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ON THE MOBIUS FUNCTION

HELMUT MAIER

ABSTRACT. We investigate incomplete convolutions of the Mébius function
of the form Z dln;d<z u(d). It is shown that for almost all integers n one can

find z for which this sum is large.

1. Introduction. The function M(n) = sup, <y | > 4n.a<- #(d)| has been stud-
ied in various papers [1, 2, 5]. Erdds and Katai (2] proved that

M(n) < A¥™) (p-p.)
if A> /2.
(We use (p.p.) to indicate that a property holds on a sequence of asymptotic
density 1.)

This result was improved by Hall [5], who showed that A > 3/e is sufficient.
A recent result of G. Tenenbaum and the author [9] implies almost immediately

THEOREM 1.
M (n) < ¢(n)loglogn, (p-.p.)

where ¥(n) 1s any function tending to co.

PROOF. Let p1(n) be the smallest prime factor of n. Then u(d)+ u(p1(n)d) =0
for all d # 0mod p;(n). Therefore

M(n) < sup Z 1.

~ lz<d<zpi(n)
dln

In [9] it is shown that
A(n) < 9(n)loglogn,

where A is Hooley’s function [7], defined by
A(n) = sup Z 1. (p-p-)
=" z<d<ez

It follows by sieve methods that
p1(n) < ¢P(n). (p-p.)

Received by the editors December 19, 1985.
1980 Mathematics Subject Classification (1985 Rewsion). Primary 11K65; Secondary 11B05.
Research supported by an NSF Grant.

©1987 American Mathematical Society
0002-9947/87 $1.00 + $.25 per page

649



650 HELMUT MAIER

Thus

M(n)<sup| > 1} < A(n)logy(n)

2<d<zp1(n)
dln

< 9(n) log ¥(n) log log n. (p-p.)

Since 1(n) was arbitrary Theorem 1 follows.

In [1 and 2] the question for a lower bound for M(n) was raised. The purpose
of this paper is to establish such a lower bound.

We will prove

THEOREM 2. Let

log 2

— =0.28754. ...
log(1 — (log 3)~1)

<

Then
M(n) > (loglogn)”. (p-p.)

Many of the techniques applied will be very similar to those applied in [8],
where the same lower bound was obtained for A(n). However we need also some
new devices which bear resemblance to those used in [9].

2. Notations and preliminary lemmas. We fix a function v(z), to be spec-
ified later, with v(z) — oo (z — 00) and also a constant p > 1.

Based on these two parameters we define rx = p*v(z) and rx ; = p*v(z)+! where
k and ! are any nonnegative integers. For any positive integer n < z and a real
number z > 0 we set

n.= [ » ni= ] »™

log log p<=z loglog p<z
pln P Pln

* .

We use n(x) for n,,; nu ) for n,, ; nfk) for ny,; and nZk,l) for n> . We define

Tk,'

'ﬁ(k,l) = H P and fl(k,l) = H . pyp.

Tk <loglog p<ri, T <log log p<7ik,
pln P ?(ln
Assume that
_ ()7 k)t k (k)
n=NEPT ‘Pgd) CopY << Pi(n)-

Then we set

~ k R k vt
=T =TI
t<s t<s

(8) _ . ~(s) “(s) _ _x 4(s)
k) = Tk k) Ny = Mk Pk
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For any quadruplet (n,k,l,7n), where n < z, k,l nonnegative integers, and n > 0
we denote by u(n, k,l,n) the Lebesgue measure of the set

d/
E(TL, k7l7 7)) = U <10g _d—> + {—7]’7]]
dd’ | % (k.1
u(dd")=1

We now proceed with some auxiliary lemmas. They all are either identical or
rather similar to the lemmas applied in [8].

LEMMA 1. Let f be a nonnegative multiplicative function such that for all
primes p
0<f(P)<MAy  (v=12,...),

where 0 < A1, 0< A2 < 2. Then forz >1
Yo fm) <anmz [J-p7H) ) f00”
n<zx p<z v=0

This is a weakening of a theorem of Halberstam and Richert [4] generalizing a
result of Hall.

LEMMA 2. For2 <u<wv <z, we have

1 )
card{n < z: H p¥ > <<mexp<—c01222)

p<u,p¥|n
where cog > 0 is an absolute constant.
This is established in [3] and, in a stronger version, in [10].

LEMMA 3. Let u(z) be any function tending to oo such that u(z) < loglogz.
Let 8o > 0 be a fized constant. Then for each r with u(z) < r < loglogx we have
uniformly in s, u(z) <s<r,

|w(nr/me—s) — 8| < bos

for all n < z except a set of cardinality <s, zexp(—c(bo)u(x)), where c(dp) > 0
depends only on &.

PROOF. We first estimate the number of integers n < z for which w(n,/n,_,) <
s(1 — ép) for any integer s. By Lemma 1 this number does not exceed

Z Zaw(n;-/n,_s)—as Lo T Z e—Q(a)s
u(z)<s<rn<z s>u(zx)

where « = 1 — 6y, Q(a) = aloga — o+ 1 > 0. The number of integers n < z for
which w(n,/n,_s) > s(1+ &) for any s does not exceed

w(n, /ne—s)—PBs P e Q(ﬂ)s
> 8 <57 ),

u(z)<s<rn<lz s>u(x)

where 8 =1+ &, Q(8) > 0.
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LEMMA 4. Let w(z) be any function defined for £ > 1 such that w(z) > 1,
w(z) — oo for z — oo, and v(z) > w(z). Moreover, we asume that
1> p*v(z)(log 3—1)"1(1+6)
for some 6, > 0,71 <loglogz and 1 >n > 1/r.

Then there exists c; = c1(61) > 0 such that u(n,k,l,n) > exp(rr)w(z)~2 for all
n < z except a set of cardinality <s, Tw(x) 1.

PROOF. Set
F(z) = F(k,l,2) = > 1.

dd' |7 (k,1y;l0g(d' /d) <z
p(dd)=1

The u(n, k, 1, n) is the measure of the set of those z for which F(z+n)—F(z—n) # 0.
We introduce the exponential sum

Ska(@m) = Y (d'/d)".

ddllﬁ(k’l)
p(dd")=1
We have
® /sin((u — 2)/2 2
Pletn-Fe-m<2 [ (LI ap
1/n 0
= 27]/ e”*(1 — |0n|)Sk,1(0,n)do
-1/n

by Parseval’s formula.
A second application of this formula implies

1/n

[ - Py <sm? [ (0 i), m%d0

—o0 —-1/n

This together with

@it < ([ (F+n) - P =) dz)2

< pln, k,1,7) / (F(z+71) - F(z — ) dz

— 00
gives
1/n

-1
/J/(n’ k, la 7]) > 32w(ﬁ(k’l))—2 (271'/ Sk‘,l (0, n)2 d0> :

—1/n
Thus to establish Lemma 4 it suffices to prove

1/n 5
/ Sk,1(0,n)* df < 32(Reen) =2 Tkty ()2 (2)
—1/n

for all n < z except a set of cardinality <s, zw(z) °!, where ¢; = ¢1(61) is a
suitable constant. For this purpose we decompose

Ska(8,n) = 1(S{7)(6,n) + S (6,n))
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where

S,E},)(a,n) = Z (d'/d)® H (14 2cos(flogp)),

dd’ |7k, 1) Pl (k1)
(2)(0 n) = Z p(dd')(d'/d)? = H (1 —2cos(flogp)).
dd’ |7 (k1) Pl (k1

Since SZ, < (S(I)2 + 5(2)2) it is sufficient to show that

/n . .

(2.1) /1/ Slgfg (0, n)2 do < (27r)—132w(n(k,t))—26—7‘k,lw(x)2,
—~1/n

for all n < z except a set of cardinality

<s, zw(z)™ (:=1,2).
We show this only for ¢ = 1, the case © = 2 being analogous.
For the range |0| < exp(—rk,;)w(z) we take the trivial estimate

|S;£1z)(9,n)| < 3@(fen)
and obtain

(2.2) / S,g}l)(G, n)?df < 2-32°(wn) exp(—rg  )w(z).
18] <exp(—7i,1)w(z)

For the estimate of the contribution from the remaining range we introduce
fo(n) = Slgll)(a’ n)22w(ﬁ(k,z))yws(ﬁ<k,z))

with
wg(r) = E 1
log p<1/16|
plr
and estimate En<z fo(n) by Lemma 1.
We have fg(n le f(p), where
(1 + 2cos(8log p))2yz, if exp(ri) <logp <671,
fo(p) ={ (1+2cos(flogp))?z, if 071 < logp < exp(rx,),
1, otherwise
in the range exp(—ri,)w(z) < 6 < exp(—rk) and
(1+ 2cos(flogp))?z, if 1, < loglogp < 7,
fo(p) = { ) :
, otherwise

in the range 6 > exp(—r).
We obtain for the first range

Z fo(n) < zexp ( Z 9yzp— 1

n<z exp(rx)<log p<o—!

+
0-1<log p<exp(ri,i)

< zexp {(Qyz —1)(log™(|0]71) —re + 1)
+(3z — 1)(rey — log*(16]71) + O(2) },

2(1 + 2cos(flogp))? — 1)
p
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the second sum over p being estimated, using the prime number theorem as ex-
plained in [6, Lemma 4].
For the second range we obtain

" foln) < wexp

n<zx ri <loglog p<7k.
< zexp{(3z — 1)l + O,(loglog(3+10]))} .
Now we choose y = %, z= % and we obtain

z, if exp(—rr)w(z) < 10] < exp(—rk),
(23) ,,Zngo(n) < { z(log(3 +10]))2, if exp(—rx) < 0] < 1/n,

p

Z 2(1 + 2cos(flogp))? — 1)

where ¢ > 0 is an absolute constant.

To get estimates for S,E‘ll) (6, n) itself we need estimates for w( (k1)) and we(N (k1) ).-

We set 62 = (1 — (log 3)~!) and obtain by

LEMMA 3. w(fiky) — wo(fk,y) = (1 — 82)(riy — log(|0]™1)) in the range
exp(—r)w(z) < 0] < exp(—rg) for all n < =z except a set of cardinality
< zexp(—cy logw(z)) for an appropriate ¢; = c1(61) > 0.

Together with (2.3) this yields
Z’ S(0,n)23-2w0) 23— (1=62)(re.1—log(10] 1))

n<z
for the range exp(—r)w(z) < |0] < exp(—r), where the sum Y’ is extended over
all n < z except a set of cardinality <« zw(z)°t. Thus

> 3t [ St (6,m)2df
(2.4) n<e exp(—rk,1)w(z)<|f|<exp(-rk)

& zexp(—rg)w(z)”(12)log3+1,

For the estimate of the integral over the second range exp(—rx) < |0] < 1/n we
observe that because of I > r(log3—1)"1(1+6;) we can find &3 = §3(61) > 0 such
that

l((l —63)log 3 — 1) > Tk(]. + 53)
|w(R(k,1)) — 1| < 3l for all n < z except a set of cardinality <, zexp(—c3(61)w(z)),
where c3 > 0 depends only on 6;. Thus

/ ~
Z (/ S((li,)l)(ean)zda) 3_2w(n(k,l))
exp(—7k)<|9|<1/n

(2.5) n<z
c2
< £3'(1_53)l <log (3 + l))
Uj Uj

where Z/ means that the sum is extended over all n < x except a set of cardinality
<s, rexp(—c3(61)w(z)). But 3= (1= « exp(—rk ;) exp(—63rk). Now (2.2), (2.4),
(2.5) give that for z > zg

5 ([, b0t 3o <oenuter,
[6]1<1/n

n<z
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where Y’ is extended over all n <  except a set of cardinality <, zw(z)~°'. This
proves (2.1) and thus finishes the proof of Lemma 4.

3. Proof of Theorem 2. Given now
log 2
7S Tlog(1 = (log3)-1)
then we fix €1 > 0 such that

(3.1) (1- 10&:1)10—5g > —log(1 — (log3)™1).

Then we set
. log 2 log 3 11—log2
p—mm(exp((l 8¢1) S >’log3—1+2log3—1 ;
(3.2) v(z) = (loglogz)%!, w(z) = (loglogz)®!,

—1—+—E—llololoz
= log27ggg .

These choices imply that pEKv(z) < (loglogz)!~** and 2% > 2(loglog z)”.

In the following considerations we always assume that x 1is sufficiently large:
x > zo(y). We are now asking for blocks of divisors d; < d2 < --- < ds such that
p(di) = p(dz2) = - -+ = u(ds) # 0, which are not interrupted by other divisors.

To make our demands more precise we introduce the two sequences:

1 &1 1 &1
* = 100 lel o end s =log2 g ;1 PR

Later we will still need
Nk = 1/100k>.

We now introduce the property B(k). We say that an integer n < z has property
(B(k)), if the following is true:
There are 2* divisors of n(x) having the following property (P(k)).

di < <dyk, p(d1)=-=p(dx)#0,
|10g dzk - 10g dll < £k and d l n, p’(d) 75 0,
dé¢ {dy,...,dy} = logd < logd; — ¢ or logd > logdy + ¢-

We will prove by induction in k for 0 < k < K the statement S(k):

All integers n < z have property (B(k)) except those of a set of cardinality
< cq(y)zw(z) =M (k + 1). If K = K this means that all integers n < z except a
set of cardinality < c4()zw(z)~ (K + 1) have property (B(K)), which proves
Theorem 2, since 2X > 2(loglog z)".

PROOF OF S(0). S(0) means that there is a single divisor dy | n(g) = ny(z) with
property
(P(0))  u(d1) #0, |logd; —logd| >log2 forall d|n, d#dy, pu(d) #0.

We set 29 = 2v(z) and write



656 HELMUT MAIER

We claim that for all n < z except a set of cardinality < zw(z)~2¢(") the divisor
p(lz°) has property P(0). We denote the exceptional set by £ (z).

n € £(z) implies that there is a d|n,, such that |logd — log p§z°)| < log2 or
that |log pgz") —log p(lz")l < log2. There are < zw(z)~4 integers n < z for which
ny, > z'/6 or p{*) > z1/6 o w(n},) > ((log5)/(log2) — 1)z, by Lemmas 2 and
3, where A is arbitrarily large. Denote by m}  any integer equal to n} for some
n < z and by h(r) an integer all of whose prime factors are > r.

Then we have

card £ (z) <« Z Z' Z

1/6 P1 h(p1—1)<z/m; p:

-

mi : m; <z
w(mzq)<((log 5)/(log 2)—1)20

T -
+ Z Z Z mZ,P1p2 +aw(z) ™

my <z!/6p12expexpzo pz2: P1<p2<2p1

= Zl + 22 +zw(z)™4, say.

In Z;l the sum is extended over all p; with expexp zp < p; < £1/6 for which there
exists a d|m,, with |logd — logp;| < log2.

Since now m3 p1 < z'/3, the last sum Y=’ 1) <z/ms
by the sieve. Thus we obtain

1 1
Zlgz Z m2 Z Z M'

. 2
™3 <z1/6 0 d|maz, p1: |log p1—logd|<log 2
P1>€exp exp 2o

o1 18 < z/mpilogpy

In the inner sum loglogp; is contained in an interval of length <« e~?0. Thus the
p1-sum is < e~ 220,
We get

1 _ 5\%° _
R D ) e

1/6 20
m3, <zl/

By the sieve
card {n < z: n} =mj } ~ze”*/m},

Z i*e_zO <L z.

1/6 20
mj, <z!/

such that

Thus Y, < z(5/2€)?.
For ), we get

T _
Zg < Z E m3,p1log py Lze ™

m3, <z1/6 p1 >exp exp 2o

This concludes the proof of S(0).

Induction step S(k) = S(k + 1). The induction step is similar to the proof of
Theorem 2 in [8] but there are additional difficulties. Since the induction step is
rather complicated, we start by giving an outline.
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Outline of the induction step. Assume that n has property (B(k)) and let the
block of 2% divisors of N(k): d1,...,dgx be contained in the interval I = [logd; —
Sk, log d,k +¢k]. We then consider the translates I +log d, where d consists of larger
prime factors of n. Our aim is to show that almost always two such translates merge
into a block of the double size 25+1.

That would conclude the induction step S(k) = S(k + 1) if the d’s are not too
large. The aim, to establish the merger of two translates, is roughly achieved as
follows:

We denote by B(k,!) the exceptional set of integers for which no two translates
I +logd, I +1logd',d, d'|n(,) have merged. We then will show that card B(k, ()
is exponentially decreasing for increasing [. We have already shown in Lemma 4
that the measure of

U log(@/d) +[-n,m]
dd’ | 7k 1)
p(dd')=1
is fairly large for most 7.
This leaves many possibilities for the subsequent prime divisors pgk’” and pgk’l)

that the difference log pgk’l) — log p(lk’l) is close to a logarithm log(d’/d). But then

logd + log pgk’” + I, contains the block of 2%+ divisors:
logd; +logd + logpgk’l), logd; +logd + logpgk’l) (j=1,...,2%).

Thus, if n(k,) does not have property (B(k)) and therefore by definition n ;) €
B(k,1), the conditional probability that for small 7, n(x 14 ) still does not have prop-
erty (B(k)) and thus n ;) € B(k,l+7) is not too close to 1. This fact accounts
for the shrinking of B(k,!) with increasing .

There is one additional difficulty to overcome. We have to guarantee that the
new larger block of 25*! divisors is not interrupted by other divisors with different
p-values. This is accomplished by only considering translates Ix + logd, which do
not contain log d-values other than the translates of the logd;. We will call such
divisors d pure.

Thus instead of the measure of

En,k,lm)= |J log(d'/d)+ [-n,n]
ddl | ﬁ'(k,l)
p(dd')=1
we have to consider the measure of

D('I’l, k1, 77) = U 1Og(d//d) + [—777 7)]-

dd’ | Ak
p(dd')=1
d,d’ pure
In Lemma 5 we will show that the contribution in £(n,k,l,n) of d,d’ that are
not pure is very small. Thus meas D(n, k,l,n) is approximately meas £(n, k, [, 7).
After this outline we now give the details of the induction step.
DEFINITIONS. We denote by B(k) the set of all n < z that possess property
(B(k)) and by B(k,!) the set of all integers n < z that possess the property (B(k)),
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but for which there exists no block of 25*! divisors d;, 1 < j < 2¥+1, dj|n ;) with
property (P(k + 1)).

Given n € B(k,[) and a block of 2* divisors djiny, 1< < 2k with property
(P(k)). We set Irx(n(k)) = [logdi — ¢k,logd,k + ¢]. If there are several blocks we
arbitrarily choose one of them to define Iy (n;). Many of the following definitions
will depend on this choice of Iy (nx)).

Given any positive integer r, we call d|n/nf,, r-pure if Ix(n()) + logd contains
no logd', d'|(n,r) other than the translates logd’ := logd; + logd (1 < j < 2%).
For n > 0 we denote by A(n,k,!,7) the Lebesgue measure of the set

D(n,k,lm)=  |J  log(d/d)+ [-n,m].

dd’ | (k1)
p(dd')=1
d,d’ n(g,i)-pure

Let now €5 > 0 be a constant to be determined later. Then we define
Ly =p*(p—1-2¢e2)v(z) and Mg = p*(p—1— ex)v(x).
We will prove

LEMMA 5. For all n € B(k) except a set of cardinality < zexp(—ce(y)w(z))
we have p(n, k,l,n) — A(n,k,1,n) < exp(ri (1 —c7(v))), for Ly <l < My, where
ce(y) > 0, c7(7y) > 0 depend only on ~.

In preparation for the proof of Lemma 5 we first give some more definitions and
prove some auxiliary lemmas.
We set qx = ri+1 — 7k and sk = [gk(1 + £3)], where €3 > 0 will be determined
later.
" We denote by R(k) the set of all n € B(k) with the following properties:
(i) Pekge) [ e
(ii) w(ngy) < ri(1+€4),
(iii) logpgk) > exp(re(l—e5)+s) for 1 < s < s,
(iv) n{i) < 2176,

LEMMA 6. card(B(k)\R(k)) < C(~,¢e3,€4,€5)zexp(—c(7, €3, €4,€5)v(z)) where
the constants ¢ > 0 and C > 0 depend only on the indicated parameters.

PROOF. For any of the properties (i)—(iii) we estimate the set of n < z not
possessing this property by Lemma 3. For the estimate of the set exceptional with

respect to (iv) we observe that loglog pgf) < 7k + sk(1 + e3) for most n and then
apply Lemma 2 for the estimate of nz‘k’ se(14€3))> observing that £k < K and thus

i < (loglog )l —¢1.
DEFINITIONS. We introduce the set

F(n, k,1) = {d|fc,1): d not n( y-pure}.
For d|f (i ;) we define ck(d,n) = card{d'|R,): (d,d’) = 1} and obtain

un,k,l,n) = Mnkn) <20 Y cgu(d,n) =2mC(n, k1),  say.
deF(n,k,l)
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Thus

(33) Y (ul(n,k,lm) = Mn,k, L) <20 Y Cn,k,1).
neR(k) neR (k)

We introduce the set

G(n,k) = {d|ﬁ,(:'°): d not n,(cs")-pure}

and define
br(d,n) = card {d'ln(s") (d,d') = 1}

Since Ly < | < My, we have for n € R(k): ﬁ(k,[)lﬁ(sk) and therefore ¢k (d,n) <
bk,i(d,n) and F(n,k,l) C G(n,k). Therefore we have the majorization

Cln,k, 1)< ) b(d,n).

deg(n,k)
We introduce the sequence of sets
X(n,k,s) = {d|n(s) d not n{*) pure} 1< s< sy,
such that
H(n,k,sk) 2 G(n,k) for all n € R(k).
We set
B(k,s) Z E b (d,n)
n€ER(k) deX (n,k,s)
such that
(3.4) B(k,sg) > Y C(nk,l) for Ly <1< M.

neR (k)

We now prove
LEMMA 7. For1 < s < s, g6 > 0 we have
B(k,s) < C(v,€3,€1,65,6)T exp(—rk(1 — £5)27 (1 F<4)%% (3/2 + g4)°.

PROOF. If d € ¥(n,k,s) we have d = d* or d = d*pgk), where d*]ngz)_l). We
have

B(k,s)= > { Yo b(d*,n) + bi(d plF),n)

neR(k) | d*€X(n,k,s—1)

+ ) be(d"pP, n)

d* |n{*™D d* ¢} (nk,s—1)
d*p{F X (n,k,s)

+ Z br(d*,n) }
)

d* |n£,’c)l) d*¢¥(n,k,s—1

d*€¥(n,k,s)
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Since by (d*p{®, n) = $bik(d*,n), we have
(3.5)

B(k,s) = ;B(k,s ~1)

+ D > b(dp{),n)+ > be(d,n)

Rp k ~(8— s
nERM) | a1al D : dgu(nk,s—1) d|al
dp{) X (n.k.s) dﬁggzkg—;)
n,k,s

= gB(k,s — 1)+ E(k,s), say.

Estimate of E(k,s). We have

Z Z’ s2—w(d),

neR(k ~(s—1)
(k) d|n(k)

(s—1) (s—1)

where the Y '-sum is extended over all d|n ) for which there exists a cz|n(k)
with logd € log(dp( )) + Ix(nk)) or a d| n(k) ) with logd € log((ipgk)) + Ix(n(k))-

Denoting the interval Iy (n)) by [ax(nk)), bx(n(k))] we have for s > 2

E(]C, 8) < Z Z Z 28k-w(d)

leB(k): I<c'/® d|Lp(d)#0d|(1/1F,)
w(l/l(k)) =s—1, w(l(k))<rr(1+€4) u(d)#0
log p{®, (1) >exp(rk (1—€5)+(s—1))

XX

P lph(p—1)<
where the Y""-sum is extended over all p > pgk_)l for which
|logp +logd + ax(lk)) — logd| < log2 or
|logd + ar(l(k)) — logd — log p| < log 2.

We recall that h(r) denotes an integer all of whose prime factors are > r. Since
l-p < 2z'/3 the inner sum is < z/(Iplog p) by the sieve.

The interval for loglog p in ZZ has length < 1/log pgk_)l such that

N x
Z lplogp<< k)

I(logp{¥) | )2

Moreover,

Z Z zsk—w(d) < zsk—3332w(1).

dir dli/l)
u(d)#0 wu(d)#0
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Thus,
E(k,s) < Z %Qw(l) 99k—33s
I<z'/8: w(l/17y)=s—1 l(lngS_l)
w(l(k))grk(l+54)
log p{¥; (1) >exp(rk(1—€5)+(s—1))
Since
card {n <z: nzg_l) = l} > #(k) for | < /8
llogp,,
we obtain
Z L.
I<z1/6; w(l/ly))=s—1
Therefore,
(3:6) E(k,s) < g2+ (Fe) ok exp(—rg (1 — £5) — (s — 1))3°
for s > 2.

The estimate of E(k,1) is accomplished in a similar manner. We omit the
condition log pgk_)l > exp(rk(1 — €5) + (s — 1)) and observe instead, that log pgk) >
exprk. This leads to the estimate (3.6) also for s = 1.

Now we prove Lemma 7 by induction in s. We choose the integer so = so(€g) > 0
such that

(3.7) £6(3/2)% > (3/e).
First it is easily proven by induction, using (3.5) and (3.6), that
Bk, s) < 2Co(5/2)",
where
Co = C'(v,€3,€4,5) exp(—r(1 — £5))2m+ (1 Hea)Fou
for s < sg. This gives
B(k, ) < 2Co(3)** ()% < 2Co(3)% (3 + e6)*.

For s > sg we continue the induction, observing (3.5), (3.6), and (3.7). This
concludes the proof of Lemma 7.
PROOF OF LEMMA 5. From (3.3), (3.4), and Lemma 7 we obtain that

( ) Z (/l'(na kalan) - )\(na k,l,ﬂ))
3.8 neR (k)

< 2nC(v,€3,€4,€5,€6)Texp(ri(1 — €5))27 (1Fea)For (2 4 gg )%k,
We now fix the constants c¢7(7y), €2, ..., €6 in a manner such that

(3.9 (p—1—2e3) > (log3 —1)"1(1 + &)
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and
—(1—es5)+{1+es+(p—1)(1+¢€3)}1og2
(3.10) +(p = 1)(1 + €3) log(3 + €6)
<[+ (p—1-262)(1 - 2es()],
which is possible because of (3.1) and (3.2). Then (3.8) gives, that
D (k) = Mn, kL m)) < explria(1— 2e7(7))
neRr (k)
for Ly <1 < Mj. This implies that

,u(n, ka la 77) - ’\(na k1 la 7]) < exp(rk,l(l - C7(’)‘)))
for all n € R(k) except a set of cardinality <~ zexp(—rg,c7(7)). This together
with Lemma 6 implies Lemma 5. Because of (3.9) Lemma 4 is applicable. As an
immediate corollary of Lemmas 4 and 5 we obtain
LEMMA 8. We have A(n,k,l,n) > exp(rk,)w(z) 2 for all n € B(k) except a
set of cardinality <, zw(z) =),

Conclusion of the Proof of Theorem 2. To complete the induction step and thus
the proof of Theorem 2 we want to show that

card B(k,1) < cq(y)zw(z)*)  for some | € [Li, My].

We denote by C(k,!) the subset of B(k,!) of those integers which satisfy the three
extra conditions:

(a) lognfy ;) < exp(re,)w(),

(b) w(n(ic,y) < 2riy,

(c) An, k,1,m) > exp(re)w(z) 2.

By Lemma 2, 3, and 8 we have

card(B(k,1)/C(k,1)) < zw(z)~cO.

Thus to complete the proof of Theorem 2 it suffices to show that
(3.11) card C(k,1) < zw(z)~2¢0)  for some [ € [Ly, My].

Assume that

k,l k,l
n_n(k p( ). pT(_kl), p(l )5"‘Sp£k’l).

We consider the set A(k,l) of n € C(k,l), whose prime factors p(k b, gk’l),pgk’l)
satisfy the following conditions:

(i) exp(rk,)w(z) < logp{"™" < 2exp(ri)u(®),
(ii) log p$¥) — log p{*!) € U log(d'/d) + [~ Mk+1,Mk+1],
dd’ ‘ ﬁ(ky[)

dd' n(g ;) -pure

(iii) log p§*" > log(niyypi*"ps"").

These conditions ensure that there exists a block of 25 divisors of nk 14y, J <
2log w(z), satisfying (P(k + 1)), namely the divisors plk Dard;, ék’l)ddi 1<2<
2). Condition (iii) ensures that this block is not destroyed by larger prime factors.
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Thus C(k,! + ) C C(k,1)/A(k,l) such that
(3.12) card C(k,l + 5) < card C(k,l) — card A(k,1).

We now give a lower bound for card A(k,l). Denote by m{ ;) an integer equal to
Ny, for some n € C(k,1).
We have
card A(k, 1) > Z 1
mzk,;)l’gk'[)l’gk'l)h(mzk,l)ng'l)ng"))SI
where * means that nf, ;) € B(k) and that the n; ), pgk’l) satisfy (i)—(iii).
By the sieve we have

* T
card A(k,0) > Y —— e D
mfk,x)’l’gk'l)»i’gk'l) (k,H)P1 P2 8 D2

For a fixed pair (m(*k,,),p?’”) the pgk’l) cover a union of at most 3¥(Mk.0) < 327k
disjoint intervals with total logarithmic length > 1 exp(r,)w(z) 3. Moreover all
the limit points have logarithm of order exp(rx,;)w(z). This implies that the pgk’l)-
sum is > exp(—r,)w(z)~®. The p{*"-sum is > 1. Finally,

card A(k,l) > Z maj, exp(—rk, 1 )w(z) ",

N

M.y logm{, ;) <exp(rk,i)w(z)

cardC(k,0) < ) > 1

m’('k,[) h(exp exp 'k,l)sz/mzk,,)

T
< Z - exp(—rk,1)-

m
""Zk,l) : log mzk’L)Sexp(rk,l)w(x) (k,l)

Thus
card A(k,!) > card C(k,)w(z)>.

Together with (3.11) this gives
card C(k, My) < card C(k,1)(1 — w(z) %) Me—Le)/2 « g exp(—w(z)/?),
which is sufficient.

REFERENCES

1. P. Erdés and R. R. Hall, On the Mobius function, J. Reine Angew. Math. 315 (1980), 121-126.

2. P. Erdos and I. Katai, Non complete sums of multipkicative functions, Period. Math. Hungar. 1
(1971), 209-212.

3. P. Erdos and G. Tenenbaum, Sur les diviseurs consécutifs d’'un entier, Bull. Soc. Math. France
111 (1983), 125-145.

4. H. Halberstam and H.-E. Richert, On a result of R. R. Hall, J. Number Theory 11 (1979),
76-89.

5. R. R. Hall, A problem of Erdos and Katai, Mathematika 21 (1974), 110-113.



664 HELMUT MAIER

6. —_, Sums of imaginary powers of the divisors of integers, J. London Math. Soc. (2) 9 (1974-75),
571-580.

7. C. Hooley, On a new techraque and its applications to the theory of numbers, Proc. London Math.
Soc. (3) 38 (1979), 115-151.

8. H. Maier and G. Tenenbaum, On the set of divisors of an integer, Invent. Math. 76 (1984),
121-128.
9. —_, On the normal concentration of divisors, J. London Math. Soc. (2) 31 (1985), 393—-400.

10. G. Tenenbaum, Sur la probabilité qu’un entier posséde un dwiseur dans un intervalle donné, Com-
positio Math. 51 (1984), 243-263.

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF GEORGIA, ATHENS, GEORGIA
30602



	0110221
	0110222
	0110223
	0110224
	0110225
	0110226
	0110227
	0110228
	0110229
	0110230
	0110231
	0110232
	0110233
	0110234
	0110235
	0110236

