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INDUCED GROUP ACTIONS, REPRESENT A TIONS 
AND FIBERED SKEW PRODUCT EXTENSIONS 

R.C. FABEC 

ABSTRACT. Let G be a locally compact group acting ergodically on Y. We introduce 
the notion of an action of this group action and study the notions of induced group 
actions, ergodicity, and fibered product extensions in this context. We also char-
acterize fibered skew product actions built over a cocycle. 

This paper is essentially a continuation of our earlier papers [2, 3]. There we were 
concerned with the problem of studying the interrelationships among the geometric 
structure of an extension of an ergodic group action, the Hilbert bundle representa-
tion it induces, and a cocycle on the group action having Mackey dense range in a 
locally compact group. In [3] we showed that an extension is a skew product 
extension built over a cocycle <I> having Mackey dense range if and only if the 
restriction of the natural bundle representation to the Mackey' kernel' of <I> is trivial. 
We also studied cocycle representations which have trivial restrictions to Mackey 
'kernels'. In this paper we remove the stricture that the cocycle have dense range. 
Doing this leads one to consider the notion of an action of an ergodic group action 
and the virtual group notion of a homomorphism between ergodic group actions. 
The former is equivalent with the notion of an extension of the action. In [25], 
Zimmer showed that an action of a subgroup may be used to induce an action of the 
group. We show this is a natural special case for a similar method of inducing an 
action from an action of a group action. If one uses the equivalent notion of an 
extension, the induced action is the extension. Moreover, in the case of locally 
compact groups, homomorphisms may be used to 'pull back' actions and representa-
tions. The 'pull backs' of actions induce fibered skew product extensions. Before 
proceeding with our discussion we introduce Mackey's notion of a virtual subgroup. 
This notion, though not necessary for the presentation of this paper, was central in 
the development of its ideas. 

Suppose G is a locally compact, separable group and X is a standard Borel G 
space with an ergodic, quasi-invariant measure fL. Then either X has a conull orbit 
or every orbit in X is null. In the first case, X is essentially a coset space H \ G, 
where H is the stabilizer of some point in the conull orbit, and the action is given by 
right translation. The subgroup H is determined up to conjugacy and is "identified" 
with the measure groupoid (H \ G X G, fL X m), where m is a Haar measure on G 
and multiplication is defined by (x, g) . (x . g, g') = (x, gg'). The "identification" 
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is given by the multiplication preserving map I defined on H\ G X G by (x, g) ~ 
y(x)gy(x . g)-l, where y is a Borel map on H\ G into G satisfying Hy(x) = x. If, 
in addition, y(H) = e, the map i from H\ G X G into G sending (x, g) to g 
factors through I. 

H\GX G G 

\, J 7' 
H 

Hence thinking of I as an "identification" corresponds the map i to the inclusion 
map of H into G. Thus, in this case, the" virtual subgroup" of G defined by the 
ergodic action is a conjugacy class of closed subgroups, and one sees the virtual 
subgroup actually is a subgroup. 

In the second case one cannot find a conjugacy class of closed subgroups, but one 
can still define the measure groupoid (X X G, J! X m) and the map i sending (x, g) 
to g. This measure groupoid is said to define a virtual subgroup of G, and the 
function i is called the inclusion. Hence the ergodic actions of G determine the 
virtual subgroups of G. Two ergodic actions define the same virtual subgroup of G if 
the actions are essentially isomorphic. 

Suppose (X X G, J! X m) and (Y X G, v X m) are virtual subgroups of G. Then 
X and Yare ergodic G spaces. X X G is said to be a subvirtual subgroup of the 
virtual subgroup Y X G if X is an extension of the G space Y. Moreover, if p is an 
extension, that is, an equivariant Borel mapping from X into Y satisfying P*J! == 
J! 0 p- 1 - v, then the map (x, g) ~ (px, g) is called the inclusion of X X G in 
Y X G. Thus ergodic extensions of ergodic group actions correspond to inclusions 
between virtual subgroups. 

There are several notions from the theory of locally compact groups which can be 
extended to the virtual subgroup setting that will play significant roles in this paper. 
These include the notions of group actions, homomorphisms and their restrictions 
and ranges, representations, and induced representations. We define these in our 
first section. Moreover, in §1 we develop the notion of an action of a group action 
and the related concepts of ergodicity and induction. We determine the relationship 
between this notion and that of an extension. We then study the compositions of 
actions and representations with homomorphisms. These are called pull backs. The 
pull back actions induce skew fiber product extensions. In §2 we obtain characteriza-
tions for actions and representations which are equivalent to pull backs. These allow 
us to obtain structure theorems for skew product fibered extensions and representa-
tions which induce trivial extensions over a homomorphism. The appendix contains 
some technical results used throughout this paper as well as a description of the 
construction of the Mackey range of a homomorphism. 

The theory of virtual subgroups was begun by Mackey to treat the nonregular case 
in his analysis of the dual of G in terms of the action of G on the dual of N, where 
N is a normal subgroup. He sketched many of the ideas for this theory in [9]. These 
have been developed in further detail by Ramsay [13-16]. In general we follow the 
terminology of [13]. 
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1. Actions, homomorphisms, and representations. Let G be a second countable, 
locally compact group. Suppose v is a a-finite measure on a standard Borel space Y. 
Then Y is a strict G space provided there exists a Borel mapping (y, g) --+ y . g 
satisfying 

(1.1) y . e = y for all y, 
(1.2) y . gi . g2 = Y . gIg2 for all y, gl' and g2' and 
(1.3) y ~ y . g preserves the measure class of v for each g. 

Two G spaces (YI, VI) and (Y2 , v2 ) are isomorphic provided there exists a Borel 
isomorphism <1>: YI --+ Y2 such that <I>(y . g) = <I>(y) . g VI a.e. y for each g and 
<I>*v I - v2 · 

One can give an alternate definition for a G space if one first introduces the 
notion of a point transformation group. Suppose S is a standard Borel space with a 
finite measure m. Let J(S, m) be the set of all Borel isomorphisms of S which 
preserve the measure class of m, identified when they agree pointwise a.e. m. Give 
J(S, m) the Borel structure defined by convergence in measure. Then J(S, m) is a 
standard Borel group. In fact, the map cp --+ Lq, where 

(1.4) 

defines a Borel isomorphism of J(S, m) onto the strongly closed subgroup of the 
unitary group of L 2( S) consisting of the unitary operators U satisfying UI ?> 0 and 
ULoo(S)U- 1 = LOO(S), where LOO(S) is the von Neumann algebra consisting of all 
bounded multiplication operators. Thus J (S, m) is a Polish group. 

Now by an action of G on (Y, v) we shall mean a Borel homomorphism a from G 
into J(Y, v). Mackey in [6] showed that if one has such a homomorphism, then there 
exists a strict G action on (Y, v) such that y . g = a(g-l)y a.e. y for each g. In 
particular, any action a determines an isomorphism class of strict G actions. 

We shall follow the second approach to define an action of a group action. To do 
this we shall need the notion of a cocycle. 

Suppose (Y, v) is a strict G space and H is a complete separable metric group. A 
cocycle on the G space Y with values in H is a Borel mapping cp from Y X G into H 
satisfying 

(1.5) 

for all y, gl' and g2' 
Identity (1.5) states that cp is multiplicative on the measure groupoid Y X G. Two 

cocycles CPI and CP2 on Y X G with values in Hare cohomologous provided there is 
a Borel map A: Y --+ H satisfying A(y)CPI(y, g) = CP2(y, g)A(y . g) a.e. (y, g). 

Suppose (Y, v) is a strict G space and (S, m) is a standard Borel space with a 
finite measure m. Then a Y X G action a on S is defined to be a cocycle a on the G 
space Y with values in J(S, m). Two actions al and a 2 of the G space (Y, v) on 
(S, m) are said to be isomorphic provided the cocycles a l and a 2 are cohomologous. 
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If the action of G on Y is ergodic, an action of the G space Y is an action of the 
virtual subgroup Y X G. 

We recall if (X, Il) and (Y, v) are strict G spaces, then a Borel map p: X ~ Y is 
an extension if p(x . g) = p(x) . g for all (x, g) and P*1l - v. Two extensions p: 
( X, Il) ~ (Y, v) and p': (X I, Il') ~ (Y, v) are isomorphic over Y if there exists a G 
space isomorphism «P from X to X' such that p' 0 «P(x) = p(x) a.e. x. 

Zimmer in [26] showed that one can induce an action of a group from an action of 
a closed subgroup. The same is true for a virtual subgroup. In order to facilitate the 
construction, we use the notion of the universal extension space over Y. This is 
defined to be the pair (Y X U G, py) where U G is a universal G space in the sense of 
Mackey and p y is the coordinate projection onto Y. There is a pointwise action of G 
on Y X U G; namely (y, f). g = (y . g,f. g). For U G we take U G = {f E LOO(G): 
f(x) E [0,1] a.e. x} with topology defined by the pseudometrics PK' K compact, 
where PKUi' f2) = fK Ifi(x) - f2(x)1 2 dx. The action on U G is defined by U· g)(x) 
= f(gx). Then U G is a Polish space and the action is continuous. Y X U G is a 
universal extension of Y in the following sense. 

PROPOSITION 1.1. Suppose X is a strict G space and p is an equivariant Borel map 
from X into Y. Then there exists a one-to-one Borel map «P from X into Y X U G such 
that 

(a) «P(x . g) = «P(x)· gfor all x and g, and 
(b) py 0 «P(x) = p(x) for all x. 

PROOF. We may assume X = [0,1]. Define «P(x) = (p(x), fx) where fx(g) = x . g. 
«P has the desired properties. Q.E.D. 

The inducing construction is contained in the proof of the following theorem. 

THEOREM 1.2. Let a be an action of the strict G space (Y, v) on (S, m). Then there 
exists a Borel mapping (s, y, g) ~ s . (y, g) satisfying 

(a) s· (y,e) = sa.e. s, 
(b) s . (y, gd . (ygi' g2) = s . (y, glg2) a.e. s for each (y, gi, g2), 
(c) s . (y, g) = a(y, g)-iS a.e. s a.e. (y, g), 
(d) s ~ s . (y, g) E f(S, m) for all (y, g). 

Furthermore there exists a strict G action on (Y X S, v X m) and a G equivariant map 
p: Y X S ~ Y satisfying (y, s) . g = (y . g, s . (y, g)) a.e. s for each (y, g) and 
p(y, s) = y a.e. s for each y. This construction sets up a one-to-one correspondence 
between the isomorphism classes of Y X G actions on (S, m) and the isomorphism 
classes of extensions over Y of strict G actions on (Y X S, v X m). 

REMARK. A strict G action on Y X S satisfying (y, s)· g = (y . g, s . (y, g)) a.e. s 
for each (y, g) where a(y, g)s = s . (y, g) a.e. s a.e. (y, g) is said to be induced 
from a. 

PROOF. We may assume S = [0,1]. By [6], there is a strict Borel G action on 
(Y X S, v X m) satisfying (y, s) . g = (y . g, a(y, g)-iS) a.e. s a.e. (y, g). Let 
y . (s, g) and s . (y, g) be the first and second components of (y, s) . g. Set 
F = {( y, g): (y, s) . g = (y . g, s . (y, g)) a.e. sand s ~ s . (y, g) E f (S, m) } . 
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F is a conull Borel subset of Y X G. Furthermore if (y, g) E F and (yg, g') E F, 
then (y, gg') E F. Hence F is multiplicative. By Lemma 5.2 of [13], there is a conull 
Borel set Yo in Y such that if y E Yo and y . g E Yo, then (y, g) E F. By Lemma 
AA of the appendix we may assume [Yo] = Yo . G is a Borel set and there exists a 
Borel map 0: [Yo] -+ G satisfying y . O(y)-l E Yo and O(y) = e for y E Yo. 

Define s *(y, g) = s for y $. [Yo] and s *(y, g) = s . (yO(y)-l, 0(y)gO(yg)-1) 
for y E [Yo]' Clearly s *(y, e) = s for all (y, s). Furthermore (c) is clear as is (d) for 
(yO(y)-l, O(y)gO(yg)-l) E F. Also if y E [Yo] then (yO(y)-l, O(y)glO(ygl)-l) 
and (yglO(ygl)-l, 0(ygl)g20(yglg2)-1) E F. Thus 

and 

s >-) s .(yO(y)-l,O(y)glO(ygl)-l) E.1"(S,m), 

(yO(y)-\s).O(y)glO(ygl)-l 

= (yglO(ygl)-l, s .(yO(y)-l,O(y)glO(ygl)-l)) a.e. s, 

(yglO(ygl) -1, s) .0(ygl)g20(yglg2)-1 

= (yglg20(yglg2)-\ s . (yglO(ygl)-\ 0(ygl)g20(yglg2)-1)) a.e. s. 

It follows that for a.e. s 

This gives (b). 
To construct the needed strict G action on Y X S, first let 

W is clearly p X m conull. Furthermore ~ = {s: (y, s) E W} is conull in S for 
each y. Indeed, by (a) and (b), s *(y, g)*(yg, g-l) = S a.e. (s, g). Thus 
s *(y, g)*(yg, g-l) = S a.e. g for a.e. s. 

Define <1>: W -+ Y X U G by <I>(y, s) = (y,fy,J where fy,s(g) = s *(y, g). <I> is 
one-to-one for if (y, fy,s) = (y', fy',s')' y = y' and s *(y, g) = s' *(y, g) a.e. g. 
Thus, 

Thus since (y, s) and (y, s') E W, s = s'. <I> is clearly Borel. Hence <I> extends to an 
isomorphism of Y X S onto Y X U G• One can obtain smjectivity if Y X S - W 
and Y X U G - <I>(W) have the same cardinality. This can be insured by making 
minor adjustments in <I> and W. Define (y, s)· g = <I>-\<I>(y, s) . g) and define p 
by p(y, s) = py 0 <I>(y, s). Since ~ is conull for each y, p(y, s) = y a.e. s for each 
y. Redefine s . (y, g) by (y, s)· g = (y . (s, g), s . (y, g)). Clearly p(y, s) = y a.e. s 
for each y. To show this completes the construction, it suffices to show 

s . (y, g) = s * (y, g) a.e. s for each (y, g). 
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But 

provided fy,s' g = fy.g,s*(y,g) and (y. g, s *(y, g)) E W. Since (y. g, s *(y, g)) E 

Wa.e. s for each (y, g), we need only note fy,s' g = fy.g,s*(y,g) a.e. s. But this is 
equivalent to s *(y, gg') = s *(y, g)*(yg, g') a.e. (s, g') which follows by (b). 

The last statement of the theorem follows from the fact that any isomorphism <I> 
over Y between two G actions on Y X S has form <I>(y, s) = (y, B(y)(s)) a.e. s a.e. 
y, where B: Y ---) .f (S, m) is Borel. This B then institutes the cohomology between 
the two actions of Y X G. Q.E.D. 

If a is an action of Y X G on (S, m), we shall call it strict if there exists a Borel 
map (s, (y, g)) ---) s . (y, g) satisfying (a), (b), and s . (y, g) = a(y, g)-iS a.e. s for 
each (y, g). Theorem 1.2 shows each action a is equal to a strict action a.e. (y, g). 
Furthermore, the proof shows if a is a strict action, then there exists a strict G 
action on Y X S and a G equivariant Borel map p: Y X S ---) Y satisfying (y, s) . g 
= (y . g, a(y, g)-iS) a.e. s for each (y, g) and p(y, s) = y a.e. s for each y. If a is 
strict, an action induced by a is assumed to satisfy (y, s) . g = (y . g, a(y, g)-iS) 
a.e. s for each (y, g). 

The following is Proposition 1 of [2]. 

THEOREM 1.3. Suppose (Y, p) is an ergodic G space. Then every extension X of Y is 
isomorphic over Y to a G space induced by an action of Y X G. 

Our correspondence between actions a of Y X G and extensions of Y in the case 
when the G action on (Y, p) is ergodic can be used to show the equivalence of these 
notions to that of an action of the measured groupoid Y X G given in [15]. Indeed, 
an action with quasi-invariant measure in [15] is essentially an extension of the 
G-space (Y, p). If Y is not an ergodic G space, then an action of Y X G in the sense 
of [15] would correspond to a disjoint countable direct sum of extensions that are 
induced from actions of 1'; X G where 1'; are disjoint invariant Borel subsets of Y 
with positive measures. 

Let H be a closed subgroup of G. The measure groupoid H\ G X G 'defines' a 
virtual subgroup of G corresponding to the actual subgroup H. The following result 
is not unexpected and its proof follows the ideas used in the argument for Theorem 
6.13 of [15]. 

PROPOSITION 1.4. There is a one-to-one correspondence between the isomorphism 
classes of H\ G X G actions on (S, m) and the isomorphism classes of H actions on 
(S, m). 

PROOF. Let y be a Borel selection on the coset space H \ G satisfying y( H) = e. 
Define J mapping H\ G X G to H by J(x, g) = y(x)gy(x . g)-i. Then J is a 
cocycle on H \ G X G. Suppose cp is an action of H on (S, m). Then cp 0 J is an 
action of H\ G X G on (S, m). Suppose t/; is an action of H\ G X G on (S, m); 
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then ~(h) == t/;(H, h) is an action of H on (S, m). Clearly (cp 0 1) - = cpo Hence the 
map t/; ~ ~ is onto. The result will follow if we show ~ 0 J is isomorphic to t/; for 
any action t/;, and if we show cp 0 J and cp' 0 J are isomorphic as H \ G X G actions 
iff cp and cp' are isomorphic H actions. 

Note 

(~oJ)(x,g) = ~(y(x)gy(x. g)-l) = t/;(H,y(x)gy(x. g)-l) 

= t/;(H,y(x))t/;(x,g)t/;(H,y(x. g)-l) 

= A(x)t/;(x, g)A(x, g)-l 

where A(x) = t/;(H, y(x». This shows the first statement. 
Now cp 0 J and cp' 0 J are isomorphic actions iff there is a Borel function A on 

H \ G with values in J (S, m) satisfying 

A(x)cp(y(x)gy(x. g)-l) = cp'(y(x)gy(x. g)-l)A(x, g) a.e. (x,g). 

Let F be the set of (x, g) for which the above equation holds. F is conull and 
multiplicatively closed. By Lemma 5.2 of [13], there is a conull Borel subset 
U ~ H\ G such that if x and x . g belong to U, then (x, g) E F. Choose Xo E U. 
Then xoy(xo)-lhy(xo) E U for each h E H. Hence 

A(Xo)CP( y(xoh(xo) -lhy(xoh( Xo . y{xo) -lhy(xo)) -1) 
= cp'( y(xoh(XO)-lhy(xoh(xo ' y(xo)-lhy(xo)rl)A(xo ' y(xo)-lhy(xo))· 

Hence A(xo)cp(h) = cp'(h)A(xo) for all h. Thus cp and cp' are isomorphic. If 
Acp(h) = cp'(h)A for all h, then 

Acp(y(x )gy(x . g) -1) = cp'( y(x )gy(x . g) -l)A for all (x, g). 

Thus cp 0 J is isomorphic to cp' 0 J. Q.E.D. 

COROLLARY 1.5 (ZIMMER). If (X, fL) is an extension of H\ G, then X is isomorphic 
over H\ G to H\ G X S where (S, m) is an H space and the action of G on 
H\ G X S is defined by (x, s)· g = (x . g, s . y(x)gy(x . g)-l). 

DEFINITION 1.6. Suppose (Y, II) is an ergodic G space. A Y X G action a on 
(S, m) is ergodic if whenever y ~ Ey is a Borel map from Y into the measure 
algebra M(S, m) defined by m satisfYIng Ev-g = a(y, g)-lEy a.e. (y, g), then Ey is 
null a.e. y or Ey is conull a.e. y. 

PROPOSITION 1.7. A Y X H action a on (S, m) is ergodic iff the action it induces on 
(Y X S, II X m) is ergodic. 

PROOF. Note that there is a one-to-one correspondence between the set of G 
invariant Borel sets E of Y X S and Borel maps y ~ Ey E M(S, m) satisfying 
Ey.g = a(y, g)-lEy a.e. (y, g) given by Ey = {s: (y, s) E E}. Q.E.D. 
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PROPOSITION 1.8. The correspondence between H \ G X G actions and H actions 
given in Proposition 1.3 preserves ergodicity. 

PROOF. Let 1/;: H ~ yeS, m) be an action of H on (S, m). Then a(x, g) = 
I/; ( y( x) gy( x . g) -1) defines the corresponding action on H \ G X G. Suppose I/; is 
ergodic and x 0--+ Ex E M(S, m) is Borel and satisfies E x.g = a(x, g)-lEx a.e. By 
Proposition A.S of the appendix one may redefine Ex on a set of measure 0 so that 
E x . g = a(x, g)-lEx for all (x, g). Thus E xo .h = l/;(h)-lExo for all h, where Xo = H. 
By ergodicity of 1/;, Exo is null or conull. Thus ExOg = a(xo, g)-lExo is everywhere 
null or everywhere conull. The converse is even easier. Q.E.D. 

COROLLARY 1.9 (ZIMMER). Let (S, m) be an H space. Then the induced G space 
H \ G X S is G ergodic iff S is an ergodic H space. 

Let 1/;: G -4 yeS, m) give an action of G on (S, m). Then if (Y, v) is an ergodic G 
space, the action a on Y X G defined by a(y, g) = I/;(g) is called the restriction of 
the G action I/; to Y X G. 

PROPOSITION 1.10. Let G act on (S, m). Let H be a closed subgroup of G. Then the 
restriction of the G action to H \ G X G is isomorphic to the H \ G X G action on S 
given by the H action on S. 

PROOF. a(y, g) = I/;(g). Define A(y) E yeS, m) by A(y) = Hy(y)) for y E 
H\ G. Then 

A(y)a(y,g)A(y. g)-l = l/;(y(y))I/;(g)l/;(y(y. g))-l 

= I/;(y(y)gy(y. g)-I). Q.E.D. 

COROLLARY 1.11 (MACKEY-MoORE-ZIMMER). Let G act ergodically on (S, m). 
Then H acts ergodically on S iff the restriction of the G action to H \ G X G acts 
ergodically on S iff the product G action on H \ G X S is ergodic. 

Our next topics of discussion involve the concept of a homomorphism between 
ergodic group actions and its Mackey range. The former is the concept of a group 
homomorphism in the virtual subgroup setting. Its definition is taken from [13]. 

A homomorphism between a strict ergodic G space (X, JL) and a strict ergodic K 
space (Y, v) is a pair of Borel maps h = (p,cp), p: X -4 Y, cp: X X G -4 K 
satisfying 

(1.6) cp is a cocycle, 
(1.7) p(x . g) = p(x)· cp(x, g) for all (x, g), and 
(1.8) if E is a strictly invariant analytic subset of Y, JL(p-l(E)) = 0 iff v(E) = o. 

We note that (1.6) and (1.7) just say that h: X X G -4 Y X K is multiplicative 
between these two groupoids. 

The Mackey range of h is the concept of the closure of the range of a homomor-
phism in the virtual group setting. The construction of the Mackey range involves 
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the disintegration of a nonergodic G space (X, fL) into ergodic components. Specifi-
cally, if (X, fL) is a nonergodic G space, then there exists a standard Borel space T 
and a Borel map F: X ~ T such that if fL = f fLtdF*fL(t) is the disintegration of fL 
over the fibers of F, then a.e. (X, fL t) is an ergodic G space. Furthermore, F enjoys 
the following universal property. If h is a Borel function on X with values in a 
countably separated Borel space and if h is essentially invariant, i.e. hex . g) = hex) 
a.e. (x, g), then there exists an essentially unique Borel function H on T such that 
H 0 F( x) = h (x) a.e. x. This universal property insures the essential uniqueness of 
the ergodic decomposition (F, T). 

Suppose (X, fL) is a strict ergodic G space and (Y, v) is a strict ergodic K space. 
Suppose h = (p, </» is a homomorphism from X X G into Y X K. In the appendix 
we show h may be redefined on a set of measure 0 so that the following hold. 

(1.9) h = (p, </» is a homomorphism from X X G to Y X K, 
(1.10) there is an ergodic extension ah : (Yh , Vh) ~ (Y, v) and a homomorphism 

h' = (p',</»: X X G ~ Yh X K such that i 0 h'(x, g) = hex, g) for all (x, g), where 
iCy, k) = (ah(y), k) is the inclusion homomorphism of Yh X K into Y X K, and 

(1.11) the mapping (x, k) ~ p'(x)k- 1 is an ergodic decomposition of the G 
action on X X K defined by (x, k) . g = (x . g, k</>(x, g». 

The K space (Yh , V h) is called the Mackey range of h. If a h is an isomorphism of 
Yh onto Y, the homomorphism h is said to have dense range. In this case, we can just 
as well take h' = hand Yh = Y. In particular, the map (x, k) ~ p(x)k- I gives the 
ergodic decomposition of X X K. 

Suppose h: X X G ~ Y X K is a homomorphism between the strict G space 
(X, fL) and the strict K space (Y, v). Suppose a: Y X K ~ yeS, m) defines a strict 
action of Y X K on (S, m). Then h*a = a 0 h defines an action of X X G called the 
pull back of the action a under h. The isomorphically unique G action on X X S 
induced by h *a is denoted by X X h S and is called the fibered skew product 
extension of X over h with the K space induced by a. 

There is an alternate definition of a fibered skew product extension which is 
equivalent to the one just given in which the action is skew and defined over a 
fibered product. 

In fact, suppose h = (p, </» is a homomorphism from the ergodic G space (X, fL ) 
into the ergodic K space (Y, v). Suppose q: (W, A) ~ (Y, v) is an extension of the K 
space (Y, v). Define X X h W = {(x, w): p(x) = q(w)} with action defined by 
(x, w) . g = (x . g, w . </>(x, g». This action is well defined by property (1.7). To 
obtain the needed measure class on X X h W, one first disintegrates the measure A 
over the fibers of q, i.e. A = fll Aydv(y). Since A' k(E) == A(E· k- I ) and 
(v· k)(E) = v(E . k- I ) define measures equivalent to A and v, respectively, for 
each k, it follows that AY.k - Ay . k v a.e. y for each k. By Proposition A.6 Ay may 
be redefined on a set of measure 0 so that A y-k - A v . k for all (y, k). Define 
fL x h A = fll ex X ApxdfL(X) where ex is the point mass at x. We show this 
measure's measure class is well defined and quasi-invariant. To see that it is well 
defined we show that if A = f A'y dv(y) is another decomposition of A over q and 
A'Y.k - A'y' k for all (y, k), then Apx - A'px fL a.e. x. Indeed, set Yo = {y: A'y - Ay }. 
Yo is a strictly invariant conull Borel subset of Y. By (1.8), P -I( Yo) is conulL Thus 
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A px - Xpx JL a.e. x. Hence [JL X h A] is well defined. To see that JL X h A is quasi-
invariant, note 

(JLXhA)·g= tIl (ExXApJ.gdJL(x) 

= tIl Ex.g X Apx' cp(x,g)dJL(x) 

- JGJ Ex.g X Ap(x.g)dJL(x) 

- JGJ Ex X ApxdJL(X) = JL x h A. 

To see these definitions of fibered skew product extensions are equivalent, by 
Theorems 1.2 and 1.3 we may suppose W is induced by a strict action a of Y X K 
on (S, m). Thus W = Y X S, A = v X m, and (y, s) . k = (y . k, s . (y, k)) a.e. s 
for each (y, k). Also since one has q(y, s) = y a.e. s for each y and s ~ s . (y, k) is 
in yeS, m) for each (y, k), we see that A = fGJ Ey X mdv(y) and (Ey X m)· k -
EVk X m for all (y,k). Thus XX h W= {(x,y,s): px = q(y,s)} with measure 
JL X h A = f Ex X (Epx X m) dJL( x) is isomorphic to X X S with measure JL X m; the 
isomorphism sending (x, y, s) ~ (x, s). Under this isomorphism, the action on 
X X h W corresponds to the action on X X S given by (x, s) . g = (x . g, s . hex, g)) 
which is clearly the action induced by h *a since 

(h*a)(x,g)-lS = a(p(x),cp(x,g))-ls 

= s . (p (x), cp (x, g)) = s . h (x, g) a.e. s. 

Our next result determines when the pull back of an action is ergodic. 

PROPOSITION 1.12. Let (X, JL) be an ergodic G space and (Y, v) be an ergodic K 
space. Let h: X X G ~ Y X K be a homomorphism. Suppose a is an action of Y X K 
on (S, m). Then h *a is an ergodic action of X X G iff the restriction of a to Yh X K is 
ergodic. 

PROOF. Suppose the restriction of a to Yh X K is ergodic. Let x ~ Ex be a Borel 
map of X into M(S, m) satisfying 

Ex.g = h*a(x, g)-lEx a.e. (x,g). 

Define F(x, k) = a(p(x)k-l, k)Ex' Then F is a Borel map of X X K into M(S, m) 
and 

F(x, g,kcp(x,g)) = a(p(x. g)cp(x,g)-lk-l,kcp(x,g))Ex . g 

= a(p(x)k-l, kcp(x, g))a(p(x),cp(x, g))-lEx 

= a(p(x)k-1,k)Ex 

= F(x, k) a.e. (x, k, g). 
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Since (x, k) ~ Ph(x)k- 1 is the ergodic decomposition of the G space X X K and F 
is G invariant, there exists a Borel function Won Yh such that W(Ph(x)k- 1) = 
F(x, k) a.e. (x, k). Thus 

W(Ph(x)k-1k 1) = F(x,kl1k) = a(p(x)k-1k1,k11k)Ex 

= a(p(x )k-1k1, kl1 )a(p(x )k- 1, k )Ex 

= a( p(x )k-l, k1f1F(x, k) 

= a(p(x)k- 1, k1f1w(Ph(x)k- 1) 

a.e. (x, k) for each k 1. Since the collection of all Ph(x)k- 1 is conull in Yh , one has 

W(y· k 1) = a(y, k 1) -lW(Y) a.e. (y, k 1) E Yh X K. 
Since a restricted to Yh X K is ergodic, W(y) is a.e. conull or a.e. null. Thus Ex is 
a.e. conull or a.e. null. Thus h *a is an ergodic action. 

Conversely, suppose that h*a = a 0 h is an ergodic action of X X G. Let y ~ 
W(y) be a Borel mapping of Yh into M(S, m) satisfying W(y . k) = a(y, k)-lW(y) 
a.e. (y, k). By Proposition A.5 of the appendix, we may assume this holds for all y 
and k. Set Ex = W(Ph(X». Then 

Ex.g = W(Ph(X' g)) = W(Ph(X)' cf>(x, g)) 

= a(Ph(x), cf>(x, g)r 1 Ex 

= h*a(x, g)Ex for all (x, g). 
Since h*a is ergodic, Ex is null a.e. x or Ex is conull a.e. x. Thus 

W(Ph(x)k- 1) = a(Ph(x),k-1f1w(Ph(X)) 

= a(Ph(x),k-1f1Ex 
is a.e. null or a.e. conull on X X K. Thus W(y) is a.e. null or a.e. conull. Q.E.D. 

COROLLARY 1.13. Let a be a strict action of Y X K on (S, m). Let h be a 
homomorphism from X X G into Y X K. Then the fibered skew product G space 
X X h S is ergodic iff the restriction of a to the Mackey range of h is ergodic. 

COROLLARY 1.14. Let q: (W,;.\) ~ (Y, v) be an extension of (Y, v). Let h be a 
homomorphism from X X G into Y X K. Then the fibered skew product space X X h W 
is ergodic iff the fibered product space Yh X ("h.i) W is an ergodic K space. 

COROLLARY 1.15 (ZIMMER). Let cf>: X X G ~ H be a cocycle with Mackey range 
the H space (Y, v). Let S be an H space. Then X x</> S is an ergodic G space iff Y X S 
is an ergodic H space. 

Let (Y, v) be an ergodic K space. By a cocycle representation of Y X K on a 
separable Hilbert space £, one means a cocycle L on Y X K with values in the 
unitary group of £. If L1 and L2 are cocycle representations on £1 and £2' they 
are said to be equivalent if there exists a strongly Borel function A from Y into the 
set of unitary transformations from £1 onto £2 satisfying A(y)L1(y, k) = 

L 2(y, k)A(y . k) a.e. (y, k). A representation L on Y X K is said to be irreducible 
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if whenever y ~ A(y) is a strongly Borel map from Y into the bounded linear 
operators on .Yt' and A(y)L(y, k) = L(y, k)A(y . k) a.e. (y, k), then A(y) = cI 
a.e. y for some constant c. This is equivalent to the following. Whenever y ~ E (y) 
is a strongly Borel orthogonal projection valued function satisfying E(y)L(y, k) = 

L(y, k)E(y . k) a.e. (y, k), then E(y) = 0 a.e. y or E(y) = I a.e. y. That is there 
is no equivariant Borel field of proper closed subspaces. 

The notion of a bundle representation of Y X K is similar to that of a cocycle 
representation except that it is defined over a Hilbert bundle over Y. Namely, let 
y ~ ~ be an Hilbert bundle over Y. A bundle representation is then a Borel map 
(y, k) ~ L(y, k), where L(y, k) is a unitary transformation of ~k onto ~ and 
L(y, k1)L(yk1, k 2 ) = L(y, k1k1) a.e. (y, kl' k2). The definitions for equivalence 
and irreducibility are the same as for cocycle representations except that the maps 
y ~ A (y) are now Borel fields of bounded operators between the bundles. More-
over, since the action of K on (Y, v) is ergodic and every Hilbert bundle can be 
measurably trivialized, every bundle representation is equivalent to a cocycle repre-
sentation. 

Suppose (X, fL) is an ergodic G space and h is a homomorphism from X X G into 
Y X K. Then h induces a correspondence from the bundle representations of Y X K 
into those for X X G. Namely, if L is a bundle representation of Y X K on the 
bundle y ~~, then h*L is the bundle representation of X X G on the bundle 
x ~ ~x defined by (x, g) ~ L(h(x, g)). If H = G and <j>(x, g) = g, then p: 
X ~ Y is an extension and h*L is called the restriction of L to X X G. Since 
bundle representations are equivalent to cocycle representations, we shall in most 
instances consider only the latter. 

PROPOSITION 1.16. Let Ll and L2 be cocycle representations of Y X K. Then 
h*L1 '=' h*L2 iff the restrictions of Ll and L2 to the Mackey range of h are equivalent. 

PROPOSITION 1.17. Suppose h is a homomorphism from X X G into Y X K. Let L 
be an irreducible cocycle representation of Y X K. Then h * L is irreducible iff L 
restricted to the Mackey range of h is irreducible. 

Propositions 1.16 and 1.17 follow from Theorem 7.17 of [15] and Theorem A.10 
and Proposition A.11 of the appendix. 

Moreover one can modify the proof of Theorem 7.17 to show that if h: X X G ~ 
Y X K has dense range then actions a 1 and a 2 of Y X K are equivalent iff h*a1 and 
h*a 2 are equivalent actions of X X G. 

Many of the results in our next section relate the structure of actions and 
representations to spectral properties of the representations they induce. Suppose 'TT 

is a Hilbert bundle representation of the virtual subgroup (X X G, fL X m) and 
(X X G, fL X m) is a subvirtual subgroup of (Y X G, v X m); i.e. (X, fL) and (Y, v) 
are ergodic G spaces and p: (X, fL) -> (Y, v) is an extension of Y. Thus P*fL - v and 
if fL = J EfJ fLy dv(y) is the disintegration of the measure fL over the fibers of p, one 
has fLyg - fLy· g a.e. (y, g), where (fLy· g)(E) = fL/Eg-1). By Proposition A.6 we 
may redefine y ~ fLy on a null set of Y so that fL y.g - fLy· g for all (y, g). Define 
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ind 7T to be the bundle representation on the Hilbert bundle y ~ x;, = f E!) ~ d}L / x) 
by 

(1.12) (ind7T)(y,g)f(x) = dd}Lyog (x· g)1/27T(x,g)f(x· g). 
}Ly.g 

Ind 7T is a bundle representation of Y X G called the bundle representation induced 
by 7T. If 7T = 1, the trivial representation, ind 7T is called the natural bundle 
representation of the extension. 

2. The structure theorems. In this section we shall give cohomological and 
representation theoretic characterizations of the actions and representations of 
X X G which are pull backs of actions and representations of Y X K under a 
homomorphism h from X X G into Y X K with dense range. We then use these 
results to obtain structure theorems for fibered skew product actions. 

Suppose h = (p, CP) is the homomorphism. One can form the fibered skew G 
space X X h (Y X K) which is dearly isomorphic to the skew product G space 
X x</> K. The next result is the major tool of this section. 

PROPOSITION 2.1. Let h be a homomorphism from the G space (X,}L) into the K 
space (Y, v) with dense range. Let b be a cocycle on X X G with values in a complete 
separable metric group M. Then a necessary and sufficient condition for b to be 
cohomologous to h*a for some cocycle a on Y X K with values in M is that bIXX~KXG 
be cohomologous to the identity cocycle. 

PROOF. Suppose b = h*a. Set A(x, k) = a( p(x)k-\ k). Then 

A (x, k ) h *a (x, g) = A (x, k ) a ( p (x), cp (x, g)) 

= a(p(x )k-l, k )a( p(x), cp(x, g)) = a(p(x )k-l, kcp(x, g)) 

= a( p(x . g)(kcp(x, g)) -\ kcp(x, g)) = A«x, k) . g). 

Thus h *a restricted to X x</> K X G is cohomologous to the identity. 
Conversely, suppose bIXX~KXG is cohomologo'Js to the identity. Then there exists 

a Borel functon A: X X K ~ M such that 

(2.1) A(x . g, kcp(x, g)) = A(x, k )b(x, g) a.e. (x, k, g). 

LEMMA A. There is a Borel function a: Y X K ~ M satisfying 

A(x, k1)A(x, k;-lk1r 1 = a(p(x)k11, k 2) a.e. (x, k1' k2)' 

PROOF. Set F(x, k1' k 2) = A(x, k1)A(x, k 21k 1)-1. Then F is a Borel function 
and F(x . g, k1CP(x, g), k 2) = F(x, k1' k 2) a.e. (x, k1' k 2) for each g. But (x, k1' k 2) 
~ (p(x)kl\ k 2) gives the ergodic decomposition of X x'" K X K, where the latter 
has action defined by (x, k1' k 2) . g = (x . g, k1CP(x, g), k 2). Thus there is a Borel 
function a on Y X K satisfying 

a( p(x )kl1, k 2) = A(x, k1)A( x, k;-lk1) -1 a.e. (x, k1' k2)' Q.E.D. 
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PROOF. 

a( p(X )k- 1, k 1k 2 ) = A(x, k )A(x, k21k11k)-1 

= A(x, k )A(x, kl1k) -lA(x, kl1k )A(x, k21k11k)-1 

= a(p(x )k- 1, k1)a(p(x )k-1k1, k 2 ) a.e. (X, k, k1' k2). Q.E.D. 

By Corollary A.8 of the appendix, we may redefine a on a set of measure 0 so that 
a is strictly multiplicative. Hence we have the following: 

(2.2) a is a cocycle on Y X K and 

(2.3) A(x, k1)A(x, k21k1r 1 = a(p(x)k11, k 2) a.e. (x, k2' k1). 

LEMMA C. There is a Borel function B from X into M satisfying 

A(x,k) = a{p(x)k-1,k)B(x) a.e. (x,k). 

PROOF. Define F(x, k) = A(x, k)-la(p(x)k-l, k). Then F is a Borel function 
and 

F(x, h-1k) = A(x, h-1k) -la(p(x )k-1h, h-1k) 

= A(x, k) -la(p(x )k-l, h )a(p(x )k-1h, h-1k) 

= A(x, k- 1 )a(p(x )k- 1, k). 

Thus there exists a Borel function B from X into M satisfying B(X)-l = F(x, k) 
a.e. (x, k). Q.E.D. 

We finish the proof. By Lemma C we have 

A(x· g,kcp(x,g)) = a(p(x. g)cp(x,g)-lk-1,kcp(x,g))B(x. g) 

a.e. (x, k) for each g. Thus 

A(x . g, kcp(x, g)) = a{p(x )k-l, k )a(p(x), cp(x, g))B(x . g) 

= a(p(x )k-l, k )B(x )B(x) -la(p(x), cp(x, g))B(x . g) 

= A(x, k )B(x) -la(p(x), cp(x, g))B(x . g) 

a.e. (x, k) for each g. But by (2.1), A(x . g, kcp(x, g)) = A(x, k)b(x, g) a.e. (x, k, g). 
Thus b(x, g) = B(x)-la(p(x), cp(x, g))B(x . g). Hence b is cohomologous to h*a. 
Q.E.D. 

COROLLARY 2.2. Suppose h: X X G -+ Y X K is a homomorphism with dense 
range. Let 17 be a cocycle representation of X X G. Then 17 :::: h*17' for some cocycle 
representation 17' iff 17IXX~KXG :::: I. 

COROLLARY 2.3. Let cp be a continuous group homomorphism of G into K with dense 
range. Let L be a unitary representation of G. Then L = cp*L' for some unitary 
representation L' of K iff L 1KXG :::: I. 
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COROLLARY 2.4. Let h: X X G ~ Y X K be a homomorphism and let b be a cocycle 
on X X G with values in M. Suppose 

XxG YxK 

'\i h' 

Yh X K 

is the factorization of h through its Mackey range. Then b is cohomologous to h'*a for 
some cocycle a on Yh X K with values in M iff bIXX~KXG ::::: I. 

In [17] Caroline Series defined the inverse image of the K-space Y under a cocycle 
</>: X X G ~ K having dense range to be the G space induced by </>*a where a is the 
action of K on Y. If </> were a homomorphism of G into K and Y = H \ K where H 
is a closed subgroup of K, then this induced space would be isomorphic to 
</> -1( H) \ G. The following proposition shows it would be appropriate to call the G 
space induced by h *a the inverse image under h of the K space induced by the 
Y X K action a on (S, m). This proposition is a generalization of Theorem 2.1 of 
[22] and Proposition 4.11 of [17]. 

PROPOSITION 2.5. Suppose h is a homomorphism of the ergodic G space (X, JL) into 
the ergodic K space (Y, v) with dense range. Let a be an ergodic action of Y X K on 
(S, m). Suppose W is an extension of X induced by the action h*a. Then h1wXG has 
Mackey range the K space induced by a. 

PROOF. We may assume W = X X S and (x, s) . g = (x . g, a(p(x), </>(x, g»-IS) 
a.e. s a.e. (x, g). 

Let h = h1wxG. Then hex, s, g) = (px, </>(x, g» a.e. (x, g). Thus W X K is iso-
morphic to X X S X K with action given by 

(x, s, k) . g = (x· g, a( p{x), </>{x, g)) -IS, k</>{x, g)) a.e. s a.e. (k, x, g). 

Let F be a Borel function on X X S X K satisfying F(x, s, k) = 
(p(x)k-l, a(p(x)k-l, k)s) a.e. s a.e. (x, k). Note 

F(x. g,a(p{x),</>{x,g))-ls,k</>(x,g)) = F{x,s,k) a.e. s a.e. (k,x,g). 

Since (x, k) ~ p(x)k-1 is an ergodic decomposition of X X K, F is an ergodic 
decomposition of X X S X K. Indeed, if T is a Borel function from X X S X K 
into itself satisfying T(x, s, k) = (x, a(p(x)k-l, k)-IS, k) a.e. s a.e. (x, k), then 

T(x . g, s, k</>(x, g)) = (x. g, a(p{x)k- 1, k</>{x, g)r 1s, k</>(x, g)) 

= (x. g,(a(p(x)k-l,k)a(p(x),</>(x,g))r1s,k</>{x,g)) 

= (x,a(p(x)k-1,kr1s,k).g 

a.e. s a.e. (k, x, g). Thus Go T- 1 where G(x, s, k) = (p(x)k-l, s) gives an ergodic 
decomposition of W X K. But F = GoT-I. Thus as seen in the appendix Yl, = Y 
X S and there exist a strict K action on Y X S and a strict K extension (Jl,: Yl, ~ Y 
satisfying F(x, s, k11k) = F(x, s, k)· kl and (Jl.(F(x, s, k» = p(x)k- 1 a.e. where 
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Yj, denotes the Mackey range of h. In particular (y, s) . kl = (y . kl' a(y, kl)-lS) 
a.e. s a.e. (y, k1). Thus Yj, is induced by a. Q.E.D. 

The following theorem is one of a series of theorems relating the spectral 
properties of the natural representation of an action or extension to the geometric 
structure of the action. The first significant result obtained along this line is the 
classical von Neumann-Halmos characterization [4] of transformations with pure 
point spectrum. To see this fits within the framework of the following theorem we 
consider a group G acting ergodically on a space (W, m). Let L be the natural 
unitary representation of G associated with this action and suppose it is a direct sum 
of one-dimensional representations (pure point spectra). Then there is a unitary 
transformation U from L2(W, m) into EI1 Hi' a direct sum of one dimensional 
Hilbert spaces, with ULp-l = I:N where Ai are characters of G. Thus cp(g) = 

(A i (g)) is a homomorphism of G whose topological range closure is a compact 
abelian subgroup K of the unitary group of EI1 Hi' Define A (k) = U-1k U. It follows 
that A(k . g) = A(x)Lg . Thus ind~xG1IKx$G :::: I. The following theorem shows the 
G space W is a pull back of an ergodic and thus transitive K space Kj H. Thus W is 
a compact abelian group and the G action on W is given by translation composed 
with a homomorphism cp having dense range in W. 

Similarly Zimmer's structure theorem (4.3 of [20]) on extensions with relative 
spectrum is related to the following theorem and Theorem 2.1 of [3]. 

Normal actions and normal ergodic extensions were defined in [20] and were 
characterized in [23 and 2]. They are defined in terms of the natural bundle 
representation and they too can be set in the context of the following theorem. 

THEOREM 2.6. Let h = (p, cp) be a homomorphism between an ergodic G action on 
(X, /L) and an ergodic K action on (Y, v). Suppose h has dense range. Let (W, A) be 
an extension of (X, /L). Then W is isomorphic over X to an extension X X h Y' where 
Y' is an extension of Y iff ind~~~lIXx$KXG :::: I. 

PROOF. First suppose W:::: X X h Y' for some K space (Y', v') which extends 
(Y, v). Thus Y' :::: Y X S where the K action on Y' is that induced by a strict action 
a of Y X K on S. Thus W:::: X X S with action induced by h*a. Hence ind~~~l is 
equivalent to the cocycle representation (x, h) ~ Lh*a(x,g)' Therefore, 
ind~~~llx$KXG is equivalent to the cocycle representation (x, k, g) ~ Lh*a(x.g)' 

Therefore ind~~~lIXx$KXG:::: I iff the cocycle (x, k, g) ~ h*a(x, g) E 5(S, m) is 
equivalent to the identity cocycle. To see this let U(x, k) = a(p(x)k-l, k). Then 

U(x· g,kcp(x,g» = a(p(x. g)cp(x,g)-lk-\kcp(x,g») 

= a(p(x)k- 1 , kcp(x, g») 

= a(p{x )k- 1, k )a{p(x), cp(x, g») = U(x, k )h*a(x, g). 

Conversely, suppose (W, A) is an extension of (X, /L) and ind~~~lIXx$KXG is 
equivalent to the identity. We may assume W is induced by a strict action b of 
X X G on (S, m). Then ind l(x, g) = Lb(x.g)' Thus ind 1Ixx $KXG is the cocycle 
representation (x, k, g) ~ Lb(x,g)' Since it is equivalent to the identity cocycle 
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representation, there is a strongly Borel unitary operator valued function V on 
X X K satisfying 

V(x· g,kcp(x,g)) = V(x,k)Lb(x.g) a.e. (x,k,g). 

Let LOO(S) be the von Neumann algebra of bounded multiplication operators on 
L 2(S, m). Define r(x, k) = V(x, k)LOO(S)V(x, k)-l. By results from [1], this is a 
Borel map into the space of von Neumann algebras ron L2(S), where the Borel 
structure on the space of r's is standard and the action (r, V) -> v- 1rv is 
Borel, V belonging to the unitary group of L 2(S). Furthermore, 

rex . g, kcp(x, g)) = vex, k )Lb(x,g)LOO(S)Lb(~,gP(x, k)-l 

= V(x,k)LOO (S)V(x,k)-l 

= LOO(S) a.e. (x, k, g). 

Thus, since (x, k) -> p(x)k- 1 is the ergodic decomposition of X xq, K as a G 
space, there is a Borel map y -> -? (y) on Y satisfying 

-?(p(x)k- 1) = r(x,k) a.e. (x,k). 

This implies the set W = {(y, V): V-?(y)V-1 = LOO(S)} is Borel and {y: (y, V) E 

W for some unitary operator V} is conull. By the von Neumann selection theorem, 
there exists a Borel map Von Y satisfying 

V(Y)-?(Y)V(y)-l = LOO(S) a.e. y. 

Define V'(x, k) = V(p(x)k- 1)V(x, k). Then 

V'(u, k )Loo(S)V'(x, k) -1 = V(p(x )k- 1 )r(x, k )V(p(x )k- 1)-1 

= LOO(S) a.e. (x,k). 

Hence by redefining V' on a set of measure 0 and replacing V by V' we may 
assume 

(2.4a) 

and 

(2.4b) 

V(x,k)LOO(S)V(x,k)-l = LOO(S) for all (x,k) 

V(x· g,kcp(x,g)) = V(x,k)Lb(x,g) a.e. (x,k,g). 

By (2.4a), it follows there is a Borel function '1': X X K -> f(S, m) satisfying 

Vex, k )MjV(x, k) -1 = Mjo'l'(x,k)-l 

for each fin LOO(S). But by (2.4b) 

Thus 

Mjo'l'(x'g,kq,(x,g»-l = Vex, k )Lb(x,g)MjLb(~,gP(x, k)-l 

= vex, k )Mjob(x,g)-lV(X, k)-l 

tft(x, g,kcp(x,g)) = tft(x,k)ob(x,g) a.e. (x,k,g). 
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That is, bIXX"KXG is cohomologous to the identity. By Proposition 2.1, b is 
cohomologous to h*a for some strict action a of Y X K on (S, m). Thus the G 
space induced by b is isomorphic over X to that induced by h*a. In particular, W is 
isomorphic to the fibered skew product of X with the K space Y' induced by a. 
Q.E.D. 

COROLLARY 2.7. Let <p: X X G -+ H be a cocycle. Let (W, A) be an extension of 
( X, JL). Then W is isomorphic over X to a fibered skew product action of X with an 
extension of the Mackey range of <p iff 

. d XXG 1 / In WxG IXX"HXG == . 

The following result coalesces many of the notions of this paper and shows only 
appropriate pull backs of cocycle representations induce representations with trivial 
restrictions. 

THEOREM 2.8. Let h = (p, <p) be a homomorphism with dense range between the 
ergodic G space (X, JL) and the ergodic K space (Y, v). Suppose (W, A) is an 
extension of X and 'TT is a cocycle representation of the G space W satisfying 

. d XXG / In WXG'TTIXX"KXG == . 

Then there exists a strict action a of Y X K on some space (S, m) such that W is 
isomorphic over X to the G space induced by h*a. Furthermore, if h is the restriction of 
h to W X G, the Mackey range Yh of h is a K space induced by the action a and the 
representation 'TT is equivalent to a cocycle representation of the form (b')*'TT' where 'TT' 
is a cocycle representation of the K space Yh and 

h 
WxG YxK 

Yh X K 

is the factorization of h through its Mackey range. 

PROOF. We may assume W = X X S, A = JL X m and the action of G on W 
satisfies (x, s) . g = (x . g, b(x, g)-IS) a.e. s a.e. (x, g), where b is a strict action of 
X X G on (S, m). Let R = ind~~~'TT. Then R is the cocycle representation on 
L2(S, m) defined by 

(2.5) R(x,g)f(s) = dmob~;,g)-l (s)1/2'TT(x,s,g)f(b(x,g)-1s ). 

Since R1XX"KXG == /, there exists a strongly Borel function U on X X K satisfying 

(2.6) U(x . g, k<p(x, g)) = U(x, k )R(x, g) a.e. (x, k, g). 

Now let Loo(S) be the von Neumann algebra of bounded multiplication operators 
Mf on L2(S, £'), £' the Hilbert space for 'TT; and set 

1'" ( x, k) = U( x, k ) L 00 ( S) U( x, k) -1. 
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Since for each I, R(x, g)MjR(x, gr l = Mjob(x,g)-I, one sees 'i'"(x· g, kcp(x, g)) 
= 'i'" (x, k) a.e. (x, k, g). Using the same argument as in the proof of Theorem 2.6, 
we may assume U(x, k)LOO(S)U(x, k)-l = LOO(S) for all (x, k). This implies there 
is a Borel function 'Ir: X X K ~ j(S, m) such that each U(x, k)L;(~,k) centralizes 
L OO(S). Thus there is a function (x, k) >--) Ix,k such that each lx, k is the a.e. s unique 
Borel function on S with values in the unitary group <?I ( ..no) of ..no satisfying 
U( x, k) = Mjx.kLf(x, k)' From (2.5) and (2.6), one obtains 

MjXg.k$(x.g) 0 Lf(x'g,k</>(x,g» = Mjx.kLf(x.k)R(x, g) 

Hence we see 
(2.7a) 
and 

= Mjx.kM'fT(x, f(x, g)-I(.), g)Lf(x, k) 0 b(x, g)' 

l/;(x, g, kcp(x, g)) = l/;(x, k)b(x, g) a.e. (x, k, g) 

(2.7b) IX'g,k</>(x,g)(s) = Ix,k(S )'17(x, l/;(x, k) -lS, g) a.e. s a.e. (x, k). 

Equation (2.7a) shows the action b restricted to X x</> K X G is cohomologous to 
the identity cocycle. By Lemmas A, B, and C of the proof of Proposition 2.1 and the 
remarks after Theorem 1.2, we see there exists a strict action a of Y X K on (S, m) 
and a Borel map 'Ir' on X with values in j(S, m) satisfying 

(2.8a) l/;(X,klH(x,k21klrl = a(p(x)k1\k2) a.e. (X,kl,k2) 

and 

(2.8b) l/;(x,k) = a(p(x)k-\k)l/;'(x) a.e. (x,k). 

In particular 
(2.9) 

Ix.g,k</>(x,g)(s) = Ix,k(S ) '17 ( x, l/;'(x) -la{p(x )k- l , k) -lS, g) a.e. S a.e. (x, k, g). 

Furthermore, the end of the proof of Proposition 2.1 shows b(x, g) = 

l/;'( x) -laC p(x), cp(x, g ))l/;'(x . g). This shows the map <I> ( x, s) = (x, l/;'( x)s) satis-
fies 

<I>(x. g,b(X,g)-lS) = (x. g,h*a(x,g)-ll/;'(x)s) a.e. s a.e. (x,g). 

Thus <I> yields an isomorphism over X between Wand the G space induced by h *a. 
Under this isomorphism the representation '17 of the G space W corresponds to the 
representation '17' of the G space induced by h*a defined by '17'(x, s, g) = 

'17(<I>-l(X, s), g) = '17(x, l/;'(X)-lS, g). From (2.9) we obtain 
(2.10) 

IX'g,k</>(x,g)(s) = Ix,k(S )'17'( x, a( p(x )k-\ k rls , g) a.e. s a.e. (x, k, g). 

Since x, k ~ Mjx.. is strongly Borel, there is a Borel function I on X X K X S 
satisfying 
(2.n) I(x, g,kcp(x,g),s) 

= I(x, k, S )'17'( x, a(p(x )k- l , k rls, g) a.e. s a.e. (x, k, g). 
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Define A(x, s, k) = f(x, k, a(p(x)k- 1, k)s). Then A is a Borel function and 

A(x. g,h*a(x,g)-ls ,k</>(x,g)) 

= f( x . g, k</>(x, g), a(p(x . g)</>(x, g) -lk-l, k</>(x, g) )h*a(x, g) -IS) 

= f(x. g, k</>(x, g), a(p(x)k-l, k</>(x, g))a(p(x),</>(x, g))-IS ) 

= f(x. g,k</>(x,g), a(p(x)k- 1,k)s) 

= f( x, k, a( p (x )k-l, k)s ) w'( x, s, g) 
=A(x,s,k)w'(x,s,g) a.e.(x,s,k,g). 

Thus wI Xx S x ¢ Kx G ~ I. Since h = (a h' i) 0 II' and II' has dense range by Proposition 
A.ll, we see by Corollary 2.2, that w' ~ (1I')*w". That Yh is the K space induced by 
a follows by Proposition 2.5. Q.E.D. 

Appendix. The intent of this appendix is twofold. The first is to present the results 
necessary for the development of this paper. The second is to show that one can 
make strict all actions, equivariant maps, and homomorphisms with which we shall 
deal simultaneously. Our approach follows Ramsay [16]. The main tool is the 
following well-known selection theorem. 

LEMMA A.l (FEDERER MORSE SELECTION THEOREM). Suppose X is a a-compact 
metric space and f is a continuous function on X with values in a complete separable 
metric space Y. Then there exists a Borel function 0: f( X) -4 X satisfying f( O( y» = y. 

In order to apply this selection theorem we need the following fact about analytic 
subsets of complete separable metric spaces. For a proof see Theorem 3.2 of [12]. 

LEMMA A.2. Let A be an analytic subset of a complete separable metric space X. 
Suppose f.L is a a-finite measure on X. Then there exists a a-compact set B ~ A 
satisfying f.L(A - B) = 0. 

We shall also use the following lemma. 

LEMMA A.3. Suppose X, Y, and Z are Borel spaces and X and Z are countably 
generated. Suppose f.L is a a-finite measure on X and f: X X Y -4 Z is a Borel 
function. Then Yo = {y: f(x, y) is f.L a.e. x a constant} is a Borel subset of Y; and if 
fo is the function defined on Yo by fo( y) = c if f( x, y) = c f.L a.e. x, then fo is a Borel 
function on Yo. 

PROOF. We may assume f.L is a probability measure and Z is a subset of [0, I] with 
the relative Borel structure. Let E 1, E 2 , E 3 , . .• be a countable generating sequence of 
sets for the Borel structure on X. Then y E Yo iff f.L(E)iE, f(x, y) df.L(x) = 
f.L(EJf£ f(x, y) df.L(x) for all i, j. Thus Yo is a Borel set. Furthermore fo(Y) = 

J 

f f(x, y) df.L(x) for y in Yo· Thus fo is a Borel function. 

LEMMA A.4. Let (X, f.L) be a strict G space. Suppose Xo is a conull Borel subset of 
X. Then Xo contains a conull Borel subset E such that 

(a) [E] = E· G is a Borel subset of X and 
(b) there exists a Borel map 0 from [E] into G such that O( x) = e whenever x is in 

Eandx· 8(X)-1 E Eforallxin [E]. 
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PROOF. We may assume X = UG, the universal G space. Hence X is a complete 
separable metric space, and the action is continuous. By Lemma A.2, Xo contains a 
conull a-compact set E. Thus [E] = E· G is a-compact and therefore Borel. The 
map f: E X G ~ E . G defined by f(x, g) = x . g is continuous on the a-compact 
set E X G. By Federer Morse, there exists a Borel function 1f;: E· G ~ E X G 
satisfying f(1f;(x» = x. Let 1f; = (q,O). Then q(x)· O(x) = x on [E]. Thus x· 
O(X)-l = q(x) E E for all x. Redefine 0 on E by O(x) = e. Q.E.D. 

PROPOSITION A.S. Let (X, JL) be a strict G space. Suppose a is an action of X X G 
on the space (S, m). Furthermore, suppose x - E (x) is a Borel map on X with values 
in the measure algebra M(S, m) defined by m satisfying E(x . g) = a(x, g)-lE(x) 
a.e. (x, g). Then there is a Borel function F: X ~ M(S, m) satisfying F(x) = E(x) 
a.e. x and F(x . g) = a(x, g)-lF(x) for all (x, g). 

PROOF. Let W = {(x, g): E(x· g) = a(x, g)-lE(x)}. Then W is a Borel set 
which is conull in X X G. Furthermore, if (x, gl) and (xg1, g2) are in W, then 
(x, glg2) belongs to W. By Lemma 5.2 of [13], there is a conull Borel set Eo in X 
such that if x and x . g belong to Eo, then (x, g) is in W. By Lemma A.4, we may 
assume [Eo] = Eo . G is Borel and there exists a Borel map 0: [Eo] ~ G satisfying 
XO(X)-l E Eo and O(x) = e for x in Eo. 

Define F(x) = a(x, O(x)-l)E(x . O(X)-l) if x E [Eo] and F(x) = <I> oth~rwise. 

Clearly F(x) = E(x) if x E Eo and F(x . g) = a(x, g)-lF(x) for x ~ [Eo]. Sup-
pose x E [Eo]. Then 

F(x· g) = a(x. g,O(x· g)-l)E(x. gO(x. g)-l) 

= a (x . g, 0 (x . g) -1) E (x . 0 (x) -10 (x) gO (x . g) -1) 
= a (x . g, 0 (x . g) - 1) a (x . 0 ( x ) - 1 , 0 ( x ) gO (x . g) - 1 r 1 E (x . 0 ( x ) - 1 ) 

= a (x . g, g - 10 ( X ) - 1) E (x . 0 ( x ) - 1 ) 
= a(x. g,g-l)a(x,O(x)-l)E(x. O(X)-l) 

= a(x, g)-l F(X) 
since x . O(X)-l E Eo and x . gO(x . g)-l E Eo. Q.E.D. 

The following propositions can be proved using an argument essentially the same 
as that used in Proposition A.S. Moreover they are essentially equivalent to Theo-
rems 3.4 and 3.2 in [16]. 

PROPOSITION A.6. Let (X, JL) and (Y, v) be strict G spaces. Suppose y - A. y is a 
Borel map from Y into the space of a-finite measures on X with the weak Borel 
structure. Furthermore suppose A. y • g - A. y . g a.e. (y, g) where (A. . g)(E) is defined 
to be A. (E . g -1). Then there exists a Borel function y - Nv such that A:y = A. y a. e. y 
and A:y . g - Ny· gforall (y, g). 

PROPOSITION A. 7. Let (X, JL) be a strict ergodic G space. Let (Y, v) be a strict K 
space. Suppose h is a Borel mapping from X X G into Y X K satisfying 

(A.I) hex, glg2) = hex, g)h(xg1 , g2) a.e. (x, gl' g2)· 
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Then there exists a Borel mapping ho from X X G into Y X K equal to h a.e. and 
satisfying (A.I) for all (x, gl' g2)· 

COROLLARY A.8. Suppose (X, Jl) is a G space and cp is a Borel mapping on X X G 
with values in a Polish group K satisfying cp(x, glg2) = cp(x, gl)CP(xgl, g2) a.e. 
(x, gl,g2). Then there is a cocycle CPo equal to cp a.e. (x, g). 

THE MACKEY RANGE. Suppose (X, Jl) is a strict ergodic G space and (Y, p) is a 
strict ergodic K space. Let h = (p, cp) be a homomorphism from X X G into 
Y X K. Our intent here is to develop the notion of the Mackey range of h. We show 
it will only be necessary to redefine h on a set of measure 0 in order to make all the 
relative mappings and actions strict. 

The first step is to define a strict action of G on X X K by (x, k) . g = (x . 
g, kcp(x, g)). Then there exists an ergodic decomposition F: X X K ~ Yh of the G 
space X X K. This mapping is essentially G invariant. Furthermore, for each ki in 
K, the map (x, k) >-+ (x, kIk) is a strict G space isomorphism of X X K. Thus the 
mapping (x, k) >-+ F(x, kIk) gives another ergodic decomposition of the G space 
X X K. By the uniqueness of the ergodic decomposition, there exists a Borel map 
1f(kl ) E f(Yh, Ph), where Ph = F*('A X m K ), satisfying 1f(kl )F(x, k) = F(x, kIk) 
a.e. (x, k). It follows that 1f is a Borel function and 1f(kIk 2) = 1f(kl )1f;(k2). Hence 
1f defines an action of K on (Yh, Ph). By [6] there is a strict K action on (Yh, Ph) with 
fixed points satisfying y. k = 1f(k)-ly a.e. y for each k. Thus F(x, k) . ki = 
F(x, kllk) a.e. (x, k) for each k i . 

Let Yo be a fixed point for the action of K on Yh • Then by Lemma A.3 
WI = {(x, k): g>-+ F(x . g, kcp(x, g)) is a constant a.e. g} is a conull Borel set and 
the function F' defined on WI by F'(x, k) = F(x . g, kcp(x, g)) a.e. g is Borel. 
Define F' on X X K - WI by F'(x, k) = Yo. Then F'(x, k) = F(x, k) a.e. Suppose 
(x, k) belongs to WI. Then if g E G, 

F{x . gl' kcp(x, gl)) = F{x . ggl' kcp(x, ggl)) a.e. gl· 
Thus 

F{x . gl' kcp(x, gl)) = F{x . g. gl' kcp(x, g). cp(xg, gl)) a.e. gl· 
Thus (x· g, kcp(x, g)) E WI and F'(x· g, kcp(x, g)) = F'(x, k). Thus F' is G 
invariant. Replacing F by F' we see one may assume F is strictly G invariant. 

Let W2 = {(x, k l ): F(x, k-Ikl ) . k- I is constant a.e. k}. Then Lemma A.3 shows 
W2 is a conull Borel subset and the function F' defined on W2 by F'(x, k l ) = 

F(x, k-Ik l ) . k a.e. k is Borel. Define F' on X X W - W2 by F'(x, k) = Yo. Then 
F' is Borel, strictly G invariant, F'(x, k-Ikl ) = F'(x, k l ) . k for all x, k, kl' and 
F'(x, k l ) = F(x, k l ) a.e. (x, k l ). Replacing F by F', we thus have F is a strictly G 
invariant Borel map from X X K into (Yh , Ph) which gives an ergodic decomposition 
X X K and satisfies F(x, kllk) = F(x, k) . ki for all x, kl' and k 2 • 

Next, consider the mapping f from X X K into Y defined by f(x, k) = p(x)k- I . 

Since h is a homomorphism, f is strictly G invariant. Thus, since F is an ergodic 
decomposition of X X K, there exists a Borel map (Jh from Yh into Y satisfying 
(Jh(F(x, k)) = p(x)k- I = f(x, k) a.e. (x, k). This implies (Jh(y . k) = (Jh(y) . k a.e. 
y for each k. 
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Let Yo = {y E Yh: ah(y . k)k- 1 is constant a.e. k}. By Lemma A.3, Yo is a Borel 
set and the mapping a~ defined on Yo by a~(y) = ah(y . k)k- 1 a.e. k is Borel. 
Clearly Yo is K invariant and a~ = ah a.e. on Yo. Furthermore, if y E Yo, then for 
a.e. k, 

Thus a~ is strictly K equivariant on the K invariant conull Borel subset Yo of Yh. 
Redefine ah to be a~ on Yo. 

Finally let W3 = {(x, k): F(x, k) E Yo and ah(F(x, k» = p(x)k- 1}. W3 is a 
conull G X K invariant Borel subset of X X K. Since W3 is K invariant, W3 = Xo 
X K for some Borel subset Xo of X. Since W3 is G invariant, Xo is a G invariant 
conull Borel subset of X. Replace Yh by Yo. 

We thus may conclude the following. Suppose h is a homomorphism from X X G 
into Y X K. Then there exist a conull G invariant Borel subset Xo of X, a strict K 
space (Yh , Vh), a Borel G invariant map F from Xo X K into Yh , and a K 
equivariant Borel map ah from Yh into Y satisfying 

(a) F is an ergodic decomposition of Xo X K, 
(b) F(x, k1Ik) = F(x, k)kl for all (x, k, k l ), and 
(c) ah(F(x, k» = p(x)k- I for all (x, k). 
Define Ph(X) = F(x, e) for x in Xo' Then F(x, k) = Ph(x)k- 1 for all (x, k). Ph 

satisfies Ph(X . g) = Ph(X)' cp(x, g) for all x and g, since F is G invariant. Thus 
h' = (Ph' cp) is a multiplicative map from Xo X G into Yo X K. 

PROPOSITION A.9. The map ah: (Yh, Vh) ~ (Y, v) is an ergodic extension. 

PROOF. First we show the map ah X i which sends (y, k) to (ah(y), k) is a 
homomorphism. Clearly it is multiplicative. Next, note that Yh is an ergodic K 
space. Indeed, if E is a K invariant Borel subset of Yh , F- 1( E) is a G X K 
invariant subset of Xo X K. It thus has form Eo X K where Eo is a G invariant 
Borel set. Thus Eo is null or conull. Thus F- I( E) is null or conull; thus E is v h null 
or conull. Lastly we need to show that if A is an invariant analytic subset of Y, 
a h I( A) is v h null iff A is v null. But since h is a homomorphism, A is null iff 
p-I(A) is null in X iff {(x, k): p(x)k- 1 E A} is null in Xo X K iff {(x, k): 
ah(F(x, k» E A} is null in Xo X K iff F- 1( ahl(A» is null in Xo X K iff ahl(A) is 
null in Yh . 

To show ah is an extension, we must show ah.vh - v. Let A = ah.vh = Vh 0 ah 1. 
Then A = Aa + As where Aa « v and As 1. v. But A . k - A. Thus A . k = Aa . k + 
As' k and Aa . k « v . k - v, As' k 1. V· k - v. Hence Aa . k « v and As . k 1. v. 
Therefore, Aa' k - Aa and As' k - Aa. But there exists a Borel set E with 
Aa = AlE and As = AW' where F = Y - E. Since Aa . k - Aa and As' k - As' one 
has for each k, E· k = E and F· k = F A essentially. We may thus assume E and 
Fare K invariant. Thus E or F is A-null. If E is A-null, then vh(ahl(E» = 0 which 
occurs iff v(E) = 0 since E is invariant and ah X i is a homomorphism. But then F 
is conull. This implies A = As 1. v. Hence v(F) = O. But then v(Y) = v(E) + v(F) 
= O. This is a contradiction. Thus A(F) = O. Hence vh(ah1(F» = O. Since ah X i is 
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a homomorphism, p(F) = O. Therefore E is conull and A = Aa « P. But then 
A = f fdp and y . k - A implies fey . k) > 0 iff fey) > O. Hence fey) > 0 P a.e. 
y. Therefore A - P. Q.E.D. 

The major conclusion of the above construction is the following. 

THEOREM A.lO. Let h = (p, 1» be a homomorphism between the ergodic G space 
( X, J.t) and the ergodic K space (Y, p). Then there exist a conull G invariant Borel 
subset Xo of X, an ergodic extension (J h: (Yh , Ph) ~ (Y, p), and a Borel mapping Ph: 
Xo ~ Yh such that 

(1) (Jh 0 Ph(X) = p(x) for all x in Xo, 
(2) Ph(X . g) = Ph(X)1>(X, g) for all (x, g) in Xo X G, 
(3) an ergodic decomposition for X Xq, K is given by the map (x, k) ~ Ph(x)k-l, 

and 
(4) h' = (Ph' 1» is a homomorphism of Xo X G into Yh X K. 

PROOF. All has been established except property (1.8) for the mapping h'. Let E 
be an invariant analytic subset of Yh. It is null in Yh iff {(x, k): Ph(x)k- 1 E E} is 
null in X X K iff Ph1(E) is null in X. Q.E.D. 

The K space (Yh, Ph) is called the Mackey range of h. The homomorphism (Jh X i: 
Yh X K ~ Y X K is called the inclusion of the Mackey range in Y X K. The 
decomposition hlxoxG = «Jh X i)o h' is called the factorization of h through the 
Mackey range of h. The homomorphism h is said to have dense range if the 
extension (J h: Yh ~ Y is a K space isomorphism. 

REMARK. The homomorphism h has dense range iff the map (x, k) ~ p(x)k- 1 

gives the ergodic decomposition of the K space X X q, K. 

PROPOSITION A.ll. The homomorphism h' = (Ph' 1» has dense range in Yh X K. 

PROOF. The ergodic decomposition for X Xq, K is the map (x, k) ~ Ph(x)k- 1• 

REFERENCES 

1. E. G. Effros, The Borel space of von Neumann algebras on a separable Hilbert space, Pacific 1. Math. 
15 (1963), 1153-1164. 

2. R. C. Fabec, Normal ergodic actions and extensions, Israel Math. J. 40 (1981),175-186. 
3. __ , Cocycles, extensions of group actions, and bundle representations, 1. Funct. Anal. 56 (1984), 

79-98. 
4. P. R. Halmos and 1. von Neumann, Operator algebras in classical mechanics. II, Ann. of Math. 43 

(1942),332-350. 
5. G. W. Mackey, Borel structures in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 

265-311. 
6. __ , Point realizations of transformation groups, Illinois 1. Math. 6 (1962),327-335. 
7. __ , Ergodic theory, group theory, and differential geometry, Proc. Nat. Acad. Sci. U.S.A. 50 

(1963), 1184-1191. 
8. __ , Ergodic transformations with a pure point spectrum, Illinois J. Math. 8 (1964), 593-600. 
9. __ , Ergodic theory and virtual groups, Math. Ann. 166 (1966),187-207. 

10. C. C. Moore, Extensions and cohomology for locally compact groups. III, Trans. Amer. Math. Soc. 
221 (1976), 1-33. 

11. C. C. Moore and R. 1. Zimmer, Groups admitting ergodic actions with generalized discrete spectrum, 
Invent. Math. 51 (1979), 171-188. 

12. K. R. Parthasarathy, Probability measures on metric spaces, Academic Press, New York, 1967. 
13. A. Ramsay, Virtual groups and group actions, Adv. in Math. 6 (1971),253-322. 



INDUCED GROUP ACTIONS 513 

14. ___ , Boolean duals of virtual groups, J. Funct. Anal. 15 (1974),56-101. 
15. ___ , Subobjects of virtual groups, Pacific J. Math. 87 (1980),389-454. 
16. ___ , Topologies on measured groupoids. J. Funct. Anal. 47 (1982).314-343. 
17. C. Series. The Poincare flow of a foliation. Amer. J. Math. 102 (1980).93-128. 
18. J. J. Westman. Virtual group homomorphisms with dense range. Illinois J. Math. 20 (1976). 41-47. 
19. R. J. Zimmer. Compact nilmanifold extensions of ergodic actions. Trans. Amer. Math. Soc. 223 

(1976). 397-406. 
20. ___ • Extensions of ergodic group actions. Illinois J. Math. 20 (1976).373-409. 
21. ___ • Ergodic actions with generalized discrete spectrum. Illinois J. Math. 20 (1976). 555-588. 
22. ___ • Cocycles and the structure of ergodic group actions. Israel Math. J. 26 (1977). 214-220. 
23. ___ • Normal ergodic actions. J. Funct. Anal. 25 (1977), 286-305. 
24. ___ • Orbit spaces of unitary representations. ergodic theory. and simple Lie groups. Ann. of Math. 

(2) 106 (1977).573-588. 
25. ___ • Amenable ergodic group actions and an application of Poisson boundaries of random walks. J. 

Funct. Anal. 27 (1978).350-372. 
26. ___ • Induced and amenable ergodic actions of Lie groups. Ann. Sci. Ecole Norm. Sup. 11 (1978), 

407-428. 

DEPARTMENT OF MATHEMATICS. LOUISIANA STATE UNIVERSITY. BATON ROUGE. LOUISIANA 70803 


	0110061
	0110062
	0110063
	0110064
	0110065
	0110066
	0110067
	0110068
	0110069
	0110070
	0110071
	0110072
	0110073
	0110074
	0110075
	0110076
	0110077
	0110078
	0110079
	0110080
	0110081
	0110082
	0110083
	0110084
	0110085

