The above confirms the applicability of the theorem. We now wish to show, 

without an a priori constraint qualification, that the abnormal case A = 0 can be 
excluded, which is obviously the case if CJHo(t, x,p) = 0 for p =I- O. But this follows 
immediately from Proposition 4.2, in view of the growth condition satisfied by H. 
Thus the conclusions of the theorem must hold for A = l. 

The Hamiltonian inclusion for A = 1 implies that a.e. 
x'(t) = Hp(t, x(t),p(t)) = v*(t, x(t),p(t)), 

and so by the lemma x' (.) is essentially bounded, which is the desired conclusion. 
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