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SUPERSYMMETRY, TWISTORS, 
AND THE YANG-MILLS EQUATIONS 

MICHAEL EASTWOOD 

ABSTRACT. This article investigates a supersymmetric proof due to Witten 
of the twistor description of general Yang-Mills fields due to Green, Isenberg, 
and Yasskin. In particular, some rigor is added and the rather complicated 
calculations are given in detail. 

o. Introduction. In a remarkable paper Witten [24] indicated that there is 
a close connection between the classical Yang-Mills equations and a certain sys-
tem of supersymmetric equations arising from Penrose's twistor theory [16, 17] 
as modified by Ferber [7]. In particular, he uses this connection to give a rather 
natural proof of the theorem of Green, Isenberg, and Yasskin [9] concerning the 
twist or description of the full Yang-Mills equations. For alternative approaches to 
this theorem see Manin [14], Pool [19], or Buchdahl [2]. 

This article has two objectives. The first is to provide, in reasonable detail, 
the rather involved calculations omitted from [24]. These calculations are highly 
complicated in spite of the apparently simple conclusions. The seemingly miracu-
lous cancelations which occur are reminiscent of similar cancelations found in the 
renormalization of supersymmetric field theories. 

The second objective is to impart a little more rigor to the arguments. Although 
written for mathematicians, this article proceeds in an informal manner during 
§§1-5 where the notation is established and the main theorem is stated (in §5). 
This is entirely reasonable and standard practice in physics, and the hardened 
mathematician is requested to suspend disbelief until §6 where precision is restored. 
In order not to interrupt the flow of argument, the detailed calculations alluded to 
earlier are reserved for an appendix (§7). 

1. Superspace. Roughly speaking, a supermanifold consists of an underlying 
smooth manifold Q together with some anticommuting variables yo. for a = 1, ... , n. 
In general there is no special relation between n and the dimension of Q. More 
precisely, these local anticommuting variables are allowed to change over Q in order 
to define a vector bundle. For the moment all such subtleties are suspended until 
§6. Locally, a superfunction (i.e. a "function" on a supermanifold) can be expanded 
as a power series in the anticommuting variables: 

F(x, y) = f(x) + yo. fa (x) + ... + yo.y/3 ... Y' fo./3 ... , (x) + .... 
Here, the Einstein summation convention has been used and the resulting coeffi-
cients are skew in their indices-i.e., fo./3 ... , = f[o./3 ... ,] (brackets are used to denote 
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antisymmetrization, and parentheses symmetrization), and it follows that this ex-
pansion is finite, automatically truncating at order n. There is a parallel construc-
tion in the holomorphic category. 

Superspace is an example of a holomorphic supermanifold where the underlying 
manifold is complexified Minkowski space M with coordinates x a = x AA' (see [16, 
18] for this notation). M[N], superspace of order N, is that supermanifold formed 
by adjoining 4N anticommuting variables (}f and OA' j for j = 1, ... , N. The indices 
A and A' are genuine spinor indices (see [18] for a full discussion of spinors using 
this notation). 

One can do calculus on supermanifolds provided care is taken with ordering 
derivatives. Standard results and constructions from classical calculus on manifolds 
such as the Leibnitz rule, the Frobenius integrability theorem, and the de Rham 
sequence generalize to the category of supermanifolds. Of particular interest are 
the following differential operators on M[N]: 

- B A and BA'j = --- + (}j DAN B(}A'j 

where Da = B / Bxa. They satisfy the following (anti)commutation relations: 

where [ , ] denotes a commutator and ( , ) an anticommutator. Along with the 
usual [Da, Db] = 0 these relations define a superalgebra often taken as the motivation 
for introducing superspace [20]. 

2. Superambitwistors. Twistor space T is a 4-dimensional complex vec-
tor space with coordinates traditionally denoted za = (w A , WA') (for further ex-
planation of this notation see [16]). Coordinates for the dual shall be denoted 
Wa = (e' , 17 A)' A mbitwistor space (see [3]) A is defined to be 

A = {(Z, W) E PT x PT* s.t. ZaWa = a}. 

Here PT means projective twistor space. The usual twistor correspondence [16, 
22, 23] with Minkowski space has a counterpart for ambitwistors defined by the 
incidence relations 

For each x E M these relations define a quadric Qx in A, whereas each point of A 
represents a null geodesic or light ray in M. This is the basic correspondence used 
by Green, Isenberg, and Yasskin [9]. 

Superambitwistor space of order N as introduced by Witten [24] involves adjoin-
ing 2N extra anticommuting variables. It has homogeneous coordinates 

[za,Wa,~J,'ljJj] for J.= 1, ... ,N 

s.t. 

and 
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There is a correspondence with superspace M[NJ defined by the relations 

wA = (xAA' - OfeA'j )7rAI, e' = (_xAA' - OfeA'j)rJA, 

~J = eA'j7rAI' 'ljJj = 0frJA. 

Each point (x, 0, e) E M[NJ still represents a quadric Q(x,(J,O) in A[NJ' but now each 
point of A[N] defines a superlight ray in M[N], a supermanifold with one ordinary 
dimension but 2N additional anticommuting variables. As Witten points out, it is 
these extra dimensions which give rise to interesting equations, since integrability 
of a connection along a superlight ray is no longer a trivial condition for N > o. 

3. Thickarnbitwistors. As a submanifold of PT x PT*, A may be thickened 
out to its Nth formal neighborhood (see [2, 8]). Precisely, A(N) is defined to be A 
but with an enlarged sheaf of holomorphic functions 

O(N) = OPTXPT*jI N +1 

where I is the ideal sheaf of A inside PT x PT*. More informally, however, thick-
ambitwistors A(N) may be regarded as formed by adjoining an extra commut-
ing variable whose (N + l)st power vanishes. It has homogeneous coordinates 
[Z", w", X] s.t. 

[Z", W",xl = [AZ", jJW", AjJX], zo:w" = X, and XN +I = o. 
The theorem of [9] may now be stated: 

THEOREM (GREEN, ISENBERG, AND YASSKIN). For U an open S'ubset of 
M, let QU(N) denote the corresponding region of A(N) swept out by Qx for x E U. 
Suppose every light ray in U is simply connected (and, in particular, connected). 
Then there is a 1-1 correspondence between solutions of the holomorphic Yang-
Mills equations on U and holomorphic vector bundles on QU(3) trivial on each Qx 
for x E U. 0 

Since ~j and 'ljJj are anticommuting variables, it follows that (\j'ljJj)N+1 = o. 
Therefore there is a map A[N] -+ ACN) defined by X = 2~j 'ljJj. Indeed there is the 
commutative diagram 

A C A[l] 

II 1 
A c ACI) 

This link suggests introducing thickspace MCN) by adjoining (fa = ofeA'j . There is 
then a correspondence between ACN) and MCN) defined by the incidence relations 

wA = (xAA' _ (fAA')7rAI' .;A' = (_xAA' - (fAA')rJA' X = _2(fAA' rJA7rA'. 

The anticommuting nature of the variables Of and eA' j implies certain constraints 
on the variables (fa. For example, in case N = 1, although (fa and (fb commute, 
one has 

(fa(fb = tcAH CAl H' ((fc(fdcCDcCI D/). 

In other words, although one would expect, in the spinor decomposition of (fa(fb, 
a term of the form a AHA' H' = aCAH)(A' H'), this part has been set to zero. For 
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N = 1 all higher powers of aa vanish. For N > 1 there are similar but more 
complicated constraints (see §7 for details). Thus, although MCN) is an unreduced 
analytic space in the classical sense, it is not simply a formal neighborhood of M 
as the diagonal in M x M. As for A, there is a commutative diagram 

M c 
II 

M c 

c 

c 

One can introduce differential operators Da and Da on MCN) by Da = Da + Ea and 
8a = Da - Ea where Ea = 8/8aa (for calculus on an analytic space see [2]). Then, 
if a thickfunction is regarded via aa = ()t jjA' j as a special case of a superfunction, 

4. The Ward correspondence. Ward's interpretation [21] of self-dual gauge 
fields via twistors was extended by Green, Isenberg, and Yasskin [9] to arbitrary 
gauge fields in terms of ambitwistors and by Witten [24] to superfields using super-
ambitwistors. A common feature of these correspondences is that the argument for 
the Abelian case (e.g. Ward's "nonlinear photon" construction) goes through with 
essentially no change for the general case. All that is involved is the interpretation 
of potential/gauge (see e.g. [17]) as a connection, and so on. However, in order not 
to become involved in defining all the relevant concepts in the category of super-
manifolds, it is easier to stick to the potential/gauge description and the Abelian 
case. This also allows one to use the Sparling-Ward "splitting method" [17] for the 
correspondence (which may be regarded, for the Abelian gauge group, as a special 
case ofthe Penrose transform [4, 5]). At only one point in §5 is there any need for 
provisos concerning the generalization. Such provisos will be clearly stated, but all 
remaining arguments in this article will be given for the Abelian case only (i.e., for 
connections on a trivial line bundle). 

To minimize notation, an open subset of M will also be denoted by M and 
will always be assumed to satisfy mild topological restrictions-namely, that each 
light ray be simply connected. The corresponding subset of A swept out by Qx for 
x E M will be denoted by A too. Discussion of the Penrose-Ward transform will be 
confined to describing the direction from A to M. Proving that this results in an 
isomorphism is accomplished along now standard lines [4, 5] and will be omitted. 

To introduce the results for N > 0, first recall [17, 4, 5] the Penrose-Ward 
transform of H1(A, 0). To effect this by the Sparling-Ward splitting method, 
regard a cohomology class by means of a Cech cocycle Fo:(3(Z, W) with respect to 
some suitable cover. Using the ambitwistor incidence relations form 

AA' , AA' f 0:(3 ( x, 1f, 'T/) = Fo:(3 (x 1f A', 1f A' , -x 'T/A' 'T/A). 

Since H 1 ( Q x, 0) = ° for each x EM, the class f 0:(3 is cohomologous to zero and 
therefore splits as f 0:(3 = f 0: (x, 1f, 'T/) - f (3 (x, 1f, 'T/ ). Now the form of f 0:(3 implies that 

A A' A A' ( 8FO:(3 8FO:(3) 'T/ 1f DAA'fo:(3 = 'T/ 1f 1fA' 8w A -'T/A 8~A' = 0, 
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SO rJA1rA' D AA' fa. is globally defined in 1r and rJ. It is also homogeneous of degree 
(1,1) and therefore must be a polynomial 

A A' A A' rJ 1r D AA' fa. = rJ 1r <P AA' (x). 

This defines the potential <Pa on M, whereas a different choice of splitting provides 
the gauge freedom <Pa I-t <Pa + Dag. This standard argument generalizes easily to 
deal with Hl(A[N], 0). The superambitwistor correspondence gives 

fa.{3(x,e,jj,1r,rJ) 
AA' AA' AA' AA' -A' . A = Fa.{3((x -a )1rA',1rA"(-x -a )rJA,rJA,e J1rA',ej rJA). 

which satisfies the differential equations 
A . A' - A A' rJ 8~fa.{3=0, 1r 8A'jfa.{3=0, rJ 1r DAA'fa.{3=O. 

Thus, after splitting, there are "potentials" W~ (x, e, 8), ~ A'j(x, e, 8), and <pa(x, e, jj) 
given by 

A· A· A' - A' - A A' A A' rJ 8~fa. = rJ W~, 1r 8A'jfa. = 1r WA'j, rJ 1r DAA'fa. = rJ 1r <PAA' 

and defined up to gauge freedom W~ I-t w~ + 8~ g, ~ A' j I-t ~ A' j + a A' J g, and 
<Pa I-t <Pa + Dag for any sliperfunction g(x, e, jj). These potentials are not ar-
bitrary, however. Since rJB8~W~ = rJArJB8~8~fa. and (8~, 8~) = 0, it fol-
lows that 8i~ W~) = O. There is a similar equation on ~ A' j, and finally, since 
(8~aA'k) = 28tDa, one obtains 8~ ~ A'k + aA'kW~ = 28t<Pa. With standard argu-
ments alluded to earlier this proves the following 

THEOREM (WITTEN). Hl(A[N], 0) is isomorphic to the space of "potentials" 
W~, ~ A' j, and <P a on M[ N] satisfying 

8{A W~)+8~A w~) = 0, aj(A' ~ B')k+ak(A' ~ B')] = 0, 8~ ~ A'k+aA'kw~ = 28t<Pa 

and defined up to gauge frredom ofw~ I-t w~ +8~g, ~A'j I-t ~A'j +aA'Jg, and 
<Pa I-t <Pa + Dag for an arbitrary superfunction g = g(x, e, jj). D 

If f a.{3 is actually a thickambitwistor function rather than just a superambitwistor 
function-i.e., it represents an element of Hl(A(N), O)-then the resulting poten-
tails satisfy further restrictions. To identity these restrictions recall (§3) that, for 
thickfunctions, 8~ = jjA'j8AA" so jjA'jrJA8AA'fa.{3 = rJA8~fa.{3 = O. It is not the 
case, however, that rJA8AA'fa.{3 necessarily vanishes. For example, if N = 1 and 

A B A'B' Fa.{3(Z, W, X) = w w KAB/ L 1rA'1rB' 

for constant spinors KAB = K(AB) and LA' B' = L(A' B'), then 

fa.{3 = (x - a)a(x - a)b K AB1rA'1rB' / LA' B'1rA'1rB' 
b b A'B' = (xax - 2aax )KAB1rA'1rB,/L 1rA,1rB', 

so 
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Nevertheless it is the case that OA''Y/AbAA'fcx{3 = 0 since OA'OB' is skew in A', B ' , 
whereas 7rA'7rB' is symmetric. This example brings to light an earlier subtlety which 
was skimmed over, namely that it is not completely obvious that 'Y/Aa~fcx{3 = 0 for 
fcx{3 created from a superambitwistor function Fcx{3. Nevertheless it is elementary to 
check that this is indeed the case by expanding f cx{3 as a power series. This difficulty 
also illustrates why it is necessary to introduce superambitwistors. It might at first 
be thought that a naIve approach using the thickcorrespondence might interpret 
Hl(A(N), 0) on M(N), but such a method would require 'Y/AbAA' fcx{3 to vanish. In 
spite of this problem we can still conclude: 

LEMMA. Starting with a cohomology class in Hl(A(N), 0) the corresponding 
Witten potential w~ may be chosen to have the form w~ = OA'j~AA' for ~a 
~a(x,a). 

PROOF. Consider 'Y/AbAA' fcx{3 as a power series expanded in the variables a: 

'Y/AbAAI fcx{3 = PA'(x, 7r, 'Y/) + abpA'b(X, 7r, 'Y/) + abaCPA'bc(X, 7r, 'Y/) + .... 
As remarked earlier, these variables enjoy certain symmetries forced by the anti-
commuting nature of Of and {jA'l. For example, this series necessarily terminates. 
More precisely, if each coefficient is decomposed into irreducible spinor parts (see 
[18]), then many of these parts do not contribute (because they conflict with the 
symmetries of the variables aa). If N = 1 for example, then one may take 

PA' = PA', 
PA'b = SA' B'qB + r A' B' B where r A' B' B = r(A' B')B, 
PA'bc = SA'SBCSB'C', 

and all other coefficients zero. The case N = 2 is worked out in detail in §7, but for 
this proof the details are unimportant. Contracting with OA'j now has the effect 
(by Schur's lemma) of preserving some of these irreducible parts while eliminating 
others. Again to take the case N = 1: 

-A' A -A' -A' b o 'Y/ bAA'fcx{3=O PA'(x,7r,'Y/)+O aSA'B'B(X,7r,'Y/). 

Hence, the vanishing of OA' 'Y/AbAAI fcx{3 means precisely that these surviving coef-
ficients must vanish. Thus one can apply the Sparling-Ward splitting method to 
these coefficients in order to define the corresponding parts of a a power series 
expansion of ~a. Note that 

A-A'· A· A· 'Y/ 0 l~AA' ='Y/ a~f='Y/ w~ 

because ~ only appears in conjunction with OA' j, and it is exactly the coefficients 
for OA'j~AA' which have been determined by the splitting method. Thus w~ = 
OA'j~AA' as required. D 

Similarly, q, A'j may be taken to have the form OfI:AA, (x, a). The equations 
of Witten's theorem may be phrased in terms of ~a and I:a with restricted gauge 
freedom ~a f---+ ~a + bag and I:a f---+ I:a + gag for any thickfuncti<;?n g( x, a). However, 
one can specialize a little further by insisting that aa~a = aa~a. This can always 
be arranged by a change of gauge: 

aa(~a - I:a) f---+ aa(~a - I:a) + 2aa Eag, 
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and (1a Ea is a kind of Euler operator in (1, whereas (1a(~a - ija) as a power series in 
(1 has no zeroth order term. This choice of gauge was introduced independently by 
Harnad, Hurtubise, Legare, and Shnider [11] as "transversal gauge". They use it to 
investigate Witten's constraint equations but do not consider the descent to A(N). 
This gauge fixing implies that further gauge freedom is confined to using g which 
are independent of (1-i.e., ordinary holomorphic functions. These observations 
may be summarized as follows. 

THEOREM. Hl(A(N), 0) is isomorphic to the space of "potentials" ~a(x,(1) and 
ija (x, (1), whose power series expansions in ()f and OA' i contain no irreducible com-
ponents annihilated in forming OA' i~AA' and ()f ijAA', respectively, and which sat-
isfy 

-C"-D'k A' () J() cC'DI{8(A~B)AI} = 0, 
C D -A-()i ()k cCD{8(A'~BI)A} = 0, 
B -B" - - . ()k () J{8ABI~EA' - 8BAI~ABI} = 28lea for some e a(x,(1), 

(1a~a = (1aija 

modulo the gauge freedom of ~a t-+ ~a + 8ag and ija t-+ ija + gag for an arbitrary 
function g = g(x). D 

Notice that ea is gauge invariant, as are the terms in the power series expansions 
of ~a and ija above order zero. In some sense ~ and ij may be thought of as self-dual 
and anti-self-dual parts, but note that it is not necessarily the case that 8t~~B)A" 
for example, vanishes. 

5. The Yang-Mills equations. One can now attempt systematically to find 
the general solution of the equations in the previous theorem. This is a rather 
tedious task carried out in §7 but the results are remarkably simple: 

THEOREM. The general solution of the equations of the previous theorem are 
as follows. Only ~a and ija need be given since e a is determined by one of the 
equations. 

N= 1: 
~a = cPa + (1bcA'BI(PAB + hCAB), 
- b 
~a = cPa + (1 CAB(PA' B' + hCA' BI), 

where cPa(x) and h(x) are arbitrary, 
lDA'",- iDA "'-PAB = -2 (A'f'B)A" PA'B' = 2 (A''f'B')A, 

and cPa is determined up to the gauge freedom cPa t-+ cPa + Dag. 
N=2: 

~a = cPa + (1b{PABcA'B' + qAIBICAB} 
+ (1b(1c{r ABCC'CA'B' + SCC'CABCA'B' + tAA'cBccB'C'} 
+ (1b(1b(1d{UABcCDcAIBICCIDI}, 

ija = cPa + (1b{pA' B'CAB + qABcA' BI} 
+ (1b(1c{r A'B'C'CCAB + SCC'CABCA'B' + tAA'cBccBIC'} 
+ (1b(1c(1d{ UAI B'CC' DICABcCD}, 
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where cPa (x) is arbitrary, 
_ 1 A' PAB - -2 D(AcPB)A" 

qA'B' = 3PA'B" 
r ABCA' = -~D A'(APBC) , 
s - 14J a - 9 a 

ta = -gJa, 
1 A' UAB = 6D(A JB)A" - - 1DA J UA'B' - -6 (A' B')A' 

and cPa is determined up to gauge freedom cPa f-+ cPa + Dag. 
N~3: 

~a = cPa + (J"b{ -Fb--;' + 3Fb~} + (J"b(J"c {~D(cFb)a + iD(cFb1a} + ... 
n 

.-"-, 
2 (J"b(J"c ... (J"e + 

(n + 1)! {( _1)n D(e'" DcFb)a + (2n + 1)D(e'" DcFb)a} +"', 

~a = cPa + (J"b{F,! - 3Fb--;,} + (J"b(J"c {~D(cF~a + iD(CFb)a} + ... 
n 

.-"-, 
2 (J"b (J"c ••• (J"e 

+ (n + 1)! {D(e'" DcFb1a + (-1t(2n + 1)D(e'" DcFb)a} +"', 

where F;;), = -!D(~cPB)C'CA'B" F;J, = !D(A,cPB')CCAB, and D[aFb~l = 0 (or 
equivalently, D[aFb~l = 0). In the notation from the case N = 2, Fab = PABCA'B', 
f;J, = PA' B'CAB' and Ja = O. In case N ~ 3 <Pa is restricted by the equation 
Ja = 0 (equivalently, DcPa = 2Dr D~'cPb for D = Db Db) but is otherwise free and 
determined up to gauge freedom cPa f-+ cPa + Dag. 0 

For this theorem and its corollary below there are complications for the non-
Abelian case. For N = 1,2, and 3 the obvious generalization holds for the non-
Abelian case, but to extend a vector bundle from A(3) to A(4) there are genuine 
obstructions (see [14]) which show up on M. Although the supersymmetric method 
will prove this, the explicit computations rapidly get out of hand. 

COROLLARY. Including the case N = 0 for completeness, Ha(A(N), 0) has the 
following interpretation on M. Letting G denote the space of holomorphic poten-
tials/gauge on M, H1(A, 0) ~ G. There is an exact sequence 

0-+ {hcABcA'B'} -+ H1(A(1), 0) -+ G -+ O. 

H1(A(2)' 0) ~ G. 

For N ~ 3, H1(A(N), 0) ~ holomorphic source-free Maxwell fields on M i.e. for 
which the current J vanishes. 0 

There are alternative methods of proving some of these statements using similar 
supersymmetric means. For example, one can prove H1(A(2)' 0) ~ G as follows. 
From the exact sequence of sheaves on A, 

0-+ 0(1)(-1,-1) -+ 0(2) -+ 0 -+0, 
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it follows that Hl (A(2), 0) '= Hl(A, 0) '= G if and only if Hl (A(1) , 0 (-1, -1)) = O. 
To show this consider the exact sequence 

o --t 0(-2, -2) --t 0(1)( -1, -1) --t O( -1, -1) --t O. 

By the Penrose transform [5] Hl(A,0(-2,-2)) = 0, so H 1(A(1),0(-I,-I))--t 
Hl(A, O( -1, -1)) is injective. This map factors through Hl(A[l]' O( -1, -1)) so it 
suffices to show that Hl(A[l]' O( -1, -1)) = O. If Faf3(Z, W,~, 'IjJ) is a representative 
cocycle then, forming f af3 from the superambitwistor incidence relations, 

A A'- A A' '" oAfaf3 = 0, Jr 8A'faf3 = 0, '" Jr DAA'faf3 = ° 
and splitting faf3 = fa - ff3 gives ",AOAfa, Jr A'8A' fa , and ",AJrA'DAA,fa globally 
defined as in an earlier argument. However, in this case ",AOAfa is homogeneous 
of degree (-1,0) so necessarily vanishes. Similarly, Jr A'8A'fa = 0 and, although 
",AJrA' D AA' fa is homogeneous of degree zero, it vanishes too because 

These supersymmetric methods apply to calculations with other homogeneities 
also. For example Hl (A(2J' 0 (-1,0)) is isomorphic to solutions of the neutrino 
equation on M (as observed by Henkin and Manin [12]). 

6. Formalities and rigor. Delaying for the moment the formal definition of 
a global supermanifold, the local calculus on a holomorphic supermanifold is as 
follows. Let x be a local variable in em. A superfunction is a finite formal sum 

n 
,.-"--.., 

F(x, y) = f(x) = ya fa(x) + ... + ya y f3 ... yt5 faf3 ... t5(X) 

where the indices take values in 1,2, ... , n and the coefficients are skew in these 
indices. In other words, F is a section of 1\' (on). "Calculus" in the anticommuting 
variables is an entirely algebraic procedure. It is analogous with the calculus of 
formal power series (in commuting variables) and, indeed, the results are of the 
form of algebraic identities which all have counterparts in the commuting variables 
case obtained by interchange of symmetrization with antisymmetrization (reflection 
of Young tableau). In this sense it is possible, as observed by Roger Penrose, to 
regard supersymmetric calculus as negative dimensional ordinary tensor calculus 
[15]. As an example, consider the de Rham sequence in the category of formal 
power series: 

F(x) = f + xa fa + xaxb fab + ... 
for a = 1,2, ... ,m. The coefficients are symmetric in the indices. A p-form 

p 

for Oa ... c = Ora .. c] may also be expanded as a power series 

Oa ... c(x) = Wa ... c + xdWa",cd + XdXeWa"'cde + .... 
Each coefficient in this expansion is skew-symmetric in the first p indices and sym-
metric in the remainder. The kth order term in such an expansion therefore has 
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symmetries (using Young Tableau (see e.g. [18, 25])). 

k 
~ 
OJ:] = 

The entire de Rham sequence therefore takes the form 

___ --'l»..QI ____ ~> n 2 __ ~> ... 

\I 1/ II 

ITO 

from which exactness (Le. the Poincare lemma) is clear. The de Rham sequence in 
anticommuting variables has p-forms 

O(y) = O"""'Y(y) dy'" 0··· 0 dy'Y 
'-..,-' 

for n", ... 'Y = n(",. '''1) and, by definition, each coefficient is a formal series 

Each coefficient in this expansion is symmetric in the first p indices and skew in 
the remainder. The kth order term in such an expansion therefore has symmetries 

~ 
II I I I ) = 
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The entire de Rham sequence therefore takes the form 

and again exactness is clear. The full de Rham sequence on a supermanifold is 
locally the tensor product of the ordinary de Rham sequence for the underlying 
manifold with the above construction for the anticommuting variables. There are 
similar comments for results such as the Frobenius integrability theorem. 

Following Kostant [13], a supermanifold in the holomorphic category consists 
of an underlying classical holomorphic manifold Q together with a sheaf of 1 2-

graded C algebras O[n] called the sheaf of germs of superfunctions. Locally O[n] 
is required to be of the form I\' (on) graded according to odd and even degree. 
O[n] is also required to be augmented over 0; i.e., there is a C homomorphism 
O[n] ~ O. Locally this augmentation is taking the degree zero part of /'dO n). 
This definition compares well with the precise idea of formal thickening given in the 
context of thickambitwistors in §3. Thickening A is also achieved by augmenting 
the underlying classical sheaf. For both supersymmetric extensions and formal 
thickenings there is an interesting difference between the holomorphic and smooth 
categories. For the case of supermanifolds, Batchelor [1] has shown that in the 
smooth category the sheaf of superfunctions is always isomorphic to the sheaf of 
sections of ''0 E for some smooth vector bundle E. In other words, the structure 
of a supermanifold contains no more information than that of an additional vector 
bundle. In the holomorphic case, however, there are nontrivial supermanifolds 
with structure over and above the underlying vector bundle. As pointed out by 
Green [10], this further information is contained in various holomorphic cohomology 
groups. The corresponding analysis for formal thickenings is carried out in [6]. Both 
A(N) and A[N] are nontrivial in this sense. They may be constructed as follows. 

On PT X PT* the canonical section X = Z"W" of 0(1,1) defines A as its zero 
set and so allows one to identity I = 0 (-1, -1) where I is the ideal sheaf of A. 
Thus, the definition of A(N) given in §3 may be rewritten as an exact sequence on 
PTxPT*, 

X N + 1 
O( -N - 1, -N - 1) ~ 0 ~ O(N) ~ 0, 

noting that O(N) is supported on A. 
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To define A[M] one can adopt an analogous procedure. First define P[N] as 
P together with the structure sheaf A OJ (-1). Thus, P[N] is the trivial super-
manifold with underlying vector bundle OJ ( -1). This should better be written as 
V 0c 0 ( -1) for V an N-dimensional complex vector space since a particular basis 
for V is unnecessary. In other words, the index j is an abstract index [18]. Up 
to isomorphism, there is no choice for this superstructure on P since the relevant 
cohomology groups describing the freedom in choosing a superstructure based on 
A OJ ( -1) may be computed (by using the Bott-Borel-Weil theorem as explained 
for example in [5]) and turn out to be zero. Similarly, p[~V] is defined to be P* with 
structure sheaf 1\' OJ(-I) = I\'(V* 0c 0(-1)). The supermanifold P[N] x piN] is 
P x P* with structure sheaf S = A(Oj(-I) EB Ok(-I)). A superfunction on P[N] 
may be written as a formal expansion 

where 
F(Z,~) = J(Z) + ~j Jj(Z) + ~J~k hk(Z) + ... 

J n E O[ij .. k](-I). 
,-"-., 
ij···k 

With a similar convention for p[Nl' ZO:Wo: - 2~J7jJJ is a canonically defined section 
of S(I, 1) == 0(1,1) 00 S. This allows one to define O[N] supported on A by means 
of the exact sequence 

Z"W -2,i'l); S( -1, -1) "-. J S -. O[N] -. o. 
This is tantamount to decreeing that ZO:Wo: = 2~J7jJj in O[N]. It is easy to show 
that A[N] comes equipped with a mapping A[N] -. A(N) or, equivalently, a homo-
morphism of augmented rings O(N) -. O[N]. 

More generally, a mapping between supermanifolds is defined to be a holomor-
phic mapping of the underlying classical manifolds together with a homomorphism 
of structure sheaves as described for general ringed spaces for example in [2, 8]. It 
is in this sense that the incidence relations of §3 should be interpreted~i.e., as a 
correspondence (cf. [3, 4, 5]) 

/ 

augmenting the classical correspondence between ambitwistor space and Minkowski 
space [3, 5]. 

It remains to make sense of M[N] and G[N]. This section closes with a definition 
of M[N], leaving G[N] and other details to the reader. All these definitions follow 
the same theme. I would like to thank Toby Bailey for his critical appraisal of these 
constructions. 

On M x M adopt the temporary convention that 0 A' denotes the primed spin 
bundle on the first factor whereas 0 A should denote the unprimed spin bundle with 
respect to the second factor. Thus, OA' and OA as vector bundles have fibres K 
and (TIL)* over a point (K,L) E Gr2(T) x Gr2(T) = M x M (see [4]). Equip 
M x M with a superstructure sheaf 

S = A:(OAIJ EB O;D = 1\" (V 0 OA' EB V' 00A). 
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Thus 

and 
sa = oa 00 S = oa EB [Olh EB o~j] EB [Ob EB ... ] EB .... 

Consider the bundle oa on M x M. Over (K, L) it has fiber 

K* 0 (T /L) = Hom(K, T / L) 

and hence has a canonical section given by the composition K '--+ T --+ T / L. 
Denote this section by za and observe that it defines the diagonal {K = L} inside 
M x M. This diagonal is canonically isomorphic to M. The superstructure on M is 
obtained by slightly modifying this defining function. Let (J'a denote the section of 
sa given by the Kronecker delta 8/: E Ob as in the above expansion of sa. Formally, 
(J'a = ()A'j()t. Define O[N] on M by the exact sequence 

za (To. 

Sa ~ S --+ O[N] --+ O. 

Notice that O[N] is not I-graded since it is defined by a I2-homogeneous but not 
I-homogeneous ideal. 

1. Appendix. It is the purpose of this appendix to prove the theorem of §5 in 
detail. This is a good example of spinor calculations in anticommuting variables. 

Case N = 1. Since Ea must contain no terms annihilated by forming OA'EAA' 
it follows that it must have the form 

Ea = ¢a + (J'bcAIB,jAB. 

Further decomposing JAB into its symmetric and skew parts, applying similar rea-
soning for t a , and insisting that (J'a Ea = (J'a ta means that 

Ea = ¢a + (J'bcA'BI(PAB + hCAB), 
~ b 
Ea = ¢a + (J' cAB (PA' B' + hc A' B' ), 

and we are left with the equations 

and 

A' A' A' A' A' 
8(A E B)AI = D(A¢B)AI + cA' PAB + (J'ccAlcl(D(APB)C + D(AhcB)d 

A' A' = D(A¢B)AI + 2PAB + (J'C(DCI(APB)C + D(AhCB)d 
-C' -D' A' -c' -D' A' * () () cCIDI{8(A E B)A'} = () () cCIDI(D(A¢B)AI + 2PAB). 

Thus, PAB = -!Dt~¢B)AI and similarly PA'B' = !DtAI¢BI)A' 
Case N = 2. Here and more generally it is perhaps not quite so obvious what 

symmetries are imposed on the coefficients of an expansion in (J' by virtue of the 
anticommuting nature of ()t and OA' j. These symmetries may be expressed in terms 
of Young tableau [25]. 
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For example 

III] (S ® S') = ( 0::0 S ® ITIJ S') $ ( ~ S 00 EP S ,) $ ( §S ® § s ' ) . 

For spinors, Sand S' are 2-dimensional so the last term vanishes. If N = 2 and we 
decompose Xbcd in abacadXbcd according to this formula then only the term in 

SJS ® EP S' 
survives because (}~B {}; (}f) = O. Therefore the term in abacad , for example, in the 
expansion of ~a, 

~a = ... + abacadXabcd +"', 
has symmetries and hence spinor decomposition of the form 

$ C[jj S ® EfTI S') e (EE S ~ 83 s' ) . 

However, in forming OA' ~AA' some of the representations are annihilated so, finally, 
the term in abacad may be taken to have the form 

where UAB(X) is symmetric in the indices A and B. Similar reasoning applied to 
other terms and to I:a and insisting that aa~a = aaI:a means that ~a and I:a take 
the form 

~a = <Pa + abGab + abac{r ABCC'EA' B' + SCC'EABEA' B' + tAA'EBCEBIC/} 

+ abacad { UABECDEA' B'EC' D' + VEABECDEA' B'EC' D/}, 

I:a = <Pa + abGab + abac{r A' B'C'CEAB + SCC'EABEA' B' + tAAIEBCEBIC/} 

+ abacad { itA' B'EC' D'EABECD + VEABECDEA' B'EC' D' }, 

where G(ab) = G(ab) and Sa + ta = Sa + t a . 
It remains to impose the differential equations 



SUPERSYMMETRY, TWISTORS, AND YANG-MILLS EQUATIONS 629 

To study these equations it is necessary to prove the following purely algebraic 
lemmata (which assume N = 2). 

LEMMA 1. OC'jOD'kcC'D,{x(x,a)} = 0 if and only if X is of the form 

X = aPaqO:pq + higher order terms 

where cPQcP'Q' O:pq = ° (or, equivalently, O:pq = O:(PQ)(P'Q')). 

PROOF. First consider oC'joD'kcc'D,aP: 

OC'lOD'lcC'D,(OfOp'l + OfOP'2) = OC'10D'lcC'D,ofoP'2, 

so already the term in a P in the expansion of X must vanish. Next consider 
OC' jOD'kcc' D,aPaa: 

OC'lOD'lcC'D,(ofop'l + OfOP'2)(O~OQ'1 + O~OQ'2) 
= HOC'lOb, ][O¥OR2][OR'20h, ]cPQ cP'Q', 

OC'10D'2 cC'D,(OfOP'1 + OfOP'2)(O~OQ'1 + O~OQ'2) 
-C'l -P'l -D'2 -Q'2 P Q -C'l -Q'l -D'2 -P'2 Q P = 0 0 cC'D'O 0 0102 + 0 0 cC'D'O 0 0102 

= HOR'101, ][OS'20~,](cC' P' cC' D,cD'Q' ofo~ + cC'Q' SC'D,SD' P' O~On 

= HOR '101, ][OS'20~, ](Of O~ cP'Q' - o~of cP'Q') 

= _HOR'101,][OS'20~, ][OfOR2]cPGcP'Q'. 

Similarly, OC'2 OD' 1 cC' D' aP aq and OC' 2 OD' 2 cC' D' aP aq are proportional to cPQ cP' Q' . 
Hence cPQcP'Q' O:pq = 0, but otherwise there are no conditions on O:pq. All higher 
order terms OC'joD'kcc'D,aPaqar, etc., vanish so the higher order terms of X are 
unrestricted. 0 

LEMMA 2. In terms of an expansion in a 

Xb(X, a) = O:b + aPO:bp + aPaqO:bpq + aPaqar O:bpqr + ... , 
O:OB'j{Xb(x,a)} = 2818 for some 8(x,a) if and only if O:b = 0, cBPO:bp = 0, 
cB' P' O:bp = 0, and cPQ cP'Q' [2O: pbq - O:bpq] = O. 

PROOF. Consider O:OB'jaP for j = 1,2 and k = 1,2: 

OfOB'2 aP = OfOB'2(OfOP'1 + OfOP'2) 

= i[O~OQtlcBPOB'20P'1 + ilOQ'20~,]cB'P'OfOf, 
O~OB'laP = O~OB'l(OfOP'l + OfOP'2) 

= ilOQ'10b,]cB'P'O~Of + i[O~OQ2]cBPOB'10P'2, 
OfOB'l aP = OfOB'l(OfOP'l + OfOP'2) 

= - HO~OQ1][OQ'10b, ]cBP cB' P' + OfOB'10f OP'2, 

O~OB'2aP = O~OB'2(OfOP'1 + OfOP'2) 

= - HO~ OQ2][OQ'20~, ]cBP cB' P' + O~ OB'20f OP' 1. 
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N BP 0 B' P' . h· h OW S O'.bp = = S O'.bp ¢> O'.BPB'Q' = O'.(BP)(B'Q'), III W IC case 

By (jB' k (JP O'.bp = 0 if j =I- k 

and 

as required. 
Next consider Bf!(jB'j(Jp(Jq: 

Bf(jB'2(Jp(Jq = Bf(jB'2(BfOP'1 + BfOP'2)(BfOQ'1 + B~OQ'2) 
= HBfBR1 ][OR'20k , ](B~OP'ISBP SB'Q' + BfoQ'lSBQ SB' P'), 

B¥ (jB'l(Jp(Jq = HBfBR2][OR'l01,] (Bf OQ'2SBQ SB' P' + Bf OP'2 SBP SB'Q'), 

BfoB'l(JP(Jq = Bf(jB'l(BfOP'l + BfOP'2)(BfOQ'l + B~OQ'2) 
= BfoB'lBfoP'lB~(jQ'2 + Bf(jB'lBfoP'2BfoQ'l 

+ Bf(jB'lBfoP'2B~OQ'2 
= -~ [BfBR1][(jR'l(j1,] (SBP SB' P' B~(jQ'2 + SBQSB'Q' Bf(jP'2) 

- ~ [BfBR2] [(jR'2(jk,] (sPQ sP'Q' Bf (jB'l), 

B¥ (jB'2(Jp(Jq = - HBfBR2 ][(jR'20k ,] (sBQ SB' Q' BP Or 1 + SBP SB' P' Bf OQ'l) 

_ HBfBR1 ][(jR'l(j1,]( sPQ sP'Q' B¥OB'2). 

Since O'.bpq is symmetric in p and q, it admits an irreducible spinor decomposition: 

O'.bpq = O'.BB,SPQSp'Q' + O'.BPQB'P'Q' + O'.BPQ(P,SQ')B' 
+ SB(PO'.Q)B'P'Q' + SB(P{3Q)(P,SQ')B' 

where each spinor field on the right-hand side is symmetric in its indices. Thus, 
B -B'2 1 R -R'2 -2 8 -8'1 9 8 -8'1 B1 B (JP(JqO'.bpq = 4:[B1 BR1][B BR,]( -2B2 B 0'.88' - 'lB2 B (388'), 
B -B'l 1 R -R'l -1 8 -8'2 9 8 -8'2 B2 B (JP(JqO'.bpq = 4:[B2 BR2][B BR,]( -2B1 B 0'.88' - 'lBl B (388'), 
B -B'l 1 R -R'l -1 8 -8'2 9 8 -8'2 B1 B (JP(JqO'.bpq = -4:[B1 BR1 ][B BR,](2B2 B 0'.88' - 'lB2 B (388') 

1 R -R'2 -2 8 8'1 - 4:[B2 BR2 ][B BR'](4B1 B 0'.88'), 
B -B'2 1 R -R'2 -2 8 -8'1 9 8 -8'1 B2 B (JP(JqO'.bpq = -4:[B2 BR2 ][B BR,](2B1 B 0'.88' - 'lBl B (388') 

1 R -R'l -1 8 -8'2 - 4:[B1 BRd[B BR,] (4B2 B 0'.88'). 

So Bf!(jB'j(Jp(JqO'.bpq = 28tr if and only if 40'.8 + 9{38 = O. But 

PQ P'Q' _ PQ P'Q' _ 9 
S S O'.bpq - 40'.b and S S O'.pbq - O'.b - 4:{3b 

so 
- PQ P'Q' 40'.8 + 9{38 - S S [-40'.pbq + 20'.bpqj. 

Hence Bf!(jB'j(Jp(JqO'.bpq = 28tr if and only if sPQ sP'Q'[20'.bpq - O'.bpq] = O. Higher 
order terms are easily seen to impose no extra conditions. 0 
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Recall that I;a = cPa+abGab +··· and ija = cPa+abGab +··· where G(ab) = G(ab)' 
Applying Lemma 2 to 

OAB,ijBA' - 8B A,I;AB' = DAB'cPBA' + GBA'AB' - DBA'cPAB' + GAB'BA' + ... , 
it follows that Gab and Gab are skew. Thus they may be written 

Gab = PABCA'B' + qA'B'CAB, Gab = PA'B'cAB + qABcA'B" 

where P, q, P, and q are symmetric in their indices. Hence, Lemma 2 implies 

0= DAB'cPBA' + PA'B'cBA + qABcA'B' - DBA'cPAB' + PABCB'A' + qA'B'CAB, 

which, by contracting with cAB and c A ' B', is equivalent to 

Also, by applying Lemma 1 to 0t~I;B)A' = DtAcPB)B' + 2PAB + ... , 
A' 0= D(AcPB)A' + 2PAB, 

and a similar argument for 8tA,ijB')A implies 

0= Dt"cPB')A - 2PA'B" 

These equations have the unique solution 
1 A' 

PAB = -'2 D (AcP B )A" - IDA ..h 
PA'B' = '2 (A''I-'B')A' 

qA'B' = 3PA'B" qAB = 3PAB' 

Hence P and q are determined in the expansion of I;: 

I;a = cPa +ab{PABcA'B' +qA'B'cAB} 

+abaC{TABCC'cA'B' + SCC'CABCA'B' +tAA'cBccB'C'} 

+ abacad{UABcCDcA'B'cC'D' + VCABcCDcA'B'cC'D'} 

= cPa + ab{PABcA'B' + qA'B'cAB} 
b c{1 1 1 + a a '2T ABCC'CA' B' + '2T ABCB'cA'C' + '2SCC'cABcA' B' 

+ ~SBB'CACCA'C' + tAA'cBccB'C'} 
b C d{ 1 1 + a a a 3UABcCDcA'B'cC'D' + 3UAccBDcA'C'cB'D' 

1 1 
+ 3UADcBccA'D'cB'C' + 3VcABcCDcA'B'cC'D' 

+ ~VCACCBDCA'C'CB' D'+ ~VCADCBCCA' D,cB'C'}. 

In the second version the coefficients have been arranged symmetric in bed . .. which 
facilitates differentiation: 

A' A' 
o(AI;B)A' = D(AcPB)A' + 2PAB 

+ aC{DC'(APB)C - cC(AD~;qA'C' + 3T ABCC' - CC(ASB)C' + 2CC (AtB)C'} 

C d{ ID ID 1 D + a a '2 C'(ATB)CDD' + '2 D'(ATB)CDC' - '2cC(A B)C'SDD' 

+ .... 
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Plugging this expression into Lemma 1 gives 
A' 

DC'(APB)C - cC(ADB)qA'C' + 3r ABCC' - cC(ASB)C' + 2cC(AtB )C' = 0, 
A' A' 

D(ASB)A' + 4D(AtB)A' + 12uAB = O. 

The first of these equations decomposes (by contracting with cBC) into the two 
equations: 

-~Dg,PAC + 3Df qA'C' + ~SACI - 3tAC' = 0 and DC'(APBC) + 3r ABCC' = O. 

This fixes r as claimed in §5 and, letting Ja = Dlj'PAB (= - Dlj' PAl BI), there 
remain the following equations (after a similar argument based on 8~/i;B/)A): 

and (from earlier gauge fixing) Sa + ta = Sa + ta. 
There are not quite enough equations here to fix s, t, S, t, U and U. 
Now consider the remaining differential equation: 

bAB,i;BA' - 8BA/~ABI 

= DAB'¢BA' - DBA'¢AB' - PA'B'CAB + qABcAIB' - PABCA'B' + qA'B'CAB 

+ (JP{DAB'PA'P'cBP + DAB,qBPcA'P' - DBA'PAPcB'P' - DBA'qB'P'cAP 

- r A'B'P'PCAB + r A'B'P'ACBP - SPPlcABcAIB' + SABlcBPcA'P' 

+2tBA'cAPCB'P' -rABPpICAIB' +rABPAlcBIP' -SPP'CABCA'B' 

+ SBA'CAPCB' pI + 2tAB'cBPcAP'} 

+ (JP(JqgDABlr A'P'QIQcBP + ~DABlr A'P'QlpcBQ 

+ ID - + ID -"2 ABISQQlcBpcAIP' "2 ABISPPlcBQcA'Q' 
- 1 

+ DABltBA'cPQcPIQ' - "2 DBA'rAPQQ'cB'P' 

- ~DBA'rAPQPlcBIQI - ~DBA'SQQICAPCBIPI 

- ~DBA'SPPlcAQcB'Q' - ~DBA'tABlcPQcPIQI 

- UAIBlcPIQ,cABcPQ + UAIPlcBIQ,cBPcAQ 

+ UA'Q'cB'P'cBQcAP - VCAIBlcPIQ,cABcPQ 

+ VCA'PlcBIQ'cBpcAQ + VCA'QlcB'p'cBQcAP 

- UABcPQcAIBlcPIQ' + UApcBQcBIPlcAIQ' 

+ UAQcBpcBIQlcAIP' - VCABcPQcAIBlcPIQ' 

+ VCApcBQcB' pICA'QI + VCAQcBpcBIQlcA' pI}. 

Utilizing Lemma 2 on the coefficient of (JP gives the following new restrictions: 

2DA B'PA'P' + D;i'PABcB'P' - DAA'qBIP' + 3rAIBlpIA + SAP'cA'B' + 2SABlcAIP' 

+ 2tAA'cB'P' + SAP'CA'B' + SAA'CB'P' + 4tABlcAIP' = 0, 
- D;i'PA'B'cBP + DAA'qBP - 2DB A'PAP + SPA' CAB + SAA'cBP + 4tBA'cAP 

+ 3r ABPA' + SPA' CAB + 2SBA'cAP + 2tAA'cBP = O. 
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Now f ABC = ° if and only if f(ABC) = 0, sAC f ABC = 0, and SBC f ABC = 0. Hence 
these two equations are equivalent to the following system of five: 

2D A(A'PB'P') - D A(A,qB'P') + 3; A'B'P'A = 0, 
D A'(AqBP) - 2D A'(APBP) + 3r ABPA' = 0, 

B B' --D A'PAB + D A qA'B' + 5sa + 2ta + 2sa + 8ta = 0, 

- Df PA'B' - D:f,qAB + 2sa + 8ia + 5sa + 2ta = 0, 
B' - B - -- 2D A PA'B' + 2D A'PAB + Sa + 4ta + Sa + 4ta = 0. 

The first two of these equations reduce to; A'B'C'A = !D A(A'PB'C') and r ABCA' = 
-!DA'(APBC) so this is consistent with the same conclusion from earlier investi-
gation of 8t~~B)A' and 8tA,EB')A' The remaining three equations, together with 
earlier restrictions reduce to 

- 2Ja + 5sa + 2ia + 2sa + 8ta = 0, 
4Ja + Sa + 4ia + Sa + 4ta = 0, 
- 5Ja + ~Sa - 3ta = 0, 

- 2Ja + 2sa + 8ia + 5sa + 2ta = 0, 
Sa + ta - Sa - ia = 0, 

3 - -5Ja - "2sa + 3ta = 0, 

and, although overdetermined, these equations are consistent and have the unique 
solution Sa = Sa = 194 J a and ta = ia = - ~ J a' Feeding these values into the 

. t' cd' 1 DA' J d prevlous equa IOns lor UAB an UA' B' gIVes uAB = "6 (A B)A' an UA' B' = 
-!DtA,JB')A as claimed in §5. It remains to study the consequences of Lemma 2 
for the coefficient of upuq, namely 

PQ P'Q' 1 1 1 ° = s s [2hDAP';A'B'Q'QSPB + ... } - hDAB,rA'p'Q'SBP + ... } 
3 p' - 1 p' - - -= 2{ -"2D A rA'B'p'B -"2 D A SBP'SA'B' + DAA'SBB' + DAB,tBA' 

+ ~D:':,rABPB' + ~D:':'SPB'SAB - DAA'SBB' - DBA,tAB' 
+ 3UA'B'SAB + 6VSABSA'B' + 3UABSA'B'} 

- {DAB'SBA' + 4DAB,iBA, - DBA'SAB' - 4DBAdAB' 

- 6UA' B'SAB - 12vsABsA' B' - 6UABSA' B'}, 

Substituting in this equation for s, S, t, i, u, and U yields 

3(Dr; A'B'P'B - D:':,r ABPB') = ~Dr JBP'SA'B' - ~D:':,JPB'SAB 
+ ~(DAB,JBA' - DBA,JAB') + 24vSABSA'B" 

The left-hand side of this equation, however, may be rewritten 

3(D:':'; A' B' P' B - D:':,r ABPB') = Dr D B(A'PB' P') + D:':,D B'(APBP) 
1 (DP'D - DP'D - DP'D-= 3" A BA'PB'P' + A BB'PA'P' + A BP'PA'B' 

+ D:':,DB'APBP + D:':,DB'BPAP + D:':,DB'PPAB) 

= !(-DBA,JAB' - DBB,JAA' - ~SABDpA'B' 

+ DAB,JBA' + DBB,JAA' - ~SA'B,DpAB) 

= !(DAB,JBA' - DBA,JAB') - !(sABDpA'B' + SA'B,DpAB)' 
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In particular, this expression is skew symmetric in a and b. Thus, v = 0 and by 
contracting both sides with sAB and SA' B' it remains to verify 

2DA J 10- 8DA J 4DA J - 3 A' AB' -:3 PA'B' = -g A' AB' - 9 A' AB', 
2 A' 1 8 A' 4 A' 3 D A JBA' - 30PAB = gD A JBA' + gD A JBA'. 

But D'J.,hB' = D'J.,(-D~'PB'C') = ~OPA'B' and similarly, Df JBA' = -~OPAB' 
so these equations do indeed hold. 

Case N 2:: 3. Now that the delicate balance of the case N = 2 is upset, it is 
easy to see that, in particular, J is forced to vanish. The more difficult thing to 
establish is that J = 0 is sufficient to guarantee a solution of the equations as given 
in the theorem of §5. In the non-Abelian case this is a very tedious verification, but 
in the Abelian case there is a short cut. A Maxwell field may be split into self-dual 
and anti-self-dual parts given by potentials ¢t and ¢;; satisfying Dt~ ¢~)A' = 0 
and DtA'¢B')A = O. It is therefore clear that 

. -A" + - A -<Pa = ¢;(x + a) + ¢,;:-(x - a), w~ = 20 J¢ AA'(x + a), W A'j = 20j ¢ AA'(x - a) 

solve Witten's equations. By expanding these functions as power series in a, it 
is elementary to change gauge so that Of W~ + BA' j {j, A' j = O. This results in the 
formulae of §5. 
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