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THE ISOMETRY GROUPS OF MANIFOLDS 
AND THE AUTOMORPHISM GROUPS OF DOMAINS 

RITA SAERENS AND WILLIAM R. ZAME 

ABSTRACT. We prove that every compact Lie group can be realized as the 
(full) automorphism group of a strictly pseudoconvex domain and as the (full) 
isometry group of a compact, connected, smooth Riemannian manifold. 

1. Introduction. Given an instance of a mathematical structure, we are led 
to ask for its group of symmetries; i.e., the group of structure-preserving self-
transformations. The inverse problem is to ask which groups can occur as the 
group of symmetries of a given kind of structure. 

In this paper, we consider two such inverse problems: 
(a) Which groups occur as the (full) group of isometries of a compact, connected 

Riemannian manifold? 
(b) Which groups occur as the (full) group of (biholomorphic) automorphisms 

of a strictly pseudoconvex domain? 
Definitions will be given below. 
We recall that Myers and Steenrod [22] have shown that the isometry group 

of a Riemannian manifold is a Lie group. This group is compact if the manifold 
is compact. Cartan [7] has shown that the automorphism group of a bounded 
domain (i.e., a connected, open subset of en) is a (real) Lie group. If the domain 
is strictly pseudoconvex and not biholomorphically equivalent to the ball, Wong 
[26] and Rosay [24] have shown that its automorphism group is compact. (The 
automorphism group of the ball in en is the special unitary group associated with 
a certain indefinite inner product on en +!, see [18].) 

Thus our questions are completely answered by the following results. 

THEOREM 1. Every compact Lie group can be realized as the (full) group of 
isometries of a compact Riemannian manifold. 

THEOREM 2. Ever compact Lie group can be realized as the (full) group of 
automorphisms of a strictly pseudoconvex domain. 

(We stress that we are interested in the full group of isometries or automorphisms. 
It is quite easy to realize a compact Lie group as a subgroup of such groups.) 

These two results, which on the face of it seem unrelated, are in fact connected. 
This may not seem surprising; after all, the use of techniques from Riemannian 
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geometry to study problems in complex analysis is by now well established. In 
particular, Bedford [lJ and Greene and Krantz [13, 14J have studied automorphism 
groups of domains by passing to appropriate Riemannian manifolds. This suggests 
trying to solve the Riemannian problem first. A natural attempt runs as follows. 
First construct a compact Riemannian manifold M, with metric /, on which the 
compact Lie group G acts by isometries; then perturb / in such a way that the 
isometries in G are preserved and all the other ones are eliminated. To do this, one 
is led to construct a G-invariant metric /' on M with the following property: 

If x, y E M and y does not belong to the G-orbit of x, then the 
curvature of /' is different at x and at y. 

This can always be accomplished (by combining methods of Ebin [10J with a 
transversality argument) provided the dimension of M is sufficiently large (com-
pared with the dimension of G). Unfortunately, this property only guarantees that 
every isometry of /' respects the orbit structure of G; it does not guarantee that 
the isometries of /' actually belong to G. 

However, similar ideas do work in the complex-analytic case. We use the local 
holomorphic curvature invariants of the boundary of a domain, a la Burns, Shnider, 
and Wells [6J (instead of the curvature of a Riemannian metric) to construct a 
strictly pseudoconvex domain D with the property that all the automorphisms of 
D leave G-orbits invariant. In the complex analytic case, this rigidity turns out to 
be enough to guarantee that all the automorphisms of D actually belong to G; i.e., 
G is realized as the full automorphism group of D. 

The solution to the Riemannian problem is obtained from the solution to the 
complex-analytic one. To do so, we construct-following an idea of Greene and 
Krantz [13J-a special metric on the double M of D. The construction guarantees 
that the isometry group of M is a finite extension of G and that every isometry of 
M which is not in G moves an orbit of G. We can then slightly perturb the metric 
on M to eliminate the unwanted isometries, and realize the group G as the full 
isometry group. 

The remainder of the paper is organized in the following way. In §2, we collect 
the information we need about strictly pseudoconvex domains, boundary behavior 
of biholomorphic mappings and Chern-Moser invariants. The proof of Theorem 2 
is given in §3. In §4, we collect some information about Riemannian geometry and 
the Bergman metric. The proof of Theorem 1 is given in §5. 

After this paper was written, we received preprints of two papers by Bedford 
and Dadok [2, 3J who have obtained the same results by different methods. 

2. Complex-analytic background. In this section we collect the information 
we shall need from the theory of several complex variables. In the interest of brevity, 
we shall give it in the form most suited to our context. For further information, 
see the book of Krantz [18], the survey paper by Burns and Shnider [5], and the 
papers cited below. 

Let U be a domain (bounded, connected open set) in cn (n ~ 2). A smooth 
(i.e., Coo -) function rp: U -+ R is strictly plurisubharmonic if the Levi 2-form 

L a2rp -
Lrp = a a- dZi 1\ dZj Zi Zj 
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is positive definite. A domain D with smooth (i.e., Coo_) boundary is strictly pseu-
doconvex if there is a domain U containing the boundary bD of D and a strictly 
plurisubharmonic function cp on U such that D n U = {cp < O}, and dcp is nonvan-
ishing on bD. 

For our purpose, the crucial fact about strictly pseudoconvex domains is the 
following result of Fefferman [11]. 

THEOREM. Let D1 and D2 be strictly pseudoconvex domains with smooth bound-
aries, and let h: D1 ~ D2 be a biholomorphic mapping (i. e., a holomorphic map-
ping with a holomorphic inverse). Then h extends to a Coo -diffeomorphism 

h: D1 ~ D 2· 

Fefferman's theorem reduces many questions about biholomorphic mappings be-
tween strictly pseudoconvex domains D1 and D2 to corresponding questions about 
CR-diffeomorphisms between their boundaries bD1 and bD2. (A CR-mapping 
f: bD1 ~ bD2 is a smooth mapping such that the restriction of (df)x to the maxi-
mal complex tangent space of bD1 at x is complex-linear for each x E bD1 (see [6]). 
This is equivalent to requiring f to satisfy the tangential Cauchy-Riemann equa-
tions.) The study of the existence of CR-diffeomorphisms goes back to Poincare 
[23]. Obstructions to the existence of such mappings have been found by Cartan [7] 
and Chern and Moser [8]. These obstructions are invariants of the local holomor-
phic curvature of the boundary hypersurfaces. Using Moser's normal form, Burns, 
Shnider and Wells [6] constructed scalar curvature invariants in a form which is 
convenient for our use. 

To describe these invariants, it is convenient to work in en +1, with n 2: 2. We 
write e n+1 = en x e, where Z1, ... , Zn are the variables in en and w = u + iv is 
the last variable. We consider the hypersurface {cp = O} near the origin (assuming 
that cp(O) = 0). After a formal power series transformation, the defining function 
cp may be written in normal form, i.e., 

cp = u - (z, z) - L Np,q 
p,q2:2 

where ( ,) is the standard inner product on en, and Np,q is a polynomial of type 
(p, q) in Z whose coefficients are formal power series in u; i.e., 

N = '\"' N r> r> (u)za 1 ... zap Z{31 ... z{3q p,q ~ Ct'l"'O"p,,ul"''''''q , 

with 
N (u) = '\"' Nj uj . al ... a p,{31 ... {3q ~ al ... a p,{31 ... {3q 

j2:0 

(There are certain normalizations, which we omit.) The origin is called an umbilic 
point if ~ IN21a2,{31{3212 = 0; otherwise, the origin is nonumbilic. (These notions 
are independent of the normal form of cp and are invariant under biholomorphic 
transformations.) If the origin is nonumbilic, certain other normalizations may be 
made; when this is done, the representation of cp is said to be in restricted normal 
form. With cp in restricted normal form the curvature invariants we seek are defined 
for j 2: 0, p 2: q 2: 2, p 2: 3 by 
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(The normalizations are irrelevant for our purposes; for details, see [6J.) 
Burns, Shnider, and Wells show that the restricted normal form is essentially 

unique. For our purposes, this is irrelevant; all we shall need is that the scalars 
K~,q are invariants of the local CR-structure of the hypersurface {tp = O} near the 
origin. More precisely, if {'!jJ = O} is another such hypersurface (with tp, '!jJ strictly 
plurisubharmonic and tp(O) = 0, '!jJ(0) = 0), and the origin is nonumbilic in each 
hypersurface, then the existence of a CR-diffeomorphism f of a neighborhood of 
the origin in (tp = 0) with a neighborhood of the origin in {'!jJ = O} (sending the 
origin to itself) implies that Kt,q (tp) = Kt,q ('!jJ). 

Three remarks need to be made. The first is that these curvature invariants are 
only defined at nonumbilic points. However, when n :::=: 3 the set of umbilic points 
is generically empty (see [6, p. 246]). In the dimensions in which we work, this 
means that we shall be able to avoid umbilic points entirely. The second remark 
is that the property of being nonumbilic depends only on the jet of the function tp 
of order 4, and the scalar curvature functions Kt,q depend only on the values (at 
the origin) of the function tp and its derivatives up to order p + q + 2j. We may 
feel free therefore to speak of umbilic or nonumbilic jets (of order at least 4) and to 
view Kt,q as a function on jets (of order at least p + q + 2j). Finally, the functions 
K~,q are real-analytic (in fact polynomial) functions of the jet-variables. 

3. The automorphism groups of domains. For D a domain in en, we 
write Aut(D) for the group of biholomorphic automorphisms of D. The object of 
this section is to prove Theorem 2. 

The plan of the proof is to first construct a domain on which G acts by au-
tomorphisms, and then to find a strictly pseudoconvex subdomain Do which is 
G-invariant. By using a transversality argument, we then find a perturbation D 
of Do with the property that points of bD which belong to distinct orbits of G 
have different Burns-Shnider-Wells curvature invariants. We then show that this 
boundary rigidity is enough to guarantee that Aut(D) = G. 

PROOF. To construct a domain on which G acts by automorphisms, we first 
use the Peter-Weyl Theorem to imbed G in the complex unitary group U(n) (for 
some n). We view U(n) as a subgroup of the general linear group GL(n), which 
may be identified with a domain in en2 . We then view G as acting on the domain 
GL(n) X em in en2+m by multiplication in the first factor. (For the moment we 
leave the integer m unspecified, but it will be chosen later to be very large.) Since 
matrix multiplication is holomorphic, G acts on GL(n) X em by automorphisms. 
It will be convenient to denote points in GL(n) X em as (z,w) with z = (Zij) and 
w = (Wk)' This completes the first step. 

To construct a G-invariant strictly pseudo convex domain Do in GL(n) X em 
which contains U(n) X {O}, we consider the real-valued function tp defined on 
GL(n) X em by 

tp (z, w) = Idet(z)I~2 + L IZijl2 + L IWkl2 . 

It is easily checked that tp is strictly plurisubharmonic and is an exhaustion function 
for GL(n) X em in the sense that the sublevel sets {tp :::; t} are compact for each t. 
We now average tp over the group G to obtain tpo, 

tpo(Z,w) = ictp(g·z,w)dg 
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(where dg is the Haar measure on the compact group G). The function 'Po is also a 
strictly plurisubharmonic exhaustion function for GL(n) X em, and is G-invariant. 
Sard's theorem guarantees that most real numbers are regular values of 'Po; since 
'Po is an exhaustion function, we may find a T such that d'Po is nonvanishing on 
{'Po = T} and U(n) X {O} C {'Po < T}. Let Do be the connected component of 
{'Po < T} which contains U (n) X {O}. Since U (n) x {O} and {'Po < T} are invariant 
under the action of G, so is Do. Since T is a regular value of 'Po and 'Po is a strictly 
plurisubharmonic function, Do is a strictly pseudoconvex domain. This completes 
the second step. 

The third step is to construct a small, G-invariant perturbation D of Do which 
has the property that points of bD belonging to distinct orbits of G are distin-
guished by the Burns-Shnider-Wells local holomorphic curvature invariants of bD. 
We will use a transversality argument to construct D as a sublevel set of a G-
invariant strictly plurisubharmonic function. Note that a G-invariant function on a 
subset of GL(n) X em is essentially the same thing as a function on a subset of 
(GL(n) X em)IG; it is convenient to work in the latter space. 

Let U be an open G-invariant neighborhood of bDo. By choosing U small enough, 
we may assume that d'Po is nonvanishing on U. Since G acts by left multiplication 
in the first factor, the quotient space U IG is a real-analytic manifold which may 
be identified with an open subset of (G L (n) I G) X em; let 7r: U ---> U I G be the 
real-analytic quotient map. 

Denote by J(U IG) the family of smooth functions f: U IG ---> R such that f 07r is 
strictly plurisubharmonic on U and d(fo7r) is nonvanishing on U. Note that J(U IG) 
is an open subset of Coo (U I G) (since strict plurisubharmonicity and nonvanishing 
of the differential are open conditions) and is not empty (since the G-invariant 
function 'Po induces on U IG a smooth function which belongs to J(U IG)). Note 
that for f E J(U IG), the function f 0 7r is G-invariant on U. 

For each r ~ 4, let JT(U) denote the bundle of jets of order r of real-valued 
functions on U; we write JT(U)x for the fiber of JT(U) at x. Let JO(U) denote the 
open subset of JT(U) consisting of jets J;('lj;) such that 'lj; is strictly plurisubhar-
monic near x and (d'lj;)x =I- O. We let JT(UIG) be the bundle of jets of order r of 
real-valued functions on U IG, and denote by Jo(U IG) the open set of jets j;( 'lj;) for 
which 'lj; 0 7r is strictly plurisubharmonic near 7r- 1 (x) and d( 'lj; 0 7r) =I- 0 on 7r- 1 (x). 
Note that JT(U) and JT(U IG) are real-analytic bundles and that the quotient map 
7r: U ---> UIG induces a real-analytic map 7r:: JT(U) ---> JT(UIG) (see [12, p. 39]), 
and that 7r:(Jo(U)) :::J Jo(UIG). 

Let So denote the set of umbilic jets in Jo(U) (recall the comment of §2). We 
will say that a jet J; ( 'lj;) E Jo (U I G) is umbilic if j; ( 'lj;) E 7r: (So); this is equivalent 
to saying that 'lj; 0 7r is umbilic at each point of 7r- 1 (x). (Recall that G acts by 
holomorphic automorphisms on U, hence 'lj; 0 7r is umbilic at all points of 7r- 1 (x) 
if it is so at one point of 7r- 1 (x).) Denote the set of umbilic jets in Jo (U I G) by Eo. Since the Burns-Shnider-Wells curvature functions Kt,q depend only on the 
jet of order p + q + 2j and are biholomorphic invariants (at nonumbilic points) we 
can also define curvature functions Kp,q on J[(UIG) = Jo(UIG) - Eo by setting 
Kp,q(j;('lj;)) = K~,q(j;('lj;07r)) for any y E 7r- 1 (x), provided that p+q ::::; r, p> q ~ 
3. (We shall have no use for the other curvature functions Kt,q.) Let S;,q <:;; JO(U) 
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be the zero set of K2,q in Jo(U) - So and let E;,q be the zero set of Kp,q in 
J(j(U IG) - Eo· 

Since we are going to use a transversality argument in Jo(U IG), we need some 
information about the sets Eo and E;,q. In [6] it is shown that each of the sets So 
and S;,q is a smooth submanifold, and the exact codimensions are calculated. Such 
precise information is not readily available for the sets Eo and E;,q; fortunately, 
we can do with less. What we need, in essence, is to be sure that the jets jT (I) of 
most functions f E 1(U IG) miss the sets Eo and E;,q. 

It will help to recall two facts from real-analytic geometry: (A) every real-
analytic variety is the union of count ably many real-analytic manifolds; (B) the 
image of a real-analytic variety under a real-analytic mapping is the union of 
countably many real-analytic manifolds. (Fact (A) is due to Whitney; see [19] 
for example. Fact (B) is well known, but since there seems to be no convenient 
reference, we give a sketch. Note that the assertion is local and that by fact (A) it 
is enough to consider real-analytic manifolds, so let f: R 8 --+ Rt be real-analytic 
and let X = {x E R8: rank(df)x = t}. Then X is open and f(X) is open in Rt. 
The set R 8 - X is a real-analytic variety and hence is the union of manifolds; let X' 
be any of these manifolds and choose a point x E X' where (d(llx/))x has maximal 
rank-say r < t. In a neighborhood Y of x in X', flxl may be written as a function 
of r of the coordinates, so the image f(Y) will be an r-dimensional submanifold of 
Rt. Continuing downward in this fashion yields the result.) 

We now look at Eo; we want to show that it is contained in the countable union 
of real-analytic submanifolds of high codimension, provided that m and r are chosen 
appropriately. Since Eo is contained in 7f~(S(j), we need only prove that 7f:(So) is 
contained in the countable union of submanifolds of high codimension. Since a jet 
in Jo(UIG) lies in 7f:(So) if and only if its truncation in J~(UIG) lies in 7f!(S~) 
(because the property of being umbilic depends only on jets of order 4), it suffices 
to consider 7f!(S~). Now, it is shown in [6] that S~ is a real-analytic subvariety of 
J~(U); by fact (B) above, 7f~(S~) is a countable union of submanifolds of J~(U IG). 
Moreover in [6] the codimension of S~ in J~(U) is shown to be ~(t-l)2t2 - (t-l)2, 
where t = n 2 + m = dimc(U). Thus the codimension of 7f!(S~) in J~(UIG) (i.e., 
the minimal codimension of a submanifold of 7f! (S~)) is at least 

For our purposes it is enough to note that (since t = n 2 + m) this codimension is 
of the form ~m4 - Ao where Ao is an expression in n, m and dim G which involves, 
no terms in m of higher order than m 3 . Since n and dim G are fixed and we are free 
to choose m as large as we like, we can guarantee that the codimension of 7f!(S~) 
in J~(uIG) is at least m 3 . In view of our previous remark this means that the 
codimension of 7f:(So) in Jo(UIG) is at least m3 (if m is large enough), and this 
estimate is independent of r. 

We now use the same trick on E;,q (for p > q 2: 3 and p + q ::; r). Since E;,q is 
the zero set of a real-analytic function, it is a real-analytic subvariety of J[(U IG). 
Moreover, S;,q is a smooth real-analytic subvariety of J[(U) = Jo(U) - So of 
co dimension 2(t+P-2) (t+ q -2) t-2 t-2 
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(see [6]), and 7r~(S;,q) ::::J E~,q. As before, we may calculate the co dimension of 
7r~+q (S$,tq) in Jf+q (U I G) and conclude that this is at least the codimension of 
E~,q in Jl(UIG), since vanishing of K~,q depends only on jets of order p + q. A 
little care must be exercised here, but it may be seen that: if m is sufficiently large 
then the codimension of E~,q in Jl(U IG) is at least m3 whenever p > q ~ 3. (There 
is nothing special about m3 here; we could do better by several powers of m, but 
this agrees with the estimate for Eo, and is more than adequate for our purposes.) 
We will also need to take m3 > 2(n2 + m). 

We now fix m sufficiently large (as above) and write E = EO' U U E~q, where 
the second union extends over all p, q with p > q ~ 3, p + q ::::; m. By the 
above, E is a countable union of real-analytic submanifolds of JO'(U IG) each of 
which has codimension at least m 3 . Note that the real dimension UIG is at most 
2t = 2(n2 + m), so Thorn's jet transversality theorem (see [12]) guarantees that 
there is a dense G8-set E in J(U IG) such that for each 1 E E the jet jm(f) is 
transversal to each submanifold of E. In these dimensions, this means that jm(f) 
misses E entirely. 

We let J~(U IG) = Jr(U IG) - E. By letting m be sufficiently large, we can 
choose 2t + 1 = 2 (n 2 + m) + 1 distinct curvature functions K 1, ... , K 2t+1, where 
each Ks = Kp. ,q. for Ps > qs ~ 3, Ps + qs ::::; m, such that 

- - - 2t+1 K = (K1"'" K2t+d: JY'(U IG) --> R 
has maximal rank (since some K = (Kl, ... , K2t+d has maximal rank in each 
fiber when only the em-variables are considered; see [6]). Let ~ be the diagonal of 
R2t+1 xR2t+1; then (K, K)-1(~) is a submanifold of JY'(UIG) of co dimension 2t+ 
1. Mather's multijet transversality theorem then implies that there is a dense G8-set 
E' in J(UIG) such that for each 1 EE', the jet jm(f) misses E, and (jm(f),jm(f)) 
is transversal to (K,K)-1(~) (intersections computed in Jo(UIG) X Jo(UIG)). In 
these dimensions, this means that (jJ:(f),j;:(f)) is not in (K,K)-1(~) if x =1= y. 

Define the function 10 E J(U IG) by 10 07r = ipo; by the above, we can find 
a function 1 E J(U IG) arbitrarily close to 10 such that jm(f) misses E and 
(jm(f), J'm(f)) is transversal to (K, K)-1(~). Set ip = 1 07r and let Xo E bDo; then 
the level set {x E U: ip(x) = ip(xo)} is a hypersurface close to bDo, so this level 
set bounds a domain D in GL(n) X em. Since ip is close to ipo, this domain D is 
strictly pseudoconvex. Since ip = 10 7r is a G-invariant function, D is a G-invariant 
set. Moreover, for each pair of points x, y E bD with y 1:. G . x, our construction 
guarantees that the scalar curvature invariants K1"'" K2t+l do not all agree at x 
and y. This completes the third step. 

The fourth step is simply to observe that if h is a holomorphic automorphism of 
D then the extension h of h to D preserves the holomorphic curvature invariants. 
Hence if x, y E bD and y 1:. G· x, it cannot be the case that h(x) = y. Equivalently, 
for every automorphism h E Aut(D), the mapping h: D --> D leaves invariant 
all the orbits of G which lie in bD, and hence leaves invariant all the G-invariant 
subsets of bD. 

The fifth step is to show that all the automorphisms of D leave invariant all the 
orbits of G inside D; i.e., for xED, h E Aut(D) there is a (unique) 9 E G with 
h(x) = g. x. To do this, we need some information about the way U(n) and G sit 
in GL(n). 
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Let us view elements of GL(n) as linear transformations on en, and equip en 
with its usual inner product. Then a matrix y E GL(n) is unitary if and only if 
Ilzll = liz-III = 1, where Ilzll is the norm of z as a linear transformation; i.e., 

Ilzll = sup{l(zO',T)I: O',T E en, 110'11 = IITII = 1}. 

Hence for each Zo E GL(n) which does not belong to U(n), there are vectors 
0', TEen with 110'11 = IITII = 1 such that either I (zoO', T)I > 1 or I (zOIO', T)I > l. 
Because the maps z --+ z-I and z --+ (zO', T) are holomorphic on GL(n), we conclude 
in either case there is a holomorphic function F on GL(n) such that F(zo) > 
1, while IF(z)1 :::; 1 for each z E U(n). It now follows from a result of Bjork 
[4, Theorem 6.1J that every continuous complex-valued function on U(n) can be 
uniformly approximated by restrictions to U(n) ofholomorphic functions on GL(n). 
As a consequence, it follows that for each Zo E GL(n) which does not belong to G, 
there is a holomorphic function F on GL(n) such that F(zo) > 1 while IF(g)1 :::; 1 
for each 9 E G. (If Zo 1:. U (n), we have constructed such a function above; if 
Zo E U(n), we simply find a continuous function on U(n) with the desired property 
and then approximate it sufficiently well by a holomorphic function on GL(n).) 

Now let h be an automorphism of D, let (zo, wo) E D, and write h(zo, wo) = 
(z*, w*); we want to show that there is a unique element 9 E G such that 9 . 
(zo, wo) = (g. zo, wo) = (z*, w*). To do this, we first show that z* = g. Zo (for 
some 9 E G). If this were not so, we could choose---by the above---a holomorphic 
function F on GL(n) such that F(z*zOI) > 1 and IF(g)1 :::; 1 for each 9 E G. 
Define a holomorphic function FI on GL(n) x em by FI(z,w) = F(ZZOI), so that 
FI(Z*,W*) > 1 and IFI(g· zo,w)1 :::; 1 for each 9 E G, wE em. Set 

X = {(g. zo,w) E GL(n) x em: 9 E G, wE em}, 

so that IFII :::; 1 on X. Write h for the smooth extension of h to the closure 
D of D, and set Y = h(X n D). Evidently, X n D is the union of complex 
submanifolds with boundary of D, so Y is also the union of such submanifolds 
with boundary. The maximum principle for holomorphic functions implies that 
IFI (y) I :::; sup{ IFI (y') I : y' E Y n bD} for each y E Y. On the other hand, X n bD 
is obviously a G-invariant subset of bD; hence (by the previous step) we conclude 
that Y n bD = h(X n bD) = X n bD, which implies IFI(y)1 :::; 1 for each y E Y. In 
particular, IFI (z*, w*)1 = IFI (h(zo, wo))1 :::; 1 which is a contradiction. We conclude 
that z* = 9 . Zo for some 9 E G, as asserted. 

Next we show that w* = woo To see this, we simply note that V = {(z, w) E D: 
w = wo} is a complex submanifold with boundary of D whose boundary lies in bD 
and is G-invariant. Hence h(V) is also a submanifold with boundary of D and 
h(V) n bD = V n bD. As before, this means that 

If(y)1 :::; sup{lf(y')I: y' E h(V) n bD = V n bD} 

for each holomorphic function f on G L (n) X em. Since the functions (z, w) --+ 
Wk - (WO)k are holomorphic on GL(n) x em and vanish on V, we conclude that 
they also vanish on h(V). Since (z*,w*) E h(V), we conclude that (W*)k = (WO)k 
for each k; i.e., w* = Wo, as asserted. Thus, (z*,w*) = g. (zo,wo) = (g. zo,wo) for 
some 9 E G. 
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It remains to show that 9 is unique; this is clearly the case since G acts by 
multiplication in the first factor. This completes the fifth step. 

The final step is to show that Aut(D) = G; i.e., for each hE Aut(D), there is a 
9 E G with h(z, w) = g. (z, w) for each (z, w) ED. To see this, fix an automorphism 
h. For each (z, w) ED, let g(z, w) be the unique element of G-constructed in the 
previous step~for which h(z,w) = g(z,w)· (z,w) = (g(z,w)· z,w). We may then 
write h(z,w) = (h 1 (z,w),w), where hi is a holomorphic function from D into 
GL(n). Multiplying on the right by z-l yields g(z,w) = h1(z,w) . z-l for each 
(z,w) E D. Hence the map r: D -+ GL(n) which sends the point (z,w) to the 
group element g(z,w) is a holomorphic map from D into GL(n) whose range is 
actually contained in G. Consequently, the differential dr of this map sends the 
tangent bundle of D into the tangent bundle of G (viewed as a subbundle of the 
tangent bundle of GL(n)). On the other hand, the differential of a holomorphic 
map is complex-linear on each fiber of the tangent bundle. Hence (dr )(z,w) (T(z,w) D) 
must be a complex subspace of Tg(z,w)G (which is a subspace of Tg(z,w)GL(n)), for 
each (z,w) ED. As is easily seen, however, the unitary group U(n) has no nonzero 
complex tangent vectors in GL(n); in particular Tg(z,w)G contains no complex 
subspaces (of positive dimension) of Tg(z,w)GL(n). It follows that (dr)(z,w) = 0 for 
each (z, w) E D; since D is connected, we conclude that r is a constant mapping. 
In other words, there is an element 9 E G such that h (z, w) = 9 . (z, w) for all 
(z, w) E D. This completes the final step, and with it, the proof of Theorem 2. 0 

It is worth noting that the domain D can be chosen to have real-analytic bound-
ary. This is an immediate corollary of a result of Greene and Krantz [14], who have 
shown that for each strictly pseudoconvex domain D there is a sub domain D' with 
real-analytic boundary, such that D' is invariant under Aut(D) and Aut(D') = 
Aut(D). 

Notice that when we view GL(n) x em as a domain in en2 +m, the group G acts 
on the domain D by linear transformations of the ambient space, and of course G 
acts freely on D. By using a ball in en2+m as our basic domain Do~instead of 
a small neighborhood of U(N) x {O} in GL(n) x em~we could choose D so that 
the group G has a fixed point in D (and again acts by linear transformations of the 
ambient space). It does seem to be important for our argument, however, that G 
act freely on some relatively open G-invariant subset of bD. 

Before turning our attention to isometries, it seems appropriate to point out that 
the holomorphic nature of the automorphisms is crucial in the last step, where the 
fact that an automorphism h leaves invariant all orbits of G in D guarantees that 
h actually belongs to G. As noted in the introduction, we cannot a priori draw 
the same conclusion for isometries of a Riemannian manifold. In effect, the way we 
use Theorem 2 in the proof of Theorem 1 will be to construct a setting in which 
isometries not belonging to G actually do move some G-orbit. 

4. The Bergman metric, antiholomorphic automorphisms, and pertur-
bations of Riemannian metrics. In order to apply Theorem 2 to the problem 
of isometry groups of Riemannian manifolds, we need some detailed information 
about the Bergman metric of a strictly pseudoconvex domain. We also need a re-
sult of Ebin about the behavior of isometry groups under perturbations of a metric. 
This section collects the information we need. 
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Let D be a strictly pseudoconvex domain in en and let V be the ordinary 
Euclidean volume on D. We denote by L2(D, V) the Hilbert space of square-
integrable complex-valued functions on D, and by H 2 (D, V) the closed subspace of 
L2(D, V) consisting of holomorphic functions; write P: L2(D, V) -+ H2(D, V) for 
the orthogonal projection. The Bergman kernel BD(-'·) is the integration kernel 
which represents P; i.e., 

Pf(z) = !vf(W)BD(Z,w) dV(w) 

for each f E L2(D, V), zED. The function BD(·,w) is in H2(D, V) (for each 
WED) and BD(z,·) is in H2(D, V) (for each zED). Moreover, BD is a smooth 
function on D X D. (For more information about the Bergman kernel we refer to 
[25].) We write BD(z) = BD(Z, z). 

To define the Bergman metric, we consider the Levi form of the function BD : 

- L a2 (10gBD) 
L(logBD) = a a- dZi A azJ. 

Zi zJ 

This 2-form is the imaginary part of a unique smooth Hermitian metric (3'D on the 
complex tangent bundle of D. If we view (3'D as acting on the real tangent bundle of 
D, and take its real part, we obtain a smooth Riemannian metric (3D, the Bergman 
metric of D. 

We will make use of the following facts about the Bergman metric (3 D of a strictly 
pseudoconvex domain D with smooth boundary. 

(1) 

(2) 

(3) 

(4) 

(3D is a complete metric and is invariant under biholomorphic map-
pings of D [25]. 

If ",((3, x) denotes the scalar curvature of the metric (3 at the point 
x, and ,/30 is the Bergman metric of the unit ball in en, then 
",((30, x) = ",((30,0) for each x in the ball. 

For any strictly pseudoconvex domain D, the scalar curvature 
",((3D,X) approaches ",((30,0) uniformly as x approaches bD [16, 
13]. 

If D is not biholomorphically equivalent to the ball then there is 
at least one point xED where ",((3D,X) -# ",((30,0) [14]. 

We will write Aut*(D) for the (possibly empty) set of antiholomorphic automor-
phisms of D, and set 

Auto(D) = Aut(D) U Aut*(D). 
It is easily checked that Auto(D) is a group and that Aut(D) is a normal subgroup 
of Auto(D) which is of index 2 if Aut*(D) -# 0. We note that every element of 
Aut*(D) extends smoothly to D (since J(D) is a strictly pseudoconvex domain, so 
that Fefferman's theorem may be applied to J 0 f: D -+ J(D)). The relevance of 
Auto(D) to the Bergman metric is 

(5) the isometry goup of D with respect to the Bergman metric (3D is 
precisely Auto(D) [14]. 
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Finally we need some information about perturbations of metrics. Let M be a 
compact, smooth Riemannian manifold (without boundary) and let 10 be a smooth 
Riemannian metric on M. The following theorem of Ebin [lOJ details the variation 
of the isometry group with the variation of the metric 10. 

THEOREM. Let {,k: k = 1,2, ... } be a sequence of smooth Riemannian metrics 
on M converging (in the Coo -sense of convergence of metrics) to 10. Then there is 
a sequence {Fk: k = ko, ko + 1, ... } of diffeomorphisms of M which converges (in 
the Coo -sense) to the identity such that if f: M --+ M is an isometry of Ik then 
Fk 0 f 0 Fk : M --+ M is an isometry of 10 (for k ;::: ko); i.e., Fk conjugates the 
isometry group of Ik to a subgroup of the isometry group of 10· 

5. The isometry groups of manifolds. If M is a smooth manifold and 
I is a smooth Riemannian metric on M, we write Isom(M, ,) for the group of 
diffeomorphisms of M which are isometries of the metric I. The object of this 
section is to prove Theorem l. 

The plan of the proof is to use the domain D constructed in Theorem 2 and con-
struct a metric J1 on D which is straight at the boundary and whose isometries are 
precisely the holomorphic and antiholomorphic automorphisms of D. The manifold 
M will be the double of D, and the metric I will be obtained by perturbing the 
double of the metric J1 on D. 

PROOF. Theorem 2 guarantees that we can find a strictly pseudoconvex domain 
D in GL(n) x em c en2 +m which contains U(n) x {O}, on which G acts by left 
multiplication in the first factor and for which Aut(D) = G. 

The next step is to construct a metric J1 on D which is a product metric near 
bD and has the property that 

Isom(D,J1) = Auto(D) = Isom(D,/JD). 

This is essentially Proposition 21 of [14J. Unfortunately, the argument given there 
has a gap; a sketch of a correction is given in [15J. We give a complete argument, 
following the lines of [14, 15J. 

We first choose a smooth metric a' on D which is Auto (D)-invariant. (Begin 
with an arbitrary metric on D and average it over the compact group Auto(D).) 
Let d be the distance function on D induced by a'. If >. > ° is sufficiently small, 
then A = {x E D: d(x, bD) < >.} is an Auto(D)-tubular neighborhood of bD; i.e., 
A = bD x [0, >.) with Auto(D) acting on the first factor. Let a be any metric on bD 
which is invariant for Auto(D), and let a" be the metric on A which is the product 
of a on bD and the Euclidean metric on [0, >'). (For the moment, we leave the 
metric a unspecified; in the last step of the proof, we construct a specific metric.) 

Write /J for the Bergman metric of D, and for each xED, write K,( x) for the scalar 
curvature of /J at x; let K,o be the scalar curvature of the Bergman metric of the unit 
ball in e n2+m . By construction, the domain D is not biholomorphically equivalent 
to the ball (because Aut(D) = G is compact), so (see §4), there is at least one point 
Xo E D for which K,(x) #- K,o. On the other hand, K,(x) tends to K,o as x tends to bD. 
Hence we can find a real number s > ° such that K = {x E D: 1K,(x) - K,ol ;::: s} is 
a compact subset of D with nonempty interior. 

Let d{3 denote the distance function on D induced by /J. For each p > 0, 
set Dp = {x E D: d{3(x,K) < p}. Since /J is a complete metric, each Dp is 
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a relatively compact, open subset of D containing K. Moreover, Dpl C Dp2 if 
Pl < P2 and Up20 Dp = D. Since A is a neighborhood of bD we can find a Po 
so large that Dpo U A :J D. We may also choose Po sufficiently large to have 
volj3(K) > 2volall(D\Dpo) (where volj3 and vola ll denote volumes with respect to 
the metrics (3 and 0/' respectively). Finally, we may also choose Po to be larger 
than the diameter of K in the distance dj3. 

For each P ~ Po, choose a smooth, Auto(D)-invariant function 'ljJ: D --+ R which 
is equal to 1 on D p and equal to 0 on a neighborhood of bD contained in A. Define a 
smooth metric p,(p) on D by p,(p) = 'ljJ (3 + (1 - 'ljJ )a". Notice that since K is defined 
by curvature inequalities for (3, and since Dp is defined by distance inequalities 
for (3, and Auto(D) = Isom(D, (3), both K and Dp are Auto(D)-invariant. Hence 
we may choose 'ljJ to be supported in a neighborhood of D p which is so small that 
volJL(p) (D\Dp) is nearly vola II (D\Dp). In particular, we can arrange that 

volJL(p)(K) = vola(K) > 2 volJL(p) (D\Dp). 
We want to show that Isom(D, p,(p)) = Auto(D), provided that P is sufficiently 

large. Note first of all that 
Auto(D) = Isom(D, (3) C Isom(D, p,(p)) 

for every p ~ Po, since (3, a", and 'ljJ are all Auto (D)-invariant. To obtain the reverse 
inclusion, we want to compare Auto(D), Isom(D, p,(p)), and Isom(Dp, (3); of course 
these groups act on different spaces, but we can compare them if we can find a 
common invariant set. 

In fact we assert that K is invariant for each of these groups. It is clear that K 
is invariant for Auto(D) = Isom(D, (3) and for Isom(Dp, ,8), since K is defined by 
curvature inequalities of (3. To see that K is also invariant for Isom(D, p,(p)), let 
f E Isom(D, p,(p)), and consider the image f (K). Because K is defined by curvature 
inqualities of (3 and p,(p) = (3 on Dp, it is certainly the case that f(K)n(Dp \K) = 0. 
Since isometries preserve volume and volJL(p) (K) > 2 volJL(p) (D\D p), it is also the 
case that f(K) is not contained in D\Dp. Since Dp is a neighborhood of K on 
which p,(p) = (3, it is also the case that dJL(p)(y,K) ~ p ~ Po for all y E D\Dp. 
Since isometries preserve distances, and hence diameters of sets, we see (recalling 
that the diameter of K for the distance function dj3 is less than Po) that f(K) 
cannot meet both K and D\Dp . Putting all this information together yields that 
f(K) C K, i.e., K is invariant for Isom(D, p,(p)). 

If we restrict to the invariant set K, we obtain the following inclusions: 
Auto(D)IK C Isom(D, p,(p))IK C Isom(Dp, (3)IK 

whenever p ~ Po. The first inclusion follows from the fact that p,(p) is Auto(D)-
invariant. The second inclusion follows from the facts that p,(p) = (3 on D p and 
that Dp is invariant for Isom(D,p,(p)) and Isom(Dp, b) (since it is defined by a dis-
tance inequality involving (3 and the invariant set K). Note that Isom(Dp1 , (3)IK :J 
Isom(Dp2 ,(3)IK whenever Pl :::; P2, and that each of these groups is compact. (This 
is because the orbit of any point in K lies in K ~which is compact~and because 
the isotropy subgroup of any point is always compact, being a subgroup of the 
unitary group of the metric at that point.) It is evident that n Isom(Dp,(3)IK = Isom(D, (3)IK = Auto(D)IK. 

p2po 
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Since a descending family of compact Lie groups is eventually constant, this implies 
that Isom(Dp, ,8)IK = Auto(D)IK for some p. Finally, since an isometry is com-
pletely determined by its behavior on a nonempty open set and D p is connected for 
p> diameter (3(K), we conclude that 

Auto(D) = Isom(D, I1(P)) = Isom(Dp,,B) 

for some p. We set 11 = I1(P). (Keep in mind that 11 agrees with the product 
measure a" near bD.) This completes the second step. 

The third step is to construct a compact, connected, smooth manifold M and a 
metric 10 on M such that Auto(D) c Isom(M"o), For M we take the double of 
D; i.e., M is the union of two copies of D---eall them D+ and D-, say-identified 
along bD = bD + = bD -. For 10 we take the obvious metric which is equal to 11 on 
each copy of D in M; since 11 is a product metric near bD, 10 is indeed a smooth 
metric on M. 

It is clear that every isometry I E Isom(D, 11) = Auto(D) has a natural extension 
f to M and that M has a natural involution (j which interchanges D + and D - and 
commutes with every f. In fact, these isometries generate the entire isometry group 
Isom(M"o). To see this, let h E Isom(M"o) and consider the image h(K+) 
of K+ under h. The same curvature, volume and diameter considerations as in 
step 2 imply that either h(K+) = K+ or h(K+) = K-. If h(K+) = K+, then 
distance considerations, together with the fact that i-L agrees with ,8 on Dp imply 
that h( Dt) = Dt. Since Isom( D p,,8) = Auto (D), this means that the restriction 
of h to Dt agrees with the restriction of f to Dt for some I E Auto(D); since an 
isometry is determined by its behavior on any nonempty open set, this means that 
h = f. On the other hand, if h(K+) = K-, the same argument applied to (j 0 h 
yields that (j 0 h = f, or equivalently, that h = (j 0 f, for some I E Auto(D). This 
completes the third step. 

The final step is to construct a small perturbation 1 of 10 such that Isom( M, 1) = 
G. Recall that 10 is the double of a metric 11 on D which, near bD, is the product of 
an as yet unspecified Auto(D)-invariant metric a on bD with the Euclidean metric 
on [0, ..\). We first construct a specific metric a which will facilitate the perturbation 
of 10. 

Recall from §4 that Isom(D,,8) = Auto(D) = Aut(D) UAut*(D) and that every 
element I of Auto(D) extends smoothly to D. We will continue to denote this 
extension by f. Since G = Aut(D), it is clear that Aut(D) leaves G-orbits in bD 
invariant. We claim that there is a point Xo E bD and a G-invariant neighborhood 
Wo of G· Xo in bD such that I(Wo) n Wo = (2) for all I E Aut*(D). Of course, if 
Aut*(D) is empty this is vacuously true. Otherwise, fix 10 E Aut*(D); we will show 
that for some Xo E bD, the orbit G· Xo is not invariant under 10, and construct Wo 
from this fact. 

Suppose that 10(G·xo) c G·xo for every Xo = (zo, wo) in bD. Write 10 = (It, h), 
so that It: D ---+ GL( n) and 12: D ---+ em are antiholomorphic maps, and have 
smooth extensions to D. For each Xo = (zo, wo) in bD write 

Vxo = {(Z, Wo) E GL(n) x em: Z E GL(n)}. 

Since G acts by multiplication in the first factor, V Xu n bD is G-invariant, and 
hence invariant under 10 (since we have supposed that 10 leaves all G-orbits in bD 
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invariant). In particular, h(z, wo) = Wo for each (z, wo) E V Xo n bD; the iden-
tity principle then implies that h(z, wo) = Wo for each (z, wo) E V Xo n D. Thus 
h(z,w) = w for each (z,w) E D, which is absurd since this is not an antiholo-
morphic mapping. We conclude that there is indeed a point Xo E bD such that 
fo(G· xo) rt. G· Xo· 

We now fix an element go E G such that fo(go . xo) rt. G . Xo. As we noted 
in §4, the group Aut(D) of holomorphic automorphisms of D is normal in the 
group Auto(D) of holomorphic and antiholomorphic automorphisms; hence every 
left coset of Aut(D) is also a right coset. In particular, for each gl E G we can 
find a g2 E G such that 10(gl . go . xo) = g2 . fo(go . xo). Since lo(go . xo) rt. G . Xo, 
we conclude that 10(gl . go . xo) rt. G . Xo; since gl is arbitrary, it follows that 
fo(G· xo) n G· Xo = 0. 

Finally, the continuity of 10 on D and the fact that G· Xo is G-invariant allow us 
to choose a G-invariant neighborhood Wo ofG·xo in bD such that fo(Wo)nWo = 0. 
To see that f(Wo) n Wo = 0 for each I in Aut*(D), note-as in §4-that every 
f E Aut*(D) is of the form fo 0 h for some h E Aut(D); i.e., I(x) = lo(g . x) 
for some 9 E G (and all x E D). But then I(Wo) = lo(g 0 Wo) = 10(Wo), 
since Wo is G-invariant, so that f(Wo) n Wo = 0 for each f E Aut*(D). By 
shrinking Wo if necessary, we can assume that Wo is a G-tubular neighborhood of 
G . Xo in bD; i.e., there is a diffeomorphism of Wo with G x (-c, c)2L-l-dimR (C), 

where L = n 2 + m = dimc(GL(n) x em), and this diffeomorphism respects the 
action of G. Let Wi = {f(Wo): f E Aut*(D)}; as noted before, either Wi = 
o or Wi = fo(Wo), for fo a fixed element of Aut*(D). Then W2 = Wi U Wo 
is an Auto(D)-tubular neighborhood of Auto(D) . Xo; i.e., W2 is diffeomorphic 
to Auto(D) x (-c, c)2L-l-dimR (C) by a diffeomorphism preserving the action of 
Auto(D). 

We now construct the metric 0::. Let 0::1 be an arbitrary Auto (D)-invariant, 
smooth Riemannian metric on Auto(D), let 0::2 be the Euclidean (flat) metric on 
(_c,c)2L-l-dimR (C), and let 0:: = 0::1 X 0::2 be the product metric on W2 • Clearly 0:: 

is Auto(D)-invariant on W2 . We extend 0:: to an Auto (D)-invariant metric (denoted 
again by 0::) on the whole boundary bD. 

The constructions of 0::, 0::", J.L = J.L(p), and ,0 guarantee that we can find a 
neighborhood Q of G . Xo in M with all of the following properties: 

(1) Q is G-tubular; i.e., Q = G x (-8, 8)N and G acts in the first factor (where 
N = 2(n2 + m) - dimR(G) = dimR(M) - dimR(G)). 

(2) f(Q) n Q = 0 for all f E Aut*(D). 
(3) Q is invariant for the involution a and a acts by multiplication by -1 in the 

last (-8,8)-factor; i.e., a(g;81, ... ,8N- 1 ,8N) = (g;81, ... ,8N-1,-8N ). In particu-
lar, 

QnD+ = G x (_8,8)N-l x (0,8), 
QnD- = G x (_8,8)N-l x (-8,0), 
Q n bD = G x (-8, 8)N-l x {O}. 

(4) On Q, the metric 10 is the product of the metric 0::1 on Auto(D), restricted 
to G, with the (flat) Euclidean metric on (-8,8)N. 

We now choose any point y in Q\bD; for convenience, assume 
y= (lc;0, ... ,O,8N ) 
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in QnD+ with ° < 8N < 8. Let v be any metric on (-8, 8)N -1 X (0, 8) which is close 
to the Euclidean metric but whose curvature is nonconstant on every open set and 
let",: M --> [0,1] be a smooth, G-invariant function which is identically 1 near G· y 
and identically ° off QnD+ = Gx (-8, 8)N-1 x (0, 8). Set / = ",(a1 x v)+(l-",ho. 
It is evident that / is G-invariant, so that G c Isom(M, I); we show that the reverse 
inequality holds if v is sufficiently close to the Euclidean metric (in the sense of 
Coo-closeness of metrics). 

If v is very close to the Euclidean metric then / is very close to /0, so Ebin's 
theorem implies that there is a diffeomorphism F of M which is close to the identity 
and has the property that F- 1 0 h 0 F E Isom(M, /0) for every h E Isom(M, g). 
Equivalently, the only isometries of / are of the form F 0 hi 0 F- 1 with hi E 
Isom(M, /0). Since G c Isom(M, I), we want to show that Foh' oF-1 <t- Isom(M, /) 
if hi E Isom(M, /0) and hi <t- G. 

To accomplish this, it is convenient to distinguish two cases. In the first case, we 
suppose that Aut*(D) -=/0, and fix an element 10 E Aut*(D). Then £o(Q)nQ = O; 
we want to make sure that F is so close to the identity that 

(1) F- 1(y) E support(",), 
(2) F 0 £0 (support (",)) c £o(Q), 
(3) F 0 O"(support(",)) C Q n D-, 
(4) F 0 0" 0 £0 (support (",)) c £o(Q). 

We can arrange for F to have all these properties by choosing v sufficiently close 
to the Euclidean metric, so that / is sufficiently close to /0. To see that these 
properties of F are adequate, suppose first that hi E Isom(M, /0) is of the form 
hi = £ with 1 E Aut * (D). Just as before, there is an element 9 E G such that 
£ (x) = fo (g . x) for each x EM. Since h is a G-invariant function, its support is a 
G-invariant set so £(support(",)) = fo(support(",)). Since F- 1(y) E support(",) and 
F 0 £0 (support(",)) c £o(Q), we conclude that F 0 f 0 F-1(y) E £o(Q). Now, since 
£o(Q) n Q = 0, the metrics / and /0 agree on £o(Q). Because fo is an isometry of 
/0 and the restriction of /0 to Q is the product of a1 on G with the flat Euclidean 
metric on (-8, 8)L, we conclude that at each point of £o( Q) the metric / is of the 
same form. Our construction, however, guarantees that at y the metric / is the 
product of a1 with a metric v whose curvature is nonconstant on every open set. 
Since F 0 £ 0 F-1(y) E £o(Q), this means that F 0 £ 0 F- 1 cannot be an isometry 
of / when 1 E Aut* (D), which is what we want. It remains to see what happens 
if hi E Isom(M,/o), hi <t- G, and hi is not of the form hi = £ with 1 E Aut*(D). 
Since Isom(M, /0) is generated by the involution 0" and by Auto(D), this means 
that hi = 0" 0 f for some 1 E Auto(D). Just as above, we then conclude that 
F 0 (0" 0 £) 0 F- 1(y) E D-; again, this means that, near F 0 (0" 0 f) 0 F- 1, / is the 
product of a1 with a flat Euclidean metric while, near y, it is the product of a1 with 
a metric v whose curvature is nonconstant on every open set. So F 0 (0" 0 f) 0 F- 1 

is not an isometry of /. This completes the case that Aut*(D) -=/0. 
In the case Aut*(D) = 0, the argument is even simpler since then we need 

only be sure that F-1(y) E support(",) and that FoO" (support(",)) is contained in 
Q n D-; we omit the details. 

In either case, we conclude that Isom(M, /) = G. This completes the proof of 
Theorem 1. 0 
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It is worth noting that we could arrange for M to be a real-analytic manifold, 
for the action of G to be real-analytic, and for the metric , to be real-analytic. 
To achieve this we note, as at the end of §3, that the domain D could be chosen 
to have real-analytic boundary; then the manifold M and the action of G will be 
real-analytic. The metric , constructed above need not be real-analytic, but we 
can replace it by a nearby G-invariant real-analytic metric 1; Ebin's theorem will 
guarantee that Isom(M,1) = Isom(M, ,) = G. 

It is of interest to know the diffeomorphism type of the manifold M. With a little 
more care, we could insure that the domain D is a regular neighborhood of U(n) X 
{O} in GL(n) x em, whence M will be diffeomorphic to U(n) X 8 2m . Alternatively, 
following the comments at the end of §3, we can arrange that the manifold M 
we obtain will be diffeomorphic to 8 2(n2+m). Note that the construction we have 
actually used produces an action of G on M which is free; if we follow the alternate 
procedure suggested above, we will obtain an action with a fixed point. 

Finally, we should point out the crucial role played by Theorem 2 in this argu-
ment: it guarantees that all the isometries in Isom(M, ,0) which do not belong to G 
actually move some orbit of G, and can thus be eliminated by a small perturbation 
of ,0, 
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