
TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 301, Number 2, June 1987 

BALANCED SUBGROUPS OF FINITE RANK COMPLETELY 
DECOMPOSABLE ABELIAN GROUPS 

LOYISO G. NONGXA 

ABSTRACT. It is proved that, if a finite rank completely decomposable group 
has extractable typeset of cardinality at most 5, all its balanced subgroups 
are also completely decomposable. Balanced Butler groups with extractable 
typeset of size at most 3 are almost completely decomposable and decompose 
into rank 1 and/or rank 3 indecomposable summands. We also construct an 
indecomposable balanced Butler group whose extractable typeset is of size 4 
which fails to be almost completely decomposable. 

In this note we wish to establish a few results on the structure of balanced 
subgroups of finite rank completely decomposable groups. There are a number of 
similarities between these results and some published results on pure subgroups of 
finite rank completely decomposable groups and we employ some techniques de-
veloped by Butler in [4] and Arnold in [1]. Specifically, we show that if a finite 
rank completely decomposable group has an extractable typeset of cardinality at 
most five, then all its balanced subgroups are completely decomposable. In [6] 
we showed that there exists a finite rank completely decomposable group with ex-
tractable typeset of size six which contains an indecomposable balanced subgroup. 
We also showed that if H is a balanced subgroup of a finite rank completely de-
composable group and the extractable typeset of H contains at most two elements, 
then H is completely decomposable. We give an alternative proof of this theorem. 
We also show that if H is balanced in a finite rank completely decomposable group 
and the extractable typeset of H is of size three, then H is almost completely de-
composable and decomposes into rank 1 and/or rank 3 indecomposable summands. 
We construct an indecomposable balanced subgroup H of a finite rank completely 
decomposable group, such that the extractable typset of H is of size 4 and H fails 
to be almost completely decomposable. 

All the groups we consider here are assumed to be abelian and for general nota-
tion, terminology, and results we refer the reader to [5]. 

Let G be a torsion-free group and let 9 E G. We shall denote by Xc(g), the 
height-sequence or characteristic of 9 in G and typeC (g) will mean the type of 9 in 
G. 

T(G) = {typec(g): 0"# 9 E G} 
will be called the typeset of G. If 8 = {Xl, X2, ... , Xn} is a finite set of height-
sequences then inf(8) and sup(8) are height-sequences given by component min-
imums and maximums of the height-sequences in 8. If 8' = {71' 72, ... ,7 n} is a 
finite set of types with Xi E 7i, 1 :::; i :::; n, then inf(8') and sup(8') are the types 
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containing inf(S) and sup(S) respectively. A characteristic is said to be idempotent 
if its kth component is either 0 or 00 for every positive integer k and a type will be 
said to be idempotent if it contains an idempotent characteristic. If T1 and T2 are 
any two types the notation T111T2 means that T1 and T2 are incomparable. Recall 
that a subgroup H of a torsion-free group G is said to be balanced in G if H is pure 
in G and, for every 9 E G, there exists h E H such that the p-height of 9 + h in 
G is equal to the p-height of 9 + H in G j H for every prime p. This is equivalent 
to saying that the sequence 0 -+ H ( T) -+ G ( T) -+ (G j H) ( T) -+ 0 is exact for every 
type T. 

Let G be torsion-free and completely decomposable, i.e. G is a direct sum of 
rank one torsion-free groups. A type T is said to be an extractable type of G if G 
has a rank one summand of type T. The extractable typeset of G, denoted by c(G), 
is the set of all extractable types of G. A finite rank torsion-free group is called 
a Butler group if it is a pure subgroup of a finite rank completely decomposable 
group and is called a balanced Butler group if it is a balanced subgroup of a finite 
rank completely decomposable group. 

DEFINITION. Let H be a Butler group. The extractable typeset of H is the set 

c(H) = {T E T(H): (H*(T))* ~ H(T)}. 

(In [2] this set is called the critical typeset of H.) c(H) is finite since T(H) is finite 
and, for every T E c(H), H(T) = HTffi(H*(T))* where HT is a nonzero homogeneous 
completely decomposable group [4, Theorem 4]; T(H) = {inf(S): S <::;; c(H)} [2, 
Theorem 1.3]. 

The following lemma will be referred to repeatedly throughout this note and its 
proof can be found in [6]. 

LEMMA 1. Let H be a balanced subgroup of a completely decomposable group. 
If T(H) contains two distinct types T1 and T2 such that Hh) n H(T2) = {O} then 
H (Td ffi H (T2) is a pure subgroup of H. 

Theorem 3 in [4] asserts that a Butler group whose extractable typeset is a 
singleton is completely decomposable. In [6] we proved an analogue of this theorem 
which states that a balanced Butler group with extractable typeset of cardinality 
at most two is completely decomposable. The following lemma can be used to give 
an alternative proof of Theorem 1 in [6]. 

LEMMA 2. Let G be a completely decomposable group and H a balanced subgroup 
of G. Then, for every T E T (H), H ( T) is balanced in G (therefore balanced in H). 

PROOF. We first show that for every T E T(H), H(T) is a balanced subgroup 
of G(T). Let go + H(T) E G(T)jH(T) with go E G(T). By definition, there exists 
ho E H such that 

Xc (gO + ho) = XC/H(gO + H) 2:: xc(gO + h) 

for every h E H. Hence 

T :s: typec(go) :s: typec / H (gO + H) = typec(go + ho) 

which implies that ho E H n G(T) = H(T). Thus 

Xc(gO + ho) = XC(T) (gO + ho) 2:: XC(T) (go + h) 
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for every hE H(r). We then have 

XG(T)(gO + ho) = XG(T)/H(T)(gO + H(T)) 

which implies that H(T) is balanced in G(T). Since H(T) is balanced in a direct 
summand of G it must be balanced in G. 

ALTERNATIVE PROOF OF THEOREM 1 IN [6]. Let H be a balanced Butler 
group with extractable typeset of cardinality at most 2. If jc(H)j = 1, then H is 
homogeneous and completely decomposable [4, Theorem 3]. If C (H) = {T1' T2} and 
T1, say, is maximal in T(H), then by Lemma 2, H(Td is balanced in H. This implies 
that H / H (T1) is a homogeneous Butler group of type T2 and is therefore completely 
decomposable (balanced projective). Thus Hh) is a summand of H; H(Td is 
homogeneous completely decomposable of type T1 and consequently H is completely 
decomposable. 

DEFINITION. Let T be any nonempty set of types and let T1 and T2 be two 
distinct types in T. Then T1 is said to be a cover of T2 in T if T2 ~ T1 and there 
is no T in T such that T2 ~ T ~ T1. T is said to be a tree if, for any two types T1 
and T2 in T satisfying T1jh, there is no T in T such that T ~ SUp{T1,T2}' We say 
that T is a tree of branching order at most n, n a positive integer, if T is a tree 
and every element of T has at most n covers in T. 

We recall a theorem of Butler which states that a Butler group is almost com-
pletely decomposable if its typeset is a tree of branching order at most 2. We prove 
the following analogue of this theorem, using Lemmas 1 and 2 and the inductive 
argument employed in the proof of Theorem 7 in [4J. The first part of this theorem 
is an extension of Theorem 1 in [6]. 

THEOREM 1. Let H be a balanced Butler group. Then 
(a) ifT(H) is a tree of branching order at most 2, H is completely decomposable; 
(b) if T(H) is a tree of branching order at most 3, H is almost completely de-

composable. 

PROOF. (a) The proof is by induction on jT(H)j. If jT(H)j :::; 2, then H is 
completely decomposable by Theorem 5 in [4]. Assume that jT(H)j = n, n ~ 3, 
and every balanced Butler group, whose typeset is of cardinality at most n-l and is 
a tree of branching order at most 2, is completely decomposable. Let TO = inf T( H) 
and observe that TO has at least one cover in T(H). There are two possibilities. 

Case (i). TO has exactly one cover, say T1, in T(H). Then H = H(TO) = 
Ho EB H(Tt) where Ho is a homogeneous completely decomposable group of type 
TO. Hh) is a balanced Butler group by Lemma 2, T(H(Tt)) is a tree of branching 
order at most 2 and jT(H(Tt))j :::; n - 1. By the induction hypothesis, H(Tt} is 
completely decomposable and therefore H is completely decomposable. 

Case (ii). TO has exactly two covers, say T1 and T2, in T(H). H = Ho EB 
(H*(TO))*, where (H*(TO))* = (H(Td + H(T2))*. Since T(H) is a tree and T1jjT2, 
then H(Tt} n H(T2) = {O} and by Lemma 1, Hh) EB H(T2) is pure in H. By the 
induction hypothesis, H( Ti) is completely decomposable, i = 1,2, and therefore 
H = Ho EB H(Tt) EB H(T2) is completely decomposable. 

(b) Again, the proof is by induction on T(H) and (a) above implies that if 
jT(H)j :::; 3, then H is almost completely decomposable. We consider the following 
three cases where TO = inf T ( H) . 
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Case (i). TO has exactly one cover, Tl, in T(H). Then H = Ho EB H(Td. 
Case (ii). TO has two covers Tl and T2, and H = Ho EB H(Td EB H(T2). 
Case (iii). TO has exactly three covers, T1, T2, and T3 and 

H = Ho EB (H(Td + H(T2) + H(T3))*. 
Since H(Td EB H(T2) is pure in H, H(T3) n (H(Td EB H(T2)) = {O} and we have 
2:7=1 H(Ti) = EB7=1 H(Ti). 

In all three cases, Lemma 2 and the induction hypothesis imply that the groups 
H(Ti) are almost completely decomposable. Let Hi be a completely decomposable 
subgroup of finite index in H(Ti), i = 1,2,3. In case (i) Ho EB Hi; in case (ii) 
Ho EB Hi EB H2, and in case (iii) Ho EB Hi EB H2 EB H3 are subgroups of finite index 
which are completely decomposable. Thus H is almost completely decomposable. 

Let G = EBrEc(C) Gr be a homogeneous decomposition of a finite rank com-
pletely decomposable group and, for every T E £ (G), let 7r r: G --+ Gr be the 
projection with kenr = EBr#rl Grl. Lemma 86.8 in [5] asserts that if £(G) is a 
singleton, then every pure subgroup of G is a direct summand. We will need the 
following lemma to derive a similar result for balanced subgroups. 

LEMMA 3. Let H be a balanced subgroup of G and let £ be a finite subset of 
£(G). If there exists 0 =J h E H such that £ = {T E £(G): 7rr (h) =J O}, then 
T ~ inf{ T' E £ : T' =J T} for every T E £ satisfying H( T) = {O}. 

PROOF. Consider the coset 7r r (h) + H in G / H. Since H is balanced in G there 
exists ho E H such that 

xC(7rr(h) + ho) = XC/H(7rr(h) + H) ~ XC(7rr(h) + h') 
for every h' E H. Thus 

T :::; typec/H(7rr(h) + H) = typec(7rr(h) + ho) 

which implies that go = 7rr (h) + ho E G(T). Thus 

ho = go - 7rr (h) E H n G(T) = H(T) = {O} 
and therefore XC(7rr(h)) ~ XC(7rr(h) + h') for every h' E H. If we put h' = -h we 
have 

and the result follows. 
We now have 

THEOREM 2. Let G be a finite rank completely decomposable group with ex-
tractable typeset of cardinality at most 2. Then every balanced subgroup of G is a 
summand. 

PROOF. In view of Lemma 86.8 in [5] we need only consider the case where 
1£ (G) I = 2. Put £ (G) = {Tl' T2} and consider the following two cases. 

Case 1. £ (G) is linearly ordered. We then have that T( G) is linearly ordered 
and since H is balanced in G, T( G / H) is linearly ordered and, by Theorem 5 in 
[4] G / H is completely decomposable. Since completely decomposable groups are 
balanced projective, H is a summand of G. 
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Case 2. r111r2. Since G( ri) is a finite rank homogeneous completely decomposable 
group, H(ri) is a summand of G(ri), i = 1,2. Thus H(Tt} EB H(r2) is a summand 
of G and H = Hh) EB H(T2) EB H' where H' is isomorphic to a balanced subgroup 
of G. Since H'(Ti) = {O}, i = 1,2, Lemma 2 above implies that H' = {O}. 

DEFINITION. Let T be a set of types. T is said to be an antichain if its elements 
are pairwise incomparable and is called a ladder if every antichain in T has at most 
two elements. 

Theorem 5 in [4] asserts that if the typeset of a Butler group G is linearly 
ordered, then G is completely decomposable. We have the following analogue of 
this theorem. 

THEOREM 3. If H is a balanced Butler group whose typeset is a ladder, then 
H is completely decomposable. 

PROOF. The proof is by induction on T(H). If IT(H)I :::; 2, T(H) is linearly 
ordered and H is completely decomposable by Theorem 5 in [4]. Assume that 
IT(H)I = n and every balanced Butler group whose typeset is a ladder and has 
cardinality at most n - 1 is completely decomposable. Let ro = inf T( H) and let 
T1 be a cover of TO in T(H). Then H(Tt} is a balanced completely decomposable 
subgroup of Hand T( H / H (rtl) ~ T( H). If there are two distinct types T2 and r3 
in T(H/H(rt}) such that r2lh, then ri > ro, i = 2,3, which implies that ri i T1 
since r1 is a cover of TO. Also, since H(rt} is balanced in H, ri tTl, i = 2,3. 
Thus {T1' T2, r3} is an antichain, a contradiction. Hence T( H / H (rt}) is linearly 
ordered which implies that H / H (rt) is completely decomposable. Thus H (rt) is a 
summand of H with a completely decomposable complement. 

The following lemma will be very useful in the proof of Theorem 4 below. 

LEMMA 4. Suppose that H is balanced in G = G1 EB G2, Gi -=I- {O}, i = 1,2, 
where G is an arbitrary torsion-free group. If there is a type r such that H (r) = {O} 
and G1 (T) = G1, then H is isomorphic to a pure subgroup of G2. 

PROOF. Let 7r1: G --+ G1 and 7r2: G --+ G2 be the projections associated with 
this decomposition of G. Then H n G1 = H n G1(r) ~ H n G(T) = {O} and this 
implies that the restriction of 7r2 to H is monic. Thus H = 7r2(H) ~ G2. We prove 
that 7r2 (H) is pure in G by showing that for every 0 -=I- g2 E 7r2 (H) 

X7r2(H) (g2) = XC 2(g2). 

Let 0 -=I- g2 = 7r2(h) E 7r2(H) for some hE H. Then h = gl + g2 for some gl E G1. 
(a) If gl = 0, then h = g2 = 7r2(h) implies that 

XH(h) :::; X7r2(H) (7r2(h)) :::; XC 2(g2) = XC(g2) = XH(h). 

Thus X7r2(H) (g2) = XC 2(g2). 
(b) If gl -=I- 0, then gl + H -=I- H since H n G1 = {O}. Since H is balanced in G 

there exists h' E H such that 

XC(gl + h') = XC/H(gl + H) 2 XC(gl + h') 

for every h' E H. But gl E G1 = G1(r) ~ G(r) and, by the same argument 
employed in the proof of Lemma 3, it can be shown that h' E G(r)nH = H(r) = {O} 
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and xc(gt) 2: XC(g2). Thus 

xc(h) = inf{xc(gd, XC(g2)} = XC(g2) 2: X7r2(H)(g2) 
= X7r2(H) (1T2(h)) 2: XH(h) = Xc(h). 

Thus XC(g2) = X7r2(H)(g2) and therefore 1T2(H) (~ H) is pure in G2. 
If G is a finite rank completely decomposable group such that Ie (G) I ~ 2 then, 

from Theorem 1 in [3], every pure subgroup of G is completely decomposable. We 
derive the following analogue of this result. 

THEOREM 4. Let G be a finite rank completely decomposable group. If Ie (G) I ~ 
5, then every balanced subgroup of G is completely decomposable. 

PROOF. Let H be a balanced subgroup of G and let G = EBTEC(C) GT be a 
decomposition of G with GT ~ G(r)/G'(r) for every r E c(G). Let 1TT: G ----> GT 
be the projection with ker1TT = EBTf#TGn r E c(G). Let ~h be the set of all 
maximal elements of c(G) and, for n = 1,2,3, 4 let Mn+1 be the set of all maximal 
elements of c(G) - U7=1 Mi. (If c(G) - U7=1 Mi = 0, Mn+1 is defined to be 
the empty set.) Throughout the proof, the expression c(G) == (n1,n2,n3,n4,n5) 
with ni a nonnegative integer less than 6, will mean that Ic(G)1 = L7=1 ni and 
IMil = ni, 1 ~ i ~ 5. 

In view of Theorem 2 above, we need only consider the cases where Ic(G)1 = 3, 
4 or 5. There is no loss of generality in assuming that H (r) = {o} for every rEM 1. 

For the sake of convenience the proof is in three stages, according to whether 
Ic(G)1 = 3,4 or 5. 

Stage 1. Ic(G)1 = 3. 
Case 1. (a) c(G) == (1,1,1,0,0), 
(b) c(G) == (2,1,0,0,0), 
(c) c(G) == (1,2,0,0,0). 
For all three situations, T(H) is a ladder and H is completely decomposable. 
Case 2. c(G) == (3,0,0,0,0). 
Let c(G) = {rl,r2,r3}, G = EB7=1 G(ri) and riJ = inf{ri,TJ}, 1 ~ i < J' ~ 3. 

There are two possibilities to consider: 
(a) {ri): 1 ~ i < J' ~ 3} is a singleton. Since H(ri) = {O}, 1 ~ i ~ 3, then H is 

either zero or homogeneous of type r12 and thus completely decomposable. 
(b) {riJ: 1 ~ i < J' ~ 3} has more than one element. Again, since H (ri) 

{O}, 1 ~ i ~ 3, we can deduce from Lemma 3 that H = {O}. 
Stage 2. Ic(G)1 = 4. 
Assume that T (G) contains a type r such that Ie ( G ( r)) I = 2 or 3. G ( r) is a direct 

summand of G whose complement, say G. (r), has extractable typeset of size at most 
2. Thus every pure subgroup of G*(r) is completely decomposable. From Stage 1 
and Theorem 2, every balanced subgroup of G(r) is completely decomposable. By 
Lemma 2, H(r) is a balanced subgroup of G(r) and H(r) is therefore completely 
decomposable. Also H / H (r) is balanced in 

G/H(T) = (G(r)/H(r)) EB (G.(r) + H(r))/H(r). 

Since H( r) is balanced in H, (H / H( r))( r) = {O} and (G( r)/ H( r))( r) = G( r)/ H( r). 
By Lemma 4, H/ H(r) is isomorphic to a pure subgroup of (G*(r) + H(r))/ H(r) ~ 
G.(r) and H/H(r) is therefore completely decomposable. This implies that H = 
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H(7) EEl H' for some completely decomposable group H' and H is completely de-
composable. 

We now consider the following cases: 
Case 3. (a) c(G) == (1,1,1,1,0,0), 
(b) E(G) == (2,1,1,0,0,0), 
(c) E(G) == (1,2,1,0,0,0), 
(d) E(G) == (1,1,2,0,0,0). 
For these possibilities, T(H) is a ladder and Theorem 3 implies that H is com-

pletely decomposable. 
Case 4. (a) E(G) == (2,2,0,0,0,0), 
(b) E(G) == (1,3,0,0,0,0). 
If 7 E ).h, then it is easy to see that IE(G(7))1 = 2 or 3. The first paragraph of 

Stage 2 implies that H is completely decomposable. 
Case 5. E(G) == (3,1,0,0,0,0). 
Let .M2 = {7} and observe that IE (G( 7)) I = 2 or 3 or 4. We need only consider 

the case where IE(G(7))1 = 4. Put .M1 = {71,72,73} and E = {inf{7i,7j}: 1::; i < 
J' ::; 3} and observe that 7i > 7, 1::; i ::; 3. If E is a singleton then T(H) is linearly 
ordered and H is completely decomposable. If E has at least two elements and 7' is 
maximal in E, then IE (G( 7')) I = 2 and the first paragraph of Stage 2 implies that 
H is completely decomposable. 

Case 6. E(G) == (4,0,0,0,0). 
Let E(G) = {71, 72, 73, 74} and 7iJ = inf{7i,7j}, 1::; i < j::; 4, and consider the 

set E = {7ij: 1 ::; i < j ::; 4}. If E is a singleton, H is homogeneous and therefore 
completely decomposable. If E contains at least two elements, we may assume that 
712, say, is maximal in C. Thus 712 is incomparable with at least one element of 
E(G). We then have IE(G(712))1 = 2 or 3 and H is again completely decomposable. 

Stage 3. IE(G)I = 5. 
If there exists a type r such that IE(G(7))1 = 3 or 4, then Stages 1 and 2 imply 

that every balanced subgroup of G(r) is completely decomposable. A complement 
of G ( 7) will have extractable typeset of size at most 2. By an argument similar to 
the one employed in the first paragraph of Stage 2, it can be shown that H will be 
a completely decomposable group. Consider the following cases. 

Case 7. (a) c(G) == (1,1,1,1,1), 
(b) c(G) == (2,1,1,1,0), 
(c) E(G) == (1,2,1,1,0), 
(d) E(G) == (1,1,2,1,0), 
(e) E(G) == (1,1,1,2,0). 

T(H) is a ladder and H is completely decomposable by Theorem 3. 
Case 8. (a) E(G) == (1,2,2,0,0), 
(b) c(G) == (2,1,2,0,0), 
(c) E(G) == (1,1,3,0,0). 
Let 7 E .M2 and observe that C (G( 7)) = 3 or 4. 
Case 9. (a) E(G) == (2,2,1,0,0), 
(b) E(G) == (3,1,1,0,0), 
(c) E(G) == (1,3,1,0,0). 
Let .M3 = {73} and observe that IE(G(73))1 = 3 or 4 or 5. We need only consider 

the case where /C(G(73))/ = 5. This implies that 73 ::; 7 for every 7 E E(G). Let 
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r E )vb and observe that IE(C(r))1 = 2 or 3 or 4. Again we need only consider the 
case where IE(C(r))1 = 2. This implies that E(C(r)) is a chain, T(C(r)) is also 
linearly ordered and therefore H(r) is a direct summand of C(r), hence a summand 
of C. There is no loss of generality in assuming that H(r) = {o}. We then have 
C = C(r) EB C*(r) where IE(C*(r))1 = 3 and r3 E E(C*(r)). Since r3 ::; r' for every 
r' E E(C*(r)), every pure subgroup of C*(r) is completely decomposable. Since 
H(r) = {o} Lemma 4 implies that H is isomorphic to a pure subgroup of C*(r) 
and is therefore completely decomposable. 

Case 10. E(C) == (1,4,0,0,0). 
We observe that E(C(r)) is a chain and H(r) is a direct summand of C for 

every r E E(C). We may assume that H(r) = {o} for every r E E(C). Let 
}vb = {r1,r2,r3,r4}, riJ = inf{ri,rJ}, 1::; i < j::; 4, and E = {riJ: 1::; i < j::; 4}. 
If E is a singleton, then H is a homogeneous completely decomposable group. If 
I E I 2: 2 and r12, say, is maximal in E, then IE (C( r12)) I = 3 or 4 and H is completely 
decomposable. 

Case 11. (a) E(C) == (2,3,0,0,0), 
(b) E(C) == (3,2,0,0,0). 
Let 7 E ]\-b and observe that IE(C(7))1 = 2 or 3 or 4. We need only consider 

the case where IE(C(7))1 = 2. Then IE(C(7))1 is a chain and there is no loss of 
generality in assuming that H(7) = {o}. Let {71, r2, r3} be the extractable typeset 
of a complement of C(7) in C and let EB7=1 CTi be any such complement where 
CTi ~ C(7i)/C*(7i), 1::; i ::; 3. Lemma 4 implies that H is isomorphic to a pure 
subgroup of EB7=1 CTi . Let 7123 = inf{71, 72, 73} and 7iJ = inf{7i,7J}, 1::; i < 
j ::; 3. 

(i) If {r1,72,73} is not an antichain, T(EB7=1 CTJ is a ladder. T(H) is also a 
ladder and Theorem 2 implies that H is completely decomposable. 

(ii) Suppose that {71' 72,73} is an antichain. Then either 7i is maximal in E (C) or 
has exactly one cover in E(C). Thus E(C(7i)) is a chain, Hh) is a direct summand 
of C and there is no loss of generality in assuming that H (7i) = {O}, 1 ::; i ::; 3. 
Since H is isomorphic to a pure subgroup of EB7=1 CTi , T(H) ~ {7123, 712,713, r23}. 
If {712, 713, 723} contains one or two elements, then IT(H)I ::; 3 and Theorem l(a) 
implies that H is completely decomposable. If {712, 713, 723} contains three distinct 
elements and 712 is maximal in {712' 713,723}, then IE(C(712))1 = 2 or 3 or 4. Again 
we need only consider the case where IE(C(712))1 = 2. Then C(712) = CT1 EB CT2 
and, since H(7i) = {O}, i = 1,2, Lemma 3 implies that H(712) = {O}. Now 
C = C(712) EB C(7) EB CT3 and Lemma 4 implies that H is isomorphic to a pure 
subgroup of C(7) EB Cw It is now easy to see that the typeset of C(7) EB CT3 is a 
ladder and therefore H is completely decomposable. 

Case 12. E(C) == (5,0,0,0,0). 
Let E(C) = {71,72,73,r4,75}; put 7iJk = inf{ri' 7J, 7d, {i,j,k} ~ {1,2,3,4,5}, 

and let E = {7iJk: {i, j, k} ~ {I, 2, 3, 4, 5}}. If E is a singleton then, since H n 
(Ch) EB Ch)) = {O} by Lemma 3, 1 ::; i #- j ::; 5, H will be a homogeneous 
completely decomposable group. If I E I 2: 2 and 7123, say, is maximal in E, then 
IE(C(7123))1 = 3 or 4 and H is completely decomposable. 

Case 13. E(C) == (4,1,0,0,0). 
Let ]\-b = {ro} and observe that IE(C(ro))1 = 2,3,4, or 5. We need only consider 

the cases where IE(C(ro))1 = 2 or 5. 
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(a) IC(G(To))1 = 2. 
C(G(TO)) is a chain and there is no loss of generality in assuming that H(TO) = 

{a}. We then proceed in exactly the same way as in Case 11. 
(b) IC(G(To))1 = 5. 
We have that H = Ho EB (H*(TO))* where Ho is zero or a homogeneous com-

plement decomposable of type TO and (H*(TO)* = H n EBt=1 Gh) where Ml = 
{Tl,T2,T3,T4}. By Lemma 4, H n (G(Ti) EB G(TJ )) = {O}, 1 ::; i < j ::; 4. Let 
C = {infh, Tj, Td: 1 ::; i < j < k ::; 4}. If c is a singleton, then H is a homo-
geneous completely decomposable group. If I c I 2:: 2 and T is maximal in C, then 
Ie (G( T)) I = 3 and H is completely decomposable. The proof of the theorem is now 
complete. 

Let T be a finite set of types. We denote by 8(T) the maximum length of 
a chain of types in T. It can be shown that if G is a completely decomposable 
group with Ie (G) I = 6 and 8 (c (G)) 2:: 3, then every balanced subgroup of G 
is completely decomposable. The proof is similar to the proof of Stage 3 in the 
previous theorem. In [6] we constructed a finite rank completely decomposable 
group G with Ic(G)1 = 6 and 8(c(G)) = 2 which contains an indecomposable 
balanced subgroup H with Ic(H)1 = 3. 

Our next theorem is an analogue of Theorem 1 in [1]. The proofs of certain 
sections of this theorem are essentially due to Arnold and are included for the sake 
of completeness. 

THEOREM 5. Let H b e a balanced Butler group with extractable typeset C (H) = 
{ Tl, T2, T3}. Then 

(a) H is completely decomposable if one of the following conditions is satisfied. 
(i) 8(T(H)) > 2, 
(ii) SUp{Tl,T2,T3} = (00,00,00, ... ,00). 
(b) If H is indecomposable, H is of rank 3. 
(c) If H' is a nonzero indecomposable summand of H, H' is of rank 1 or rank 3. 

PROOF. (a)(i) Let 8(T(H)) > 2. If 8(c(H)) > 1, then T(H) is a ladder and 
Theorem 3 implies that H is completely decomposable. If 8(c(H)) = 1, then 
C = {inf h, Tj}: 1 ::; i < j ::; 3} must contain at least two elements. Thus 
there is an element of C (H) which is incomparable with some element in C, say 
TIll inf {T2, T3}' Then, Lemma 1 implies that H (T2) EB H (T3) is a pure subgroup of 
H. By Lemma 2, H(T23) = (H*(T23))* = H(T2) EB H(T3) is a balanced subgroup of 
H, T23 = inf {T2, T3}' Thus HI H (T23) is a homogeneous Butler group of type Tl and 
this implies that H = H(T23) EB Hh) = EB7=1 H(Ti) is completely decomposable. 

(b) Let SUp{Tl,T2,T3} = (00,00, ... ,00). In view of (i) we may assume that 
C (H) is an antichain. Then L7= 1 H (Ti) = EB7= 1 H (Ti) since H (Ti) EB H (TJ ) is 
pure in H, 1 ::; i < j ::; 3, by Lemma 1. From the proof of Theorem 4 in [4], 
HI EB7=1 H(Ti) is finite. If ph E EB7=1 H(Ti) for some prime p and h E H, then, 
since SUp{Tl,T2,T3} = (00,00, ... ,00), pH(Ti) = H(Ti) for some i E {1,2,3}. Say 
pH(Tt) = H(Tt). Then ph = hI + h2 + h3 = phI + h2 + h3 where hI, hI E H(Tt) 
and hj E H(Tj), j = 2,3. Thus p(hl - hi) = h2 + h3 E H(T2) EB H(T3) and, 
since H (T2) EB H (T3) is pure in H, h - hI E H (T2) EB H (T3) which implies that 
hE EB7=1 H(Ti). We then have H = EB7=1 Hh) is completely decomposable. 
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(b) If H is indecomposable, then from (a) above we have that E (H) is an an-
tichain and 8(T(H)) = 2. This implies that T(H) is a tree of branching order 
at most three and by Theorem l(b) H is almost completely decomposable. Thus 
H I EB~=l H( Tj) is a finite nonzero group. 

Put HI EB}=l H(Tj) = EB~=l (hi + EB~=l H(Tj)), where (hi + EB~=l H(Tj)) is a 
nonzero cyclic group of order mi and mi divides mi+ 1, 1 ::::: i ::::: n - 1. Then 
mihi = hli + h2i + h3i with hji E H(Tj), 1::::: j ::::: 3 and 1 ::::: i ::::: n. If hli = 0, say, 
for some i, then mihi = h2i + h3i E H( T2) EEl H( T3) and purity of H( T2) EElH( T3) in H 
implies that hi E H(T2)EElH(T3) ~ EB~=l Hh) contradicting that (hi+EB~=l H(Tj)) 
is a nonzero cyclic summand of H / EB~=l H( Tj). Hence hji ::f. 0, 1 ::::: j ::::: 3 and 
1::::: i ::::: n. 

Let S = {h 11 , h12"'" hln' h21 , h22 ,.··, h2n , h3l , h32 , .. " h3n } and suppose that 
n n n 
L rihli + 2: 3i h2i + L ti h3i = 0 
i=l i=l i=l 

for some integers rl, r2, ... , rn, 31, 32, ... , 3n, tl, t2, ... , tn· Since H(Ti) EEl H(TJ ) is 
pure in H, 1 ::::: i < j ::::: 3, we have 

n n n 

L rihli = 2.: 3i h2i = 2.: ti h3i = 0 
i=l i=l i=l 

and 
n n n n 

L rimihi = L rihli + L ri h2i + L ri h3i E H(T2) EEl H(T3)' 
i=l i=l i=l i=l 

Let d be the greatest common divisor of the integers rlml, r2m2, ... , rnmn and 
put dUi = rimi, 1 ::::: i ::::: n. Then d(2:~=l Uihi) E H(T2) EEl H(T3) which implies 
2:~1 Uihi E H(T2) EEl Hh) ~ EB~=l H(Tj). Thus 2:~=1 ui(hi + EB~=l H(Tj)) = ° 
and this implies that ml divides all Ui, a contradiction unless ri = 0, 1 ::::: i ::::: n. 
Similarly 3i = ti = 0, 1 ::::: i ::::: n, and therefore S is a Z-independent subset 
of H. If we let Gi be the pure subgroup of H generated by {h li , h2i, h3t}, then 
rank Gi = 3, 1::::: i ::::: n, and G = 2:7=1 Gi = EB7=1 Gi· 

lt can be shown that a basis {hI + EB]=lH(Tj),h2 + EB]=lH(Tj), ... ,hn + 
EB]=l H(Tj)} of HI EB}=l Hh) can be chosen such that the group G defined above 
satisfies 

n 

G(Tj) = E9G i h) 
i=l 

is a summand of H (Tj ), 1 ::::: j ::::: 3. The procedure of selection of this basis is due 
to D. M. Arnold and we use the fact that H(Ti)EElH(Tj) is pure in H, 1::::: i < j::::: 3. 

Let H(Tj) = Gh) EEl Hj , j = 1,2,3, and observe that 

H ~ (h"h" ... ,hn ) + ~H(Tj) ~ G + (~H.) . 
Also G n (EB~=l Hi) = {O} which implies that H = G EEl (EB~=l Hi). But H is 
indecomposable and G ::f. {O}. Thus Hi = {O}, 1 ::::: i ::::: 3, and H = G = EB~=l Gi· 
This implies that n = 1 and H = G = G l is of rank three. 
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( c) Let H' be an indecomposable summand of H. Then the extractable typeset 
of H' is a subset of {71' 72, 73}. If I c (H') I = 1, then H' is a homogeneous completely 
decomposable group and thus rank H' = 1. If Ic(H')1 > 1, in view of (a) above we 
may assume that C (H) is an antichain. Then H' ( 7i) EB H' ( 7j) is pure in H ( 7i) EB 
Hh), 1::; i < j::; 3. The purity of Hh)EBH(7j) in H implies that H I (7i)EBH' (7j) 
is pure in H' and is a completely decomposable group, 1 ::; i < j ::; 3. If Ic(H')1 = 2, 
then this will imply that H' is a completely decomposable group of rank 2: 2, a 
contradiction. Thus C(H') i- 2. If C(H') = c(H), we can use the argument of (b) 
to show that rank H' = 3. The proof of the theorem is now complete. 

We state the following two theorems without proofs. The proofs are rather long 
and require arguments we have already employed in this paper. 

THEOREM 6. Let G be a finite rank completely decomposable group such that 
Ie (G) I = 6 and 8 (c (G)) = 2. Then every balanced subgroup of G is almost com-
pletely decomposable and decomposes into rank 1 and/or rank 3 indecomposable 
summands. 

THEOREM 7. Let H be a balanced Butler group with extractable typeset of size 
4. Then H is almost completely decomposable if one of the following conditions 
holds. 

(a) 8(c(H)) 2: 2. 
(b) c(H) is an antichain and 8(T(H)) 2: 3. 

Theorem 6 together with the statement after the proof of Theorem 4 asserts 
that if G is a finite rank completely decomposable group with I c (G) I = 6 and 
8( c( G)) 2: 2, then every balanced subgroup of G is almost completely decomposable 
and decomposes into rank 1 and/or rank 3 indecomposable summands. This is an 
analogue of a well-known result on Butler groups: if G is a finite rank completely 
decomposable group with Ic(G)1 = 3 and 8(c(G)) 2: 2, then from Theorem 6 in [4] 
every pure subgroup of G is almost completely decomposable and by Theorem 1 in 
[1] every pure subgroup of G decomposes into rank 1 and/or rank 2 indecomposable 
summands. 

A natural question that arises following the previous two theorems is: what 
happens in Theorem 6 if 8(c(G)) = 1 and what happens in Theorem 7 if 8(c(H)) = 
1 and 8(T(H)) = 2? This question is partially answered in the following theorem. 

THEOREM 8. There exists a finite rank completely decomposable group G with 
Ie (G) i = 6 which contains a balanced subgroup H with I c (H) I = 4 which fails to be 
almost completely decomposable. 

PROOF. Let V = Qa12 EB Qa13 EB Qa23 be a torsion-free divisible group of rank 
three with Q-basis {aI2,aI3,a23}' Let 7i be an idempotent type with 00 at the 
ith position and zeros everywhere else and let Pi be the prime such that 7i has 
an 00 corresponding to Pi, 1 ::; i ::; 4. Define a14 = a12 + a13, a24 = a23 - a12, 
and a34 = a13 + a23 = a14 + a24 and put Aij = (piOOaij,pjOOaij). If we let 
A = Ll<:;i<j<:;4 Aij ~ V, then A is a rank 3 Butler group with 

T(A) = {(O, 0, ... ,0),71,72,73,74,712,713,714,723,724, 734} 

where tij = sup{ 7i, 7j }, 1 ::; i < j ::; 4. A( 7ij) is a rank one pure subgroup of A, 
1 ::; i < j ::; 4, and Ah) is a rank two pure subgroup of A, 1 ::; i ::; 4. It can be 



648 L. G. NONGXA 

shown that 

A(Td = A(TI2) + A(TI3) + A(T14)' 
A(T3) = A(T13) + A(T23) + A(T34)' 

A(T2) = A(TI2) + A(T23) + A(T24)' 
A(T4) = A(TI4) + A(T24) + A(T34)' 

Let G = EBl::;i<j::;4 GiJ with Gij =:: A(Tij), 1 :::; i < j :::; 4, and let B: G ~ A be a 
homomorphism satisfying B( Gij ) = Aij , 1:::; i < j :::; 4. Then B is an epimorphism 
and, if we let H = kerB it is obvious that 0 ~ H(T) ~ G(T) ~ A(T) ~ 0 is 
exact for every type T E T(A). This implies that H is balanced in G. Obviously 
H(Tij) = {O}, 1:::; i < j:::; 4, and therefore T(H) = {(0,0, ... ,0),Tl,T2,T3,T4}' If 
gij E Gij satisfies B(gij) = aij, 1 :::; i < j :::; 4, then 

o i- g14 - g12 - g13 = hI E Hh), o i- g24 - g23 + g12 = h2 E H(T2)' 
o i- g34 - g13 - g23 = h3 E H(T3), o i- g34 - 914 - 924 = h4 E H(T4). 

Thus 0 i- h2 - h3 + h4 = -hI E Hh) n 2:~=2 H(TJ) and therefore H is not 
almost completely decomposable. Now H = H(TO) = Ho Ell (H*(TO))* where TO = 
(0,0, ... ,0) and since (H*( TO))* = (hI, h2, h3)*, it is easy to see that Ho = {O} and 
therefore £(H) = {Tl, T2, T3, T4}. 

In [2], several characterizations of Butler groups are give (Lemma 1.1, Theorems 
1.10, 1.12, and 1.13). It is natural to ask whether parallel characterizations can be 
obtained for the class of balanced Butler groups. Also, can one characterize all those 
completely decomposable groups any balanced subgroup of which is completely 
decomposable? 
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