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INFINITELY MANY TRAVELING WAVE SOLUTIONS 
OF A GRADIENT SYSTEM 

DAVID TERMAN 

ABSTRACT, We consider a system of equations of the form u, = Un + \7F(u), A 
traveling wave solution of this system is one of the form u(x, t) = U(z), z = x + Ot, 
Sufficient conditions on F( u) are given to guarantee the existence of infinitely many 
traveling wave solutions, 

1. Introduction. 
A. Statement of the problem. Consider the system of reaction-diffusion equations 

(IA.I) 

where U I and U 2 are functions of (x, t) E R X R+. We assume that fl and f2 are 
derived from some potential. That is, there exists a function FE C 2(R2) such that 

(IA.2) i = 1,2, 

for each (u 1, u 2 ) E R2. By a traveling wave solution of (IA.I) we mean a noncon-
stant, bounded solution of the form 

(IA.3) z = x + Ot. 

A traveling wave solution corresponds to a solution which appears to be traveling 
with constant shape and velocity. Our goal is to prove that for a certain class of 
potentials, there exists infinitely many traveling wave solutions of (IA.I). 

We shall assume that the graph of F(U) is as shown in Figure l. Precise 
assumptions of F will be given shortly. For now we assume that F has at least three 
local maxima. These are at (U1, U2 ) = A, Band C with F(A) < F(B) < F(C). We 
will be interested in traveling wave solutions which satisfy 

(IA.4) lim (U1 ( Z ), U2 ( Z )) = A and lim (U1(Z),U2 (z)) = B. 
z-4-OO ;:-4-00 

Motivation for studying this problem will be given shortly. 
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FIGURE 1 

If (U1(Z), U2(z» is a traveling wave solution of (lA.l) and V;(z) = ~'(z), 

i = 1,2, then (U1, U2 , V1, V2 ) satisfies the first order system of ordinary differential 
equations 

(lA.5) 
U{ = V1, V{ = OV1 - FuJU1, U2 ), 

U{ = V2 , V{ = OV2 - FU2 (U, U2 ) 

together with the boundary conditions 

(lA.6) 
(a) 

(b) 

lim ( U1 ( Z ), U2 ( Z ), V1 ( Z ), V2 ( Z )) = (A, @ ) , 
z ....... -oo 

Here we have set @ = (0,0). For convenience we let U = (U1, U2 ) and V = (V1' V2 ). 

Our goal is to prove that for certain assumptions on F there exist infinitely many 
o for which there exists a solution of (1A.5), (lA.6). 

B. Assumptions on F. We assume that the graph of F(U) is as shown in Figure 1. 
The precise assumptions on F are as follows: 

(Fl) FE C 2(R2). 
(F2) F has at least three nondegenerate local maxima. These are at A = (A1' A 2 ), 

B = (B1' B2 ), and C = (C1,C2 ). F has at least two saddles at D = (D1' D2) and 
E = (E1' E2)· 

(F3) F(A) < F(B) < F(C) and Bl < Dl < Al < El < C1. Moreover there exists 
an ao such that if a is any critical point of F with a$.{ A, B, C}, then F( a) < 
F(A) - ao. 

(F4) There exists W such that if K < W, then {U: F( U) ~ K} is convex. 
(F5) If U1 = D1 or E1, then (3F /3V1)(V1, V2 ) = ° for all V2 E R. 
(F6) Let 

(lB.1) 

Nl = {V: F( V) ~ W}, 
Xl = {V E Nl : VI < D 1 }, 

X2 = {V E Nl : D1 < VI < E1 }, 

X3 = {V E Nl : E1 < Vd· 
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Suppose that (U( z), V( z» is a bounded solution of (IA.S) with (j = 0 which satisfies 
the following for i = 1,2, or 3, 

(a) U(z) E Xi for all z E R, 
(b) F(U(z» > F(A) - 0'0 for some z E R, 

where 0'0 was defined in (F3). Then U( z) is identically equal to one of the critical 
points A, B, or C, and V(z) = (2 for all z E R. 

Remarks concerning these assumptions are certainly in order. These remarks are 
given in §1E. First, we state our main result and then try to motivate the results and 
assumptions on F by briefly discussing the scalar equation ut = uxx + g(u). 

C. The main result. 

THEOREM 1. Assume that /1 and /2 satisfy (1A.2) and F(U1, U2 ) satisfies (FI) to 
(F6). Then there exists infinitely many traveling wave solutions of (IA.I) which satisfy 
(1A.4). 

REMARK. By infinitely many traveling waves we mean that there exist infinitely 
many values of (j for which there exists a solution of (IA.S), (1A.6). 

D. The scalar equation. This paper is a generalization of previous work on the 
scalar equation 

(ID.I) 

In [3], a rather complete description of which waves exist is given for general 
nonlinearities g( u). In [3], we used graph theory to prove the existence of traveling 
waves. In this paper we demonstrate what takes the place of the directed graphs and 
arrays of integers, which were used in [3], for higher dimensional gradient systems. 

E. Remarks on the assumptions on F. 
REMARK 1. (F4) will be used to prove that the set of bounded solutions of (IA.S) is 

compact. 
REMARK 2. (F6) guarantees that the set of bounded solutions of (lA.S) is not too 

bizarre. One may think of (IA.S) with () = 0 as describing the motion of a ball 
rolling along the landscape defined by the graph of F. There may exist bounded 
solutions of (IA.S) with (j = 0, because the ball may roll back and forth between the 
mountain peaks given by F(A), F(B), and F(C). Assumption (F6) implies that 
these are the only bounded solutions, besides the critical points, which lie ab.ove 
F(A) - 0'0' This condition will be satisfied if the level sets of F(U) are sufficiently 
nice (some starlike condition, for example). It is not clear whether or not this 
condition is necessary to guarantee the existence of infinitely many traveling wave 
solutions. 

REMARK 3. (FS) is perhaps the most unreasonable assumption. It can be weakened 
slightly as follows. Let 

(IE.I) ID= {UEN1 :U1 =Dd, IE= {UENl:U1 =Ed· 

Then (FS) implies that if U E I D n Nl or U E lEn Nv then V' F( U) is tangent to I D 

or IE> respectively. Our result remains true if this property holds for some lines I D 

and IE through D and E, not necessarily the ones given in (IE.I). We choose I D and 
I E as in (IE.I) only for convenience. We do feel that our method of proof should 
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carryover to a more general assumption than (F5). In [4, Appendix 5) we describe 
how one should be able to weaken (F5). 

F. Description of the proof. The proof of Theorem I is quite geometrical. The 
purpose of this subsection is to introduce the basic geometrical features of the proof. 
Note that each solution of (IA5) corresponds to a trajectory in four-dimensional 
phase space. The boundary conditions (IA6) imply that we are looking for a value 
of 0 for which there exists a trajectory in phase space which approaches the 
equilibrium (A, (!)) as z ~ -00 and the equilibrium (B, (!)) as z ~ + 00. Hence, we 
are looking for a trajectory which lies in both WA , the unstable manifold at (A, (!)), 
and W~, the stable manifold at (B, (!)). 

The first step in the proof of Theorem I is to obtain apriori bounds on the 
bounded solutions of (IA5). This is done in §2. We prove that there exists a T such 
that no solutions of (IA5), (IA6) exist for 0 > T. We also construct a four-dimen-
sional box, N, which contains all the bounded solutions of (IA5). 

We then construct a subset iff of the boundary of N with the property that each 
nontrivial trajectory in WA , for 0 < T, can only leave N through iff. The most 
interesting feature of iff is that it has four topological holes. 

Now choose 00 so that no solutions of (IA5), (IA6) exist for 0 = 00 . We prove 
that each nontrivial trajectory in WA must leave N. Because the dimension of WA is 
two, the places where WA leaves N define a curve, A(Oo), in iff. We define an 
algebraic object, f( 00 ), which describes how A( 00 ) winds around the four holes in 
iff. f( 00 ) will be an element of F4 , the free group on four elements. The definition of 
f( 00 ) is given in §4B. In §4B we set things up a bit more generally than described 
here in anticipation of future papers in which we characterize the solutions of (IA5), 
(IA6) by how many times they wind around in phase space. This notion of winding 
number will play an important role in this paper, as we describe shortly. The 
winding number is defined precisely in §3B. 

The algebraic invariant, f( 00 ), will have the following important property: 

PROPOSITION A (SEE PROPOSITION 4B.2). Suppose that 00 < 01 are chosen so that 
there exist no solutions of (IA5), (IA6) for 0 E [00 , Od. Then f( 00 ) = f( 01 ). 

The next step in the proof of Theorem I is to assign to each element f E F4 a 
positive integer If I· We prove 

PROPOSITION B (SEE PROPOSITION 5AI). Let M be a positive integer. There exists 
OM such that if 00 < OM and no solutions of (IA5), (IA.6) exist for 0 = 00 , then 
If(Oo)1 > M. 

Theorem I then follows from Proposition A and Proposition B. 
The key steps in the proof of Proposition B are Proposition 3C.1 and Proposition 

4C.1. In Proposition 4C.1 we give a relationship between If(Oo)1 and the winding 
number of trajectories in WA for 0 = 00 . In Proposition 3C.1 we prove that if 00 is 
very small then there must exist a trajectory in WA , for 0 = 00 , with large winding 
number. 
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2. The isolating neighborhood. 
A Basic definitions and a preliminary result. Recall the set NI defined in (IB.I). 

Let 

(2A.I) N2 = {(U, V): U E Nu liVll ~ V} 

where V is a large number to be determined. Let 

PD = {(U, V): UI = DI and VI = O}, 
PE = {(U, V): UI = EI and VI = O}, 
N = N2 \(PD U PE ). 

REMARK. N is topologically a four-dimensional box with two holes, P D and P E, 

removed. This is topologically equivalent to a two-dimensional disc with two points 
removed. 

We first prove 

LEMMA 2Al. For all 0, PD and PE are invariant with respect to the flow defined by 
(lAS). 

PROOF. We wish to show that if (U(zo), V(zo» E PD or PE for some zoo then 
(U(z), V(z» E PD or PE for all z. However, from (lAS) and (FS) we conclude that 
on PD or PE> 

U{ = VI = 0 

and 

These two equalities prove the lemma. An immediate consequence of the lemma is 

COROLLARY 2A2. For each 0, the unstable manifold at (A, &) does not intersect PD 

or PE • 

We wish to prove that all bounded solutions of (IA4) lie in N2 if V is sufficiently 
large. Together with the corollary, this will imply that solutions of (lAS), (IA.6) 
must lie in N. We begin with 

LEMMA 2A3. The projection onto U-space of every bounded solution of (lAS) lies in 
N I . Moreover, there cannot exist a solution of (lAS) whose projection onto U-space is 
internally tangent to aNI' the boundary of N I . 

PROOF. The proof follows that given in Conley [1]. Choose K ~ Wand suppose 
that (U(z), V(z» is a solution of (lAS) which satisfies for some zo, F(U(zo» = K, 
and 
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Then 

(2A.2) 
d2~1 = d 2F(U) + (}('\IF(U(zo)), V(zo) 
dz Zo 

-('\IF(U(zo)),'\lF(U(zo))) < ° 
since the assumption that the level set {F(V) ~ K} is convex implies that 

d 2Fa) < ° if ~ 1= ° and ('\IF,~) = 0. 
This implies that there cannot exist any internal tangencies on the level set 
{ F( U) = K } for all K ~ W. 

On any solution which leaves the set where F(U) ~ W there is a point where 
F < Wand either dFjdz < ° or dFjdz > 0. Suppose that F(U(zo» < Wand 
dFjdzl zo < 0. Then (2A2) implies that F(U(z» is strictly decreasing for z ~ zoo 
Therefore, if the solution is bounded, it would have to go to a rest point in the set 
where F < W. Since there are no rest points, the solution must be unbounded in 
forward time. A similar argument shows that if F(U(zo» < Wand dFjdzl zo > 0, 
then the solution is unbounded in backward time. 

REMARK. The proof of this last result shows that if U( z) leaves Nl in forward or 
backward time, then it can never return to Nl . 

B. The energy H. Consider the function H(U, V) = l(V, V)2 + F(U) where 
(V, V) is the usual inner product in R2. If (U(z), V(z» is a solution of (lAS) we 
sometimes write H( z) = H( U( z), V( z ». An important fact is that on solutions of 
(lAS), 

(2B.l) H'(z) = (}(V(z), V(z)? 
Therefore, if {} 1= 0, then 

(2B.2) H'(z) > ° 
and H( z) is increasing on solutions of (lAS). An immediate consequence of this is 

PROPOSITION 2B.I. The only bounded solutions of (lAS) with {} > ° are critical 
points or trajectories which connect critical points. 

Note that if (U(z), V(z» is a solution of (lAS), (lA6), then 
(2B.3) lim H{z) = F(A) and lim H{z) = F{B). 

z-+-oo z-+ + 00 

C. A bound on {}. In this section we prove 

LEMMA 2C.I. There exists T such that no solutions of (lAS), (lA6) exist with 
{} ~ T. 

PROOF. For;>" > 0, let 

SA = {(U, V): /Vll ~ ;>..IUl - All and Iv21 ~ ;>..lu2 - A 21}. 

We prove that given ;>.. there exists TA such that if {} ~ TA, WAo is the unstable 
manifold of (lAS) at (A, (0), and (U(z), V(z» E WAo, then (U(z), V(z» E SA' 

Because every solution of (lAS), (lA6) must lie in WAo, and (B, (0) $. SA' for any 
;>.. > 0, this will imply the desired result. 
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We first prove that there exists TA such that if 8 ~ TA, then SA is positively 
invariant for the flow (lA.S). To prove this we show that on the boundary of SA' the 
vector field given by the right side of (lA.S) points into SA. 

There are many cases to consider. Suppose, for example, that V1 = "A(U1 - Al)' 
U1 > A 1 , and iV21 ~ "AIU2 - A 2 1. Let n = ("A, -1) be a vector outwardly normal to 
{(U1, V1): V1 = "A(U1 - A 1)}. Then 

n ·(U(, V() = "AV1 - 8V1 + Fu,(U) 

= ("A - 8)(U1 - A1 ) + Fu,(U) < 0 

for 8 sufficiently large. A similar proof works in the other cases. 
To complete the proof of the lemma we show that TA can be chosen so that if 

8 ~ TA and (U(z), V(z» E WA9, then there exists Zo such that (U(z), V(z» E SA for 
z < zoo This is proved by linearizing (lA.S) at (A, @) and showing that the positive 
eigenvectors point into SA. 

If we set A' = (A, @) and 

a2FI au? A' 
= a, -- -b a2F I au 1au 2 A' - , 

a2FI 
au~ A' 

= c, 

then the linear system at A' is 

In r ~Q 
0 1 

m~l (2C.1) 0 0 
-b 8 

-b -c 0 

To compute the eigenvalues and eigenvectors of this system let 

M = [~ ~] 
be the Hessian matrix of F at A. Since F(U) obtains a local maximum at A it 
follows that M has negative eigenvalues, which we denote by -"Al and -"A 2. The 
eigenvalues of (2C.1) are then ai, a1' a2+, a2- where for i = 1,2, at and ai- are 
roots of the polynomial a 2 - a8 - "Ai = O. Since this polynomial has one positive 
and one negative root we may assume that 

(2C.2) 

Let W1 and W2 be eigenvectors of M corresponding to -"Al and -"A2' respectively. 
Then eigenvectors corresponding to a1± and al are then 

(2C.3) i = 1,2. 

Because at --+ 00, i = 1,2, as 8 --+ 00 it follows that pi and Pi. point into SA if 8 is 
sufficiently large. Because WA9 is tangent to the linear space spanned by pi and Pi. 
this implies the desired result. 
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REMARK. Our proof proved more than Lemma 2C.I. We also proved 

COROLLARY 2C.2. Fix 0 > 0 and let A8 = {U: IIU - All = o}. Given A > 0 there 
exists M such that if 0> M, (U(z), V(z» E WA 6, U(zo) E A8, and IIU(z) - All < 0 
for z < zo, then IW(zo)11 > A. 

PROOF. Let A1 = 2A/o and M = TAl' as in the previous lemma. If 0 > M, 
(U(z), V(z» E WA 6, and IIU(z) - All = o. Then either IU1 - All> 0/2 or IU2 - A21 
> 0/2. From the previous lemma, either IW111 ~ A10/2 = A or IW211 ~ A10/2 = A. 

D. A bound on V. Recall that in the definition of N we needed a constant V which 
has not been defined yet. V will serve as an a priori bound on IWII of solutions of 
(1A.5), (lA.6). That such a bound exists follows from 

PROPOSITION 2D.I. Assume that 0 < T. V can be chosen so that if U(zo) E N1 and 
IW(zo)11 ~ V, then U(z) leaves N1 in backward time. 

PROOF. Suppose that IW(zo)11 > V where V is to be determined. Then either 

(2D.l) 
V1(ZO»~V, V1(ZO)<-~V, 

We suppose that V1(zo) > ~ V, and for convenience Zo = O. Choose M1 so that 
IIV' F(V)II < Min N1. Then, from (1A.5), 

V; = OV1 - Ful(U) ~ TV1 + M1 
as long as V1 ~ O. Therefore, if V1 ~ 0, 

[e- TZ V1l' ~ e- TzM 1 • 

Integrate this equation for -Zl ~ Z ~ 0 to obtain 

V(-z) >- e-TZIV(O) -l.-M (1 - e- TZI ) >- !e-TV-l.-M 11"" 1 T1 ""2 T1 

as long as 0 ~ Zl ~ 1 and V1 (z) ~ 0 for -1 ~ z ~ O. This last statement is true if 
~e-TV -(1IT)M1 > 0 or V> (2IT)M1e+T, which we assume to be true. Therefore 

f 1 -T- 1 U1 ( z) = V1 ( z) ~ "2 e V - T M 1 

(2D.2) 

Let M2 = diameter of N1 and choose V so that 
1 -T- 1 

(2D.3) "2e V - TM1 > M2 • 

Then (2D.2) and (2D.3) imply that U1(-1) f/; N1• Similar arguments hold for the 
other cases in (2D.l). 

An immediate consequence of this result, Corollary 2A.2, and Lemma 2A.3 is 

COROLLARY 2D.2. If (U(z), V(z» is a solution of (1A.5), (1A.6), then 0 < T and 
(U(z), V(z» E N for all z. 

E. The critical point C. From (2B.2) and (2B.3) it follows that H( z) < F( B) < F( C) 
on all solutions of (1A.5), (1A.6). This implies that there exists 0 such that if 
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(U(z), V(z» is a solution of (lAS), (lA.6) then U(z) $. {U: I/U - CiI < 8} = Cs 
for each z. Hence, the values of F(U) in Cs do not matter if we are only interested in 
solutions of (lAS), (lA6). In particular, F(U) may be chosen to be arbitrarily large 
in Cs. We change F(U) in Cs so that if (U(z), V(z» E WA 9 with 0 < T, then 
U(z) =1= C for all z. This is possible for the following reason. Suppose that 
(U(z), V(z» E WA 9 and U(zo) = C for some zoo If F(C) is very large, then we must 
have IW(zl)1I very large for some Zl < zoo However, as Proposition 2D.l shows, if 
I/V(zl)11 is too large, then U(z) will leave Nl in backward time. The remark in §2A 
implies that U(z) can never return to N l , in backward time, after leaving N I . This 
contradicts the assumption that (U(z), V(z» E WA 9. It is very tedious to make this 
all precise so we do not give the details. 

3. The local unstable manifold at (A, @) and the winding number. 
A A parameterization of WA 9. As before, let WA 9 be the unstable manifold at 

(A, @) for a particular O. As we saw in §2C, dim WA 9 = 2 for all O. The eigenvalues 
of the linearized equations at (A, @) are given in (2C.2), and their corresponding 
eigenvectors given in (2C.3). We conclude from the Stable Manifold Theorem (see 
[2]), 

THEOREM 3Al. Near A' = (A, @), WA 9 is a C 2 injectively immersed, two-dimen-
sional manifold. Moreover, the tangent space to WA 9 at A' is the linear subspace 
spanned by p{ and Pi.. 

An important consequence of this theorem is 

PROPOSITION 3A2. There exists 8 > ° such that if As = {U: IIA - UII = 8} then 
for each 0, we have that 

(a) For each Uo E As there exists a unique Vo E R2 such that (Uo, Vo) E WA 9. 

(b) If (U( z), V( z» is any nontrivial trajectory in WA 9 then there exists a unique Zo 
such that U(zo) E As. 

This proposition implies that for each 0 we may parametrize the nontrivial 
trajectories in WA 9 by the points on As. Let us parametrize the points on As by the 
angle cpo Let 
(3A.l) Dl = {(cp,O): ° ~ cp < 2'17,0 < 0 ~ T}. 
Then to each (cp, 0) E Dl there corresponds a unique trajectory in WA 9. If (0, cp) = d, 
then we denote this trajectory by y(d)(z) = (U(d)(z), V(d)(z». Here, z is the 
independent variable along the trajectory. 

B. The winding number. We wish to define the number of times trajectories in WA 9 

wind around PD and PE' To do this let 
QD = {(U, V): UI = Dl , VI < 0, and U EN}, 

QE = {(U, V): UI = E I , VI > 0, and U EN}. 

If (U(z), V(z» E WA 9, let 
h(U, V) = card { z: (U(z), V(z)) E QD U QE}' 

By card X we mean the cardinality of the set X. If d E Ed I , let 
(3B.l) h(d) = h(y(d)(z)). 



546 DAVID TERMAN 

REMARK. h(d) counts the number of times y(d)(z) intersects QD U QE which is 
equal to the number of times y( d)( z) winds around P D and P E. This notion of 
winding number may seem complicated because it involves trajectories in four-
dimensional space. However, one can compute h(U, V) by considering U(z) in the 
two-dimensional state space. Recall that h(U, V) equals the number of times (U, V) 
intersects QD and QE. Now (U(zo), V(zo» E QD if and only if U(zo) E ID and at 
z = zo, U(z) crosses ID from right to left. Similarly, (U(zo), V(zo» E QE if and only 
if U(zo) E IE and at z = zo, U(z) crosses IE from left to right. 

C. 0 near O. Crucial to the proof of the theorem is the following result. 

PROPOSITION 3C.1. Given M there exists OM such that if 0 < 0 < OM' 0 ~ ep < 2'lT, 
d = (ep, 0), and U(d)(zo) = B for some zo, then h(d) > M. 

The proof of this result is quite technical so we save the proof for Appendix A. 

4. An algebraic invariant. 
A. A preliminary result. 

LEMMA 4A.1. Fix 0 E [0, T] and q E ax2, where X2 was defined in (lB.l). Then 
there exists ep = ep(O, q) such that U(ep(O, q), O)(zo) = q for some Zo and 
U(ep(O,q),O)(z) E X2 for z < zoo Moreover, ep(O,q) can be chosen to depend con-
tinuouslyon 0 and q. 

The proof of this result is quite technical so we save the proof for Appendix B. 
Let ql and q be any points on aX2 as shown in Figure 2. That is, ql is on the top 

side of Nl and q2 is on the bottom side. From Lemma 4A.l there exists continuous 
functions epl(O) and ep2(0) such that for i = 1,2, U(ep;(O),O)(z) leaves X2 through 
q;. We assume, without loss of generality, that epl(O) < ep2(0) for all O. Let 

D = {(ep,O) E Dl :epl(O) ~ ep ~ ep2(0)}, 
X = {d ED: y( d)( z) -> (B, 0) as z -> oo}, 
Y=D\X. 

FIGURE 2 

Note that X corresponds to solutions of (lA.S) and (1A.6). We wish to prove that X 
is an infinite set. 

B. rand r *. Suppose that y E Y, which was defined in the preceding section. We 
claim that y(y)(z) must leave N. From Propositin 2B.l and the fact that H(z) is 
increasing on solutions, it follows that if y( y)( z) does not leave N, then either 
limz~oo y(y)(z) = (B, 0) or limz~oo y(d)(z) = (C, 0). By the definition of Y, we 
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have that limz~oo y(y)(z) "4= (B, (!J). Moreover, the remarks in §2E imply that 
limz~oo y(y)(z) "4= (C, (!J). Hence, y(y)(z) leaves N. Let 

lff= {(U, V) E aN: liVll < v} \(PD U PE ). 

From Proposition 2D.1 we conclude that if y E Y, then y(y)(z) must leave N 
through lff. Hence, we have a mapping A: Y -4 lff defined by A(y) = the place 
where y( y)( z) leaves N. From Lemma 2A.3 it follows that A is continuous. 

Let I be the unit interval and ':1 the set of functions g : I -4 Y such that 
(a) g is continuous, 
(b) g(O) E {(cp,O):cp = CPI(O)}, 
(c) g(l) E {(cp,O):cp = CP2(O)}. 

If g E ':1, then we have a continuous map A . g: I -4 lff. Note that lff is topologically 
an annulus with four holes removed. 

We now define two algebraic objects, r*(g) and reg), which indicate how the 
curve (A . g)(1) winds around the four holes. They will be elements of F4 , the set of 
words on the four elements a, /3, y, and 8. 

We begin with some notation. For convenience we assume that NI is the square 

Let 

NI = {( UI , VJ: I UI I ,:::; w, I u2 1 ,:::; W}. 

E1 = {(U, V) E lff: U1 > E1}, 

E2 = {(U, V) E lff:D1 < UI < E1, U2 = W}, 
E3 = {(U, V) E lff: U1 < Dd, 

E4 = {(U, V) E lff:DI < U1 < EI , U2 = -W}, 
11 = I; = {( U, V): UI = E1, U2 = W, ° < VI ,:::; V, V2 = O}, 
12 = t;;= {(U, V): UI = EI , U2 = W, -V,:::; VI < 0, V2 = a}, 
13 = 1;= {(U, V): U1 = DI , U2 = W, ° < VI':::; V, V2 = a}, 
14 = lji= {(U,V):U1 =DI ,U2 = W,-V':::; VI <0, V2=0}, 

15 = I; = {( U, V): UI = DI , U2 = - W, ° < VI ,:::; V, V2 = o}, 
16 = 1;= {(U, V): UI = DI , U2 = -W, -V,:::; VI < 0, V2 = a}, 
17 = It = {( U, V) : UI = E l' U2 = - W, ° < VI ,:::; V, V2 = o}, 
18 = ti= {(U, V): u i = EI , u2 = -W, -V,:::; VI < 0, v2 = O}. 

Assume that g E ':1. Choose 'l/k E [0,1], k = 1,2, ... , K, such that 
(a) '1/1 = 0, 'l/K = 1, 
(b) 'l/k < 'l/k+I for all k, 
(c) (A· g)('l/k) E U;=IEi for all k, 
(d) (A· g)('l/k,'l/k+l) intersects at most one of the line segments I" i = 1, ... ,8, 

for all k. We refer to '1/* = {'l/1"'" 'l/K } as a g-partition. It is not hard to prove that 
a g-partition does exist. 
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TABLE 1 

cI>( 1)k) E cI>(1)k+1) E 
cP ( 1)) crosses 

,\( 1)k+1) e(1)k+1) 
for 1) E (1)k' 1)k+1) 

E2 E1 /+ 
a a 1 

E1 E2 1+ 
a a -1 

E2 E3 r f3 /3 1 
E3 E2 r f3 /3 -1 
E3 E4 /-

y Y -1 
E4 E3 /-

y Y 1 
E4 E5 /+ 8 8 1 
E5 E4 It 8 -1 

We now define r*(g,1)*). First we define '\k = '\(1)k) E {a,/3,y,8} and ek = 
e ( 1) k) E {-I, 0, I}. These quantities are determined by Table 1. In the table, we let, 
for s E [0,1], cI>(s) == (A . g)(s). For each case not shown in the chart we let 
ek = e(1)k) = 0. For this case we do not define '\k = '\(1)k) because, as we shall see, 
since e k = ° the choice of ,\ k does not matter. Then define 

An example is shown in Figure 3. In the figure, ~k = cI>(1)k)' For this example 

r*(g, 1)*) = aa~la/3y~18~1. 

FIGURE 3 
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Note that there may be cancellations in f*(g, '1/*). By f(g) we mean the element 
of F4 obtained by making all cancellations in f*(g, '1/*). We shall see later that f(g) 
does not depend on '1/*. In the above example f(g) = a/3y-18-1. 

By f *( g) we mean the subset of F4 consisting of all elements which yield, after all 
cancellations, f(g). Note that, for each '1/*, f*(g, '1/*) E f*(g) and f(g) E f*(g). 
For the above example, f*(g) includes the elements a/388-1y-18-1 and 
a/3/3 -ly88 -ly -l/3y -18 -1. 

The following two propositions will be important for the rest of the paper. Their 
proofs are tedious but straightforward. We do not give the details. 

PROPOSITION 4B. f(g) does not depend on the choice of '1/*. 

Before stating the next proposition we need the following definition. 
DEFINITION. Suppose that gl' g2 E C§. We say that gl is homotopic to g2 relative to 

Y, and write gl - g2' if there exists a continuous map <I> : I X I ~ Y such that 
(a) <I>(s, 0) = gl(S) for s E I, 
(b) <I>(s, 1) = g2(S) for s E I, 
(c) <1>(-, t) E C§ for each tEl. 

PROPOSITION 4B.2. If gl - g2' then f(gl) = f(g2)· 

C. The winding number revisited. Recall that for each d = (cp, 8) E D there 
corresponds a trajectory y(d)(z) E WAn. Moreover there is a winding number, h(d), 
which counts the number of times y(d)(z) winds around PD and PE . Suppose that 
g(s) E C§ and So E I. In this section we derive a formula for h1(so) == h(g(so» in 
terms of f*(g, '1/*) for some g-partition '1/*. First we need some notation. 

Suppose that f E F4 is given by f = All ... >..'j where each Ai E {a, /3, y, 8} and 
ei E {l, -I}. Let w(f) = Lf~l ei • Let g E C§ and '1/* be a g-partition. Define the 
map Ao(g, '1/*): I ~ F4 as follows. Suppose that '1/* = {'l/1'···' 'l/K} and 'l/K::( s < 
'1/ k+ 1· Then define 

k 

Ao(g,'I/*)(S) = [] A~i = All ... Ae/:.. 
i~l 

The Ai and ei are defined as in the previous section. Finally, define A1(g, '1/*): I ~ 
Z+, where Z+ is the set of nonnegative integers, by 

A1(g,'I/*)(s) = [w. Ao(g,'I/*)](s). 
We can now state the main result of this section. 

PROPOSITION 4C.1. Assume that g E C§ and '1/* = ('1/1, ... , '1/ K) is a g-partition. If 
'l/j ::( So < 'l/j+ l' then either 

h1(SO) = A1(g,'I/*)('l/j) or h1(SO) = A 1(g,'I/*)('l/j+1)· 

PROOF. The proof is by induction on j. First assume that j = 1. That is 

(4C.1) 

By assumption, '1/1 = 0 and (A· g)('l/l) E E2 where E2 was defined in the preceding 
section. There are a number of cases to consider. Suppose, for example, that 

(4C.2) 
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Because (A . g)( 112) E E2 it follows, from Table 1, that e l = 0 and, therefore, 
A l (g,1/*)(1/1) = A l (g, 1/*)(1/2) = O. 

Hence, we need to prove that hl(SO) = O. Suppose that hl(SO) > O. Then y(g(so)(z) 
must intersect QD U QE at least once. Suppose that y(g(so»(z) intersects QD' The 
other case is similar. Recall that 

QD = {(U, V): U1 = D1, VI < 0, and U E Nl }. 
Because (A· g)(so) E E2 it follows that y(g(so»(z) must also intersect 

Q~= {(U, V): U1 = D l , VI > 0, and U E N1 }. 

Let 
S 1 = inf { s : y ( g ( s )) ( z ) intersects Q D } , 

S2 = inf{ s: y(g(s ))(z) intersects Q~}. 
Clearly, 0 < SI < S2 < So < ~2' Moreover, (A· g)(SI) E lji and (A . g)(S2) E I;' 
This, however, contradicts the assumption that 1/* is a g-partition. 

There are other cases to consider besides (4C.2). We only consider one more. The 
rest are similar. Suppose that (A . g)(so) E El and (A . g)(1/2) E E 1• Then, using 
Table 1, A l (g, 1/*)(1/1) = 0 and A l (g, 1/*)(112) = 1. We claim that hl(SO) = 1. 
Because (A . g)(1/1) E E2 and (A· g)(so) E El it is clear that hl(SO) =1= O. Suppose 
that hl(SO) > 1. Then y(g(so»(z) must intersect QD U QE at least twice. Because 
y(g(O»(z) does not intersect QD U QE at all, this implies that there exist SI' S2 with 
1/1 < SI < s2 < So < 1/2 such that (A· g)(SI) E Ii and (A· g)(S2) E Ij for i =1= j. 
This, however, contradicts the assumption that 1/* is a g-partition. 

To complete the proof of the proposition we must prove the induction step. That 
is, we assume that the proposition is true if 1/j < So < 1/j+l for j < k, and then 
prove the result if j = k. The proof of this is very similar to the proof just given so 
we do not include the details. 

5. Completion of the proof of Theorem 1. 
A Preliminaries. Suppose that g E <g, which was defined in the previous section, 

and 
reg) = A"(>':1 '" Aek 

where, for each i, Ai E {a, p, y, S} and ei E {-I, I}. Define 
J 

Ir(g) I = sup Lei' 
l,;;;J,;;;K i=l 

In the next subsection we prove 

PROPOSITION SAL Let M be any positive integer and let OM be as in Proposition 
3C.I. Suppose that g E <g is given by g(s) = (<p(s), O(s» and O(s) < OM for each s. 
Then Ir(g)1 > M. 

In this section we show that Proposition SAl implies that Theorem 1 is true. 
Suppose that Theorem 1 is not true; that is, there exists only a finite number of 

o 's, say {0 1" •• , ON}' for which there exists a solution of (lAS), (IA6). Let 
00 = t inf OJ. l,;;;j,;;;N 
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Then ()o > O. Choose go Erg such that goes) = (ep(s),{)(s)) and {)(s) = {)o for all s. 
From Proposition 5A.I there exists ()* < ()o such that if gl(S) E rg is such that 
gl(S) = (epl(S), ()l(S)) and ()l(S) = ()* for all s, then If(gl)l> If(go)1 + 1. But 
goes) and gl(S) are clearly homotopic relative to Y. From Proposition 4G.2 it 
follows that f(go) = f(gl)' Hence, 

If(go) 1= If(gl) I> Ir(go) 1+ l. 
This is clearly impossible, thus proving the theorem. 

B. Proof of Proposition 5A.I. Let y(g(s))(z) = (U(g(s))(z), V(g(s))(z)). Now 
U( g(O»)( z) leaves X2 through its top side without ever crossing I D or IE' and 
U( g(I»( z) leaves X2 through its bottom side without ever crossing I D or IE' 
Moreover, by the remarks in §2E, U(g(s»)(z) =1= C for all sand z. Since the curves 
U(g(s ))(.) vary continuously with s this implies that there exist So and Zo such that 
U(g(so)(zo) = B. Because {)(so) < ()M' Proposition 3C.l implies that hl(SO) = 
h(g(so) > M. By Proposition 4C.I, if 1/* is a go-partition and 1/) < So < 1/), then 
either 

From the definitions this implies that If*(g, 1/*)1 > M. We must show that this 
implies that If(g)1 > M. 

Note that f(g) is obtained from f*(g, 1/*) by a finite number of cancellations. 
We show that after each cancellation the index is still greater than M. More 
precisely, suppose that f*(g, 1/*) is of the form 

(5B.I) f*(g, 1/*) = fJAetAek+'lf; 

where f J, f; E F4 , A k = A k + 1 E {cx, /3, y, 0 }, and e k = -e k + 1 E {-I, I}. Let f' = 
fJf;. We prove that If'l > M. Since f(g) is obtained from f*(g, 1/*) by a finite 
number of such cancellations, this will prove the result. 

Note that if ek = -1, then If'l = If*(g, 1/*)1 > M. Hence, we may assume that 
ek = + 1. 

There are four cases to consider. Either Ak = CX, /3, y, or O. First suppose that 
A k = CX. We then consider two subcases. These are 

(5B.2) 
(a) h(g( 1/0)) > M for some 1/0 < 1/k-l' 
(b) h(g( 1/)) < M for all 1/ < 1/k-l' 

Suppose (5B.2a). Choose j < k - 1 such that 1/) < 1/0 < 1/)+1' Then, from Proposi-
tion 4C.I, either 

j )+1 
h(g{ 1/0)) = L ei > M, or h(g{1/o)) = L ei>M. 

;=1 i=l 

In either case, it follows that If'l > M. This is what we wished to prove. 
Now suppose that (5B.2b) holds. We first show that (5B.2b) implies that 

U(g(1/»(z) =1= B for all z and 1/ < 1/k+1' Suppose, for the sake of contradiction, that 
U(g(1/o))(zo) = B for some Zo and 1/0 < 1/k+l' Let 

t{1/o) = sup{z < zo: U{g(1/o)){z) E ID }· 
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Because limz~_ooU(g(1]o)(z) = A and U(g(1]o»(zo) = B, it is clear that t(1]o) is 
well defined. For 1] close to 1]0 there exists a continuous function t( 1]) such that 
U(g(1]»(t(1]» E ID • Let J be the maximum subset of [0,1] such that t(1]) is a well 
defined, continuous function. Let ~ = inf{ 1]: 1] E J}. Because U(g( 1]o»(zo) = B 
we conclude from Proposition 3C.1 that h(g( 1]0» > M. It follows that h(g( 1]» > M 
for all 1] E J. In particular, h(g(n) > M. If ~ < 1]k-1, then we have a contradiction 
of (SB.2b). Therefore, assume that 1]k-1 ::'( ~ < 1]k+!" Clearly, U(g(n)(z) leaves N) 
through ID (\ aN1. Hence, (A . g)(n Eli U/; = 14 U 16, where A, Ii, I;, 14 and 
16 were defined in §4B. However, from the definition of a g-partition, (A· g)(1]) can 
cross at most one of the lines 11 - 18 for 1] E (1] k' 1] k+ 1)· Because A k = a and 
Ak + 1 = a we have, from Table 1, that (A· g)(1]) crosses 1;= 11 for some 1] E 

[11k-1' 11k) and another 1] E [1]k' 11k+ 1). This gives the desired contradiction. We have 
now shown that if (SB.2b) holds, then U(g(1]»(z) =1= B for all z and 11 < 11k+!" 

It is clear that U(g(11o»(Zo) = B for some 1]0 and some zoo If (SB.2b) holds then 
110 > 11k+ 1· Suppose that 1]) ::'( 1]0 < 1])+ 1 for some j ;;, k + 1. Because U(g( 110» = B 
it follows that h(g(11o» > M. From Proposition 4C.1 we conclude that either 
A1(g, 11*)(11) > M or A1(g, 11*)(1])+1) > M. Both of these inequalities imply that 
If'l> M. 

It remains to consider the cases Ak = /3, y, and o. The proofs in each of these 
cases is similar to the one just given so we do not include the details. 

Appendix A. Proof of Proposition 3Ct. 
Idea of the proof. Suppose that (U(z), V(z» E WA " and U(zo) = B for some zoo 

Then while (U(z), V(z» E N, H(z) must increase from F(A) to F(B). Recall that 
H'(z) = 0lJVI1 2 ::'( OV2 as long as (U, V) E N. Then H(z) increases very slowly if 0 
is very small. Since H (z) must increase from F( A) to F( B) this implies that 
(U(z), V(z» must spend a long time in N. We shall use hypothesis (F6) to conclude 
that U( z) must move back and forth between the mountain peaks defined by F( A), 
F(B), and F(C) a large number of times. Together with the remarks in §3B this 
implies the desired result. 

PROOF OF PROPOSITION 3C.1. Let y(d)(z) = (U(z), V(z». We shall prove that 
there exists 00 such that if 0 < 00 and U(Z1) E Xi' i = 1,2, or 3, then there exists 
Z2> Z1 such that U(Z2) $. Xi and H(Z2) - H(Z1) ::'( F(B)/4M. This proves the 
proposition because it implies that U(z) must change regions (X), X2 , or X3 ) at least 
4M times if U(zo) = F(B) for some zoo Together with the remark in §3B this 
implies the desired result. 

We begin with a rather technical result. For r > ° let Ar = {U: IIU - All ::'( r}. 

LEMMA A.1. There exists 01, ho, r such that if 0 < 0), (U(zd, V(Z1» E aA r, 
(U(Z1)' V(Z1» > 0, and H(Z1) < ho, then there exists Z2 > z) such that U(Z2) $. X2 
and U(z) $. Ar for z E (z), Z2). 

PROOF OF LEMMA A.1. Suppose that the lemma is not true. Then for each n > ° 
there exists On' hn' rn which all approach zero as n ~ 00, solutions (Un(z), v,,(z» of 
(lA.S) with 0 = On and Zn such that (Un(zn), Vn(zn» E aArn , (Un(zn), Vn(zn» > 0, 
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H(zn) = hn' and each Un(z) returns to Arn before leaving X2. By compactness, this 
implies that some subsequence of {Un( z), Vn( z)} converges to a solution (U( z), V( z)) 
of (IA.S) with () = 0 such that H( z) = 0 along (U( z), V( z» and lim z ~ ± 00 U( z) = A. 
Hence, (U( z), V( z» is a bounded solution of (IA.S) such that U( z) lies entirely in 
X2. If we show that U(z) oF A for some z, then this will contradict (F6). 

Let 8 be as in Proposition 3A.2. The assumption that (Un(z), Vn(z» > 0 for each 
n and the saddle point property at (A, (9) imply that for each n there exists z~ such 
that liUn(z~) - All = 8. Hence, there exists z' such that IIU(z') - All = 8. In particu-
lar, U(z') oF A and the proof of the lemma is complete. In what follows we assume 
that ho < F(B). 

We now return to the proof of Proposition 3C.1. 
First suppose that i = I or 3. Assumption (F6) implies that there exists Tl such 

that if () = 0, 0 < H(ZI) < F(B)/2 and U(ZI) E Xi' then U(z) ft Xi for some 
z E (ZI' ZI + Tl)' By continuous dependence of solutions on a parameter it follows 
that there exists ()o such that if () < ()o, 0 < H( ZI) < F( B)/2 and U( ZI) E Xi' then 
U(z) ft Xi for some z E (ZI' ZI + 2Tl)' Let 

Z2 = inf{z > ZI: U(z) ft Xi}' 

Then 

if 

(A.I) 

which we assume to be true. 
It remains to consider the case when U(ZI) E X2 for some ZI' Note that U(z) 

starts out in X 2 (because lim z ~ -00 U(z) = A). If () = 0, then (F6) implies that there 
exists ~o such that Uao) ft X2 • Moreover, Hao) = O. Hence, ()o can be chosen such 
that if 0 < () < ()o, then there exists ~1 such that U(~I) ft X 2 and H(~l) < h 0/12 M. 

Let 

1/1 = inf{ z: U(z) ft Ar} and 1/2 = inf{ z: U(z) ft X2}' 

Let 

Y = min{IIYl - Y211: Yl E A, Y2 ft X}. 

Since IW(z)11 « V it follows that 1/2 - 1/1 :;:;, ylV. Let 

-A = sup { F( U( z )) : U( z) E 3Ar} < 0 

because we are assuming that F(A) = O. Then, for z E (1/1,1/2)' 

or 
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It follows that 

Therefore, 

(A.2) 
1 ()"}..y . 

H( z) ">"2 V If Z > 112· 

Now suppose that ZI > 1/2 and U(Zl) E X2. There are two cases to consider. 
These are, (1) U(Z2) $. X2 for some Z2 > ZI and U(z) $. Ar for z E (ZI' Z2), and (2) 
U(z2) EAr for some Z2 > Zl and U(z) E X2 for Z E (Zl' z2). 

As before, (F6) and the continuous dependence of solutions on a parameter imply 
that ()o and Tl can be chosen so that if () < ()o, Z1 > 1/2' U(Zl) E X2, and U(z) $. Ar 
for Z E (Zl' Zl + T1), then there exists Z2 such that Zl < Z2 < Zl + Tl and U(Z2) $. 
X2. As before, H(Z2) - H(Zl) < ho/12M if (A.I) is satisfied. 

It remains to consider the case U(Zl) E X2, Zl > 1/2' and there exists z2 > Zl such 
that U(Z2) E Ar and U(z) E X2 for Z E (Z1' Z2). We assume that 

Z2 = inf{ Z > Z1: U(z) EAr}. 
As before, ()o and Tl can be chosen so that if () < ()o, then Z2 - Zl < T1. Moreover, 
H(z2) - H(z1) ~ h o/12M if ()o is sufficiently small. Because Z2 > 1/2' we have, 
from (A.2), that H(Z2)"> My/2V. Hence, as long as U(z) EAr, IW(z)11 2 "> 
F(U)/2 + IW11 2 "> H(z)"> ()"}..y/2V= ()K. This implies that U(z) must pass through 
Ar. If we let z3 = inf{ z > Z2: U(z) $. A r}, then 

diameter of Ar 2r 
Z3 - Z2 ~ infIW(z)11 ~ ()1/2K 1/ 2 · 

Moreover, 

H(Z3) - H(Z2) = [3 H'(z) dz ~ ()V2(Z3 - Z2) 
Z2 

if ()o is sufficiently small. 
From Lemma A.I there exists Z4 > Z3 such that U(Z4) $. X2 and U(z) (t: Ar for 

z E (z3' Z4). We assume that Z4 = inf{ Z > z3: U(z) $. X2}. As before, ()o and Tl 
can be chosen so that if () < ()o, then Z4 - Z3 < T1. Hence, if (A1.I) holds, then 

H(Z4) - H(Z3) ~ h o/12M. 
We can now estimate the change of H(z) as U(z) crosses X2 in the case that U(z) 

crosses A r. Let Z1' Z2' Z3 and Z4 be as above. Then 
H(Z4) - H(Z1) = [H(Z4) - H(Z3)] + [H(Z3) - H(Z2)] + [H(Z2) - H(Z1)] 

~ ho/4M ~ F(B)/4M, 
which is what we wished to prove. 
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Appendix B. Proof of Lemma 4A.1. Let I be equal to the set of 0 EO [0, T] for 
which the first part of the lemma is true. That is, if 0 EO I and q EO ax2 , then there 
exists q;( 0, q) such that U( q;( 0, q), O)(zo) = q for some Zo and U( q;( 0, q), O)(z) EO X 2 

for z < zoo We prove that I is nonempty, open, and closed. 
We first prove that I is open. Assume that 00 EO I. Note that for each (q;, 0) EO D I , 

if y( q;, O)(z) = (U(z), V(z)), then U(z) must leave X2. This is because of assump-
tion (F6). Moreover, if we set Q( q;, 0) equal to the place where U( z) leaves X 2 . then 
Q( q;, 0) is continuous. This is because U(z) cannot be tangent to ax2• 

Fix qo EO ax2, and let ql and q2 be any other distinct points on ax2 · Choose q;1 

and q;2 such that Q( q;1' 00 ) = ql and Q( q;2' 00 ) = q2' Then q;1 and q;2 split ~ = 

{( q;, 0): 0 = 0o} into two distinct subsets, if we think of ~ as a circle identifying 
q; = ° with q; = 27T. We label these two subsets by ~I and ~2' Moreover, ql and q2 
split aX2 into two distinct subsets which we label as YI and Y2 . We assume that 
qo EO YI· Then either Q(~I' 00) covers YI and Q(~2' 00) covers Y2, or Q(~I' 00) 
covers Y2 and Q(~2' 00) covers YI . This follows from the assumption that 00 EO [. 

Suppose that Q(~I' 00 ) covers YI. Let q3 and q4 be any other points in YI such that 
the portion ofaX2 which lies in YI and between q3 and q4 contains qo. Call this 
subset ofaX2 , Y3• Since Q( cp., 0) is continuous, there exists A such that if 100 - 01 < 
A, then Q(~I' 0) covers Y3· Since qo EO Y3, if 10 - 001 < A then Q( q;, 0) = qo for 
some q;. Since aX2 is compact this implies that A can be chosen so that if 
10 - 00 1 < A, then Q(~, 0) covers ax2 • Hence, I is open. 

We now prove that [ is closed. Fix qo EO aX2 and 00 EO [0, T]. Assume there exists 
a sequence {Ok} such that for each k, Ok EO [ and Ok ~ 00 as k ~ 00. Choose {q;k} 
so that Q( q;k' Ok) = qo' By compactness, some subsequence of {q;k} converges, to 
say q;o' Clearly, Q( q;o, 00 ) = qo· Since qo was arbitrary, 00 EO I and [ is closed. 

It remains to prove that I is nonempty. We prove that 0 EO [ if 0 is sufficiently 
large. We will prove that there exists TI such that if 0 > TI , q; EO [0, 27T), d = (q;, 0) 
and y(d)(z) = (U(z), V(z)), then IIU(z) - All is increasing as long as U(z) EO X2. In 
particular, U(z) =1= A for each z. This certainly implies the desired result. 

We wish to prove that there exists TI such that if 0 > TI and (U(z), V(z)) EO WAB, 
then IIU(z) - All is increasing as long as U(z) EO X 2 • Certainly there exists 8 such 
that if IIU(z) - All < 8 for z < zo, and 0> 0, then IIU(z) - All is increasing for 
z < zoo Let 

MI = sup { II V' F( U) II: U EO X}, 

M2 = sup { I (U - A, V'F(U) I: U EO X2}, 

Al = max { 2MI , 2Mi!2}. 

By Lemma 2C.2 there exists TI such that if 0 > TI , IIU(zo) - All = 8 and IIU(z) -
All < 8 for z < zo, then IW(zo)11 > A. We assume that T I> 1. Then for each z > Zo, 
0> TI , 

(5B.l) ~ (V, V) = 20(V, V) - 2(V, V'F(U) ~ 20lWI12 - 21WIIMI 

~ 21WII( 0IWII - M I ) ~ 21WII( Al - MJ > ° 
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as long as IWII > Al and U(z) E X2 . However, at z = zo, IWII > Al and (SRI) 
implies that IWII is then increasing. Hence, IW(z)lI? A for z ? zo, U(z) E X2 • 

Another computation shows that for z ? zo, () > TI , U(z) E X2 , 

(U - A, V)' = (V, V) + ()(U - A, V) - (U - A,\lF(U) 

> A~ + TI(U - A, V) - M2 > 3M2 + TI(U - A, V). 
Since at zo, 

1 d 
(U - A, V) = "2 dz"U - AII2 > 0 

we conclude that (U - A, V) is increasing. Therefore, (U - A, V) > 0 for z > Zo as 
long as U(z) E X2 • Finally, if z > Zo and U(z) E X2 , then 

d 2 
dz Ilu(z) - All = 2(U - A, V) > O. 

To complete the proof of Lemma 4A.I we observe that our proof that I is open 
also implies that cp«(),q) can be chosen to depend continuously on () and q. 
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