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ABSTRACT. The index and nullity of the Hessian of the energy for every harmonic 
map arc estimated above by a geometric quantity. The stability theory of harmonic 
maps is developed and as an application, the Kahler version of the Lichnerowicz-
Obata theorem about the first eigenvalue of the Laplacian is proved. 

O. Introduction and statement of results. In this paper, we deal with the Hessian 
(the so-called Jacobi operator) of the energy for a harmonic map between two 
Riemannian manifolds, as the analogue of Morse theory for geodesics. The Morse 
theory for geodesics determines the homotopy type of the path space, using the 
notion of the index and nullity of the Hessian of the length of a geodesic. The 
celebrated Morse index theorem tells us that the index or nullity of a geodesic 
coincides with the number of conjugate points along the geodesic, and this gives an 
upper estimate for the index and nullity in terms of the length of the geodesic under 
a curvature assumption, giving a result known as the Morse-Schoenberg theorem: 

THEOREM (MORSE - SCHOENBERG [G.K.MJ). Assume that the sectional curvature NK 
of a Riemannian manifold (N, h) is bounded above by a positive constant NK ~ a. 
Then the nullity and index of a geodesic y; [0, 27T 1 --4 (N, h) satisfy 

Index( y) + NUllity( y) ~ (n - 1) [ L I!, ], 
where L is the length of the geodesic y and [x 1 is the integer part of a positive real 
number x. 

Harmonic maps are the natural extensions of the notion of geodesic. They are 
defined as critical points of the energy on the space of smooth maps between two 
Riemannian manifolds (cf. [E.S, E.LJ). Therefore it is reasonable to look for the 
analogue of Morse theory for harmonic maps. In order to do this we have to deal 
with the index and nullity of the Hessian of the energy and investigate their 
quantitative behavior for a general harmonic map. 

Received by the editors October 30, 1985 and, in revised form, June 6, 1986. 
1980 Mathematics Subject Classification. Primary 58E20; Secondary 58Gl1. 
This work is supported by Max-Planck-Institut fUr Mathematik. 

557 

©1987 American Mathematical Society 
0002-9947/87 $1.00 + $.25 per page 



558 HAJIME URAKA W A 

The first aim of this paper is to extend the above Morse-Schoenberg theorem to a 
general harmonic map, although we do not yet know the index theorem for 
harmonic maps. Namely we will give a general upper estimate on the index and 
nullity for every harmonic map in terms of a geometric quantity which coincides 
with the length in case of a geodesic (ct. Corollary 3.5). Note that the Morse-
Schoenberg theorem gives a stability theorem for a geodesic with a small length, i.e., 
the index and nullity vanish for a geodesic with a small length. Our upper estimate 
also gives a stability theorem (ct. Corollary 3.3) for a harmonic map with the above 
quantity small, which generalizes the stability theorem for a minimal immersion 
obtained by D. Hoffman [H], H. Mori [M], and S. Tanno [T2]. 

Now we call a harmonic map cf> from a compact Riemannian manifold without 
boundary stable if the index of cf> is zero (ct. [E.LD. We will study stable harmonic 
maps to determine what kind of harmonic maps are stable. Moreover, the second 
aim of this paper is to give an application of the stability of a harmonic map. It is 
well known that a holomorphic map between two compact Kahler manifolds is a 
stable harmonic map. In fact, it minimizes the energy within its homotopy class. In 
particular, the identity map of a compact Kahler manifold is stable. Using this fact, 
we give a Kahler version of Lichnerowicz-Obata's theorem about the lower estimate 
on the first eigenvalue of the Laplacian. More precisely we give 

THEOREM 4.2. Let (M, g) be a compact Kahler manifold whose Ricci curvature 
RicM is bounded below by a positive constant a > O. Then the first eigenvalue 
Al(M, g) of the Laplacian satisfies A1(M, g);;:. 2a. If the equality holds, then M 
admits a nonzero holomorphic vector field. 

The third goal of this paper is to investigate a special kind of stable harmonic 
map. Y. L. Xin [X] gave a remarkable result that each nonconstant harmonic map 
from the canonical unit sphere sn, n;;:. 3, into another Riemannian manifold is 
instable. It is natural to ask the following: 

Does there exist a deformation gl' 0 < t < 00, of the standard metric gl on sn such 
that if gt is far from gl' then (sn, gJ admits a stable harmonic map? 

In order to answer this question, we investigate the stability of the projection of 
the Riemannian submersion with totally geodesic fibers since the projection is a 
typical example of a harmonic map. Let cf>; (M, g) ~ (N, h) be a Riemannian 
submersion with totally geodesic fibers. Following [B.B], we consider the canonical 
variation gl' 0 < t < 00, of the metric g which also gives a Riemannian submersion 
cf>; (M, gJ ~ (N, h) with totally geodesic fibers. Then we have: 

THEOREM 7.3. Assume that the identity map of (N, h) is stable. Then there exists a 
small number E such that for every 0 < t < E, the Riemannian submersion cf>; (M, gt) 
~ (N, h) is stable. 

Since the identity map of the complex projective space (cpn, h) is stable, the 
Hopf fibering '71"; (s2n+r, gt) ~ (cpn, h) is stable for 0 < t < E, for the canonical 
variation gl' 0 < t < 00, with gl = canonical metric. This gives an example which 
contrasts with the instability theorem of Xin. 
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Finally, we investigate homogeneous Riemannian submersions and calculate the 
index and nullity of the Hopf fibering (cf. Corollary 8.12). 

ACKNOWLEDGMENT. This work was done during my stay in Bonn. I would like to 
express sincere gratitude to the Max-Planck-Institut fUr Mathematik for its hospital-
ity. 

CHAPTER I. THE INDEX AND NULLITY OF A GENERAL HARMONIC MAP 

1. Preliminaries. 
1.1. In this section, following [E.L], we describe the second variational formula of 

the energy functional obtained in [Ma, Sm]. 
Let (M, g) and (N, h) be Riemannian manifolds of dimension m and n respec-

tively. Let cP; M ~ N be a smooth map. Let E = cp- 1TN be the bundle induced by 
cP over M from the tangent bundle TN of N. We denote by f(E), the space of all 
sections Vof E, that is, V E f(E) implies that V is a map of Minto E such that 
Vx E T</>(x)N for all x E M. For X E f(TM), we define cP*X E f(E) by 
(cp*X) x:= CP*xXx E T</>(x)N, x E M, where CP*x is the differential of cp at x. For 
Y E f(TN), we also define Y E f(E) by Yx:= Y</>(x) , x E M. 

We denote by 'V and N'V the Levi-Civita connections of (M, g) and (N, h) 
respectively. Then we give the induced connection ~ on E by 

(1.1 ) 

for a tangent vector X in M. 
We define the tension field T( cp) E f( E) of cp by 

m 

T(cp):= L (~e,cp*ei - cP*'VeieJ, 
i=l 

where {ei }~1 is a (locally defined) orthonormal frame field on M. We call cP 
harmonic if T( cp) = O. For a relatively compact domain Q in M, the energy E(Q, cp) 
of cP on Q is defined by 

where e(cp)(x):= ~r.r=lh(cp*ei,cp*eJ and *1 is the volume element of (M, g). We 
denote E( cp):= E(M, cp) when defined. For an element V in f(E), let CPt; M ~ N 
be a one-parameter family of maps from Minto N with CPo = cp, and dcpt(x)/dtlt=o 
= Vx ' x E M. If V E f(E) has compact support, it is known (d. [E.S, E.L, MaD 
that 

(1.2) 

Moreover, if cp; (M, g) ~ (N, h) is harmonic and V E f(E) has compact support, 
then 

(1.3) 
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where the operator J</>; feE) --+ feE), called the Jacobi operator of </>, is a second 
order elliptic differential operator given by 

m m 

(1.4) J</>V:= - L {~e:S'e,v - ~'Ve;e,v} - L NR(</>*e;, V) </>*e;, 
;-1 ;-1 

for V E feE). Here NR is the curvature tensor of (N, h) given by 

(1.5) NR(X, Y)Z:= N\7[X, Yj Z _N\7 x N\7yZ +N\7y N\7xZ, 

for X, Y, Z E f(TN). 
For a relatively compact domain n in M, let us consider the Dirichlet eigenvalue 

problem of J</> 

(1.6) { J</>V = ,\V 
V=O 

on n, 
onan. 

If M is a closed manifold, we consider the eigenvalue problem of J</> 

(1.7) V E feE). 

It is known that the spectra of both problems (1.6) and (1.7) consist of discrete 
eigenvalues with finite multiplicities. The index of </> on n, denoted by Indexg( </», is 
defined as the sum of the multiplicities of the eigenvalues of the problem (1.6), and 
the index of </>, denoted by Index( </», is defined as the sum of the multiplicities of 
the eigenvalues of (1.7) when M is a closed manifold. The dimension of the zero 
eigenspace of (1.6) (resp. (1.7)) is called the nullity of </> on n (resp. the nullity of </», 
denoted by NullitYg(</» (resp. Nullity(</»). The harmonic map </>; (M, g) --+ (N, h) is 
stable (resp. stable on n) if Index( </» = 0 (resp. Indexg( </» = 0). 

1.2. To estimate the index and nullity of a harmonic map, we introduce the 
quantity NR</> or NRt as follows. 

DEFINITION 1.1. For a smooth map </>; (M, g) --+ (N, h), define NR</> by 

(1.8) NR</>:= Sup Sup f h(NR(</>*e;,v)</>*e;,v) 
xEM vET~(x)N ;-1 h( v, v) 

For a relatively compact domain n in M, define NRt by 

(1.9) 
;, h ( N R ( </>*e;, v ) </>*e;, v ) 

NRt:= Sup Sup L. 
xEO vET~(x)N i-I h( v, v) 

Note that these quantities do not depend on the choice of {e;}~l' We have 
immediately 

LEMMA 1.2. Assume that the sectional curvature NK of (N, h) is bounded above by a 
positive constant a so that NK( '7T) ~ a for all planes '7T in TyN, yEN. Then we have 

(1.10) 

(1.11) NRt ~ 2aE oo (n,</». 

Here E OO ( </»:= supx EM e( </> )(x) and EOO(n, </»:= SUPx E g e( </> )(x). 
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In fact, it is obvious that 

i~l h ( N R ( cp*e;, v) cp*e;, v ) ~ a { i~l h ( cp*e;, cp*e;) } h ( v, v) 

at each point of M. Note that 
E(Q,cp) ~ EOO(Q,cp)VoH2 and E(cp) ~ Eoo(cp)VoIM ifVolM < 00. 

561 

EXAMPLE 1.3. Let cp; (M, g) ~ (N, h) be an isometric immersion. Then e(cp)(x) 
= mj2 at each point. Therefore 
(1.12) Eoo(cp) = EOO(Q,cp) = mj2, 

(1.12') 
for every relatively compact domain Q in M. In particular, let cp; [0,277 1 ~ (N, h) 
be a geodesic with length L. Then 

(1.13) EOO(cp) = L2j877 2. 
EXAMPLE 1.4. Let cp; (M, g) ~ (N, h) be a Riemannian submersion (cf. §6). Then 

we can choose an orthonormal local frame {e; }7'~1 on M such that cp*e; = e;, 
1 ~ i ~ n, and cp*e; = 0, n + 1 ~ i ~ m, where m = dim M, n = dim N, and 
{e;}7_1 is an orthonormal local frame on N. Then the Ricci curvature of (N, h), 
RicN(v), v E T1>(x)N, is by definition L7'_ l h(NR(cp*e;, v)cp*e;, v)jh(v, v). Therefore, 
since cp is surjective, we have 

(1.14) and NRt = Sup RicN . 
<I>(Q) 

2. An estimate for the index and nullity of a harmonic map. At first, let us recall a 
method of Berard and Gallot (cf. [B.G]) to give estimates of the Betti number and 
dimension of the moduli space of Einstein metrics, and the dimension of harmonic 
spinors. In this section, we point out that their method works well in the case of the 
Dirichlet eigenvalue problem for a relatively compact domain Q in a complete 
Riemannian manifold (M, g). 

Let (M, g) be a complete Riemannian manifold of dimension m, and E, a vector 
bundle over M with an inner product ( . , .) and a connection \7 compatible with 
( . , . ), that is, 

\7x(s,s') = (\7xs,s') + (s,\7xs'), X E r(TM), s,s' E r(E). 

Then we can define the rough Laplacian X on E so that 

(2.1) S E r(E), 

where {e; }~1 is an orthonormal local frame field on M. 
Let X1(Q) ~ X 2(Q) ~ ... ~ X;(Q) ~ ... be the spectrum of the Dirichlet eigen-

value problem of the rough Laplacian X (2.1) of the vector bundle E over a 
relatively compact domain Q in M: 

{ - Xs = AS on Q, 
s = ° on aQ, 
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where s is a section of E on the closure n of ~. Consider the zeta function Z E.Q( t) 
defined by 

00 

ZE,dt):= L e-tX,(Q), 

i~l 

t > 0. 

Similarly, let Al(~) :0:;:; A2(~):O:;:; ... :0:;:; Ai(~) :0:;:; be the spectrum of the Dirich-
let eigenvalue problem of the Laplace-Beltrami operator!:::. M for the domain ~, all(' 
ZQ(t) be the zeta function defined by 

(2.2) 
00 

ZQ( t):= L e-tA,(Q), 

i~l 

t> 0. 

Then we have the analogue of a theorem of Hess, Schrader and Uhlenbrock: 

THEOREM 2.1. If I is the rank of E then 

(2.3) t> 0. 

PROOF. This can be proved as in [B.G]. Assume that s(t, x) E Ex, t> 0, X E n, 
satisfies the heat equation with the Dirichlet boundary condition 

{ ( :t - K) s ( t , x) = ° 
s(t,x)=O 

on (0, 00) x~, 

on (0,00) X a~. 

For each e> 0, let fE:= (lsl 2 + e2)1/2 on (0, (0) X n. Then it can be proved as in 
[H.S.U.] that ( - Ks, s) :0:;:; fE( -!:::. MfE) on (0,00) X ~. Therefore fE satisfies 

( :t - !:::. M ) fE :0:;:; ° on (0, (0) X ~. 
Then we can apply fE to the following maximum principle for the heat kernel: 

THEOREM (MAXIMUM PRINCIPLE). Let ~ be a relatively compact domain in M, and 
let ° < T < 00. Assume that u is a real valued continuous function on [0, T] X ~ and 
satisfies the inequality 

a 
atU - !:::.MU :0:;:; ° on (0, T) X ~. 

Then u attains its maximum on the set {O} X ~ or [0, T] X a~. 

For proof, see [F, p. 204]. 
If fE(O, x) < f(O, x) + e, then f/t, x) :0:;:; f(t, x) + e. Hence for every integrable 

section s of E on n with the Dirichlet condition s = ° on a~, we have 

(2.4) 

Therefore applying s(z) = L~~18z,yu/z) to (2.4), where 8z,y is the Dirac function at 
y and {u/Z)}5~1 is an orthonormal basis of the fiber Ez at each point z in M, and 
noting that Is(z)1 = 18z ,y' we have the desired inequality (2.3). Q.E.D. 

We denote the spectrum of the Dirichlet eigenvalue problem of J1> on ~ by 

(2.5) :\1(~) :0:;:; :\2(~):O:;:; ... :0:;:; :\i(~):O:;:; ... 
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and define Zn(t):= Lr'~1 e-t\,(n). Then we have 

PROPOSITION 2.2. Let Q be a relatively compact domain in a complete Riemannian 
manifold (M, g). Let cP; (M, g) -> (N, h) be a harmonic map. Then 

(2.6) Indexn{cp) + NullitYn{CP) ~ Zn{t) ~ nInf{ etNRtzn(t); 0 < t < oo}, 

where n = dim N, NRt is defined in §1, and Zn( t) is the zeta function of the Dirichlet 
eigenvalue of A M on Q defined by (2.2). 

3. The index and the nullity of a harmonic map from a domain. 
3.1. We retain the notation of §2. We have 

THEOREM 3.1. Let Q be a relatively compact domain in a complete Riemannian 
manifold (M, g), with cP; (M, g) -> (N, h) a harmonic map of (M, g) into an 
arbitrary Riemannian manifold (N, h) of dimension n. Then 

(i) Al(Q) ~NRt => Indexn(CP) = 0 and NullitYn(CP) ~ n, 
(ii) Al (Q) > NRt => Index 0( cp) = NullitYn( cp) = O. 

That is, if AI(Q) ~ NRt, then the harmonic map cP; (M, g) -> (N, h) is stable on Q. 

PROOF. By Proposition 2.2, the zeta function Zn(t) = L':::I e-t\(n) of J<j> on Q 
satisfies 

Zn{t) ~ netNRtzn{t) = ne t(NRt- hl(n»{l + i~/t(hl(n)-h,(n»}, 

where AI(Q) ~ A2(Q) ~ ... ~ A;(Q) ~ ... is the spectrum of the Dirichlet eigen-
value problem of the Laplace-Beltrami operator A M on Q. Noting the fact that 
A;(Q) > AI(Q), i = 2,3, ... , the assumption NRt ~ AI(Q) implies that the limit of 
the right-hand side of the above inequality is less than or equal to n when t -> 00. 

Then Indexn(cp) = 0 and NullitYn(CP) ~ n. If NRt < A1(Q), the limit of the right-
hand side of the inequality is zero when t ~ 00. Therefore Index n( cp) = NullitYn( cp) 
= O. Q.E.D. 

COROLLARY 3.2. Let Br(O) be a geodesic ball with radius r whose center is a certain 
point 0 in the m-dimensional standard unit sphere (sm, can) of constant curvature one. 
We choose the radius r with 0 < r < 'TT /2 in such a way that Al (Br(O» = m - 1. 
Then, for every domain Q in sm whose volume Vol(Q) is less than or equal to the 
volume Vol(Br(O», the identity map id; (sm, can) -> (sm, can) is stable on Q. 

PROOF. By Example 1.4, we have NRt = m - 1 for every domain Q in sm. In this 
case, Theorem 3.1 implies that, if AI(Q) ~ m - 1, then the identity map cP = id; 
(sm, can) -> (sm, can) is stable on Q. Bya theorem of P. Berard and D. Meyer (cL 
[B.M]), if Vol(Q) ~ Vol(BAO», then AI(Q) ~ AI(Br(O» = m - 1. Q.E.D. 

It is known (cf. [C.L, B.G, U2]) that there exists a positive constant C(M, g) 
depending only on (M, g) such that the eigenvalues A;(Q) of the Dirichlet eigen-
value problem of the Laplace-Beltrami operator A M on the domain Q satisfy 

(3.1) i = 1,2, ... , 
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where m = dim M. In particular, 

(3.2) 

Thus Theorem 3.1 implies 

COROLLARY 3.3. Let Q be a relatively compact domain in a complete Riemannian 
manifold (M, g), with </>; (M, g) ~ (N, h) a harmonic map. Then 

C(M,g)Vol(Q)-2/m;?-NRt = </>isstableonQ. 

In particular, assume that the sectional curvature NK of (N, h) is bounded above by a 
positive constant NK < a. Then 

C(M, g) Vol(Q) -2/m ;?- 2a£00(Q, </» = </> is stable on Q. 

If Q is "small" in (M, g), then Vol(Q)-2/m tends to infinity and NRt still 
remains bounded. Therefore Corollary 3.3 implies that a harmonic map </>; (M, g) 
~ (N, h) is stable on a "sufficiently small" domain Q in M. 

3.2. In this section, we estimate Index Q( </» and NullitYQ( </». By Proposition 2.2 
and (3.1), we have 

< n Inf{e t NRt f e-tC(M,g)VOl(Q)~2/mk2/m; 0 < t < oo} 
k~l 

< n Inf{e at / b f e- tk2/ m; 0 < t < oo}, 
k~l 

where we put m = dim M, n = dim N, a:= NR!, and b:= C(M, g) Vol(Q)-2/m. In 
case a < b, we have Corollary 3.3. So assume a > b. We put alb = 1 + D, D > O. 
We may write 

00 00 

(3.3) at/b '\' _tk 2/ m (a/b-I)t '\' _(k 2/ m -I)t e £.....e =e £.....e . 
k~l k~I 

In case m = 1,2, the right-hand side of (3.3) 

00 

< e(a/b-I)t L e- tk = e(a/b-I)t(l _ e-t)-I. 

k~O 

Putting e t = 1 + liD, we have 



HARMONIC MAPS AND EIGENVALUES OF THE LAPLACIAN 

In case m :;;;, 3, 
00 00 L e- t (k 2/ m -l) = 1 + et L e- tk2/m 

k~1 k~2 

100 2/m 
.s;; 1 + e t e- tx dx 

1 

= 1 + m t- m/ 2joo zm/2-1e-z dz 
2 t 

(
1 + ; r m / 2p!e- t k~O ~~ , if m = 2(p + 1), p :;;;, 1, 

.s;; 
m P t k 

1 + _t-(m+l)/2p !e- t L -k' if m = 2p + 1, p:;;;, 1. 
2 k~O ! 

Putting e t = 1 + liD, we have 

where 

Inf{e at / b f e- tk2/m
; 0 < t < oo} 

k~1 

if m = 2(p + 1), P :;;;, 1, 

if m = 2 p + 1, P :;;;, 1, 

565 

P 1 { 1 }P+l-k 
(3.4) P(D):= (p + I)! L -k' ( 1) ,if m = 2(p + 1), p:;;;, 1, 

k~O . log 1 + I5 

P 1 { }P+l-k 
(3.5) Q(D):= m2 p! L -k' (1 l) ,if m = 2p + 1, p:;;;, 1. 

k~O . log 1 + D 

We can give another estimate of Indexg( cp) and Nullityg( cp). In fact, we have 

~ _tk2/ m 100 _tx 2/ m d = r( m 1) -m/2 £...e .s;; e x 2+ t . 
k~1 0 

Therefore we obtain 

I f{ at/b ~ -tk2/ m .O } r(ml2 + l)e m/ 2 (~)m/2 n e £...e ,<t<oo.s;; b . 
k~1 (mI2)m/2 

Summing up, we obtain 

THEOREM 3.4. Let Q be a relatively compact domain in a complete Riemannian 
manifold (M, g), and cp; (M, g) ~ (N, h), a harmonic map. Then Indexg(cp) and 
Nullityg( cp) are estimated in terms of the quantity D:= NRtC(M, g) -1 Vol(Q)2/m - 1 
as follows: 

(i) For m = 1,2, 

Indexg( cp) + Nullityg( cp) .s;; n (1 + II D) D {1 + D}. 
(ii) Form = 2(p + 1), p:;;;, 1, 

Indexg(cp) + Nullityg(cp).s;; n(1 + IID)D {1 + P(D)}. 
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(iii) For m = 2 p + 1, p ~ 1, 

Index n(</» + NullitYn(</» ~ n{1 + l/D)D {1 + Q(D)}. 
(iv) For m ~ 1, 

f(m/2 + 1)e m / 2 
Indexn(</» + NullitYn(</» ~ n /2 (1 + D)m/2, 

(m/2)m 

where P(D) and Q(D) are the functions of D given by (3.4), (3.5), respectively, and 
m = dimM, n = dimN. 

REMARK. Since the function 

f(D) = log(l ~ l/D) 

of D satisfies feD) -4 0 as D -4 0 and feD) - D as D -4 00, the functions P(D) 
and Q(D) satisfy limD~oP(D) = limD~oQ(D) = 0, and P(D) - (m/2)!Dm/2, 
and Q(D) - (m/2)«m - 1)j2)!D(m+1)/2 as D -4 00. 

Using (1.11), we obtain 

COROLLARY 3.5. Assume that the sectional curvature NK of (N, h) is bounded above 
by a positive constant a. Let ~ be a relatively compact domain in a complete 
Riemannian manifold (M, g), and </>; (M, g) -4 (N, h) a harmonic map. Then 

-1 m/2 
Index n( </» + NullitYn( </» ~ nf( ; + 1){ C(M,!) ea} Eoo(~, </> )m/2Vol(~). 

In particular, in the case (M, g) = (Rm,can), the standard Euclidean space, since 
C(Rm , can) = 4'lT2w,;:;2/m (cf. [U2]) with wm = 'lTm/2/f(m/2 + 1), the volume of the 
unit ball, we have, for every harmonic map </>; (Rm, can) :J ~ -4 (N, h), 

( ea ) m/2 /2 Indexn(</» + NullitYn(</» ~ n m'lT Eoo(~,</»m Vol(~). 

REMARK. It seems that the index and nullity of harmonic maps might be estimated 
above in terms of the quantity ine( </> )m/2 * 1. 

In the case of a closed manifold M, we get the following 

THEOREM 3.6. Let (M, g) be a closed Riemannian manifold of dimension m ~ 2 
whose Ricci curvature RicM is bounded below by a positive constant (m - 1)8 > O. 
Let </>; (M, g) -4 (N, h) be a harmonic map of (M, g) into an arbitrary Riemannian 
manifold (N, h) of dimension n. 

(i) In case m ~ 3, 

Index( </» + N ullity( </» ~ n (1 + ~ ( {1 + (m - l)!m m -lA (1 + A) m - 1 } , 

where A:= NR<I> /m8 and NR<I> is the quality in §1. 
(ii) In case m = 2, 

Index(</» + Nullity(</» ~ n(l + l/B)B{1 + 4B 2}, 
where B:= NR<I> /8. 

The proof is omitted. 
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CHAPTER II. STABILITY OF THE IDENTITY MAP 

4. A Kahler version of the Lichnerowicz-Obata theorem. In this chapter, we deal 
with the Jacobi operator of the identity map. Let (M, g) be a closed Riemannian 
manifold of dimension m. The identity map id M ; (M, g) ~ (M, g) of (M, g) is 
harmonic (d. [E.S]), and the Riemannian manifold (M, g) is stable (cf. [Na]) if the 
identity map id M is stable. The corresponding Jacobi operator J:= J idM is a 
differential operator acting on the space f(TM) of all vector fields on M given by 

m 

(4.1) JV= - L: (V'eiV'e,v- V'V'eie,v) - p(V), VE f(TM), 
i~l 

where V' is the Levi-Civita connection of (M, g), p(V):= L7'~lR(ei' V)e;, and 
m 

p(U, V):= g(p(U), V) = L: g(R(e;,U)e;. V) 
i~l 

is the Ricci tensor (cf. [Ma, Sm]). Under the identification of TM with T*M with 
respect to the metric g, the Hodge Laplacian A = d8 + 8d on f(T*M) induces a 
differential operator, denoted by the same letter and called also as the Hodge 
Laplacian, on f(TM), where 8 is the codifferential operator of d with respect to the 
metric g on M. Then the Weitzenback formula for the Hodge operator A tells us 
that 

m 
(4.2) AV= - L:(V'e,Ve,v-V'V'eie,V)+P(V), 

i~l 

VE f(TM), 

so that 

(4.3) J = A - 2p. 

Then we have immediately 

LEMMA 4.1. Let A\(M) (resp. A1(M» be the first (resp. first nonzero) eigenvalue 
of the Hodge Laplacian (resp. the Laplace-Beltrami operator AM) on I-forms (resp. 
smooth functions) on M. Then 

(i) (M, g) is stable = 2 InfRicM ~ A\{M) ~ A1(M), 
(ii) A\(M) > 2 Sup RicM = (M, g) is stable, 

where Inf Ric M (resp. Sup Ric M) is the infimum (resp. supremum) of the Ricci 
curvature of (M, g) over M, InfRicM := Inf{p(u, u); u E TM, g(u, u) = I}, and 
SupRicM := {p(u,u); u E TM, g(u,u) = I}. 

PROOF. By (4.3), the stability of (M, g) implies that 

o ~ fMg(JV, V)*I = fMg(AV, V)*I - 2 fMg(p(V), V)*I 

~ fMg(AV,V)*I- 2(InfRicM)fM g(V,V)*I, 

which gives the first inequality of (i). Taking V as the gradient of the eigenfunction 
of A M with the eigenvalue Ai (M), we get the second inequaltiy of (i). Statement (ii) 
is obvious from (4.3). Q.E.D. 
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From Lemma 4.1, we obtain 

THEOREM 4.2 (M. OBATA). Let (M, g) be a closed Kahler manifold whose Ricci 
curvature RicM is bounded below by a positive constant a > O. Then the first nonzero 
eigenvalue A1(M) of 11M on ~OO(M) satisfies A1(M) ;:. 2a. When the equality holds, 
the Lie algebra a of the group of holomorphic transformations of M is nonzero. 

PROOF. Since every closed Kahler manifold (M, g) is stable (cf. [Sm, Na]), Lemma 
4.1(i) gives the inequality Al(M);:. 2a. Assume that the equality A1(M) = 2a 
holds. We take Vas the gradient of the eigenfunction of 11M with the eigenvalue 2a. 
Then I1V = 2aV. By (4.3), we have 

since (M, g) is stable and Ric M ;:. a. Hence we have f M g( lV, V) * 1 = 0 and 
fM g(p(V), V) * 1 = afM g(V, V) * 1. The former implies lV = 0, and then V be-
longs to a due to a theorem of Lichnerowicz (cf. [L]) since (M, g) is a closed Kahler 
manifold. Q.E.D. 

REMARK 1. In lOb], the above theorem was stated for a closed Einstein Kahler 
manifold (M, g). In this case, i.e., p = ag, the equality A1(M) = 2a holds if and 
only if a 1= {O}. The author does not know whether or not the equality holds if 
a 1= {O} without the assumption that (M, g) is Einstein. 

REMARK 2. A theorem of Lichnerowicz-Obata tells us that for a closed Rieman-
nian manifold (M, g), if RicM ;:' a = (n - 1)8 > 0, then Al(M);:. n8 = 
na/(n - 1). Note that n/(n - 1) ~ 2 and n/(n - 1) = 2 = n = 2. 

5. Some examples. In this section, we give three examples illustrating stability or 
instability of closed Riemannian manifolds. 

5.1. By (4.1) and Corollary 2.2, we know (cf. [Sm]) that if Ricci curvature RicM of 
a closed Riemannian manifold (M, g) is nonpositive, then Index(id M) = 0 and 
Index(id M ) + Nullity(id M ) ~ m = dimM. Imitating the proof of Proposition 5.6 in 
[B.G, p. 30], noting only the difference of the constant terms of (4.1) and (4.2), we 
have 

PROPOSITION 5.1. There exists a positive constant em > 0 depending only on m such 
that for every closed Riemannian manifold (M, g) of dimension m with RicM ~ em' the 
index and nullity of the identity map of M satisfy Index(id M) + Nullity(id M) ~ m. 

However one cannot expect to find a positive constant em > 0 such that for every 
closed Riemannian manifold (M, g) of dimension m the assumption RicM ~ em 
implies the stability of (M, g), i.e., Index(id M) = O. In fact, we have the following 
example. 
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EXAMPLE 5.2. Let Tm = Rm/zm be the m-dimensional torus with the canonical 
coordinates (Xl' ... ,xm ). Let f(x l ) be a positive valued smooth function on R/Z = 

Sl. Consider the Riemannian metric gj on T m defined by 

g/= dx~ + f(xI)2( dx~ + ... +dx;). 

LEMMA 5.3. The vector field Xl = f(xl)a/ax i on T m is a conformal vector field, 
i.e., the Lie derivative Lx,gj of gj by Xl satisfies Lx,gj = (2/n) div(XI)gj' and 
X; = a/ax;, i = 2, ... , m, are Killing, i.e., Lx;gj = O. 

Proof follows from a straightforward computation. 
Since for a vector field Von a closed Riemannian manifold (M, g), 

fMg (Jv,V)*l = fM {~ILvgI2 - div(vf} *1, 

where ILvgl is the norm of Lvg induced by g and div(V) is the divergence of V (cf. 
[Y.BJ), we have 

Since div(XI) = m1'(x l ) where 1'(xl) is the derivative of f(x l ), we have 

PROPOSITION 5.4. Let Tm = Rm/zm be the m-dimensional torus with the canonical 
coordinates (Xl"'" Xm)' For a positive valued smooth function f(x l ) on Sl = R/Z, 
consider the Riemannian metric gj on Tm defined by 

gj = dx~ + f(x l )\ dx~ + ... +dx;). 

Then, in case m > 3, the Riemannian manifold (Tm, gj) is stable if and only if the 
functionf(xl) is constant. 

On the other hand the sectional curvature K of the Riemannian manifold (Tm, gj) 
is given (cf. [B.OJ) as follows: 

For each plane 'TT in the tangent space 1( x lo ... ,xm l m , let {xa/ax i + v, ya/ax i + 
w} be an orthonormal basis of 'TT, where x, y E R, and v, wE 1( x 2, ...• x m )Tm-l. Then 
the sectional curvature K ( 'TT) is 

f"(x ) 
K('TT)=- ( ) {x 2gj (w,w)-2xygj(w,V)+y2gj (V,V)} 

f Xl 

- 1'(X I ): {gj(V,V)gj(w,w) - gj(V,W)2}. 
f(x l ) 

Thus the sectional curvature K of (Tm, gj) satisfies 

IK I <::;; If" I/f + 1'2/f2. 
For example, we can take a smooth function f,(x I ) on Sl = R/Z as fixI):= 1 + 
Esin(2'TTxI), where E is a small positive constant. Then due to Proposition 5.4, the 
Riemannian manifold (Tm, gj)' m > 3, is unstable, but its sectional curvature K, 
satisfies 
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which goes to zero as E ~ O. Therefore we cannot find a constant Em > 0 such that 
for every closed Riemannian manifold (M, g) of dimension m, the assumption 
RicM ~ Em implies the stability of (M, g). 

5.2. The next example is the odd dimensional unit sphere s2n+1, n ~ 1. Let </>; 
(s2n+1, g) ~ (cpn, h) be the Hopf fibration. Here g is the standard metric on 
s2n+ 1 of constant curvature one and h is the Fubini-Study metric on cpn of 
constant holomorphic sectional curvature 4. Let ~ be the Killing vector field on 
(s2n+l, g) such that g(t~) = 1 and ~ is tangent to the fiber </>-I(</>(x» at each 
point x in s2n+l. Let TJ be the I-form dual to ~. Then the projection </>; (s2n+1, g) 
~ (cpn, h) is a Riemannian submersion with totally geodesic fibers (d. §6) and 
g = </>*h + 1/ ® 1/. Let us consider the canonical variation gl' 0 < ( < 00, of the 
metric g defined by 

(5.1) 

Now we investigate the stability of (s2n+r, gt) making use of Lemma 4.1. 
To estimate the first eigenvalue A\(gJ of the Hodge Laplacian, put m:= 2n + 1. 

Note that gt = s{ s-lg + s-l(sm - I)TJ ® 1/}, where s:= (2/m. In his paper [Tl, 
Proposition 2.8], S. Tanno showed that the first eigenvalue A\(gt) of the Hodge 
Laplacian on I-forms is estimated by 

that is, 

(5.2) 

To study the Ricci curvature of (s2n+1, gt), we recall some work of G. R. Jensen 
[J]. Set 

K:= SU(n + 1), 

H:= S(U(n) X U(I)) = {(~ ~) E SU(n + 1); E E U(I), A E U(n)}, 

H 1 := {( ~ 

H 2 := {( ~ 

Y~J; E E U(I), Y = E- 1/ n }, 

~);AESU(n)}, 

where In is the unit matrix of order n. Then the natural projection gives the Hopf 
fibration </>; s2n+l = K/H2 ~ cpn = K/H. Let f (resp. £), £)1' £)2) be the Lie 
algebra of K (resp. H, HI' H2). Let F be the Killing form of f and m, the 
orthogonal complement of £) in f with respect to F. Then we have the orthogonal 
decomposition of f: f = £)2 EEl £)1 EEl m. The metrics gt in (5.1) are K-invariant on 
K/H2 and come from the Ad(H2)-invariant inner product < . ,·)t on £)1 EEl m such 
that 
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for Xl' Yl E ql' X2, Y2 E m, where the inner product b on f is given by b = - F. In 
fact, it is known that the restriction of b to m coincides with 4(n + l)7T*h, and 
b(X, X) = 2(n + 1)2/n for 

and ~o is the tangent vector at 

of the curve () ~ exp( () X) . o. 
We denote by Sg the Ricci tensor of the metric g on K/H2 corresponding to the 

inner product 4( n + 1)( . , . ) t on m. Then Sg is a K-invariant tensor field on 
KjH2 which is completely determined by the bilinear form on ql $ m, denoted by 
the same letter Sg. Note that the numbers k, c, r, and dim m in [J] are given in this 
case by k = 1/2, c = 0, r = dim ql = 1, and dim m = 2n. Thus by Proposition 11 
in [J], the bilinear form Sg is given by 

Sg(Xl + X 2, Yl + Y2) = ~(n 2: 1 )t 2 . 4{n + l)(Xl' Yl)t 

it follows that 

(5.3) 

+(~ - 41n(n2:1)t2).4(n+1)(X2,Y2)t' 

Inf Ricg = Min{ -21 _ t 2 n t2} 2(n + 1) , 2(n + 1) , 

. { 1 t 2 n 2} Sup Ricg = Max -2 - ( )' ( ) t , 2n+1 2n+1 

InfRicg, = Min{2(n + 1) - 2t 2,2nt2}, 

Sup Ricg, = Max{2(n + 1) - 2t 2,2nt 2 }. 

To interpret (5.2) and (5.3), see Figure 5.1 in which T = t 2• Therefore we have 

PROPOSITION 5.5. Let gt be the canonical variation (5.1) of the standard metric g of 
constant curvature one on s2n+l with gt = g + (t 2 - 1)'1) ® 'I). Then for every t 2 in the 
open interval (a,{3), the Riemannian manifold (s2n+l,gt) is unstable. Here a:= 
(n + Vn 2 + 4n )/4n (resp. f3:= (n + 2 + Vn 2 + 4n )/4) is a root of the equation 
4nT = 2n + T- 1 (resp. 4(n + 1) - 4T = 2n + T- l ). 
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" 

4nT 4(n+1 )-4T 
T 

o f3 

FIGURE 5.1. The graphs of the functions 4nT, 2n + T-l, and 4(n + 1) - 4T 

5.3. The third example is a spherical space form. Here we state the following: 

PROPOSITION 5.6. Every spherical space form (snIG, g), where G -=1= {id} is a finite 
group acting fixed point freely on sn, is stable. Here the metric g is the Riemannian 
metric on the quotient space S n I G induced by the standard metric can of constant 
curvature one on sn. 

In fact, this follows immediately from Proposition 2.1 in [Sm]. Since (sn IG, g) is 
Einstein, i.e., the Ricci tensor p of g satisfies p = (n - 1) g, the manifold (S n I G, g) 
is stable if and only if the first nonzero eigenvalue Al (S n I G, g) of the Laplace-
Beltrami operator tlM on %,oo(snIG) is bigger than or equal to 2(n - 1). The 
eigenvalues of tlM of (sn, can) are given by k(k + n -1), k = 0,1,2, ... , and 
k(k + n - 1) > 2(n - 1) if k » 2. Moreover the eigenfunctions of the first nonzero 
eigenvalue n with k = 1 of (sn, can) are given by F· idsn, where F is a linear map 
of Rn+l into Rand idsn is the natural inclusion of sn into Rn+l. Therefore we only 
have to show that every linear G-invariant function F on Rn+l must be zero. But this 
follows immediately from the assumption that G acts fixed point freely on sn. 
Certainly, F(x) = (x, y), x E Rn+l, for some y in Rn+l. The G-invariance of F 
implies that y . y = y for all y E G. Unless F vanishes, the point y Ilyl E sn must 
be a fixed point of G. 
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Since every compact Riemannian manifold of positive constant curvature is as in 
Proposition 5.6 (cf. [W, Lemma 5.11, p. 154]) and every compact Riemannian 
manifold of constant zero or negative curvature is stable (cf. [Sm]), we have 

COROLLARY 5.7. Every compact Riemannian manifold of constant curvature is stable 
except for the standard unit sphere (S n, can). 

REMARK. A similar stability theorem for Y ang-Mills fields was stated in [B.L, 
p.223]. 

CHAPTER III. RIEMANNIAN SUBMERSIONS WITH TOTALLY GEODESIC FIBERS 

6. The vertical Jacobi operator. 
6.1. Following [O.N] or [B.B], let us recall the definition of a Riemannian 

submersion. It is known (cf. [E.L, p. 127]) that the projection of a Riemannian 
submersion is harmonic if and only if each fiber of the submersion is a minimal 
submanifold. In particular, the projection of the Riemannian submersion with 
totally geodesic fibers is harmonic. The Riemannian submersions are the next simple 
examples after Riemannian products, but would be rich objects to study. In this 
chapter, we study Jacobi operators of projections of Riemannian submersions with 
totally geodesic fibers by analogy with the theory of Laplace-Beltrami operators (cf. 
[B.B]). 

DEFINITION 6.1. Let (M, g) and (N, h) be two closed Riemannian manifolds of 
dimension m and n respectively. A map <1>; (M, g) ~ (N, h) is a Riemannian 
submersion (cf. [O.N, B.B]) if for each point p in M, the tangent space ~M of M at 
p has an orthogonal decomposition TpM = Hp EB ~ with respect to gp such that 

(i) the subspace ~ is the kernel of the differential <I>*p of <I> at p, which is called 
the vertical space, and 

(ii) the restriction of <I>*p to the subspace Hp' called the horizontal space, is an 
isometry of (Hp' gp) onto (T.p(p)N, h.p(p))' A vector field X on U eM is called basic 
if it is the horizontal lift of a vector field X' on <I>(U) c N. In this chapter, we 
further assume that each fiber Fp:= <I> -l( <1>( p)) through p admitting the Rieman-
nian metric induced from g is totally geodesic in (M, g). 

6.2. To define the vertical Jacobi operator, we take an orthonormal local frame 
field {e j };'!.l on M such that 

(i) for 1 ~ i ~ n, each ei is basic, the horizontal lift of e;, with {e;};'!.l an 
orthonormal local frame field on N, and 

(ii) for n + 1 ~ i ~ m, each e j is vertical. 
Then it is known (cf. [O.N or B.B]) that 'i7 eei , 1 ~ i ~ n, is basic, the horizontal lift 
of N'i7 e;e;, while 'i7 eiej, n + 1 ~ i ~ m, is' vertical since all the fibers are totally 
geodesic. In the following we retain the notation of §1. 

DEFINITION 6.2. Let <1>; (M, g) ~ (N, h) be a Riemannian submersion with totally 
geodesic fibers and J.p, the Jacobi operator acting on f(<I>-lTN). We define the 
vertical Jacobi operator acting on f( <I> -lTN) by 

m 

- L (~e~e - ~"e)' 
i=n+l I I e l I 



574 HAJIME URAKA W A 

and the horizontal Jacobi operator acting on r( 1> -lTN) by J,r:= J</> - J;. Then it is 
easy to see that the definitions of J; and Jr do not depend on the above choice of 
the orthonormal local frame field {ei }:l on M (cf. Remark below). These defini-
tions give analogues of the vertical and horizontal Laplacians Ll v and Ll H acting on 
~OO(M) defined in [B.B] by Llv:= t;:n+l('Ve,Y'e, - 'VV'e,e) and Ll H:= LlM - Llv, 
where Ll M := t7'=l('Ve 'Ve - 'VV' .e) is the Laplacian-Beltrami operator of (M,g). 
Note that Llv, LlH' and Ll'M com;n~te (cf. [B.B, Theorem 1.5]). 

Each section W in T( 1> -lTN) can be expressed locally as n _ 

(6.1) W= Lhe;, 
;=1 

where the h, 1 ~ i ~ n, are locally defined smooth2,unctions on M and the e;, 
1 ~ i ~ n, are local sections of 1>- lTN defined by e;x:= e;</>(x) , x E M. Then by 
definition of ~ and 1>*ei = 0, n + 1 ~ i ~ m, we have n _ _ 

(6.2) ~eiW= L{(edj)e;+ij~e,e;}, l~i~m, 
J=l 

(6.2') 
n _ 

~ e,W = L (e;ij )e;, n + 1 ~ i ~ m. 
j=l 

In particular, n _ 

(6.3) J;W = - L (Llvij)e;. 
j=l 

REMARK. The intrinsic meaning of the vertical Jacobi operator is described as 
follows. For each fiber Fp = 1> -l( 1>( p» through p E M, the composition 1> 0 i p; 
~ --+ N of the inclusion i p of Fp into M and the projection 1> is constant, so 
harmonic. The associate Jacobi operator J</> 0 ip acting on r« 1> 0 i p) -lTN) is well 
defined. Then r«1> 0 ip)-lTN) consists of all the restrictions, WIFp' to Fp of 
elements W in r(1)- lTN) and 

(J;W)(p) =J</>oip(WIFJ(P), WE r(1)- lTN). 
6.3. We now describe ~e fundamental properties of J; and J</>H. Note that, by 

the definitions of ~ and W', 

(6.4) ~ W' = N;-W' = (N'Ve;W', 1 ~ i ~ n, 
ei <1>.ei 

0, n + 1 ~ i ~ m, 
for W' E r(TN). Then we have 

(6.5) J;(j0) = 0, and J</>H(W) = Jid)W'), 
for W' E r(TN), by (6.4) and definition of J; and J</>H. Therefore we obtain 

PROPOSITION 6.3. Let 1>; (M, g) --+ (N, h) be a Riemannian submersion with totally 
geodesic fibers. Then 

Index(1)):;;;, Index(id N ), Nullity(1)):;;;, Nullity(id N ), 

and Al (J</» ~ A1(Jid)' In particular, if the base manifold (N, h) is unstable, then the 
submersion 1> is unstable. 
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Proof follows immediately from definitions and (6.5). 
REMARK. The referee pointed out that Proposition 6.3 was obtained independently 

by M. J. Ferreira in his Ph.D. Thesis. Moreover, throughout §§6.1-6.3 the assump-
tion that the fibers of the Riemannian submersions must be totally geodesic can be 
replaced by the assumption that the Riemannian submersions are harmonic. 

PROPOSITION 6.4. (i) Let F = Fp be the fiber through p E M of a Riemannian 
submersion cp; (M, g) ~ (N, h) with totally geodesic fibers. For each WE f( cp -ITN), 
we have 

m f h(J;W,W)dvF= L f h(~e,W'~e,W)dvF' 
F i=n+l F 

where dV F is the volume element on F with respect to the metric gF induced by the 
metric g on M. 

(ii) Moreover, for each WE f( cp -ITN), J;W = ° if and only if W = W' for some 
W' E f(TN). 

(iii) Each eigenvalue of J; is nonnegative. 

PROOF. (i) For each WE f( cp -ITN), we have 
m m 

h(J;W, W) = - L ei ' h(~e,W,W) + L h(~e,W'~e,W) 
i=n+l i=n+l 

m 

+ L h(~'Ve,e,W,W). 
i=n+ 1 

Here there exists an element X in f(TF) such that gF( X, Y) = h (~yW, W) for 
each Y E f(TF). Then since 'Ve,ei, n + 1 ~ i ~ m, are vertical 

m 

L {ei · h(~e,W, W) - h( ~'Ve,e,W, w)} 
i=n+l 

m 

L {ei · gF(X,eJ - gF('Ve,ei, X)} 
i=n+l 

is the gradient of X on (F, gF)' Therefore we have (i). 
(ii) By (6.5), we only have to prove that if J;W = 0, then W = W' for some 

W' E f(TN). Assume that J;W = 0. Then by (i) we have ~ e,W = 0, n + 1 ~ i ~ m. 
We choose a local coordinate system (xL ... , x£,) on a neighborhood U in N. Then 
W can be expressed locally as 

wherefv . E ~OO(cp-l(U)). Since W E f(cp- 1TN), it satisfies 
,j 

(6.6) 
n axi 

fv,i = L fv,} a ~ 
)=1 Xv 
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on </> -l(U) n </> -l(V) for ~er coordinate system (x~, ... , x~) on V. By (6.2') 
0= 'ge,W = Lj~l(eJv,)(a/ax{;). Therefore eJv,j = 0, n + 1 ~ i ~ m, that is, the 
f V,j are constant along each fiber, which implies that f V,j = f~,j 0 </> for some 
f~,j E "6'OO(U). By (6.6), f~,j satisfies 

n 

f~,i = L g) ax~/ax{,) on U n V. 
j~l 

Therefore {Lj~l f~,ja/ax{;} defines a section W' in f(TN) such that W = W'. 
Finally, (iii) follows immediately from (i). Q.E.D. 
6.4. This section is devoted to the following result. 

THEOREM 6.5. Let </>; (M, g) ~ (N, h) be a Riemannian submersion with totally 
geodesic fibers. Then the operators J;, J",H and J", commute. 

PROOF. We only have to prove that J;J",H = J",HJ;. For each WE f(</>-lTN), we 
have 

- f {e~(tlvfJ~+ 2ek(tl ufj)'g eP; +(tlufj)'9;Yek~ 
j,k~l 

- ('Veke k)( tlvfj)e; - {tlvfJ'9 V'k eke;} 
n 

L (tlvfj) NR(e~,e;)e~, 
j,k~l 

by definition of J",H and (6.3). Since the e k and 'V e/ k' 1 ~ k ~ n, are basic, and tlu 
commutes with basic vector fields (cf. [B.B, Lemma 1.6]), the first term of the 
right-hand side of (6.7) becomes 

- f {tlu(e~fj)~+ 2tl u(ekfj)'g eke; + (tl ufj)'9;Y eke; 
j,k~l 

- tlv ('V e/ kfj )e; - (tlvfj)'9 V'k eke;} 

f J;{(e~fj)~+ 2(ekfj)'gek~+ fj'9;Yek~ 
j,k~l 

by (6.3) and (6.4). Therefore we obtain 
n 

J",HJ;W = - L J;{ ('geYek - '9 veke.)W - NR( e~, w)<} = Jp",HW. 
k~l 

Q.E.D. 
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We have immediately 

COROLLARY 6.6. The Hilbert space of all L 2 sections of cp -ITN with respect to the 
inner product (V, W):= 1M h(V, W)* 1, for sections V, W, has a complete orthonor-
mal basis consisting of the simultaneous eigensections of J;, J</>H, and J</>. 

7. The canonical variation of a Riemannian submersion. 
7.1. We continue the discussion in §6. Let cp; (M, g) -4 (N, h) be a Riemannian 

submersion with totally geodesic fibers. 
DEFINITION 7.1 (cf. [B.B, p. 191]). For each positive real number t, let gt be the 

unique Riemannian metric on M such that 
(i) gt(u, v) = g(u, v) for u, v E Hp ' P E M, 

(ii) the subspaces Hp and ~ are orthogonal to each other with respect to gt at 
each point p in M, and 

(iii) gt(u, v) = t2g(U, v) for u, v E ~, P E M. 
Then cp; (M, gt) -4 (N, h) is a Riemannian submersion with totally geodesic fibers 
(cf. [B.B, Proposition 5.2]), which is called the canonical variation. 

For each t> 0, {el, ... ,en,t-Ien+l, ... ,rlem} is an orthonormal local frame 
field on (M, gt) with ei the horizontal lift of e; with respect to gt for 1 ~ i ~ n, and 
with t-Iei vertical for n + 1 ~ i ~ n. Then the vertical (resp. horizontal) Jacobi 
operator fJ; (resp. fJ</>H) of the canonical variation cp; (M, gt) -4 (N, h) satisfies 

t]" = t- 2]" and fJH = JH 
</> </>, </> </> • 

Therefore we have 

PROPOSITION 7.2. The following formula holds: 

fJ</> = t- 2J; + J</>H = r 2J</> + (1 - t- 2 )J</>H. 

REMARK. This is the analogue of Proposition 5.3 in [B.B]. 
7.2. Due to Corollary 6.6 and Proposition 7.2, each eigenvalue of tJ</> can be 

written as 

(7.1) 

where A is an eigenvalue of J</>H and p. ~ 0 is an eigenvalue of J;. Then the following 
two cases occur: 

(i) p. > 0, or 
(ii) p. = o. 
In case (i), A + t- 2p. goes to infinity when t -4 O. In case (ii), A + t- 2p. = A which 

does not depend on t. Since the number of the eigenvalues of J</> smaller than a given 
number is finite, there exists a small positive number e such that for each 0 < t < e, 
the first eigenvalue Al (t.!</» coincides with the smallest eigenvalue of tJ</> when the 
case (ii) occurs. Then we have 

AI(tJ</» = Min{A; J</>W= AWand J;W= o for some 0 =1= WE f(cp-ITN)} 

= Al (JidJ, 
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because of Propositions 6.4(ii) and 6.3. Therefore we obtain 

THEOREM 7.3. Let </>; (M, g) ~ (N, h) be a Riemannian submersion with totally 
geodesic fibers, and let gl' 0 < t < 00, be the canonical variation (cf. Definition 7.1) 
of g with gl = g. Then there exists a number 10 > 0 such that for each 0 < t < 10, 

AI(tJ</» = AI(JidJ. 

In particular, if (N, h) is stable, then the submersion </>; (M, g) ~ (N, h) is stable for 
every 0 < t < E. 

7.3. Typical examples of a Riemannian submersion with totally geodesic fibers are 
the homogeneous Riemannian submersions (d. [B.B, §2]). Let G be a compact 
connected Lie group, and K, H closed subgroups of G. Let 9 (resp. f, I) be the Lie 
algebra of G (resp. K, H). We choose subspaces 1)1 (resp. 1J) of f (resp. g) such 
that f = I) ED 1)1' with Ad(H)1)1 = 1)1' and 9 = f ED 1J, with Ad(K)1J = p. Put 
m:= 1)1 ED 1J. Then 9 = I) ED m, with Ad(H)m = m. Let (', . hI (resp. (-, . )p) be an 
Ad(H)-invariant (resp. Ad(K)-invariant) inner product on 1)1 (resp. 1J). We define 
an Ad( H)-invariant inner product ( " . ) m on m by 

(XI + X2, Yl + Y2)m:= (Xl' Ylh i +(X2' Y2 )p, Xl' Yl E 1)1' X2 , Y2 E p. 

Then the inner product (0, 'hl (resp. (', ')p' (', ')m) gives a K-invariant (resp. 
G-invariant) Riemannian metric k (resp. h, g) on K/H (resp. G/K, G/H). It is 
known (cf. [B.B]) that the projection </>; G / H :3 xH ~ xK E G / K gives a Rieman-
nian submersion of (G / H, g) onto (G / K, h) with totally geodesic fibers (K/ H, k). 

In particular, these give the Hopf fibrations: 
(i) </>1; s4n+3 = Sp(n + I)/Sp(n) ~ Hpn = SP(n + I)/Sp(1) X Sp(n), 

(ii) </>2; s2n+l = SU(n + I)/SU(n) ~ cpn = SU(n + I)/S(U(I) X U(n». 
Note that Sp(n + I)-invariant (resp. SU(n + I)-invariant) metrics h on Hpn (resp. 
cpn) are unique up to a constant factor. 

Since (Hpn, h) (resp. (cpn, h» is unstable (resp. stable) (cf. [Sm, Na]), we have 

PROPOSITION 7.4. (i) For each Sp(n + I)-invariant metric g on s4n+3 = Sp(n + 
I)/Sp(n), the Riemannian submersion </>1; (s4n+3, g) ~ (Hpn, h) is unstable. 

(ii) For each SU(n + I)-invariant metric g on s2n+l = SU(n + I)/SU(n), there 
exists a number 10 > 0 such that for each 0 < t < 10, the canonical variation </>2; 

(s2n+l, gt) ~ (cpn, h) is stable. 

The proof follows from Proposition 6.3 and Theorem 7.3. 
REMARK. Proposition 7.4 asserts that each odd dimensional unit sphere s2n+I, 

n ~ 1, with the canonical variation gl' 0 < t < 10, admits a nonconstant stable 
harmonic map. By way of contrast, Y. L. Xin [X] showed that each nonconstant 
harmonic map from the standard unit sphere (sm, can), m ~ 3, of constant curva-
ture into an arbitrary Riemannian manifold is unstable. 

7.4. Next, let us study the case in which t goes to infinity. We retain the notation 
of §7.1. Let us recall that the holonomy group G of a fiber F of the submersion </>; 
(M, g) ~ (N, h) with totally geodesic fibers is the group of all isometries of the fiber 
F induced by the horizontal transports along the horizontal lifts of loops in N based 
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at the projection of F. It is known [O.N, Theorem 5] that G = {id} if and only if the 
submersion cp; (M, g) ~ (N, h) is trivial, that is, there exist an isometry t of (M, g) 
and a submanifold F of M such that M is the Riemannian product F X Nand 
cp = pr 0 t, where pr is the projection of F X N onto N. 

THEOREM 7.5. Let cp; (M, g) ~ (N, h) be a Riemannian submersion with totally 
geodesic fibers. Assume that the holonomy group G of a fiber F of the submersion cp; 
(M, g) ~ (N, h) does not act transitively on the fiber, and Index(id N) > O. Then the 
index of the canonical variation cp; (M, gl) ~ (N, h) goes to infinity when t ~ 00. 

PROOF. Let "6'(f(F) be the space of all functions fin "6'OO(F) invariant under the 
actions of G. Since each G-orbit has an open G-invariant tubular neighborhood in M 
(cf. [Br, Theorem 2.2, p. 306]), there exists a nonconstant function f in "6'(f(F). 
Then the dimension of "6'Z'(F) is infinite. Each element f in "6'(f(F) can be 
extended to a function 1 in the space "6'vOO(M) of all elements in "6'OO(M) which are 
invariant under horizontal transport. Since parallel transport is an isometry, the 
vertical Laplacian Llv leaves "6'vOO (M) invariant. Therefore there exist an infinite 
number of eigenvalues 0 < t-tl < t-t2 < ... < t-ti < ... , of Llv counted with their 
multiplicities such that 

(7.2) 0* fi E "6'voo (M), i = 1,2, .... 

N ow suppose that Index(id N) > 0, that is, there exists a nonzero element W' in 
f(TN) such that JidNW' = AW' and A < O. By Proposition 7.2, (6.3), fi E "6'vOO (M), 
(6.5) and (7.2), we have 

IJ,l60 ) = (t- 2J; + J</>H)(/;W') 

= r2( -LlJJJ0+ /;J:(J0) = (t- 2t-ti + A)(fiJ0). 

That is, IJ</> has the eigenvalues t- 2t-ti + A, i = 1,2, .... When t goes to infinity, the 
eigenvalues t- 2t-ti + A tend to the eigenvalue A. Since A < 0, for each i = 1,2, ... , 
there exists a number N > 0 such that t- 2t-ti + A < 0 for t ;;> N. Therefore we have 
the desired conclusion. 

REMARK. Theorem 7.5 is a generalization of Corollary 3.3 in [Sm]. 

8. Homogeneous Riemannian submersions. 
8.1. In this section, we express the Jacobi operator of homogeneous Riemannian 

submersions in terms of Lie algebras and calculate the spectrum of the Jacobi 
operator of the Hopf fibration. We retain the notation of §7.3. 

Let G be a compact connected Lie group, with K and H closed subgroups of G. 
Let g be the Lie algebra of G consisting of all left invariant vector fields on G. Let f 
and f) be the sub algebras corresponding to K and H. Put s:= dimG, m:= dimG/H, 
and n:= dimG/K. We choose an Ad(G)-invariant inner product (.,.) on g, with 
f)1 (resp. lJ), the orthogonal complement of f) (resp. f) in f (resp. g). Then 
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f = fl ffi fll with Ad(H)fll = fll' and g = f ffi P with Ad(K)p = p. Put m:= fll ffi 
p, so g = 1) ffi m with Ad(H)m = m. In this section, we always assume the 
following: 

ASSUMPTION (A). We take the inner products (., . h" (., . )1" and (., ·)m as the 
restrictions to fll' p, and m, respectively, of the above Ad( G)-invariant inner 
product (., .) on g. 

Now we consider the Riemannian submersion «1>; G / H ~ G / K admitting the 
Riemannian metric g (resp. h) on G/H (resp. G/K) corresponding to the inner 
product (., .) on m (resp. p). Since the induced bundle E:= «I> -IT( G / K) is 
identified with the associate bundle G X H p, which is the space of the equivalence 
classes of (x, X) E G X P under the equivalence relation (xh, Ad(h)X) - (x, X), 
for h E H, we can identify the space r(E) of its sections with the following space. 

DEFINITION 8.1. Let ,??oo(G, p) be the space of all smooth maps of G into p. We 
define the subspace'??; ( G, p) of '?? 00 ( G, p) by 

,??;(G,p):= {fE '??OO(G,p); f(xh) = Ad(h- 1 )f(x), x E G, h E H}. 

The identification 4> of r(E) with ,??;(G, p), 4>; ,??;(G, p) ~ r(E), is given by 

(8.1) 4>(f)(xH):= 'Tx.f(X){K}, x E G. 

Here f(X){K} is the tangent vector of G/K at the origin {K} corresponding to 
f(x) E p, and 'Tx' is the differential of the translation 'Tx; G/K 3 yK ~ xyK E G/K. 
Then it turns out that 4> is an isomorphism of ,??;(G, p) onto r(E). Under the 
G-actions on r(E) or ,??;(G, p) defined by 

('Tx.V) yH:= 'Tx,Vx~lyH' x, y E G, V E r(E), 

x,y E G, fE '??;(G,p), 

4> is a G-isomorphism, that is, 

(8.2) X E G, fE ,??;(G, p). 
Note that the Jacobi operator Jq,; r(E) ~ r(E) is G-invariant, that is, 

(8.3) J.p( 'Tx.V) = 'Tx.(Jq,V), V E r(E). 

Here we denote by 'Tx' the differential of the translation 'Tx on G / H or G / K by 
x E G. Then we have 'Tx~"'\1 eei = \1 T~l. 'Tx~l.ei' and ~ e'Tx'V = 'Tx ~ T~l. V, for V E 

I X ei r * x ej 

f( E), x E G, where {e i } 7'~ 1 is an orthonormal local frames field on (G / H, g). 
Because of the expression (1.4) for Jq,' we have the G-invariance of Jq,. 

Furthermore we identify '??;( G, p) with the subspace (,??OO(g) 181 p) H of the tensor 
product ,??OO(G) 181 p. 

DEFINITION 8.2. (,??OO( G) 181 p) H is by definition the subspace of ,??OO( G) 181 P 
consisting of all elements L;~1 fi 181 Xi E ,??OO( G) 181 P satisfying 

I I 

L Rhh 181 Ad(h)Xi = L h 181 Xi 
i~1 i~l 

for all h E H. Here (Rhf)(X):= f(xh), h E H, x E G, f E ,??OO(G). Under the 
G-action of ,??OO( G) 181 P defined by 

'T)fl8l X):= 'Txfl8l X, x,y E G, fE ,??oo(G), XE p, 
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the subspace (~OO(G) ® P)H is a G-submodule. The identification 'I' of ~H(G, p) 
with (~OO( G) ® p) H is given by 

n 

(8.4) '1'(/):= L /; ® X;, fE ~H(G,P), 
i=1 

where f(x) = I7=lf;(x)Xi , x E G, and {X;}7=1 is a fixed orthonormal basis of p 
with respect to (., .). Then it turns out that 'I' is a G-isomorphism of ~H( G, p) onto 
(~OO( G) ® p) H with 

(8.5) 'I' ° 'Tx = 'Tx 0 'I' , X E G. 

DEFINITION 8.3. Via <J> and '1', we can define a G-invariant operator j on 
(~OO( G) ® p) H from the Jacobi operator 11> in such a way that the following 
diagram is commutative: 

f(E) 
4>-1 

~;(G,p) 
'i' 

(~OO(G)®P)H ~ ~ 

J, J" J,j 

f(E) 
4>-1 

~;(G,p) 
'i' 

(~OO(G) ® P)H ~ ~ 

By (8.2), (8.3) and (8.5), the operator j is G-invariant, that is, 
(8.6) jO'Tx='Txoj, xEG. 

Therefore the problem of determining the spectrum of 11> is reduced to doing so for 
the operator j on (~OO( G) ® p) H. Thus the main purpose of this section is to express 
the operator j in terms of the Lie algebra g of G (cf. Theorem 8.11). 

8.2. For the calculus, we take a neighborhood U in G and a subset N (resp. NK ) 

of G (resp. K) in such a way that 
(i) N = Un exp(p), NK = Un exp(91), 

(ii) the map N X NK '3 (y, k) ~ yk EN· NK is a diffeomorphism, 
(iii) the projection TTK of G onto G/K is a diffeomorphism of N onto a 

neighborhood 7T K (N) of the origin { K} in G / K, and 
(iv) the projection 7TH of G onto G / H is a diffeomorphism of N . N K onto a 

neighborhood 7T H( N . N K ) of the origin {H} in G / H, where N . N K:= {yk; yEN, 
k E NK }. 

Now for an element X E m = 91 EB p, define a vector field X* on the neighbor-
hood 7TH (N . NK ) of {H} in G/H by 

(8.7) 

Similarly, for an element X E p, define a vector field X on the neighborhood 
7TK (N) of {K} in G/K by 

(8.8) yEN. 

Let {X;}7'=l be an orthonormal basis of (m,(·, .)) such that {X;}7'=l (resp. 
{X;}7'=n+1) is a basis of p (resp. 91). Then {X;*};:l is an orthonormal frame field 
on 7TH (N . NK ) such that the X;*, n + 1 ~ i ~ m, are vertical and the X;*, 1 ~ i ~ n, 
are horizontal. Also, {X; }7=1 is an orthonormal frame field on 7TK(N). 
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REMARK. In general, the X;*, 1 ~ i ~ n, are not necessarily basic vector fields. 
ForeveryfE <g'ff(G,p),wecan express V= ~(f)E f(E) as 

n 

VxH = I: f(x)'Tx'X;{K)' x E G, 
;=1 

where f(x) = f..7=lf(x)X;, x E G. Moreover, putting 
n 

(8.9) Ad(k)X; = I: a;/k)~, k E K, 
)=1 

n 

(8.10) i(ykH):= I: f;(yk )a;j(k), yEN, k E NK, 
;=1 

the section V can be expressed on the neighborhood 'TTH(N . NK) as 
n _ 

(8.11) V= I: i~, 
)=1 

where i is a function (8.10) on 'TT H( N . N K) and Xj is a local section of E 
corresponding to the vector field Xj on 'TT H( N . N K) (cf. 1.1). Then we have for 
XEm, 

(8.12) 
n _ _ 

Vx·V= I: {(X*i)~+ ivx'X)} 
J=l 

on 'TTH(N . NK). Here (V X,X)XH' x EN· NK, is given by 

(8.13) ( V x,X;) xH = (NV w~) xK' 

where W is a locally defined vector field on G/K satisfying WxK = c1J*Xx*H (cf. (1.1) 
or (6.4», and N V is the Levi-Civita connection of (G/K, g). This vector field W can 
be chosen as follows: 

(8.14) 

(8.15) 

W = 0 for X E 91' 
W = (Ad(k(· ))X) (cf. (8.8)), for X E p. 

In fact, since c1J*Xx*H = 0 for X E 91' we have (8.14). For (8.15), let X E p. For a 
fixed point x = y(x)k(x), y(x) E N, k(x) E NK, we have 

c1J*Xx*H = 'Ty(x).'Tk(x),X{K) = 'Ty(x).{Ad(k(x))X){K) 

= (Ad(k(x ))X) y(x)K, 

so we can choose Was in (8.15). By (8.14), we get, for X E 91' 

(8.16) 

By (8.15), we get in particular, for X E p, 

(8.17) (NVW~){H) = (NVx~){Kr 
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Moreover, for X E 1:1, we will show that 

(8.18) 

where Xp is the 1:1-component of X corresponding to the decomposition g = f + 1:1. 
First, recall the lemma below which follows from Theorems 8.1, 10.1 and 13.2 in 

[No], due to assumption (A). 

LEMMA 8.4. For every Y, Z E 1:1, 

N~zY = ! ([Z, Y]p), along the curve g(t)K in G/K 

for a sufficiently small t such that Ht):= exp(tZ) belongs to N. 

To establish (8.18), note that by (8.13), we have 

(8.19) 

where W is given by (8.15). Then for the curve a(t):= exp(tX)K in G/K, 

the right side of (8.19) = dd Npu(MN~ wXj )"(/)1 ' 
t f=O 

where NPU(/) is parallel transport of (G/K, g) along the curve a(t). Here WU(/) = 

XU(/)' by (8.15) and exp(tX) EN, so that k(a(t» = e. Then we have 

(N~ w~) U(/) = (N~XXj) U(/) = ! ([ X, Xj ] p) U(f)' 

by Lemma 8.4, which also gives 

the right side of (8.19) = ~ ; NPU(/\ ([ X, Xi] p) u(f)lf=o 

= ~(N~X [X, Xi] p ){K} = ~([ X, [X, Xi] p] P){K)' 

which implies (8.18). 
Summing up the above, we have 

LEMMA 8.5. For V = fP(f), f E 't';{(G, 1:1), we have 
(i) 

n 

(~x.~X.V){H} = L xtH}(X*l;)~{K}' forXE £)1' 
;=1 

(ii) 
n 

(~x.~ X.V){H} = L XtH} (X*l;)~{K) + (xtH}l;) ([ X, Xi] p) {K} 
)=1 

+ tl;(H) ([ X, [X, XJ p] p) {K}' 

for X E 1:1. 
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Our next task is to calculate xtH}l and XtH}X*l, for X Em. 

LEMMA 8.6. (i) For X E fll' we have 
n 

xtH}l = Xfj(e) + Lli(e)([X, XJ, Xj)' 
i~l 

and 
n 

xtH}X*l = X2fj(e) + 2 L (Xj;)(e)([X, XJ, XJ 
i~l 

n 

+ Lli(e)([X, [X,XJ], XJ 
i~l 

(ii) For X E p, we have 

and 

xtH}X*l = X 2fj( e). 

Proof follows immediately from the definition of l (8.9), (8.10) and X* (8.7). 

LEMMA 8.7. (~V'x.x.V) H = ° lor all X E m, and V E f(£). 

PROOF. Due to assumption (A), we have (\7 x'X*) (H) = ° for X E m, by Theo-
rems 8.1, 13.1 in [No]. By (8.13) or (1.1), we have Lemma 8.7. 

Moreover, it is known (cf. [K.N)) that under assumption (A), the curvature tensor 
NR of (G/K, h) is given by 

- (NR(X, Y)Z){K) = H X, [Y, Z]"],, - HY, [X, Z]"Ll - H[X, Y]", Z]" 

- [[X, Y]f, z], X, Y, Z E p, 

where we identify X E P with the tangent vector X{K} E T{KP/K. Then we get 

LEMMA 8.8. For V = <P(f), I E ~;(G, p), we have 

- (NR (cf>*X*, V)cf>*X* ){K} 

0, XE fll' 

n { 1 LI;(e) 4[X,[X;,X]"L 
;~l 

- ~ [[X, X;]"' XL - [[X, XJf' X]}, XE 1,l5. 



HARMONIC MAPS AND EIGENVALUES OF THE LAPLACIAN 585 

Summing up Lemmas 8.5-8.8, we obtain 

PROPOSITION 8.9. For V = CPU) andf = L7~1/;Xi E 't'H'(G, p), the evaluation of 
JcpVat the origin {H} in G / H is given by 

m n 

(icpV){H) = - L L (Xlfj)(e)Aj{K) 
k~lj~l 

n 

- L (Xkfj)(e)[Xk,Aj]P{K) 
k,j~l 

m n 

-2 L L (Xkfj)(e)[Xk,X;]{K) 
k~n+lj~l 

m n 

L L fj ( e ) [ Xk , [ X k , Aj]] {K} 
k~n+1j~1 

n 

- L fj(e)[[Xk,Xjlr,XkLK)' 
k.j~l 

8.3. Before we state Theorem 8.11, we need some notation. 
DEFINITION 8.10. The operators Di , i = 0,1, ... ,6, acting on 't'OO( G) ® pare 

given by 
s 

Do:= L x1 ® I, 
k~l 

m 

D1 := L x1 ® I, 
k~l 

n 
D2 := L Xk ® Pp oad(Xk), 

m 

D3 := L Xk ® ad(Xk), 
k~n+l 

m 
D4:=I® L ad(Xk)2, 

k~n+l 

n 
Ds:= I® L ad(Xk) ° Pr oad(Xk), 

k~l 

s 

D6 := L x1 ® I, 
k~m+1 

where Pp and Pr are the projections of g = f $ ponto p and f, respectively, 
{Xdk~l is an orthonormal basis of (g,(', .» such that {Xi}7~1 (resp. {X;};:n+1' 
{ Xi }:~m+ 1) is a basis of p (resp. fJ 1, fJ), I is the identity operator of 't'OO( G), p or 
't'OO(G) ® p, and (Xf)(x):= (d/dt)f(x exp(tX»lt~o, for X E g, f E 't'OO(G), and 
x E G. 
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It turns out that all Di , i = 0,1, ... ,6, are independent of the choice of the above 
basis {Xk }k-l and they are G-invariant, i.e., Di 0 'Tx = 'Tx 0 Di, for all x E G. Thus 
since Rh 0 Xf = Ad(h)X(Rhf), for f E ~OO(G), h E H, and X E g, all Di keep the 
subspace (~OO(G) ® P)H invariant. We also note that 
(8.20) Do = Dl + D6, 

s 

(8.21) D6 = I ® L ad(Xkf on (~oo(G) ® P)H' 

by the definition of (~OO( G) ® p) Hand D6 • Then by Proposition 8.9, we obtain 

THEOREM 8.11. Let $ be the Riemannian submersion of (GjH, g) onto (GjK, h) 
whose metrics g and h come from the Ad( G)-invariant inner product (., .) on the Lie 
algebra g. Then the operator j of (~OO( G) ® p) H corresponding to the Jacobi operator 
J1> of the submersion $ coincides with the operator 

D:= -Do - D2 - 2D3 - D4 + Ds + D6, 
where all Di are defined in Definition 8.10. 

PROOF. Proposition 8.9 and (8.21) yield 
j(q,<I>-lV)(e) = D(q,<I>-lV)(e), 

for every V E feE). For every x E G, we have 
j( q,<I> -lV)( x) = 'Tx-l 0 j( q,<I> -lV)( e) = j( q,<I> -l'Tx-l.V)( e ) 

= D(q,<I>-l'Tx-l.V)(e) = 'Tx-1D(q,<I>-lV)(e) = D(q,<I>-lV)(e). Q.E.D. 

As applications of Theorem 8.11, we obtain 

COROLLARY 8.12. Let $ be the Riemannian submersion of (GjH, g) onto (GjK, h) 
whose metrics g and h come from the Ad( G)-invariant inner product (., .) on the Lie 
algebra g. Assume that (GjK, h) is Riemannian symmetric, g is semisimpie, and 
(X, Y):= - F(X, y), for X, Y E g, where F is the Killingform of g. 

(i) Then the operator j of (~OO( G) ® p) H corresponding to the Jacobi operator J1> of 
the submersion $ coincides with 

D:= -Do - 2D3 + 2D6· 
If H = {id}, then the operator j coincides with D:= - Do - 2D3, where Do, D3 and 
D6 are given in Definition 8.10. 

(ii) In particular, the spectrum of the Jacobi operator J1> of the Hopf fibering $; 

(SU(2), g) = (S3,g) --+ (SU(2)jS(U(I) X U(I)),h) = (S2,h) 
is given as follows: The eigenvalues: H(I + 1) + i, !/(l + 1) - i, their multiplicities: 
21 + 1, where I varies over the set {I E !Z; I;?> O}, and i varies over the set 
{I, I - 1, ... ,1 - I, -/}. Finally, Index( $) = 2 and Nullity( $) = 8. 

PROOF. (i) Since (GjK, h) is symmetric, i.e., [p, p] c f, we have D2 = 0 and 
Ds = I ® L:Z- 1 ad(Xk)2. Moreover, Ds = - V and D4 + D6 = - V imply (i), 
since (L:Z- 1 ad(Xk)2(X), Y) = !F(X, y), and (L:t-n+l ad(Xk)2(X), Y) = !F(X, y), 
for X, YEp (cf. [T.K, p. 212]). The second claim in (i) is clear because D6 = 0 when 
H = {id}. 
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(ii) Let us recall the computation in [UI, §5]. In this case, 

G = SU(2), 

K = S(U(l) X U(l)) = {( e7° e-~O); () E R}' 
(X, y) = -4 Trace( XY), X, Y E g = 5u(2), 
f = {H1}R' 

P = {Ua/v1, Va/v1 }R' 
where 

and 

V'= 2- 1(0 1) 
a' 1 O' 

Here {HI' Ua / v1, Val v1} is an orthonormal basis of (g, (', . )). We have only to 
know the actions of D3 = HI ® ad(Hl) and Do = C ® / on ~OO(G) ® p, where C is 
the Casimir operator C:= H12 + Ua2/2 + Va2/2. A complete orthogonal basis of the 
space ~c( G) of complex valued smooth functions on G with respect to the inner 
product fc/(x)f'(x )dx, /, f' E ~c(g), with the Haar measure dx, is given as 
follows by the Peter-Weyl theorem. Let D:= {lo:; I E ~Z, I ~ O}. For A = 10: ED, 
let (VA' '17 A) be the irreducible unitary representation of G with highest weight A, and 
{v; }1!1' d A := dim(VA), an orthonormal basis of VA with respect to the G-invariant 
inner product «".)) on VA' Put '17;)(x):= «'17\x)v;, vj )), 1 ~ i, j ~ dA. Then 

and {'17;), A E D, 1 ~ i, I ~ dd is an orthogonal basis of ~c(G). For A = 10: with 
I E ~Z, I ~ 0, VA has an orthonormal basis {vrn; m = I, I - 1, ... ,1 - I, -I} such 
that 

for each m. Since '17A(C) = ~/(l + 1)/ on VA' we get 

H1'17;) (x ) = (0 /v1) i'17;) (x ), 

C'17;)(x) = t/(! + l)'17;)(x), 

for i, j = I, I - 1, ... ,1 - I, -I. On the other hand, 
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Thus the action of D3 = Hi ® ad(Hl) on itA ® p, where itA:= {'IT;); 1 ~ i, j ~ dde, 
is equivalent to the matrix 

0 
® 1 

A1 _ 1 -

A-I 
Ii 

1 
Ii 

1 
Ii 
0 

o -A_ I 

A_I 0 

where A;:= (Hjli)i, i = 1,1-1, ... ,1-1, -I. Therefore the eigenvalues of 
D3 on itA ® P are given by ± t, i = I, I - 1, ... , 1 - I, -I. Hence the spectrum of 
D = - Do - 2D3 is given as in (ii). Q.E.D. 

Instead of the assumption of Corollary 8.12, we now assume that K = H. In this 
case, we obtain the formula for j of the Jacobi operator Jid of the identity map of a 
normally homogeneous space (GjH, g). Here we have f = fl, fll = 0, m = p and 
D3 = D4 = O. Thus we obtain 

COROLLARY 8.13. Let (GjH, g) be a normally homogeneous space, that is, the 
metric g is induced from the Ad( G)-invariant inner product ( " .) on the Lie algebra g. 
Then the operator j of (,??OO( G) ® m) H corresponding to the Jacobi operator J id of the 
identity map of (G j H, g) coincides with D = - Do - D2 + D5 + D6, where m is the 
orthogonal complement of fl in g with respect to (', .) and Do, D2, D5 and D6 are 
given in Definition 8.10. 

In particular, assume that (GjH, g) is Riemannian symmetric, g is semisimple, 
and (X, Y):= - F(X, Y) for X, Y E g, where F is the Killing form of g. Then 
D = -Do - I, where I is the identity map of (,??OO(G) ® m) H' 

PROOF. The last formula follows from D2 = 0 and D5 + D6 = - I. 
REMARK. The last formula D = - Do - I for the Jacobi operator of the identity 

map of a Riemannian symmetric space was stated in [Na). 
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