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ABSTRACT. Automorphic integrals, being generalizations of automorphic 
forms on discrete subgroups of SL(2, R), share properties similar to those 
of forms. In this article I obtain a natural boundary result for integrals which 
is similar to that which holds for forms. If an automorphic integral on a given 
group behaves like a form on a subgroup of finite index (i.e., the period func-
tions are identically zero), then in fact the integral must be a form on the 
whole group. Specializing to modular integrals with integer dimension I ob-
tain a lower bound on the number of poles of the period functions which, of 
necessity, lie in quadratic extensions of the rationals. 

I. Introduction. In recent years the concept of automorphic form has been 
generalized to permit an additive "period" function in the functional equation. An 
automorphic form f, on a discrete subgroup r of 8L(2, R), is required to satisfy, 
among other conditions, the functional equation: 

v(V)(cz + d)8 f(V z) = f(z), V = (~ :) E r. 

An automorphic integral, on the other hand, is required to satisfy: 

V(V)(CZ+d)8f(Vz)=f(z)+¢v(z), V= (: :) Er. 

Here v is a multiplier system on the group r and the dimension 8 is a real num-
ber. ¢v(z) is called the period function of f associated with V. The collection 
{¢v(z): V E f} is usually constrained to lie in a suitably chosen space offunctions 
which typically satisfy growth conditions in a fundamental region for r. The pre-
cise definitions appear in §II. Automorphic integrals arise naturally as integrals of 
forms, hence the name. 

Automorphic forms have the real axis as a natural boundary. In §III we show 
that, under a necessary restriction, the same is true of automorphic integrals. In 
connection with automorphic integrals it is reasonable to ask if some, but not all, 
of the period functions can be identically zero. In §IV we show that, under certain 
conditions, if the period functions on a subgroup of r of finite index are identically 
zero, then the period functions vanish on the entire group. 

In [4], Knopp considered automorphic integrals of integer dimension with ra-
tional period functions on the modular group----modular integrals. He found that 
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the poles of the period functions must lie in quadratic extensions of the rational 
numbers. For these types of period functions we find, in §V, necessary conditions 
on 0 in terms of the period functions and obtain a lower bound on the number of 
poles of rational period functions in terms of the quadratic extension in which they 
lie. 

II. Preliminaries. 
1. We shall confine our attention to certain discrete subgroups r of 8£(2, R). 

We assume -I E r. An element V = (~~) of r induces a linear fractional trans-
formation of H, the upper half-plane, by z ----t (az + b)/(cz + d). Hence, r can 
be thought of as a group of linear, fractional transformations provided we iden-
tify ± (~ ~) with the same transformation. Specifically, we shall be interested in 
H-groups. A subgroup r of 8£(2, R) is an H-group if: 

1. r is finitely generated. 
2. r is discrete but discontinuous at no point of R. 
3. r contains translations. 

As a consequence, an H-group has a fundamental region in H with finitely many 
sides (see [6] for details). The vertices of the fundamental region which lie on the 
extended real axis are called cusps of the fundamental region or cusps of r. They 
are necessarily parabolic fixed points and conversely any parabolic fixed point of r 
is a cusp of some fundamental region for r. 

2. Cusp width. It will be necessary to obtain expansions of certain functions 
at cusps of the fundamental region. These expansions involve the notion of "cusp 
width" for r which we now define. 

DEFINITION. Let q be a cusp of some fundamental region R for an H-group 
r. If q = 00, then r(Xl = (Q) where Q = (~;), A > 0, and r(Xl = {V E r I 
V (Xl = 00 }-the stabilizer of 00. The width of the cusp 00 is defined to be A. For 
a finite cusp q with stabilizer r q = (Q = (~~)) we write Q in its normal form 
Q: 1/(7' - q) = 1/(7 - q) ± ,. Here 7' = Q7 and the sign before, is that of a + O. 
Since -IE r we may, without loss of generality, assume that, > 0 and a + 0 > O. 
With Q chosen in this way, we define the width of q to be ,. 

REMARK. Our definition of cusp width is not the "usual" one. However, it is 
equivalent (see [5, p. 269]). 

We now show how the widths of distinct cusps, equivalent under r, are related. 

PROPOSITION 1. Let q be a cusp of the fundamental region R with width A. 
For V = (~ ~) E r, V q = ij is again a cusp of r. Let ~ denote the width of ij. If q 
and ij are both finite, then ~ = (cq + d)2 A. If q = 00 and ij #- 00, then ~ = c2 A. 

PROOF. Assume q and ij are finite. rq = (Q = (~~)),' > 0, a+o > 0, and 
A = ,. Since rq = (VQV- I ), we need the matrix form of VQV- I to compute i 

V V-I - ( * Q - c(ad - (3c) + d(,d - co) : ) 
and Trace(VQV- I ) = Trace(Q) > O. If c(ad - (3c) + d(,d - co) > 0, then ~ = 
c(ad- (3c) +d(,d- co). We will show that c(ad - (3c) +d(,d -co) = ,(cq+d)2 > O. 
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Since Qq = q and Q is parabolic, we find q = (a - 8) /2, with the result that 

(a 8)2 
,(cq+d)2=c2 - +adc-8dc+,d2 

4, 

= c [ad + c(a 4~ 8)2] + d(d,- 8c). 

It remains to show that c(a - 8)2/4, = -/3c. Since (a + 8)2 = 4 it follows that 
(a - 8)2 = -4/3, and the first statement of the proposition is proved. The second 
statement is proved by calculating a generator of the stabilizer r II' 

3. Multiplier systems. 
DEFINITION. We call a function v a multiplier system of dimension 8 E R for 

r provided: 
1. v: r ---+ {Izl = 1}. 
2. If Mi = (;i ;.) E rand M3 = M1M2, then 

V(M3)[M3: Z]b = v(Mt}v(M2) [Ml: M2z]b[M2: Z]b, 

where [Mi: z] = CiZ + di and "-" denotes complex conjugation. 
REMARKS. (i) We fix the branch of the many-valued function (cz + d)b by 

requiring, for z E C, 

Zb = Izlbeibarg(z) where -7r::; arg(z) < 7r. 

In particular arg( -1) = -7r. 

(ii) When 8 E Z, then part 2 of the definition shows that v is a character on the 
matrix group r. 

(iii) v is a function on the matrix group since v(1) = 1 and v( - I)2 = e27ri15 I-
1 unless 8 E Z. Thus in general, v( -M) I- v(M) even though these matrices 
correspond to the same transformation of z. 

(iv) When 8 E Z, the existence of multipliers is easily demonstrated. (See [5, p. 
268].) Petersson [7] has shown that multipliers exist for arbitrary groups and all 
dimensions. 

(v) For a given multiplier system v and dimension 8 we define the stroke operator 
IZ by flZV = v(V)[V: z]15 f(V z) for any V E r and function f. When no confusion 
can occur we will suppress the multiplier and the dimension, writing fl~V = fiV. 
We observe that flVW = (fIV)IW and (f + g)JV = fJV + giV. 

4. Cocycles. Let P be the space of functions g(z) holomorphic in H such that 
there exist positive constants k, p, (j depending on 9 satisfying Ig(z)1 < k(lzIP+y-lT) 
with y = Im(z) > O. For r an H-group and v a multiplier system of dimension 8 
on r, we call a collection of functions {¢v E P, V E r} a cocycle of dimension 8 
with multiplier system v if for V, W E r, ¢vw = ¢v IW + ¢w· A cocycle {¢v} is 
called a co boundary if there exists a 'l/J E P such that ¢v = 'l/JIV - 'l/J. 

For ran H-group, fix a fundamental region R containing 00. Denote the inequiv-
alent cusps of R by qo = 00, ql, ... ,ql and let the stabilizer r qi of qi be generated 
by Qi for 0 ::; i ::; l. The cocycle {¢v} is called a parabolic cocycle if for each i, 
0::; i ::; l, ¢Q; = 'l/JilQi - 'l/Ji with 'l/Ji E P. 

REMARK. In [2] it is shown that every co cycle in P is parabolic. 
5. Automorphic integrals. Let r be an H-group with l finite cusps qi, 1 ::; i ::; l, 

and the cusp qo = 00 for a particular fundamental region R of r. Furthermore, 
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assume v isa multiplier system of dimension 8 and I is a function, meromorphic 
in H, satisfying: 

(1) <5 1. IlvV - I = cPv E P, V E f. 
2. For each i, 1 :::; i :::; I, (r-qi)-8(f(r)-'l/Ji(r)) has a limit as r ----t qi 

within R. Here 'l/Ji satisfies the parabolic co cycle condition at the 
cusp qi. 

3. I(r) - 'l/Jo(r) has a limit as r ----t 00 from within R. Here 'l/Jo 
satisfies the parabolic cocycle condition at the cusp qo = 00. 

I is called an automorphic integral of dimension 8 with multiplier system v on f. 
The collection of all such integrals is denoted by {f, 8, v} I' 

REMARKS. (i) In 2 and 3 we permit the limit 00. 

(ii) 2 and 3 insure that the expansions of an automorphic integral at the cusps 
are left finite. 

(iii) An automorphic integral can have only a finite number of poles in R. As a 
result, an automorphic integral I has the following expansions near the cusps of R: 

(2) <5 ~ • (-27ri(n+KJ )) I ( r) = 'l/J J ( r) + (r - qJ) L- an (J ) exp A (r _) , 
n=!-'j J qJ 

rER, 

at the cusp qJ where 0 < KJ < 1 is defined by v( QJ) = exp(27riKJ) and AJ 
width of qJ. 

(3) rE R, 

at the cu~p qo = 00 where 0 :::; KO < 1 is defined by v( Qo) = exp(27riKo) and 
AO = width of 00. 

REMARK. If /1'] + KJ ~ 0 in (2) for all j, J.lo + KO ~ 0 in (3) and I is holomorphic 
in H, then we call I an entire automorphic integral and write I E C+ {f, 8, v} r If 
J.lJ + KJ > 0 in (2) for all j, J.lo + KO > 0 in (3) and I E C+ {f, 8, v} I' then we write 
I E CO{f, 8, v} r The set of automorphic integrals with identically zero period 
functions is denoted by {f, 8, v}. 

III. A natural boundary result. In order to establish the real axis as a nat-
ural boundary for certain types of automorphic integrals we require the expansions 
of these integrals at a dense subset of the real line. The cusps of the group provide 
such a set. Specifically, if I is an automorphic integral on an H-group f, then I 
has an expansion of a certain type "near" the cusps of a fundamental region. By 
"near" we mean in a sufficiently small parabolic sector at the cusp. The expansions 
of I at equivalent cusps are intimately related. This relationship is explained in 
the following theorem, whose proof can be found in [1]. 

THEOREM 2. II I E {f, 8, v} I has expansions (2) and (3), then at the .cusp 

qJ = V qJ, V = (~ ~), I has the expansions 

il qJ =f. 00, 
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and 

!(7) = ~j(7) + f (3nU) exp (27ri(n,+ /'Cj)7) il qj = 00. 

n=/-Lj AJ 

REMARKS. 1. ~j is the width of the cusp qj discussed in Proposition 1. 
2. ~j satisfies the parabolic co cycle condition at the cusp qj and in fact ~j 

'I/IjlV- 1 - <Pv-l. 
3. In particular, we see that the lower index of summation remains the same in 

the expansions at equivalent cusps. 
The proof of the natural boundary result will depend on an estimate of 

I ( -27ri ) I exp ( ) as 7 --t qj Aj 7 - qj 
within a fundamental region R. Any such approach will eventually lie within a 
Stolz angle at qj: Y> Ix - qjl: 

q. 
J 

For this approach we have, at the finite cusp qj, 

= exp ( AJ[(X -=-~;); + y2]) 
< exp ( -7r) --t 0 as 7 --t qj. 

AjY 

(4) 
I ( -27ri ) I 
exp Aj(7 _ qj) 

At the cusp 00 we have 

In the expansions of an automorphic integral (2) and (3) we say I is holomorphic 
at the cusp qj if Ilj + /'Cj ;::: O. Here we mean holomorphic in the local uniformizing 
variable t = exp(-27rijAj(7 - qj)) or t = exp(27ri7jAO) for the cusp 00. 

THEOREM 3. Let! E {f, 8, v} J. II there is a cusp where I is not holomorphic, 
then! has the real axis as a natural boundary. 

PROOF. We may without loss of generality assume that qj is a finite cusp. 
First we will show that I is not analytic at qJ as a function of the variable 7. The 
hypotheses imply 

8 ~ . (-27ri(n+/'Cj)) !(7) = 'I/Ij(7) + (7-qj) ~ an(J)exp A(7-) and Ilj <0. 
n=/-Lj J qJ 

We have 
1!(7)1 + l'I/Ij(7)1 ;::: 1!(7) - 'I/Ij(7)1 

_ ( _ .)8 (-27ri(IlJ + /'Cj)) ~ (.) (-27ri(n - Ilj)) 
- 7 qJ exp A . (7 _ q) ~ an J exp A (7 _ q) 

J J n=/-LJ J J 
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variable t = exp(-27rijAj(7 - qj)) or t = exp(27ri7jAO) for the cusp 00. 
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Within a Stolz angle 

~ (.) (-27ri(n- Jlj )) 
~ an J exp A .(r _ .) 

n=j.Lj J qJ 

is bounded away from 0, since if 
00 

and g(t) = L an (j)tn-j.Lj , 
n=j.Lj 

then 9 is continuous at t = 0 and g(O) = aj.Lj (j) =I O. Thus 

If(r)1 + l'l)Ij(r) I ~ Klr - qjlO exp ( -7r(%: /\,j)) and Jlj + /\,j < O. 

Here we have used (4). We now have 

(5) If(r)1 ~ -1'l)Ij(r) I + Klr _ qjlO exp ( -7r(~j: /\,j)) . 

Since 'l/J j E P, the second term of the right side of (5) dominates and limr ...... qj If ( r) I = 
00. It follows that f is not analytic, in the variable r, at qj. Theorem 2 implies 
that f is not analytic, in the variable r, at any cusp equivalent to qj. However, the 
orbit rqj is dense in the real line by a well-known property of discontinuous groups. 
It follows that f has the real axis as a natural boundary. The proof is complete. 

REMARK. The hypothesis that f is not holomorphic at some cusp is a necessary 
one, as the function f(z) = exp(27riz/AO) shows. 

IV. A subgroup of finite index result. It may be possible for some of the 
period functions of an automorphic integral to be identically zero. However, we 
show below that for integrals with nonzero integer dimension and rational period 
functions, if the period functions corresponding to a subgroup of finite index vanish, 
then all period functions vanish. 

DEFINITION. A real discrete group r is called nonelementary if the limit set of 
r contains more than two points. 

REMARK. Any real discrete nonelementary group containing translations con-
tains hyperbolic elements. 

PROPOSITION 4. Let r be a real discrete nonelementary group containing trans-
lations. If r contains a subgroup t of finite index, [r : t] = n, then r has a 
hyperbolic decomposition modulo t. Specifically r = U7=1 t Ai where the Ai are 
hyperbolic. 

PROOF. The hypotheses imply r = U7=1 t Bi where Bi E r. Using the preced-
ing remark we may without loss of generality assume that r = U7=1 t B i , where 
Bi = (~;~;) and Ii =I o. We will show that a hyperbolic Ai E r can be chosen 
such that t Bi .= t Ai. Let S = (& ~) E r. There exists a positive integer m such 
tha~ 9m E t. For any a E Z, we have 

sum Bi = (G:i + amA,i (3i + amA8i ) . 
Ii 8i 
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Hence 'lrace(S"mBi ) = 'lrace(Bi) + am>'li and we can choose a = ai such that 
'lrace(Bi) + aim>"i > 2. For this choice of ai, S"im Bi will be hyperbolic and 
t Bi = t S"im Bi. Putting Ai = s,,·m Bi we have the statement of the proposition. 

REMARK. There is an infinite number of choices of a for each i. This observation 
leads to the following lemma, which we state without proof. 

LEMMA 5. If F is a finite subset of the plane, then the Ai whose existence is 
quaranteed by Proposition 4 can be chosen such that the fixed points of Ai do not 
belong to F. 

We are now able to prove 

THEOREM 6. Let r be a real, discrete, nonelementary group containing trans-
lations such that 

1. r contains a subgroup t of finite index, [r : t] = n, 
2. f E {r,8,v} J and f E {t,8,v}, 
3. 4>v = flV - f is rational for all v E rand 8 =I- O. 

Then f E {r,8,v}. 

REMARKS. 1. Theorem 6 states that an automorphic integral whose period 
functions vanish on a large enough subgroup is actually an automorphic form on 
the whole group. 

2. The rationality of 4>v for all V E r implies 8 E Z. 
PROOF OF THEOREM 6. Let W E r. We will show that 4>w O. By 

Proposition 4 and Lemma 5 we have r = U7=1 t Ai with Ai hyperbolic and the 
fixed points of Ai are not zeros or poles of 4>w. For some i, WEt Ai and W = V Ai, 
VEt. Hence 4>w = 4>VA. = 4>vIAi + 4>Ai = 4>A. where we have used the second 
hypothesis. The first hypothesis implies the existence of a positive integer p such 
that Af E t. For any integer j we have 

4>Ai = 4> A{p IAi + 4>Ai = 4> A{p+l = 4>Ai IA{p + 4> A;P = 4>Ai IA{p. 

Thus 

(6) 

If 4>Ai(Z) is a constant, then since 8 =I- 0 we have 4>Ai(Z) == 0 and 4>w = O. If 4>A.(Z) 
is nonconstant then 4>Ai has a finite zero or pole Zoo It follows that v(A{P)[A{p : 
zo]°4>Ai!A{Pzo ) E {O,oo}, j E Z. There exists, at most, one value 3 E Z such 
that [A{P: zo] = O. Thus A{P(zo) is a zero or pole for an infinite set {j}. Moreover, 
{A;'P (zo)} is an infinite set since Zo is not a fixed point of Ai and Ai has infinite order 
as a transformation. Since 4> Ai (z) is nonconstant and rational we have obtained a 
contradiction. Therefore, 4> Ai (z) must be constant and, as shown above, identically 
zero and the theorem is proved. 

REMARKS. 3. Theorem 6 remains true when 8 = 0 as long as v == 1. 
PROOF. (6) reduces to 4>A.(Z) = 4>A.(A;'Pz ). If 4>Ai(Z) is a constant c, then 

c = 4>AP(Z) = p. c and c = 0 if p =I- 1. If p = 1, then 4>Ai = 0 by hypothesis 2. 
If 4> ~P (z) is nonconstant, then as in the proof above, a contradiction is obtained. 
4. Th~ following example shows that 8 must be nonzero in Theorem 6 if v =I- 1. We 

take for our group the modular group r (1) generated by S = (~ i) and T = (~ -01 ) . 
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The commutator subgroup 1" has index 6 and 1"\r(1) is the cyclic group of order 
6 generated by r's. The multiplier system, a character on r(1) in this case, is 
specified by v(8) = exp(7ri/3) and v(T) = -1. 

We choose f(z) == k~a nonzero constant, 8 = 0, and find 
¢s = flS - f = v(8)k - k = k(v(S) - 1). 

We also have 
<PT = fiT - f = v(T)k - k = k(v(T) - 1) = -2k. 

Applying the equation flV = f + ¢v to f = k yields v(V)k = k + <Pv. Since 
v(V) = 1 for all VEri we find that ¢v = ° for all VEri. Hence f = k E {r', 0, v} 
but since <Ps =I ° we see that f = k E {r(1),0,v} J - {r(1),0,v}. 

V. Modular integrals. We now confine our attention to modular integrals 
with rational period functions of even dimension with multiplier system identically 
1. Specifically, we consider functions f satisfying (cz + d)-2k f(V z) = f(z) + ¢v (z) 
where V E r(1) and ¢v is rational for all V E r(1). The cocycle {¢v} is determined 
by ¢s and ¢T where Sand T are the generators of r(1). We make the further 
assumption that ¢s = 0. Hence f(z + 1) = f(z) and {¢v} is determined by 
¢T = ¢ and the cocycle condition ¢vw = ¢v IW + ¢w. We have the relations 
T2 = (ST)3 = I, and using (1), we find 

(7) z-2k¢ ( ~1) + ¢(z) = 0, 
(8) ( -1 ) (z -1) (z - 1)-2k¢ Z _ 1 + z-2k¢ -z- + ¢(z) = 0. 

Equations (7) and (8) yield 

(9) (z + 1)-2k¢ (_z_) + ¢(z + 1) = ¢(z). 
z+1 

Equations (7) and (8) are necessary for the existence of a modular integral f E 
{r(1), -2k, 1} J with period function ¢ = ¢T and ¢s = 0. A generalized Poincare 
series construction shows them to be sufficient (see [2] for details). Since any two 
modular integrals with the same period function ¢ differ by a form, we conclude 
that the collection of "distinct" modular integrals with rational period functions 
is in one-to-one correspondence with the collection of rational period functions ¢. 
This observation motivates the study of the rational period functions ¢. We begin 
with some examples. 

If f E {r(1), -2k, 1} and F = f' / f, then F E {r(1), -2, 1} J with ¢v = 
-2kc/(cz + d). Hence ¢ = ¢T = -2k/z. In [5] Knopp constructs, for odd k, 
the function 

<P2k(Z) = (z - zO)-k(z + zb)-k + (z + zO)-k(z - zb)-k 
where Zo = (1 + v's)/2 and zb = 1/zo. ¢2k satisfies (7) and (8), hence there is a 
modular integral with period function ¢2k. 

Examination of the set of zeros and poles of a rational period function has proven 
useful and is the point view we adopt here. In this context Knopp has proven the 
following theorem: 
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THEOREM 7 (THEOREM 1 IN [4]). If p is a finite pole of any rational period 
function satisfying (7) and (8), then there is a squarefree n E Z+ such that p E 
Q(fo). Ifp E Q, then p = o. 

Using (7) we may, in a straightforward manner, deduce 

PROPOSITION 8. If ¢ is a rational function satisfying (7) and Zo r:J- {O, i, oo} is 
a zero (pole) of ¢, then -1/ Zo is also a zero (pole). 

Moreover, the orders of Zo and -1/ Zo are the same. The following theorem gives 
necessary conditions, which are easily checked, for a rational function to be a period 
function of some modular integral of dimension -2k. 

THEOREM 9. If 

¢(z) = r(z) = anzn + ... + anozno 
s(z) bmzm + ... + bmozmo 

is a rational function satisfying (7) and (8), then 2k = (rn + rno) - (n + no). 

REMARK. We assume r(z) and s(z) are relatively prime. In particular no·mo = 
o. 

PROOF OF THEOREM 9. Equation (7) yields 

(10) ¢( -1/ z) 2k 
-¢(z) = -z . 

If s(z) = czmo n~l (Z-Zi)Qi, then by Theorem 7 and Proposition 8 we have z) i=- 0, 
i and -l/z) = Zl, with (}:) = (}:l. Hence 

8 C1) ~ H)~"z -'~"-l:;:""i (U (-Zj)"}(Z) 

Similarly if r(z) = Azno n7=0(z - w) ),I3j, then 

, (-;,1) ~ (-1)"" Z -'""-l:;~" Pi (U (-Wj)"i) ,(z) 

and (10) becomes 

(_l)(no+mo) n~=o( -W)),I3j . z2mo+ 2::~=o Q- (2no+ 2::;=0,l3j) = _z2k. 
nj=o(-Z))Qj 

Since rno + 2::7=0 (}:) = rn and no + 2::7=0 (3) = n we find 

nn (-w),I3j 
(rn + rno) - (n - no) = 2k and (-lto+mo :=0 = -l. Hi=o( -Z))Qj 

The proof is complete. 
REMARK. If we replace z by z -1 in (9) and differentiate, then upon evaluation 

at z = 1 we find 2k = ¢'(1)/¢(0) provided ¢(O) r:J- {O, oo}. 
According to Theorem 7, the irrational poles of a rational period function lie 

in Q( fo) for some squarefree n. Given a rational period function ¢ with poles 

AUTOMORPHIC INTEGRALS AND THEIR PERIOD FUNCTIONS 409 

THEOREM 7 (THEOREM 1 IN [4]). If p is a finite pole of any rational period 
function satisfying (7) and (8), then there is a squarefree n E Z+ such that p E 
Q(fo). Ifp E Q, then p = o. 

Using (7) we may, in a straightforward manner, deduce 

PROPOSITION 8. If ¢ is a rational function satisfying (7) and Zo r:J- {O, i, oo} is 
a zero (pole) of ¢, then -1/ Zo is also a zero (pole). 

Moreover, the orders of Zo and -1/ Zo are the same. The following theorem gives 
necessary conditions, which are easily checked, for a rational function to be a period 
function of some modular integral of dimension -2k. 

THEOREM 9. If 

¢(z) = r(z) = anzn + ... + anozno 
s(z) bmzm + ... + bmozmo 

is a rational function satisfying (7) and (8), then 2k = (rn + rno) - (n + no). 

REMARK. We assume r(z) and s(z) are relatively prime. In particular no·mo = 
o. 

PROOF OF THEOREM 9. Equation (7) yields 

(10) ¢( -1/ z) 2k 
-¢(z) = -z . 

If s(z) = czmo n~l (Z-Zi)Qi, then by Theorem 7 and Proposition 8 we have z) i=- 0, 
i and -l/z) = Zl, with (}:) = (}:l. Hence 

8 C1) ~ H)~"z -'~"-l:;:""i (U (-Zj)"}(Z) 

Similarly if r(z) = Azno n7=0(z - w) ),I3j, then 

, (-;,1) ~ (-1)"" Z -'""-l:;~" Pi (U (-Wj)"i) ,(z) 

and (10) becomes 

(_l)(no+mo) n~=o( -W)),I3j . z2mo+ 2::~=o Q- (2no+ 2::;=0,l3j) = _z2k. 
nj=o(-Z))Qj 

Since rno + 2::7=0 (}:) = rn and no + 2::7=0 (3) = n we find 

nn (-w),I3j 
(rn + rno) - (n - no) = 2k and (-lto+mo :=0 = -l. Hi=o( -Z))Qj 

The proof is complete. 
REMARK. If we replace z by z -1 in (9) and differentiate, then upon evaluation 

at z = 1 we find 2k = ¢'(1)/¢(0) provided ¢(O) r:J- {O, oo}. 
According to Theorem 7, the irrational poles of a rational period function lie 

in Q( fo) for some squarefree n. Given a rational period function ¢ with poles 



410 R. A. CAVALIERE 

in Q( y'n) we will obtain a lower bound on the number of such poles. The exact 
statement appears in Theorem 13. 

If P is a pole of ¢ and P E Q( y'n) - Q, then by (9) VIP is also a pole where 
VI = 8 = (~~) or VI = V = n ~). Similarly V2VIP is a pole where V2 E {8, V}. 
Since ¢ has only a finite number of poles, there exist integers m > 1 ~ 0 such that 
V m V m-I ... VIP = Vi Vi-I' .. VIP. We may assume m and 1 are the smallest integers 
with the stated property. Hence ¢ has at least m poles. 

If p' = Vi··· VIP then p' E Q(y'n) is a fixed point of VmVm- I ··· Vi+! = (~~) 
and we must have (a + d)2 - 4 = j2n for some j E Z. As n grows so must a + d 
and, because of the special form of the Vi, 1 + 1 ~ i ~ m, so must the length of 
the factorization V m V m-I ... Vi+!. However, the length of this factorization has a 
direct bearing on the number of poles and a lower bound will result. In order to 
implement this scheme, the relationship between V m V m-I ... Vi+! and n must be 
determined. We begin with two lemmas. 

LEMMA 10. Ifr E Z+ and (8VY = (~;~;), then ar = lr + br and lr = fir· 

The proof is by induction on r (see [1]). 

LEMMA 11. If (~; ~:) = W2r (8, V)-a word of length 2r in 8 and V with only 
positive exponents, then 

Max {ar+!, br+ l , Cr+I, dr+tl = Max {ar + br + Cr + dr }. 
W2(r+l) (s,v) W2r(S,v) 

PROOF. Every word W 2(r+!) (8, V) with positive exponents has the form 
W2(r+I)(8, V) = VIW2r(8, V)V2 with V!, V2 E {8, V}. Calculation of the four 
possibilities completes the proof (see [1]). 

THEOREM 12. Let W 2r (8, V) be a word of length 2r in 8 and V in which only 
positive exponents occur. If 

W2r (8, V) = (:: !:) and (8VY = (ar fir) 
lr br ' 

then for fixed r 

(i) 

(ii) 

(iii) 

(iv) 

(v) 
The proof is by induction on r and uses Lemmas 10 and 11. We are indebted to 

Peter Waterman and Robert Styer for the proof of Theorem 12 (see [1]). We can 
state our final result. 

410 R. A. CAVALIERE 

in Q( y'n) we will obtain a lower bound on the number of such poles. The exact 
statement appears in Theorem 13. 

If P is a pole of ¢ and P E Q( y'n) - Q, then by (9) VIP is also a pole where 
VI = 8 = (~~) or VI = V = n ~). Similarly V2VIP is a pole where V2 E {8, V}. 
Since ¢ has only a finite number of poles, there exist integers m > 1 ~ 0 such that 
V m V m-I ... VIP = Vi Vi-I' .. VIP. We may assume m and 1 are the smallest integers 
with the stated property. Hence ¢ has at least m poles. 

If p' = Vi··· VIP then p' E Q(y'n) is a fixed point of VmVm- I ··· Vi+! = (~~) 
and we must have (a + d)2 - 4 = j2n for some j E Z. As n grows so must a + d 
and, because of the special form of the Vi, 1 + 1 ~ i ~ m, so must the length of 
the factorization V m V m-I ... Vi+!. However, the length of this factorization has a 
direct bearing on the number of poles and a lower bound will result. In order to 
implement this scheme, the relationship between V m V m-I ... Vi+! and n must be 
determined. We begin with two lemmas. 

LEMMA 10. Ifr E Z+ and (8VY = (~;~;), then ar = lr + br and lr = fir· 

The proof is by induction on r (see [1]). 

LEMMA 11. If (~; ~:) = W2r (8, V)-a word of length 2r in 8 and V with only 
positive exponents, then 

Max {ar+!, br+ l , Cr+I, dr+tl = Max {ar + br + Cr + dr }. 
W2(r+l) (s,v) W2r(S,v) 

PROOF. Every word W 2(r+!) (8, V) with positive exponents has the form 
W2(r+I)(8, V) = VIW2r(8, V)V2 with V!, V2 E {8, V}. Calculation of the four 
possibilities completes the proof (see [1]). 

THEOREM 12. Let W 2r (8, V) be a word of length 2r in 8 and V in which only 
positive exponents occur. If 

W2r (8, V) = (:: !:) and (8VY = (ar fir) 
lr br ' 

then for fixed r 

(i) 

(ii) 

(iii) 

(iv) 

(v) 
The proof is by induction on r and uses Lemmas 10 and 11. We are indebted to 

Peter Waterman and Robert Styer for the proof of Theorem 12 (see [1]). We can 
state our final result. 



AUTOMORPHIC INTEGRALS AND THEIR PERIOD FUNCTIONS 411 

THEOREM 13. Let ¢(z) be a rational function satisfying equations (7) and (8) 
and such that ¢( z) has a pole in Q( y'n) - Q for some squarefree n. If a is the 
number of poles of ¢ in Q( y'n), then 

a> 2 (lOgn -10g 4A2) 
log A2 

3+V5 
where A2 = --2-· 

PROOF. By the discussion preceding Lemma 10, with an obvious change in nota-
tion, we may infer the existence of a pole Zo = VtVt-l ... VIP and a positive integer 
p = m-lsuch that MpMp_l ... MlZO = Zo and Zo, M1zO, M2MlZO, ... , Mp- l Mp- 2 
... MIZO are poles of ¢ where Mi = Vt+i E {S, V}. If Mp··· Ml = (~~) then 

(a - d) ± vi (a + d)2 - 4 
~= 2c . 

It follows that (a+d)2 -4 = j2n with the result that n l / 2 < a+d. Now a+d is the 
trace of a word in S and V oflength p in which only positive exponents occur. If pis 
even, then we may invoke Theorem 12(v) to find a+d ::; Trace((SV)p/2). If p is odd 
then we have a + d ::; Trace((SV)(p+1)/2) since the trace is an increasing function 
of word length for the type of words considered here (all positive exponents). 

The eigenvalues of SV are 

Al = 3 -2 V5 and A2 = 3 +2 V5. 

With 

M = (l-~Y5 l+~Y5 ) 
we obtain M-l(SV)M = (~' >.02 ). We may now calculate the trace of any power 
of SV as 

Trace((SVY) = Trace ( M (~1 ~2) M- l ) = A~ + A2 < 2A2· 

It follows that 

Hence 

n 1/ 2 < a + d ::; Trace ( (SVy/2) < 2A~/2, p even, 

logn -10g4 
p > l' ' P even, ogA2 

logn -10g4 
p > 1 A - 1, p odd. 

og 2 
By equation (7) we may assume without loss of generality that Zo > 0 and thus we 
have at least p positive poles. Equation (7) implies that we have at least this many 
negative poles and the proof is complete. 

REMARK. When n = p, a prime, we obtain a greater lower bound. j2p = 
(a + d)2 - 4 = (a + d + 2)(a + d - 2) and p - 2::; a + d. We find, if p 1= 2 

p - 2 < A~/2 and 2log((P - 2)/2) < p if p is even, 
2 log A2 
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p - 2 < 2). (p+1)/2 
2 2 and 2 log((P - 2)/4) 1 

log >'2 - < p 

a> 2 (2l0g((P - 2)/4) - 1) . 
log >'2 
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