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LA TIICE EMBEDDINGS IN THE RECURSIVELY ENUMERABLE 
TRUTH TABLE DEGREES 

CHRISTINE ANN HAUGHT 

ABSTRACT. It is shown that every finite lattice, and in fact every recursively 
presentable lattice, can be embedded in the r.e. tt-degrees by a map preserving least 
and greatest elements. The decidability of the I-quantifier theory of the Le. tt-
degrees in the language with ~, v, /\, 0, and 1 is obtained as a corollary. 

Introduction. A set A ~ w is truth table (tt) reducible to B ~ w (A ~ tt B) if 
answers to questions of the form "n E A?" are given by a finite Boolean combina-
tion, effectively determined from n, of answers to questions of the form "k E B?". 
Sets A and B are of the same tt-degree if A ~ It Band B ~ It A. We consider the 
structure consisting of the tt-degrees of recursively enumerable sets of natural 
numbers. Odifreddi [4] and Rogers [6] contain background information on the 
tt-degrees. In particular, Fejer and Shore [1] contains information about the r.e. 
tt-degrees and about questions relating to the decidability of the theory of the r.e. 
tt-degrees. They show there that every recursively presentable lattice can be em-
bedded in the r.e. tt-degrees preserving least element. Using this, they show that the 
3 theory of the r.e. tt-degrees in the language with ~ , V, 1\,0 is decidable, and ask 
whether the 3 theory is still decidable when 1 is added to the language. This 
decidability question can be answered by determining which finite lattices can be 
embedded in the r.e. tt-degrees preserving least and greatest elements. Jockusch and 
Mohrherr [3] have shown that the diamond lattice, the pentagon lattice, and the 
I-n-llattices can be embedded preserving least and greatest elements, but leave open 
the general question, and even such special cases as the three generator Boolean 
algebra. The embedding used in their proof requires that the lattice in question have 
the property that no element which is the inf of a pair of incomparable elements of 
the lattice can be joined up to the 1 of the lattice (except by 1 itself). We show here 
that all finite lattices, and in fact all recursively presentable lattices, can be 
embedded in the r.e. tt-degrees preserving least and greatest elements (provided the 
lattice has distinct least and greatest elements). Our proof for the general lattices 
combines a generalization of the coding method used by Jockusch and Mohrherr 
with the strategy for preserving nonzero infs used by Fejer and Shore. 

We prove first, in §l, that every lattice with a finite representation (and distinct 
least and greatest elements) can be embedded, and then in §2 outline the modifica-
tions needed to embed a recursively presented (possibly infinite) lattice. As a 
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corollary to this, we then show that the existential theory of the r.e. tt-degrees in the 
language with ~, V, 1\, 0, 1 is decidable. 

Our notation is standard and follows that of Fejer and Shore [1] very closely. We 
make implicit use of the convention that if {e L(x) L then x < s. The material in 
this paper appears as part of my doctoral dissertation [2]. I am grateful to Richard 
Shore for his guidance. 

1. Finite lattices. We first explain our notation and outline some of the ideas 
which will be used throughout the proof. The organization of the proof follows that 
of Fejer and Shore [1]. 

If {e}(x)L then [e](x) is the truth table with index {e}(x), and l[e](x)1 is the 
size of the truth table. If A is a set of natural numbers, then we define [e] A by 

[e]'(x) ~ {~ 
if { e )( x ) ~ and A satisfies [e ]( x ), 
if { e )( x ) ~ and A does not satisfy [e ]( x ), 
if {e}(x)1'. 

and [e]~, by 

if{eL(x)L 
if{eL(x)i. 

Sometimes we write [e] A, for [e ]~" to simplify notation. So A ~ It B iff for some e, 
A = [e]B. 

Let!!J= (P, ~,v, 1\,09",19") be a finite lattice with P = {h i E [O,n]} and 
Po = 09'" Pn = 19". A representation of !!J will be a set «I> = {a r : r E J}, where for 
r E J, a r : [0, n] ~ w, and for all i, j, k ~ n the following hold: 

(1) Pi ~ Pj - ('tfr1' r2 E 1)[ ar1 (J) = ar2(J) ~ ar1 (i) = arJi)], 

(2) Pi V Pj = Pk - ('tfr1' r2 E 1) 
[a r1 (i) = a r2 (;) and a r1 (J) = a r2(J) ~ a r1 (k) = a r2(k)], 

(3) Pi 1\ Pj = Pk H ('tfr1' r2 E 1)[ a r1 (k) = ar2(k) ~ 3m E w 

3so, ... ,sm E J(so = r1 and Sm = r2 and for h < m - 1, h even, 

aSh(i) = ashji) and aSh + 1(J) = aSh + 2(J))]. 

For example, consider the lattice 

!!J = ({ Po, P1' P2' P3' P4' Ps), ~ , v, 1\ ,09'" 19") 

with 09" = Po, 19" = Ps and the ordering, join and meet given by the following 
diagram. Notice that !!J is a simple example of a lattice which cannot be embedded 
using lockusch and Mohrherr's proof [3]. An example of a representation for !!J is 
the set of rows «I> = {a r : r E [0,6]}, where a r : [0, 5] ~ [0,6], and the values for 
ar(i) for r E [0,6] and i E [0,5] are given by Table 1. 
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P2 

P4 

Rows 0, 1, 2, and 3 establish (1) for all of the relationships Pi 1;. Pi which hold in 
f!lJ, and rows 4, 5, and 6 give the interpolants whose existence is asserted by (3). The 
table maintains (1) and (2) for all of the relationships Pi ~ Pi and Pi V Pi = P k 

which hold in f!lJ. 

TABLE 1 
1 

0 1 2 3 4 5 

0 0 0 0 0 0 0 
1 0 1 1 1 0 1 
2 0 1 2 1 2 2 

r 3 0 1 2 3 3 3 
4 0 4 4 4 3 4 
5 0 5 5 4 0 5 
6 0 0 0 6 2 6 

A representation is called finite if J (the set of indices for the rows) is finite. 
Pudlak and Tuma [5] have shown that every finite lattice has a finite representation. 
In this section we consider only finite lattices, so we use their result and assume that 
we have a finite representation for the lattice we embed. This will simplify the 
construction of the embedding somewhat. In §2 we will prove that every lattice with 
a recursive presentation can be embedded preserving least and greatest elements. It 
is easy to see that every finite lattice has a recursive presentation. It will then not be 
necessary to use the difficult result of Pudlak and Tuma. So we assume, without loss 
of generality, that for some dEw, J = [0, d], n > 0, and for '), r2 ~ d, 
a r,: [0, n] ~ [0, d], ar/O) = 0, and (r) *- r2 ~ ar/n) *- ar,(n)). 

As in Fejer and Shore [1], our construction will define a recursive function, 
f(x, s), where f: w X w ~ [0, d]. We define r.e. sets, Ai' i ~ n by 

A i •s = {(x,a!(x.s,)(i): x E wand s' ~ s} 
and 

Ai = {(x,a!(x.s)(i): x E wand SEW}. 

The map Pi ~ degtt(AJ will provide the embedding of f!lJ into the r.e. tt-degrees. 
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Our construction will ensure the following: 

(4) 
(5) 

(6) 
(7) 
(8) 

(9) 

Ao is recursive. 

P; ~ Pj ~ A; ~ tt Aj . 

P; V Pj = Pk ~ Ak ~ tt A; €I) Aj . 

K ~ tt An' where K is a fixed complete r.e. set. 

P; 1;. Pj ~ A; 1;. tt Aj . 

P; 1;. Pj and Pj 1;. P; and P; 1\ Pj = Pk ~ if (Y ~ tt A; and 
Y ~ttA) then Y ~ ttAk' 

Our definition of Ao will guarantee that (4) holds, since for all r ~ d, lXr(O) = 0, 
so Ao = {(x, lX/O): x E w, r E J} = {(x, 0): x E w} is recursive. The definition 
of the A; will also guarantee that (5) holds. Suppose P; ~ Pi- Then 

(x, y) E A; ~ 3s( lXj(X,S)(i) = y) 

~ 3r ~ d( (x, lXrU) E Aj and lXr(i) = y). 
Condition (6) will be established by a simple restriction on the function f. We insist 
that 

(10) For each x there is at most one s such that /(x, s + 1) =1= /(x, s). 

Then if P; V Pj = Pk, we get Ak ~ tt A; €I) Aj as follows: 

(ll) (x, y) E Ak ~ Y = lXj(x,o)(k) 

or (y =1= lXjlx,Q)(k) and 3s > 0 Y = lXj(x,s)(k)). 

Condition (2) allows us to recognize the right side of (ll) in a tt-way using A; €I) A j . 

If lXj(x,o)(k) =1= lXj(x,s)(k), then by (2), either lXj(x,Q)(i) =1= lXj(x,s)(i) or lXj(x,O)(J) =1= 

lXj(x,s)(J). Hence from (ll) we get 

(12) (x, y) E Ak ~ Y = lXj(x,o)(k) 

or 3r ~ d [Y = lXr(k) and (x, lXr(i) E A; 

and (x, lXrU) E Aj and \:jz ~ d 

(( (x, z) E A; ~ z = lXr(i) or Z = lXj(x,Q) (i)) 

and (x, z) E Aj ~ Z = lXrU) or Z = lXj(x,Q)U)))] 

and this provides the desired tt-reduction from A; €I) A j . 

The construction will guarantee that (7), (8) and (9) hold. Before describing this in 
detail, we need more notation. Let hEW be such that there are h many distinct 
pairs, (Pi' Pj) in ~ such that P; 1;. Pi- Let {"p;a 1;. Pia": 1 ~ a ~ h} be a listing of all 
such relations. To establish (8) we will satisfy the requirements. 

(13) pa: A =1= lelA/a, forI ~ a ~ hand e E w. 
e 'a 
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Let mEw be such that there are (m - h) many distinct triples, (Pi' Pj' P k), in gp 
such that Pi <t Pj and Pj <t Pi and Pi 1\ P; = P k' Let {"Pia 1\ h = P ka": h + 1 ~ a 
~ m} be a listing of all such relations. To establish (9) we will satisfy the 
req uiremen ts 

Next we recursively partition wand associate elements of the partition so that 
(15) Each Pea has an infinite set of numbers associated with it. Let D«e, a» be 

the set of numbers associated with Pea. 
(16) Each x E w has two finite sets of numbers associated with it, call them W( x) 

and CW(x). Each element of W(x) U CW(x) is greater than x, and min(CW(x» 
> max(W(x» and 

IW(x) I = 2x+l(h + 2(m - h)) and 

Icw(x) 1= 2(m - h)(2x+l)(h + 2(m - h)). 

For each x E w we further partition W(x) into h + 2(m - h) many pieces, each of 
size 2x +\ and label these so that 

W(x) = U wa(x) u( U w(a.k)(x)), 
aE[l,h] (a,k)E[h+l,m]X{1,2} 

where for a E [1, h], Iwa(x)1 = 2x+l and for (a, k) E [h + 1, m] X {l,2}, 
Iw(a,k)(x)1 = 2x+l. If a E [1, h] and y E WU(x), we sometimes say that y is an 
element of W(x) "reserved for a", similarly for (a, k) E [h + 1, m] X {1,2}. 

We use the elements of W(x) to witness x E K. When we act to code x, our 
action will be chosen to cooperate with some requirement Pea or Q~. One witness will 
be used when we cooperate with P:; two witnesses may be needed when we 
cooperate with Q~. Since there are h many different kinds of P: requirements, and 
m - h many different kinds of Q~ requirements, we have h + 2( m - h) many 
different sets of witnesses for coding x. Other requirements in the construction will 
be allowed to use up elements of our witness sets; we will use an inductive argument 
to show that 2x + 1 elements for each requirement will be enough. The elements of 
CW(x) serve as partners to the elements of W(x), and are used to witness x $. K. 
Each element of W( x) will need two partners for each kind of inf requirement, 
hence we make ICW(x)1 = 2(m - h)IW(x)l. For each x E wand each triple 
(y, a, k) E W(x) X [h + 1, m] X {l,2} we associate a unique element of CW(x). 
We express this association via a recursive 1-1 function g such that for each x E w, 

onto 
g: W(x) X[h + I,m] x{1,2} ~ CW(x) 

and we call g(y, a, k) a partner of y. 
We now describe the strategies for satisfying each of (7), Pea and Q~ in isolation; 

after that we describe how these requirements interact and cooperate with each 
other. 
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To get K ,,;; It An' we establish 

(17) x E K - 3y E W(x)[3r,,;; d(r -4= f(y,O) and (y,ltr(n) E An) 

and\f(q,a,k) E [O,d] X[h + I,m] X{l,2} 

( g( y, a, k), lt q ( n) E An ~ q = f( g( y, a, k), 0))] . 
Condition (17) says that x is in K if and only if there is ayE W( x) such that at 

some stage s, fey, s) -4= fey, 0), but for all z such that z is a partner of y, and all 
stages s', fez, s') = fez, 0). Let {k t: t E w} be a 1-1 recursive enumeration of K, 
and Ks = {k t : t < s}. During odd stages of the construction we will act for the sake 
of coding; during even stages of the construction we will act for the sake of other 
requirements. At stage s + 1 = 2t + 1 we will try to establish (17) for x = k t . We 
choose ayE W(k t) and an r ,,;; d such that fey, 2t) = fey, 0), r -4= fey, 0), and for 
all (a, k) E [h + 1, m] X {1,2}, f(g(y, a, k),2t) = f(g(y, a, k),O). The exact choice 
of y and r will depend on the interaction between coding and other requirements. 
We then set fey, 2t + 1) = r (thereby enumerating (y, ltr(n» into An) and insist 
that 

(18) \fs' ? 2t + 1 \fz E W(k t) U CW(kt)(f(z, s') = f( z" 2t + 1)). 

In this way, " ~ " of (17) is established. 
At stage s' + 1 = 2t' of the construction, it may be the case for some x that 

x tE K s '+!' but 3y E W(x)(f(y, S' + 1) -4= fey, s'». To maintain (17), for any such 
y we insist that 

3(r,a,k) E [O,d] X[h + I,m] X{1,2} 

(j(g(y, a, k), s' + 1) = rand r -4= f(g(y, a, k), 0)). 

The schemes for cooperation among the requirements will guarantee that each of 
these actions is possible. 

We will use numbers in the set D( ( e, a» to satisfy the requirements Pea, for 
a E [1, h], e E w. Since Piu {Pia' by (1) we get that there are r(ah, r(a)2 ,,;; d such 
that for a E [l,h] 

(19) 

For each y E D«e,a» we set f(y,O) = r(ah. At stage s + 1 = 2t during the 
construction, if there is an x E D( (e, a» such that f(x, s) = f(x, 0) = r( a hand 

then Pea tries to set f(x,s + 1) = r(ah and to preserve Aiu,s ~ l[e]«x,ltr (a12CiJ»I· 
In this way we enumerate (x, ltr(ahCia » into A iu .S +! and cause 
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Next, we consider a requirement Q~, for a E [h + 1, m] and e E w. We try to 
make [e]A'a =1= [e]A]a; if this fails then we must be able to recover Y = [e]Aia = [e]A]a 
from Ak in a tt way. Suppose sand yare such that {e L(y'H for all y' ~ y. At 
stage s there are two cases to consider. First, [e]Aia,(y') =1= [e]A]a.'(y') for some 
y' ~ y, w.l.o.g. y' = y. In this case we try to maintain the inequality on y by either 
restraining all numbers ~ l[e](y)1 from A ia ,s+l and Aja ,s+l if possible, or by 
causing numbers to be enumerated into A ia ,s+l and Aja ,s+l or both in such a way 
that the inequality on y remains, This method of enumerating is based on 10ckusch 
and Mohrherr's method of preserving an inf in their embedding of the diamond 
lattice in the r.e. tt-degrees in [7] and will be described in more detail when we 
discuss the cooperation between coding and Q~. The second case is [e ]Aia.,(y') = 
[e]A1a.,(y,) for all y' ~ y. We would like to be able to either cause [e]A'a.,+l(y) =1= 

[e]A]a.,+l(y), or to be able to assume that we can recover [e]A]a(y) from Aia,s, Aja,s 
and Ak . To this end, we consider all numbers which may later be enumerated into 
Aia or Aja affecting the computations [e]Aia,Cy) and [e]A]a'(Y). If there is a way of 
enumerating some subset of these numbers into A ia ,s+l U Aja ,s+l so that [e] AiU"+l(y) 
=1= [e]Aja.'+l(y), then we take this action. If this is impossible, then we will be able to 
argue, roughly, that all changes in Ai after stage s which affect the computation 
[e]Aia(y) occur because we defined f in a way that also caused changes in Aja' The 
lattice representation will then cause all such changes to be reflected in Ak , and so 
we will be able to recover [e]Aia(y) from Aka' a 

Let {1';: i E w} be an effective listing of the requirements {Pea: a E [1, h], e E w} 
and {Q~: a E [h + I,m], e E w}. We now describe the schemes for cooperation 
among the 1'; and the coding. 

Coding and 1'; = Pea. Since D«e, a» is disjoint from UXEw(W(x) U CW(x», 
action taken for the sake of 1'; has no bearing on (17), and so has no interaction with 
the coding. Action taken for coding may interact with P;, though. Suppose that Pea 
has acted before stage s + 1 = 2t + 1, and wants to preserve Aja ~ u. If k, ~ u, then 
since all elements of W( k,) are greater than k" the action taken for coding will not 
disturb P;. However, if k, < u, then we would like to choose the coding action in 
such a way as to preserve Aja,s ~ u. Let r(ah, r(a)2 ~ d be as defined in (19). We 
claim we can use r(ah and r(a)2 to enumerate a number into A n ,s+l without 
disturbing A ja ,s+l' For each x E w, a E [1, h] and each y E wa(x), we have set 
f(y, 0) = r( a h. Now if we decide that coding should cooperate with Pea at s + 1 = 

2t+ 1, then we choose a yE waCk,) such that f(y,s)=f(y,O) and for all 
(a', k) E [h + 1, m] X {l,2}, f(g(y, a', k), s) = f(g(y, a', k), 0), and we set 
fey,s + 1) = r(ah In this way we enumerate (Y'O!r(a),(n» into A n ,s+l and leave 
A. +1 = A. s. It will be necessary for coding to cooperate with Pea at most finitely 

Ja'S la' 
often, since there can only be finitely many t with k, < u. 

Coding and 1'; = Q~. Action taken for coding may interact with Q~. Suppose s 
and yare such that "ify' ~y ({e}(y'H) and [e]Aia.' ~ y = [e]A]a' ~ y and [e]A,",(y) 
=1= [e]A1a,(y). If s + 1 = 2t + 1 and k, ~ l[e](y)1 then action taken for coding at 
s + 1 will not disturb Q~. However, if k, < l[e](y)l, then we need to maintain the 
inequality at y. Since for all a E [h + 1, m], Piu =1= 19' and h '* 19" (1) implies that 
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there must be rea, Ih, rea, 1)z, r(a,2h, rea, 2)2 E J satisfying 

(20) 

ll:r(G,lh(i a) = ll:r(a,l),(ia) and 

ll:r(a,l), (n) * ll:r(a,lh (n) and 

ll:r(a,2)J ja) = ll:r(a,2h (ja) and 

ll:r(a,2)1(n) * ll:r(a,2)2(n). 

We will use rea, kh, rea, k)2' for k E {1,2}, to enumerate into An,s+l while 
maintaining Q~'s inequality on y. For each x E wand (a, k) E [h + 1, m] X {l,2}, 
and each Y E w(a,k)(x), we set f(y,O) = rea, kh. Now if we decide that coding 
should cooperate with Q~ at s + 1 = 2t + 1, then we choose Yl E w(a,l)(k() and 
Y2E w(a,2)(k() such that f(Yl,S)=f(Yl'O), and f(Y2,S)=f(Y2'0) and for all 
(a', k') E [h + 1, m] X {l,2}, f(g(h, a', k'), s) = f(g(h, a', k'), 0) and 
f(g(h,a', k'), s) = f(g(h, a', k'), 0). We have three possible actions available now; 

1. We set f(Yl' s + 1) = rea, 1)2 and f(h, s + 1) = f(h, s), 
2. We set f(Yl' s + 1) = fey, s) and f(Y2' s + 1) = rea, 2h 
3. We set f(Yl' s + 1) = rea, 1)2 and f(h, s + 1) = rea, 2h 

The proof of Lemma 1 shows that one of these three courses of action must maintain 
the inequality on y. 

Actions taken by Q~ also interact with the coding. Q~ 's action at s + 1 consists of 
looking ahead at numbers which may later get enumerated into Aia U Aja and 
possibly putting some of these numbers into Aia,s+l U Aja,s+l' For each x, we must 
make sure that Q~ 's action does not use up all the elements of W(x) before the 
stage s = 2t + 1 such that x = k( (if such a stage exists). To ensure this we place 
restrictions on the numbers that Q~ is allowed to enumerate. We say that "Q~ has 
access to x" if we are allowed to define fey, s + 1) * fey, s) for Y E W(x) U 
eW(x) for the sake of Q~. If Q~ = 1'; and x ~ i, then we do not allow Q~ to have 
access to x. For bE [1, h] U ([h + 1, m] X {l, 2}) we define 

G (x, b, i, s + 1) = {Y E W b ( X ): 1'; caused f (y, s + 1) * f ( y, s) or 

3(a',k') E [h + I,m] x{1,2} 

(1'; caused f(g{y, a', k'), s + 1) * f(g(y, a', k'), s))}. 

Then if x > i and bE [1, h] U ([h + 1, m] X {1,2}), we restrict 1';'s action so that 
1 Us E w G(x, b, i, s)1 ~ 2x .- i . This is done via the following rules. At stage s + 1 = 2t, 
if x E K( then we allow no requirement Q~ access to x, and in this way ensure that 
G(x, b, i, s) = 0 for all b, i. If x f/; K( and G(x, b, j, s') = 0 for all j ~ i, s' ~ s, 
and bE [1, h] U ([h + 1, m] X {l,2}), then we allow 1'; to have access to x (pro-
vided i < x) and so we allow 1'; to change f at s + 1 on a subset of W( x) U eW( x), 
so long as 

I G ( x, b, i, s + 1) I ~ 2 x - i, for all b E [1, h] U ([ h + 1, m] X {1, 2} ) . 

We use the process of "freezing x for 1';" to ensure that 1 USE w Ui E w G(x, b, i, s)1 ~ 
2x+l - 2. For i, sEw, if 

3j ~ i3s' ~ s3b E [1,h] U([h + I,m] X{1,2})(G(x,b,j,s') * 0) 
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then we say that "x is frozen for T; at t", for all t ;;:, s. This means that at all t ;;:, s, 
T; does not have access to x, and so G(x, b, i, t) will be empty. In this way we will 
ensure that the maximum number of elements of Wb(x), for any x E w, bE [1, h] 
U ([ h + 1, m] X {I, 2}), used up by requirements other than coding is 

Is~w i~W G{x,b,i,S)I< i~Jls~w G{X,b,i,S)I) 

i<x 

Since Wb(x) contains 2x + 1 elements, there will always be enough for coding. The 
restrictions placed on Q~ 's action will be expressed more precisely in the definition 
of a legal move for Q~. 

THEOREM 1. If !!P = (P, < , V, 1\,09 ,19 ) is a lattice with more than one element, 
and!!P has a finite representation, then P can be embedded into the r.e. tt-degrees by a 
map which preserves zero and one. 

PROOF. Let P = {Po, ... , Pn}, with Po = 09 and Pn = 19 , Let cI> = {ar: r E J} 
be a finite representation for !!P, with J = [0, d], 'itr < dear: [0, n] -> [0, dJ), 
'it r < d( ar(O) = 0) and 'it r1, r2 < d( r1 * r2 -> arJ n) * ar2( n ». Let 

{D(e,a»): e E w, a E [1,hn 
u{wa{x): X E w, a E [1,h] U([h + I,m] X{I,2})} 
U {CW{x): x E w} 

be a recursive partition of W satisfying (15), (16) and IWa(x)1 = 2x+1 for x E w, 
a E [1, h] U ([h + 1, m] X {1,2}). Let g be a 1-1 recursive map such that for each 
x E w, g: W(x) X [h + I,m] X {l,2} -> CW(x), and let {T;: i E w} be an effec-
tive listing of the requirements Pea of (13) and Q~ of (14). For a E [1, h] let r( a h, 
r(ah be recursive maps from [1, h] to [0, d] satisfying (19). For (a, k) E [h + 1, m] 
X {1,2} let rea, kh, rea, kh be recursive maps from [h + 1, m] X {l,2} to [0, d] 
satisfying (20). Our construction will define a recursive f: w X w -> [0, d]. Let 
Ai,S = {<x, af(x,s,)(i»: s' < s}, for i E [0, n], and Ai = USE w Ai,s' 

We define restraint functions p(i, s), q(i, s), and R(i, s) by 

p{i,s) = 

i 

if T; = Pea and 3y E D{(e, a») 

f{y,s) = r{a)2 and 

[e]AJu"(y,ar(aj,(ia))t = 0, 
ow, 

l[e](y)1 ifT;=Q~and 

{e} s(Y') t for all y' < y and 
q(i,s) = [e]Aiu.' f y = [e]AJu.' f y and 

[e]A'a"{Y) * [e]AJa.,(y), 
i ow, 
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R(i,s) = max({p(j,s): p(j,s)! and j ~ i} u{q(j,s): q(j,sH and j ~ i}). 
If a E d < w, then Ai,s+l( a) is the set that would be Ai,s+ 1 if we set /(x, s + 1) = 

a(x) for x < lal and /(x, s + 1) = /(x, s) for x ~ lal. 
We say that "a is a legal move for T; at s + 1 = 2t" if (21)-(24) below hold. 

(21) aEd<w. 

(22) For all x < lal(a(x) of-/(x,s) = x > R(i,s) and/(x,s) =/(x,O)). 
If T; = Pea, then there is at most one x such that a( x) of-
/(x, s), and for this x, x E D«e, a» and a(x) = r(ah 

(23) (This clause says that if Pea acts, then it only changes / on one 
number, and this number is from the appropriate part of the 
partition of w.) 

(24) If T; = Q~, then 
(24.1) ('ilx < lal)('ile' E w)('ila' E [1, h])(a(x) of- /(x, s) and x E D«e', a'» = 

Pe~' = T; and j > i). (This clause says that Q~ can only touch the witnesses attached 
to positive requirements of lower priority than itself.) 

(24.2) Let B(x, b, a, s) = {y E Wb(x): a(y) of- /(y, s) or 3(a', k') E [h + 1, mj 
X {l,2}(a(g(y,a',k'»of-/(g(y,a',k'),s»}. Then for all xEw, bE([I,h])U 
([h + 1, mj X {l,2}) 

if x E Kp then B ( x, b, a, s) = 0, 
if x ~ i, then B ( x, b, a, s) = 0, 
if x is frozen for T; at s, then B(x, b, a, s) = 0, 

otherwise I B(x, b, a, s) I ~ 2x - i • 

(This clause ensures that Q~ does not use up too many of the witnesses in the sets 
W(x) for x E w. This will ensure that there will always be enough witnesses 
available for coding K(x).) 

(24.3) For all x, 3y E W(x)(a(y) of- /(y, s) = 3(a', k') E [h + 1, mj X 

{I, 2}( a(g(y, a', k'» of- /(g(y, a', k'), 0». (This clause ensures that our decoding 
procedure is valid; if Q~ changes / on an element of W( x), then it must also change 
/ on a partner to that element.) 

Next we define the phrase "T; requires attention at s". 
T; = Q~ requires attention at s + 1 = 2t + 1 if q(i, sHand 
k, < qU, s). 

T; = P: requires attention at s + 1 = 2t + 1 if p(i,sH and 
k t < p(i, s). 

T; = Q~ requires attention at s + 1 = 2t if q(i,s)i and 
3a Ed <W, a is a legal move for T; at s + 1 and 
3y({ e L+l(y'H for all y' ~ y and [ejA'a"(o) ~ y = [ejAJa.Jo) ~ 

y and [ejA'a"(o)(y) of- [ejAJa.,(o)(y». 

T; = Pea requires attention at s + 1 = 2t if p(i, s)i and there 
is ayE D«e, a» such that y > R(i, s) and 
[e jAJa.,( (y, ar(a)zUa» H = 0 and /(y, s) = /(y, 0) = r( a h. 
(Let a be the corresponding legal move.) 

We now give the construction of f. 
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STAGE 5 = O. For all e E w, a E [1, h], for all y E D«e, a», define fey, 0) = 

r(a)l' For all x E w, a E [1, h], for all y E Wa(x), define fey, 0) = r(ah. For all 
x E W, (a, k) E [h + 1, m] X {I, 2}, for all y E w(a,k)(x), for all Z E W(x), define 
f(y,O) = rea, kh, and f(g(z, a, k),O) = rea, kh. Since 

we have defined fey, 0) for all yEw. 
STAGE 5 + 1 = 2t + 1. (t ~ 0) Let i be the least such that ~ requires attention at 

2t + 1. We say that ~ is active at 5 + 1. 
If ~ = Pea, then let y be the least element, if any, of Wa(k t ) such that 

fey, 5) = fey, 0) and for all (a', k) E [h + 1, m] X {l,2}, f(g(y, a', k), 5) = 
f(g(y, a', k), 0). Define fey, s + 1) = r( a)2 and fey', 5 + 1) = fey', s) for all y' -=1= 

y. If no such y exists, then define f(x, 5 + 1) = f(x, s) for all x E W. 

If ~ = Q~, then let YI' Y2 be the least elements, if any, of w(a,l)(k t ), w(a.2)(k t ), 

respectively, such that f(YI' 5) = f(YI' 0), f(Y2' 5) = f(Y2' 0), and for all (a', k) E 
[h + 1, m] X {l,2}, f(g(YI' a', k), 5) = f(g(JI, a', k), 0) and f(g(Y2, a', k), 5) = 

f(g(Y2,a',k),0). Let z be such that for all z' ~ z({eL(z'H) and [e]A'a.' ~ z = 
[e]A]a.' ~ z and [e]A'a'(Z) -=1= [e]A]a.'(Z). 

Let ai' a2 , a3 E d < W have length 1 + max{ YI' Y2} and be defined by 

(25) aj(JI) = r(a,l)z, al(x) =f(X,5) forallx-=l=YI,x<!a l !, 

(26) a2(Y2) = r(a,2)z, a2(x) =f(X,5) forallx-=l=Y2,x<!a21, 

(27) a3 (YI) = r(a,I)2' a3 (Y2) = r(a,2)2' a3 (x) =f(X,5) 

for all x -=1= YI' Y2, x < ! a3 1· 

(28) 

and define f(x, 5 + 1) = 7"(x) for all x < 17"1, f(X,5 + 1) = f(x, 5) for all x ~ 17"1· 
(Lemma 1 will show that one of aI' a2, a3 must satisfy (28).) 

If there are no such JI, Y2' then define f(x, 5 + 1) = f(x, 5) for all x E W. If no 
~ requires attention at 5 + 1, then let Y E W(kJ be the least such that Y is 
reserved for a = 1 and f(y,5)=f(y,0) and for all (a',k)E [h + I,m] X {1,2}, 
f(g(y, a', k), 5) = f(g(y, a', k), 0). Define f(y,5 + 1) = r(l}z, and f(X,5 + 1) = 

f(x, 5) for all x -=1= y. 
STAGE 5 + 1 = 2t. (t ~ 1) Let i be the least such that ~ requires attention at 

5 + 1 = 2t. We say that ~ is active at 5 + 1. If there is no such ~, then go on to 
stage 5 + 2. Otherwise, let a be the associated legal move. Define fey, 5 + 1) = a(y) 
for all y < lal, and fey, 5 + 1) = fey, 5) for all y ~ lal. If y < lal and a(y) -=1= fey, 5) 
and y E W(x) U CW(x), then "x is frozen for Tj at s"', for all 5' ~ 5 + 1 and all 
j E {i,x]. 

This ends the construction of f. 
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LEMMA 1. If [ejAiu,'(z)l * [ejA)u'(z)l and aI' a2 and a3 are defined by (25), (26) 
and (27), then (28) holds for 7' = one of aI' a2, a3 • 

PROOF. Suppose (28) fails for al and a2' and that b = [ejA,u,'(z) and 1 - b = 
[ejAju,'(z). By definition, ll'r(a,I)/ia) = ll'r(a,I)/ia) and ll'r(a,2)Jia) = ll'r(a,2j,(Ja)' So, 
AiujO'I) = Aiu,s, and A j j(2) = Ala,s' and A iu ,s(a3 ) = A iu )a2), and A ju ,s(a3 ) = 
A juj al )· Since (28) fails for aI' we get 

b = [e]Aia"(z) = [e]A'a,,(<1d(z) = [e]A)a,,(<1 j )(z) 

= [e]A)a,,(<13)(z). 

Since (28) fails for 0'2' we get 

1 - b = [e] A) a' ( z) = [e] A) a" ( <1 2 ) ( z) = [e] Ai a" (<12) ( z ) 

= [e] A ia ,,( <13 l( z ). 

and therefore [ejA ia,,(<13 )(z) * [ejAJa,,(<13 )(z), as desired. 

LEMMA 2. (a) Ao is recursive. 
(b) For all i, i :::;; n, Pi:::;; Pj = Ai :::;; It Aj. 
(c) For all i, i, k :::;; n, Pi V Pj = Pk = Ak :::;; It Ai E9 Aj. 

PROOF. As described in the outline before the construction. 

LEMMA 3. For each i E w, T; is active at most finitely often, and lim s R( i, s) exists. 

PROOF. By induction on i. Let So be such that (Vi < i)(Vs ~ so)(1) is not active at 
sand R(i - 1, s) = R( i-I, so». Suppose first that T; = Pea. If 3s > so( p(i, s)l), 
then let SI be the least such. Suppose s > SI' s = 2t, and 1) is active at s. Then 
i ~ i, since s > SI ~ so. Using induction on s > SI' we see that Vs > sl(p(i,s)l), 
and so by definition of T; requires attention, we get that i > i. Now the definition 
of a legal move guarantees that Aja ,s-1 I p(i, s - 1) = Aja,s I p(i, s - 1). If s > SI' 
s = 2t + 1, and 1) is active at s, then i ~ i (since s > SI > so) and the construction 
guarantees Aja,S I p(i, s - 1) = A j"s-1 I p(i, s - 1). If i = i, then k t < p(i, s - 1). 
By induction on s we see that Vs ~ SI(P(i, s) = p(i, SI»' Now if S2 ~ SI is such 
that KS2 I p(i, SI) + 1 = K I p(i, SI) + 1, then T; will never be active after S2' 

Now suppose that T; = Q:. If 3s ~ so( q(i, s)l) then let Sl be the least such. Then 
as above, Vs ~ SI(q(i, s)l = q(i, SI»' If S2 ~ SI is such that KS2 I q(i, SI) + 1 = K 
I q(i, SI) + 1, then T; will never be active after S2' 

Since for each i, 3so(Vs ~ sop(i, s)j or Vs ~ so(p(i, s)l = p(i, so» and 
(Vs ~ so( q( i, s) j) or Vs ~ so( q(i, s)l = q( i, so))), we get that lim s R(i, s) exists. 

LEMMA 4. For all a E [1, h j, for all e E w, Pea is satisfied. 

PROOF. Let i be such that T; = P:. Let So be such that Vs ~ so(R(i, s) = R(i, so) 
and Vi:::;; i(1) is not active at s». Such a stage exists by Lemma 3. Suppose Pea fails, 
then Aia = [ejA)a. Since for y E D«e,a», f(y,s + l)*f(y,s) implies some 1), 
i :::;; i was active at s + 1 and by Lemma 3 each 1) is active at most finitely often, 
there are at most finitely many y E D( (e, a» such that 3s E w(f(y, s) * f(y, 0». 
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Let y be the least element of D«e,a») such that y > R(i,so) and 'Vs E w(f(y,s) 
= fey, 0)). Then (y, ar(a),Cia) $. Aia' and since Aia = [elA)a, we get 
[elAJa«y, iXr(a),(ia)) = 0. If Sl = 2t > So is such that 

Aia .s, il[e](y,iXr(a)2(ia») I = Aia ij[e](y,iXr(a),») I, 

then T; requires attention at Sl' and since no ~, j < i is active at Sl' T; will become 
active at Sl > so. This is a contradiction, so Pea must be satisfied. 

LEMMA 5. K ~ It An· 

PROOF. We show that 
(29) 
'Vx E w(x E K - (3a E [1,h]3y E Wa(X)(y,iXr(a),(n» E An and 

'V(a', k') E [h + 1, m] X {l,2}'Vr ~ d(r 1= r(a', k')l ~ 

(g(y, a', k'), ar(n» $. AJ)) 

or 

(3(a, k) E [h + 1, m] X {I, 2}3y E w(a.k)(x)( (y, iXr(a.k),(n» E An and 

'V(a', k') E [h + 1, m] X {l,2}'Vr ~ d(r 1= r(a', k'h ~ 

(g(y, a', k'), ar(n» $. An)) )). 

This provides the desired tt-reduction. We first show that for all t, W(k t ) contains 
enough elements to carry out the prescribed coding action at stage 2t + 1 in the 
construction. We say that y E W(x) is "free for coding at s + I" if fey, s) = fey, 0) 
and for all (a, k) E [h + 1, ml X {1,2}, f(g(y, a, k), s) = f(g(y, a, k), 0). 

CLAIM 5.1. If x = k t and a E [1, hl, then there is ayE wa(x) such that y is free 
for coding at 2t + 1. If (a, k) E [h + 1, ml X {l, 2}, then there is ayE w(a.k)(x) 
such that y is free for coding at 2t + 1. 

PROOF. For a E [1, hl we define 

Va(x,s) = {y E Wa(x): f(y,s) 1=f(y,0)or3(a',k') E [h + I,m] X{I,2} 

f(g(y,a',k'),s) 1=f(g(y,a',k'),O)}. 

We must show that there is ayE Wa(x) such that y $. Va(x,2t) (where 
x = k t). Since IWa(x)1 = 2x +\ it suffices to show IVU(x, 2t)1 ~ 2x +1 - 2. Note that 
Va(x,2t) = Us'<2t(Va(X,s' + 1) - va(x,s')). Also note that if s' + 1 = 2t' + 1 ~ 
2t, then kt' 1= x (the enumeration is 1-1) and so our construction ensures 

va(x, s' + 1) - va(x, s') = 0. 
If s' + 1 = 2t' ~ 2t and va(x, s' + 1) - va(x, s') 1= 0, then some T; = Q~' was 
active at s' + 1, and executed a legal move. Since va(x, s' + 1) - va(x, s') 1= 0, 
the definition of a legal move guarantees that i < x, and wa(x, s' + 1) - va(x, s')1 
~ 2x - i • The process of freezing x for T; guarantees that for each i there is at most 
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one s' such that (I; is active at s' + 1 and va(x, s' + 1) - va(x, s') =1= 0). There-
fore, 

i<x 

If we replace a everywhere by (a, k) E [h + 1, m] X {I,2}, then the above argu-
ment shows that there is ayE w(a,k)(k t ) which is free for coding at 2t + l. 

The construction guarantees that if x E KI' then for all s ~ 21 + 2, for all 
y E W(x) U CW(x), fey, s + 1) = fey, s). This, together with claim 5.1 establishes 
" -+ " for (29). We establish " ~ " for (29) by showing 

CLAIM 5.2. If s + 1 = 2t and x$. K t and if 3y E W(x)(f(y, S + 1) =1= fey, s)), 
then 

3{a',k') E [h + I,m] X{I,2}U{g(y,a',k'),s + 1) =l=f(g{y,a',k'),O)). 

PROOF. If Y E W(x) and fey, s + 1) =1= fey, s), then some I; = Q:, with i < x 
must have been active at s + 1 and executed a legal move. The definition of a legal 
move, in particular (24.3), guarantees that the claim holds. 

Now suppose x$. K. If 'rJa E [1, h] 'rJy E wa(x)(y, ar(aj,(n) $. An) and 
'rJ(a, k) E [h + 1, m] X {I,2} 'rJy E w(a,k)(x)«y, ar(a,kj,(n» $. An), then (29) is 
satisfied. Otherwise, if a E [1, h] and y E Wa(x) is such that (y, ar(a)z(n) E An' 
then since a/(y,O)(n) =1= ar(aj,(n), there is an s + 1 such that fey, s + 1) =1= fey, s). 
Since x $. K, s = 2t and x$. KI' and so Claim 5.2 guarantees 3(a', k') E [h + 
1, m] X {1,2} 3r E J(r =1= f(g(y, a', k'),O)) and (g(y, a', k'), aAn) E An' If we 
replace a everywhere by (a, k) in the above argument, then we have established (29). 

LEMMA 6. For all a E [h + 1, m], for all e E w, Q: is satisfied. 

PROOF. Suppose that [e]Aia = [e]A}a = Y. We want to show Y.::;; ttAka' Let i be 
such that I; = Q:. Let So be such that 'rJs ~ So 'rJj'::;; i (Tj is not active at sand 
R(i, s) = R(i, so) = R(i»). Let 

q = 1 + max({i,R{i)} U {x: x is frozen for I; at so})· 

Let Sl ~ So be such that KSI ~ q = K ~ q. In (30) we outline a reduction procedure 
from an arbitrary oracle, B. This reduction procedure will be total for all oracles, B, 
and so by Nerode's result [6, p. 143] we have a tt-reduction. We first outline the 
reduction procedure for input y and then verify that when B = Aka the procedure 
computes Y. 

(30) 
Find a stage S2 = 2t ~ Sl such that for all y' .::;; y( {e }.2(y')!). 
See if there is a a E d < W such that 

lal = I[e](y) I andB ~ (I[e](y )1, d) = Aka,s,{a) ~ (I[e](y )1, d), 

and for all z < lal, if ('rJr E J(z, aAka) E B = aAk a ) = 

al(z,O)(k a ) or ar(ka) = a/(z,sz/ka))) then a(z) = fez, S2)' If 
so then output [e]Aia.,z(a)(y), if not then output y. 
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We now show that [ejA'a"'(o)(y) = [ejAia(y) = Y(y), where a is the string used in 
(30). Let S3 > S2 be such that A ia ,s3 ~ (l[ej(y)l, d) = Ai" ~ (l[ej(y)l, d). Define 
rEd < W so that Irl = l[e](y)1 and rex) = f(x, S3) for all x < Irl, Then [ejAia(y) = 

[ejA'a.,,(Tl(y), so it suffices to show 

(31) 
Notice that for all x < l[ej(Y)1 = lal = Irl, (Xo(x)(k a) = (XT(x)(k a). This is true since 
if (Xo(x)(k a ) =f- (X/(x,s,)(k a) then the definition of a in (30) guarantees that f(x, S2) = 

f(x,O) and 3s > S2U(X, s) =f- f(x, S2)' and (X/(x,s)(k a) =f- (X/(x,o)(k a ))· But since Pka 
~ Pia' (1) implies that (X/(x,s)(ia) =f- (X/(x,o)(ia)' and so S ~ S3 and so f(x, s) = 
f(x, S3) = rex). The definition of a also guarantees that if (Xo(x)(k a) =f- (X/(x,s2)(k a), 
then (XT(x)(k a ) = (X/(x,s2)(k a) = (Xo(x)(k a). 

Now since (Xo(x)(k a) = (XT(x)(k a ), (3) implies that for each x < lal such that 
a(x) =f- rex) we can find a sequence rx "'" rx from J such that rx = a(x), o mx 0 

rx = rex), and for b < mx - 1, beven, 
nTx 

Let P = max{mx: a(x) =f- rex)} and define ao, ... ,ap E d<w of length lal as 
follows for b E [0, P j 

if b ~ m x and a (x) =f- r (x), 
if b > mx and a(x) =f- r(x), 

if a ( x) = r ( x ) . 

Now we have ao = a, ap = r, and for b E [0, P - Ij, beven, 

and 

If we can show, for bE [0, pj 

(34) 

then by combining (32), (33) and (34) we get 

[e]Aia.',(o)(y) = [e]Aia',(oO)(y) = [e]Aia,,(otl(y) 

= [e]AJa",<o!l(y) = [e]Aja",(02)(y) = [e]A,,,.,,(oz)(y) 

= ... = [e]AJa.',(op)(y) = [e]Aia"2(op)(y) 

= [e ] Aia.,'<T)(y ). 

The outside terms in this string of equalities give (31), and hence the lemma. 
Suppose that (34) fails for some b E [0, P j, and let b be the least such. We will 

construct a legal move for ~ at S2' JL, from ab' such that [e jA'a.,,(/L)(y) =f- [e jAJa '2(/L)(y), 
and hence ~ will require attention and become active at S2' a contradiction. 
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We obtain p. by patching up ab to satisfy (24.3). Let {(Y1' Xl)'.··' (Yu, Xu)} be a 
list of all the pairs (y;, x;) such that y; E W(xJ and ab(yJ * fey;, S2) and for all 
(a', k') E [h + 1, m] X {l,2}, ab(g(y;, a', k'» = f(g(y;, a', k'), 0) = rea', k')l. For 
each i .;;; u + 1 we will define a a~ so that a~ = ab and for i .;;; u 

(35) {z: a~+l(z) * ai,(z)} ~ {g(y;,a,k): k E {1,2}} 
and 

(36) A (O'+I)() []A (0,+1)( [ e) 'u'2 h , Y * e )",'2 h y). 
Suppose we have defined a~ satisfying (35) and (36). To get a~+l, let 71, 72 , 

73 E d < W have length lahl and be defined by 

71(X) = {r(a, 1)2 if X = g(y;, a, 1), 
ai,(x) ow 

7 ( ) = {r(a,2)2 
2 X '( ) ai, X 

if X = g ( y; , a, 2) , 

ow, 

if X = g(y;, a, 1), 
if X = g(y;, a, 2), 
ow, 

then (35) holds for a~+l = any of 7 1, 72 or 73 , and just as in the proof of Lemma 1, 
(36) must hold for ai,+ 1 = one of 7 1, 72 or 73 . So we choose a~+ 1 = 7 1, 72 or 73 to 
make (36) hold. 

Let p. = ar1. We show that p. is a legal move for T; at S2 by verifying (22)-(24) 
for p., T; and S2· 

CLAIM 6.1. For all y < 1p.1, if p.(y) = ab(y) and p.(y) * fey, S2)' then there is an 
s ;;. S2 such that fey, s + 1) * fey, s). 

PROOF. Suppose p.(y) = ah(y) and p.(y) * fey, S2). If a(y) = 7(y), then ab(y) 
= 7(y) = fey, S3)' and fey, S3) * fey, S2)' so for some s ;;. sd(y, s + 1) * fey, s). 
As noted above, 'r:Ix < lal, Ci.o(x)(k a ) = Ci.T(x)(k a ), so if a(y) * 7(y), then a(y) = 
fey, S2)· Thus we have fey, S2) * fey, S3), so for some s ;;. S2 fey, s + 1) * fey, s). 

VERIFICATION OF (22)-(24). 
(22) We need to show that if p.(y) * fey, S2), then y > R(i, S2) and fey, S2) = 

f(y, 0). Suppose p.(y) * fey, S2)· If p.(y) = ab(y), then Claim 6.1 guarantees that 
3s ;;. S2' fey, s + 1) * fey, s). If s + 1 = 2t, then some ~ is active at s + 1, and 
since s + 1 ;;. S2 > so' j must be greater than i. ~ must have executed a legal move 
at s + 1, so (22) for ~ at s + 1 implies that y > R(j, s + 1) ;;. R(i, s + 1) = 
R(i, S2)· Also, if fey, s + 1) * fey, s) then (22) for ~ at s + 1 implies that 
fey, s) = fey, S2) = fey, 0). If s + 1 = 2t + 1, then since Ks I R(i) = K I R(i), 

1 

k t > R(i). Since y E W(k t) and all elements of W(k t) are greater than kt, we get 
y > R(i) = R(i, S2)' and again fey, s) = fey, S2) = fey, 0). Thus we get (22) for 
p.(y) if p.(y) = ab(y). If p.(y) * ah(y), then y = g(z, a, k) for some k E {I, 2} and 
z such that ab(z) * fez, S2). Since p.(z) = ah(z), the above argument shows that 
z > R(i). Since g(z, a, k) > z, we get y > z > R(i) = R(i, S2). Our choice of the a~ 
for i .;;; u + 1 guarantees that fey, S2) = f(y,O), so we get (22) for p.(y) * ab(Y). 
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(23) This condition applies only when 1'; = pi, and so is satisfied vacuously, since 
1'; = Q~. 

(24.1) We need to show that if fL(Y) =1= fey, S2) and Y E D( (e', a'», then pi = Tj 
with j> i. If }ley) =1= fey, sz) and y E D«e', a'», then }ley) = ab(Y), and by 
Claim 6.1, 3s:? sz(f(y, s + 1) =1= fey, s». Since y E D«e', a'», it must be the case 
that s + 1 = 2t and some Tj is active at s + 1. Since s + 1 > so' j > i. So if 
Tj = Pe~', then (24.1) holds for }ley) and 1'; at Sz. Otherwise, Tj = Q~:: for some eft, 
a", and Pe~' = Tk . Then since Tj must have made a legal move at s + 1, (24.1) for Tj 
at s + 1 implies k > j > 1, so k > i and (24.1) holds for fL(Y) and 1';, at sz. 

(24.2) We need to show that the sets B(x, c, fL, sz) = {y E WC(x): fL(Y) =1= fey, sz) 
or 3(a', k') E [h + 1, m] X {I, 2}(fL(g(y, a', k'» =1= f(g(y, a', k'), S2»} have the 
correct cardinalities. Fix x E wand c E [1, h] U [h + 1, m] X {1,2} and consider 
B(x,C,}l,S2). If yEB(x,C,fL,S2)=I= 0, then either fL(y)=ab(y)=I=f(y,s2) or 
(fL(Y) = ab(y) = fey, sz) and fL(g(y, a', k'» =1= f(g(y, a', k'), S2) for some (a', k') 
E [h + 1, m] X {l,2}). If fL(Y) = ab(y) = fey, sz), then our definition of fL 
guarantees that fL(g(y, a', k'» = ab(g(y, a', k'», and so we get that ab(g(y, a', k'» 
=1= f(g(y, a', k'), S2). Thus by Claim 6.1 we know that if y E B(x, c, fL, S2) then 
there must be an s :? Sz such that either fey, s + 1) =1= fey, s) or f(g(y, a'k'), s + 1) 
=1= f(g(y, a', k'), s). So one of (37) or (38) below must hold. 

(37) 3s > sz(s = 2t + 1 and x = k t ), or 

(38) 
3s > sz3j < x31) E d<w(s = 2t and 1) is a legal move 

for Tj. at sand y E B(x,c,1),s)). 

Condition (37) can occur at most once, and can contribute at most one element to 
B(x, c, fL, sz). Condition (38) can occur at most once for each j < x, and so for a 
fixed j < x can contribute at most 2x - j elements to B(x, c, fL, S2). Since S2 :? so' no 
Tk with k ~ i can be active at s:? S2' so we need only consider Tj such that 
i < j < x, and we get 

IB(x,C,fL,S2)1~ 1 + L 2x - j = 1 +(2 X - i - 2) ~ 2x - i . 
i<j<x 

Also notice that if Sz = 2t and x E KI' then for all y E W(x) U CW(x), for all 
s :? s2' fey, s) = fey, sz), and so fL(Y) = ab(y) = fey, S2)' and so B(x, c, fL, sz) = 
0. If x ~ i, then since KS2 ~ i = K ~ i, and no Tj, j ~ i is active at s :? S2' again we 
get that 'Vy E W(x) U CW(x)'Vs :? sz(f(y, s) = fey, S2» and so B(x, c, fL, S2) = 
0. If x is frozen for 1'; at S2' let s' ~ S2 be the least such that x first became frozen 
for 1'; at s'. Then some Tj, j ~ i was active at s', and so s' < so. But then x < q, 
and so KS2 ~ X + 1 = K ~ x + 1. Since x is frozen for 1'; at S2' x is frozen for Tk at 
s, for all s :? S2' for all k (i ~ k < x). Therefore for all y E W(x) U CW(x), for all 
s :? S2' fey, s + 1) = fey, s), and so B(x, c, fL, S2) = 0. Thus we have shown that 
(24.2) holds for fL and 1'; at so· 

(24.3) We need to show for any x that if there is ayE W(x) such that 
fL(Y) =1= fey, sz), then there is a pair (a', k') E [h + 1, m] X {l,2} such that 
fL(g(y, a', k'» =1= f(g(y, a', k'», S2. Our definition of fL as a modification of ab 

ensures that (24.3) holds. 
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Thus we have shown that /l is a legal move for ~ at S2' and that [e]A'a.,,(/L)(y) =1= 

[e]AJa.'2(/L)(y), so ~ becomes active at S2' a contradiction. We conclude that Q~ is 
satisfied. 

COROLLARY 1. Every finite lattice with more than one element can be embedded into 
the r.e. tt-degrees preserving least and greatest element. 

PROOF. The corollary follows from Theorem 1 since every finite lattice has a finite 
representation [5]. 

2. Recursively presentable lattices. In this section we will modify the proof of 
Theorem 1 to show that every recursively presentable lattice can be embedded in the 
r.e. tt-degrees preserving least and greatest elements. Note that by Shore [7] not 
every lattice can be embedded in this way; some restriction on the degree of the 
lattice presentation is necessary. 

THEOREM 2. Every lattice, flJ, which has a recursive presentation and distinct least 
and greatest elements can be embedded into the r.e. tt-degrees preserving least and 
greatest elements. 

PROOF. We fix some notation first. Let flJ = (P, ~ , V, 1\,0.9',1.9') be a lattice 
with 0.9' =1= 1.9" Let <I> = {a r : r E w} be a recursive representation of flJ. Since flJ has 
a recursive presentation, we know that such a representation exists. Let P = 

{Pi: i E w}, with Po = 0.9" and Pl = 1.9" We assume, w.l.o.g., that 'rJr E w, a,(O) = 0 
and'rJr1, r2 E w(rl =1= r2 ~ arJI) =1= ar/1». Let {Ra: a E w} be an effective listing 
of all the relations "p . .r p." or "p. 1\ p. = P " in Pie R is "p . .r p." or l"j::::;, J I} k , .• a lu"j:::. Ja 

"Pia 1\ Pia = Pka'" and if Pi {Pi then 3a E W, Ra = "Pi {P/" and if Pi I Pi and 
Pi 1\ Pi = Pk' then 3a E w,Ra ="Pi 1\ Pi = Pk". Define 

For a E U x E w H x, define Pea as in (13), and for a E U x E w Mx, define Q~ as in (14). 
Let {~: i E w} be an effective listing of the requirements {Pea: e E wand 
a E UxEwHX} and {Q~: e E wand a E UxEwMx }. As in the proof of Theorem 1, 
we construct a recursive function f: w X w ~ wand for i E W define Ai, = 

{(x, a/(X,s,)(i»: x E wand Sf ~ s}, and Ai = Us Ai,s' The proof of Theorem 1 is 
modified by first changing the definition of a legal move, and second changing the 
strategy for cooperation between coding and the {~: i E w}. 

We modify the legal move definition to get (5) and (6). Since the range of f is now 
infinite, (5) and (6) are no longer automatic, but they will be if we establish 

(39) There is a recursive function F such that for x, sEw, f( x, s) ~ F( x ). 

As in Fejer and Shore [1], to establish (39) we define sets Sci, y) for i, yEw, 
where SCi, y) represents ~'s guess at the possible values for fey, s). First we define 
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if 3a E ( U Hx )3e E w(I; = p;), 
xEw 

if 3a E ( U Mx )3e E w(I; = Q:) and 
xEw 

arJk a ) '* ar,{k a ), 

if3a E U Mx 3e E w(I; = Q:) and 
XEW 

a r1 ( k J = a r2 ( k a ), and so, ... , S m 

satisfy (3) for Pia 1\ PJ~ = Pka 
and r1 , r2 • (Choose one fixed 
set of interpolants for each 
such triple (a, r 1 , r2)') 

We modify our recursive partition of w so that we get 

{D«e,a»: e E w, a E x~w Hx} U {Wa(x): X E w, a E Hx} 

U {w(a,k)(x): x E w, (a,k) E M, X {I,2}} u {CW(x): x E w} 
satisfying (15) and 

Each x E w has two finite sets of numbers associated with it, 
call them W(x) and CW(x). Each element of W(x) U CW(x) 
is greater than x, and min(CW(x» > max(W(x». Partition 

(16') W(x) into sets Wa(x) for a E Hx and w(a.k)(x) for (a, k) E 

Mx X {1,2} so that IWa(x)1 = y+1 for a E Hx ' x E wand 
Iw(a.kl(x)1 = 2x + 1 for (a, k) E Mx X {1,2}, x E wand 
ICW(x)1 = 2 . m x ' 2x+1(hx + 2mx)' 
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As before, g will be a 1-1 recursive function such that for all x, g: W(x) X Mx X 
{l,2} ~ CW(x). For a E UxEwHx , r(ah, r(a)2 are defined to satisfy (19), and 
for (a, k) E U X E W Mx X {1,2}, rea, k h, r( a, k)2 are defined to satisfy (20). We are 
now ready to define the S( i, y). For i ~ Y + 1, define 

{r(a),r(ah} if a E U Hx and 
XEw 

Y E ( U D«e,a») u( U Wa(x»), 
eEw xEw 

if(a,k)E U MxX{I,2} 
S(i,y)= XEW 

and3z E U W(x), Y = g(z,a,k), 

XEw 

and y E U w(a,k)(x). 
xEw 
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Given S(i + 1, y) with ° ~ i ~ y, define 
S(i,y) = S(i + 1,y) uU{J(i,rI,r2): rI,r2 E S(i + 1,y)}. 

We modify the definition of "0 is a legal move for r; at s + 1" by replacing (22) 
with 

(22') 
For x<lol (o(x)*'f(x,s)~x>R(i,s) and x>i and 
f(x, s) = f(x,O) and a(x) E S(i,x». 

Now for all y, if for some s, f(y, s + 1) *' f(y, 0), then this definition of a legal 
move ensures that f(y, s + 1) E S(O, y). Hence if we define F(x) = max(S(O, x», 
then the new construction will satisfy (39). The proof of the analog of Lemma 6 for 
the new construction remains basically the same as the original proof. When 
considering r; = Q~, the legal move p, at stage S2 constructed in the proof is such 
that if p,(y) *' f(y, S2), then y = g(z, a', k') for some z, a', k', or 3s' > S2' 
f(y, S' + 1) *' f(y, s'). If y = g(z, a', k'), then p,(y) = r(a', k'h E S(i, y). If 3s' > 
S2(f(y, s' + 1) *' f(y, s'», then some Tj, j > i, was active at s' + 1, and f(y, s'), 
f(y, s' + 1) E S(j, y) ~ S(i + 1, y). We constructed p, so that p,(y) = one of the 
interpolants for (Xf(y,s,)(k a) = (Xf(y,s'+I)(k a), and so /L(Y) E S(i, y). Hence the /L 
constructed will satisfy the new definition of legal move, and the proof of Lemma 6 
is as before. 

The coding strategy is modified as follows. The list of relations {Ra: a E w} is 
infinite now, and so our coding action for x cannot cooperate with all of the Ra' 
Instead we insist that the action for coding x cooperate with R a , only for a < x. 
Thus our action for coding the fact "x E K" is chosen from among h x + 3m x many 
possibilities, and we still get a tt-reduction for K from AI' We establish 
(29') 'Vx E w(x E K - 3a E Hx3y E Wa(x)(Y,(Xr(a» E Al and 

'V(a', k') E Mx X (l,2}'Vr ~ F(g(y, a', k'» 

(r *' r(a', k')1 ~ (g(y, a', k'), (Xr(1» Et: AI»)) 
or 
3(a, k) E Mx X (l,2}3y E w(a,k)(x) 

(y, (Xr(a,k» E Al and 'V( a', k') E Mx X {l, 2} 

'Vr ~ F(g(y, a', k'»(r *' r(a', k')1 ~ (g(y, a', k'), (Xr(l» Et: AI)' 
The proofs of the lemmas showing the correctness of the construction will be as 
before, except that when considering r; = Q~ or P:, we start from a stage So such 
that Kso ~ a = K ~ a; then for s > so' if r; has priority at s, then r; will not be 
injured by coding at s. Thus Lemmas 3, 4, 5 and 6 will hold if we replace [1, h] by 
Hx or U x E w Hx' [h + 1, m] by Mx or U x E w Mx whenever appropriate and let So be 
large enough so that Ks ~ a = K ~ a. o 

COROLLARY 2. The 3 theory of the r.e. tt-degrees in the language .P with ~,V, /\ 
as relation symbols and 0, 1 as constant symbols is decidable. 

PROOF. The decision procedure is the same as the one used in Fejer and Shore [1]. 
An existential sentence 0 = 3xI, ... , 3xn'P in .P will be valid in the r.e. tt-degrees iff 
it is valid in some partial order with distinct least and greatest elements and at most 
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(n + 2) + 2(n + 2)3 elements. Suppose a is valid in some finite partial order 9 with 
distinct least and greatest elements. 9 can be extended to a finite lattice, 9', with 
distinct least and greatest elements. Since 9' is finite, it is recursively presentable, 
and so by Theorem 2 9' can be embedded in the r.e. tt-degrees. The embedding 
preserves all joins and infs mentioned in cp, as well as least and greatest elements, 
and so a will be valid in the r.e. tt-degrees. Next suppose that a is valid in the r.e. 
tt-degrees and that al , ... , an is a sequence satisfying cpo We construct a partial order 
9 containing a l , ... , an' 0,1 and enough other r.e. tt-degrees so that if b, c, d E 

{a l , •.. , an' 0,1} and b, C ~ d, and b V C =1= d, then 9 contains an e so that b, c ~ e 
and e < d. Likewise if d ~ b, c and b /\ C =1= d then 9 contains an e so that e ~ b, c 
and d < e. 9 will have no more than (n + 2) + 2(n + 2)3 elements, and a will be 
valid in 9. 
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