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PSEUDO-CHERN CLASSES .,-
OF AN ALMOST PSEUDO-HERMITIAN MANIFOLD 

YASUO MATSUSHITA 

ABSTRACT. For an almost pseudo-Hermitian manifold, pseudo-Chern classes 
are defined on its complexified tangent bundle with the pseudo-Hermitian 
structure as represented by certain ad(U(p, q))-invariant forms on the man-
ifold. It is shown that such a manifold always admits an almost Hermitian 
structure, and hence that Chern classes are also defined on the complexified 
tangent bundle with such an almost Hermitian structure. A relation between 
the pseudo-Chern classes and the Chern classes is established. From the re-
lation, the pseudo-Chern classes are considered as the characteristic classes 
which measure how the almost pseudo-Hermitian structure deviates from an 
almost Hermitian structure. 

1. Introduction. The study of characteristic classes for pseudo-Riemannian 
manifolds started with the famous works of Avez [A] and Chern [C] concerning 
the generalized Gauss-Bonnet formula. These works assert that the Euler char-
acteristic class of a pseudo-Riemannian vector bundle can be determined by its 
pseudo-Riemannian structure. The author's recent paper [MI] noted that for a 
pseudo-Riemannian manifold its pseudo-Pontrjagin class represented by a certain 
ad(SOo(p, q))-invariant polynomial function of the pseudo-Riemannian curvature 
tensor coincides with the Pontrjagin class of the manifold. It should be mentioned 
that Borel [B] has treated these issues for pseudo-Riemannian mainfolds, dealing 
also with the Chern classes for pseudo-Hermitian manifolds. In [B], Borel asserted 
that these characteristic classes corresponding to the groups SO(p + q) in the real 
case and U (p + q) in the complex case can be obtained from the curvature forms in 
the bundles with the groups SOo(p, q) and U(p, q), resJrectively. 

The purpose of this paper is to show that in the complex case we can construct 
analogues of the Chern classes for a pseudo-Hermitian vector bundle which coincide 
with the Chern classes only if the negative part of the bundle makes no contribution 
to the characteristic classes. We shall call these characteristic classes the pseudo-
Chern classes. 

In this paper, we deal mainly with an almost pseudo-Hermitian manifold. Gen-
eralizing Gray's formula [G, Theorem 9.1], we construct pseudo-Chern classes 
on the complexified tangent bundle of such a manifold as represented by certain 
ad(U(p, q))-invariant curvature polynomials. The result obtained in this paper are 
easily applicable to every complex vector bundle with a pseudo-Hermitian structure. 

It is shown that every almost pseudo-Hermitian manifold admits an almost Her-
mitian structure, and hence that the Chern classes are also defined in the sense of 
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Gray [G] on its complexified tangent bundle with such an almost Hermitian struc-
ture. It is crucial to recognize that the almost pseudo-Hermitian tangent bundle 
reduces to a Whitney sum of two tangent subbundles, and that such a splitting is 
compatible with the almost pseudo-Hermitian structure and also with the almost 
Hermitian structure on the manifold. Therefore, we can compare the pseudo-Chern 
classes with the Chern classes for the Whitney sum, and hence obtain a certain re-
lation between them. From the relation, the pseudo-Chern classes are considered as 
the characteristic classes which measure how the almost pseudo-Hermitian structure 
deviates from an almost Hermitian structure. 

The paper is organized as follows. §2 covers the preliminaries for treating an 
almost pseudo-Hermitian manifold. We define the pseudo-Chern classes for such a 
manifold in §3. We show in §4 that every almost pseudo-Hermitian manifold admits 
an almost Hermitian structure, and that its Chern classes are defined naturally. In 
§5, we show that the almost pseudo-Hermitian tangent bundle can be reduced to 
a Whitney sum of two almost Hermitian tangent subbundles. In §6, we state the 
main result concerning a relation between the pseudo-Chern classes and the Chern 
classes and discuss some other important results. We end the paper with some 
remarks. 

2. Almost pseudo-Hermitian manifolds. Throughout this paper, by a man-
ifold we mean a compact orientable Coo-differentiable manifold. 

Let (M, J, ( , )) be a 2n-dimensional almost pseudo-Hermitian manifold with 
an almost complex structure J, a J-invariant pseudo-Riemannian metric ( , ) of 
signature 

(+ .. +_ ... _), 2p?2q,2p+2q=2n, 
2p 2q 

and the pseudo-Riemannian connection ~. The metric ( , ) is called the pseudo-
Hermitian metric on M with the property 

(JX, JY) = (X, Y), 

where X, Y E :I(M), the algebra of Coo vector fields on M. The tangent bundle 
7r: ~ ----t M of M has pseudo-unitary group U(p,q) as the structure group, where 
U(p, q) is considered as a subgroup of the pseudo-orthogonal group O(2p, 2q). 

We can choose a local pseudo-orthonormal frame field on M as 

{El , J El' ... ' Ep, JEp, Ep+l, JEp+l , ... , En, J En} 

such that for i, j = 1, ... , n, 

where biJ is the Kronecker delta, and Ci = + 1 for 1 :::; i :::; p, Ci = -1 for p + 1 :::; 
i:::; n. 

We now consider the complexification ~Q9C of the tangent bundle ~ of M. There 
are p + q (= n) local complex vector fields VI, ... , Vp, WI' ... ' Wq on ~ Q9 C such 
that 

{VI' ... ' Vp,WI , ... ,Wq,VI , ... , Vp,W I , ... ,Wq} 

is a local basis field for ~ Q9 C, where the bar indicates the complex conjugation. 
The metric ( , ) can be extended uniquely to a complex symmetric bilinear form, 
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also denoted by ( , ), with the properties 

(Va, Vb) = 8ab , (Wa, W (3) = -8a(3, 

(Va, Wa) = 0, (Va, W a) = 0, (Va, Wa) = 0, 

for a, b = 1, ... ,p and D, f3 = 1, ... ,q. Such a basis can be expressed in terms of a 
suitable basis {Ei' J E j } as follows: 

Va = (Ea - J=1 JEa)/V2, a = 1, . .. ,p, 
Wa = (Ep+a - J=lJEp+a)/V2, D = 1, .. . ,q. 

Note that Va, Wa (resp. Va, W a) are the A (resp. -A) eigenvectors of J. 
The pseudo-Riemannian curvature tensor R is defined by 

R(X, Y)Z = [Vx, Vy]Z - V[X,YjZ for X, Y, Z E X(M). 

On the basis of Gray's analysis [G, Theorem 9.1] and associated with the pseudo-
Riemannian connection V, we define a new connection D on the tangent bundle ~ 
of M as follows: 

A 1 A A 

DxY = 2(V'XY - JV'xJY). 

If V J = 0, then D coincides with V. We denote by S the new pseudo-curvature 
tensor of the connection D: 

S(X, Y)Z = [Dx, Dy]Z - D[x,YjZ for X, Y, Z E X(M). 

Associated with S, we obtain a complexified pseudo-curvature 2-form <1> = [<1>ij] of 
type (0,2) defined by 

<1>ij(X, Y) = (SXyEi, Ej ) - R(SxyEi, JEj) for X, Y E X(M) ® C. 

<1> is written as an n x n skew-Hermitian matrix; 

t<1> + <1> = O. 

The pseudo-curvature 2-form of type (1,1), denoted by <1>' (= [<1>';]), is related to 
<1> by the formula 

I _ [Ip 0] p,q - 0 -Iq , 

where h = diag[+ 1, ... ,+ 1] (+1: k times). Then, <1>' satisfies 
t A, A, 

<I> Ip,q + Ip,q<I> ,= O. 

The pseudo-unitary group U(p, q) acts on <1> and <1>' in the following ways, respec-
tively: 

(la) 
(lb) 

<1> ~ ~ = tg<1>g, 
<1>' ~ ~, = 9 - 1 <1>' 9 , 

where 9 E U(p, q). If the structure group is a unitary group U(n) (p = n, q = 0), 
i.e., the manifold is almost Hermitian, then the complexified curvature 2-form of 
type (0,2) and that of type (1,1) coincide with each other and are written as a 
skew-Hermitian n x n matrix. 
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3. Pseudo-Chern classes. Let Mn(C) denote the algebra of all complex n x n 
matrices. Define a function j: R x Mn(C) --+ C by 

j(A, A) = (-1)q det(Up,q - (27rR)-1 A). 

Concerning this function, we have 

PROPOSITION l. j(A,~) is invarant under the actions oJU(p,q). 

PROOF. The proof is similar to the case of the pseudo-Pontrjagin classes (cf. 
[Mi, Lemma]. For the pseudo-unitary group, we know that 

9 E U(p, q) <---+ tglp,qg = Ip,q' 

The group U(p, q) acts on ~ according to (1a) and hence 

j(A,~) f--> j(A,~) = j(A,tg~g) 

This completes the proof. 0 

= (-1)q det(Up,q - (27rR)-1 tg~g) 
= (-1)q det(Atglp,qg - (27rR)-ltg~g) 

= (-1)qdet(tg(Up,q - (27rR)-1~)g 

= (-1)qdet(Up,q - (27rR)-l~) 

= j(A, ~). 

Associated with the function j(A, A) we define ad(U(p, q))-invariant polynomial 
functions jo, jlo"" jn on the Lie algebra u(p, q) by 

n 

j(A, A) = L:: A(A)An- k for A E u(p, q). 
k=O 

For a kth function A there exists a unique closed 2k-form lk on M such that 
7f*(fk) = jk(~)' 

We now denote by Ck (~ ® C) the class of the 2kth de Rham cohomology ring 
H2k(Mi R) represented by lk. 

DEFINITION 2. The kth pseudo-Chern class of (M, J, ( , )), denoted by ck(M), 
is defined to be the class Ck(~ ® C) of the complexified pseudo-Hermitian bundle 
~ ® Cover (M, J, ( , )). Moreover, we put c(M) = c( ~ ® C) as 

c(M) = 1 + C1 (M) + c2(M) + '" + cn(M) E H*(Mi R), 
and call it the total pseudo-Chern 'class of (M, J, ( , )). We can further define the 
pseudo-Chern character of (M, J, ( ,)). 

DEFINITION 3. The pseudo-Chern character of (M, J, ( , )), denoted by cl!(M), 
is defined to be the characteristic class represented by the following ad(U(p, q))-
invariant polynomial 

trace(exp( _~I /27rR)) = trace(exp( -Ip,q~/27rR)). 

REMARK. It is to be noted that a polynomial trace( exp( -~ /27rA)) is not 
adjoint invariant by U(p, q), because trace for a matrix of type (0,2) does not give 
rise to an invariant quantity by the structure group, but for that of type (1,1). 
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-t. Chern clasies. For an almost pseudo-Hermitian manifold (M, J, ( , )), if 
we forget the pseudo-Hermitian metric ( , ), then we obtain an almost complex 
manifold (M, J). It is known (cf. [K-N, Chapter IX, Proposition 4.1]) that such 
a pair (M, J) admits a J-invariant positive definite metric, i.e., Hermitian metric, 
denoted by ( , ). We therefore obtain a quadruple (M, J, ( , ), ( , )), where J has a 
dual character in the sense that (J, ( , )) is an almost pseudo-Hermitian structure 
on M and that (J, ( , )) is an almost Hermitian structure on M. Thus, we have 
proved the following proposition. 

PROPOSITION 4. Every almost pseudo-Hermitian manifold (M, J, ( , )) admits 
an almost Hermitian structure (J, ( , )). 

If we forget the pseudo-Hermitian metric ( , ) on M from a quadruple (M, J, ( , ), 
( , )), then we obtain an almost Hermitian manifold (M, J, ( , )). The tangent 
bundle ~ of the triple (M, J, ( , )) has the unitary group U(n) as the structure 
group, where U(n) is considered as the subgroup of the orthogonal group O(2n). 

Let V be the Riemannian connection of (M, ( , )). The Reimannian curvature 
tensor R is given by 

R(X, Y)Z = [Vx, Vy]Z - V[X,YlZ for X, Y,Z E X(M). 

We denote by S the curvature tensor of the connection Dx Y = !(V x Y -JV xJY); 

S(X, Y)Z = [Dx, Dy]Z - D[x,YlZ for X, Y, Z E X(M). 

Associated with S, we obtain a complexified curvature 2-form If> = [If>ij] of type 
(0,2) on the complexified tangent bundle ~0C with the almost Hermitian structure 
(J, ( , )) as follows: 

If>ij(X, Y) = (SX,y Ei , Ej ) - H(Sx,y Ei, J E j ) for X, Y E X(M) 0 C. 

We can define the kth Chern class ck(M) of M to be the kth Chern class ck(~0C) E 
H 2k (M; R) of ~ 0 C with the almost Hermitian structure (J, ( , )), and the total 
Chern class of M to be the sum 

c(M) = 1 + cl(M) + c2(M) + ... + cn(M) E H*(M; R). 

Due to Gray [G, Theorem 9.1], the total Chern class c(M) of M is represented by 
the following ad(U(n))-invariant polynomial: 

The Chern character of (M, J, ( , )), denoted by ch(M), is defined to be the class 
represented by the polynomial 

trace( exp( -~ /27rH)). 

5. Whitney sum. We shall show that the tangent bundle ~ of (M, J, ( , )) 
can be reduced to a Whitney sum E+ 0 E- of a 2p-dimensional subbundle E+ with 
positive definite metric and a 2q-dimensional subbundle E- with negative definite 
metric. The Whitney sum plays an important role in comparison between the 
pseudo-Chern classes and the Chern classes. 
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PROPOSITION 5. M admits a nonsingular field of J -invariant tangent 2p-planes 
and its complementary field of tangent 2q-planes which is also nonsingular and J-
invariant. 

PROOF. It is known (Steenrod [8, §40]) that a compact manifold M admits 
an indefinite metric of signature (2p,2q) if and only if M admits a nonsingular 
field of tangent 2p-planes. M also admits the complementary field of tangent 2q-
planes. The arguments of Steenrod are based on the observation that the tangent 
bundle ~ of M admits a reduction of the structure group to O(2p) x O(2q), the 
maximal compact subgroup of O(2p, 2q). Due to the almost complex structure J, 
the tangent bundle ~ of (M, J, ( , )) admits a further reduction of the structure 
group to U(p) x U(q) (as a subgroup of O(2p) x O(2q)). At each point of M, the 
tangent 2p-plane (resp. the complementary tangent 2q-plane) is spanned by the 
vectors of positive (resp. negative) norms with respect to the metric ( , ). If a 
tangent vector u at a point of M lies in the 2p-plane (resp. 2q-plane), then Ju also 
lies in the 2p-plane (resp. 2q-plane) since (Ju, Ju) = (u, u) > 0 (resp. < 0). In this 
sense, both fields of 2p-planes and of 2q-planes are J-invariant. 0 

For the almost complex structure J of a quadruple (M, J, ( , ), ( , )) we have 
J E Coo(End(~+)) EB Coo(End(~_)). 

Thus, we can write J on ~+ EB ~_ as J = J + + J _, where J + E Coo (End( ~+)) and 
L E Coo(End(~_)). For the algebra X(M) of vector fields on M, we also have the 
splitting 

X(M) = X+(M) EB X_(M), 
where X+(M) (resp. X_(M)) is the algebra of vector fields with values in ~+ 
(resp. ~_). Thus, for each X E X(M) we can write uniquely X = X+ +X_, where 
X+ E X+(M) and X_ E X_(M). 

Then, the almost pseudo-Hermitian metric ( , ) restricted to ~+ is positive 
definite and almost Hermitian, and similarly ( , ) restricted to ~_ is negative 
definite and almost Hermitian. Moreover, the restrictions of the almost Hermi-
tian metric ( , ) to ~+ and ~_ are both positive definite, and hence also al-
most Hermitian. Therefore, we can choose a local pseudo-orthonormal frame field 
{E;;, hE;;; E;;, LE;;} (a = 1, ... ,p; 0: = 1, ... q) on M such that {E;;, hE;;} 
is a local orthonormal frame field on ~+ with the properties 

(Ed,Et) = (hEd,J+Et) = (Ed,Et) = (J+Ed,J+Et) = Oab, 
and that {E;;, J _ E;;} is a local orthonormal frame field on ~_, with the properties 

-(E;;, E;;) = -(LE;;, LE;;) = (E;;, E;;) = (LE;;, LE;;) = 00:(3. 
We shall call such a frame the splitted basis. Then, we obtain 

PROPOSITION 6. (a) The complexified pseudo-curvature 2-form <l? = [<l?ij] of 
type (0,2) on ~ ® C with (J, ( , )) can be written relative to the splitted basis as a 
diagonal block matrix 

q 

o ] P 
<l?(_) q 

with 
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(b) The complexified curvature 2-form <P = [<piJl of type (0,2) on ~ ® C with 
(J, ( , )) can be written relative to the splitted basis as a diagonal block matrix 

p q 
<P = [<P(_) 0] P o <p(_) q 

with 
t - t -<p(+) + <p(+) = 0, <p(_) + <p(_) = O. 

(c) Moreover, these coincide with each other: 

[ ~(+) A 0 ] = [<P(+) 0] . o <p(_) 0 <p(_) 
PROOF. These assertions are clear from the reduction of ~ to the Whitney sum 

~+ EEl ~- (see [C, MIl). 0 
The complexified pseudo-curvature 2-form ~, of type (1,1) takes on ~+ ® C EEl 

~_ ® C with (J, ( , )) the form 

(3) ~, = [~(+) A ~ 1 = Ip,q~ = [~(+) A
O ] = [<P(+) _ 0 ]. o <p(_) 0 -<p(_) 0 <p(_) 

The component <p(+) (resp. <p(_)) is the complexified curvature 2-form on ~+ ® C 
(resp. ~_ ® C) with the structure group U(p) (resp. U(q)). 

Let Ck(~+ ® C) (resp. Ck(e- ® C)) be the kth Chern class of ~+ ® C (resp. 
~_ ® C). Then the total Chern class 

c(~+ ® C) = 1 + Cl(~+ ® C) + C2(~+ ® C) + ... + cp(~+ ® C) 
of ~+ ® C is represented by 

fp(1, <p(+)) = det(Ip - (2r.V-l)-1<p(+)). 
Similarly, the total Chern class 

c(~_ ® C) = 1 + Cl(~- ® C) + C2(~- ® C) + ... + Cq(~_ ® C) 
of ~_ ® C is represented by 

fq(1,<P(_)) = det(Iq - (2r.V-l)-1<p(_)). 
Then the total Chern class c(M) of (M, J, ( , )) represented by (2) is determined 
in terms of c( ~+ ® C) and c( ~_ ® C) by the formula 

c(M) = c(~+ ® C)c(~_ ® C) 
(4) = (1 + Cl(~+ ® C) + C2(~+ ® C) + ... + cp(~+ ® C)) 

. (1 + Cl(~- ® C) + C2(e- ® C) + ... + Cq(~_ ® C)). 
Inserting <P of the form obtained in Proposition 6(b) into (2), we can easily see this. 

For the Chern character ch(M) of (M, J( , )), we have a well-known formula 
(5) ch(M) = ch(~+ ® C) + ch(~_ ® C), 
where ch( ~± ® C) are the Chern characters of ~± ® C represented by 

trace(exp( -<p(±)/2r.R)). 
6. Pseudo-Chern classes and Chern classes. In this section, we shall es-

tablish a relation between the pseudo-Chern classes and Chern classes. We now 
state the main result. 
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THEOREM 7. The total pseudo-Chern class c(M) of an almost pseudo-
Hermitian manifold (M, J, ( , )) is determined by the total Chern class c( ~+ ® C) 
of ~+ ® C and the total Chern class c( ~_ ® C) of the conjugate bundle ~_ ® C of 
~_ ® C through the formula 

PROOF. From Definition 2, the total pseudo-Chern class c(M) is represented by 
/(1, <f,). From Proposition 6, we can write <f, as the diagonal block matrix relative 
to the split ted basis. Inserting such a form <f, into /(1, <f,), we have 

/(1, <f,) = (-1)q det(Ip,q - (27rR)-1<f,) 
= (-1)q det(Ip - (27rR)-l<1>(+)) 

!\ det( -Iq - (27rR)-l<1>( _)) 

= (-1)q det(Ip - (27rR)-l<1>(+)) 
!\det t(_Iq - (27rR)-l<1>(_)) 

= (-1)q det(Ip - (27rR)-l<1>(+)) 
!\ (-Iq + (27rR)-1~(_)), 

where the last equality holds since t<l>( _) = -~( _). For the second term of the 
above expression, we have 

det( -Iq + (27rR)-l~(_)) = - det(Iq - (27rR)-1~(_)) if q is odd, 
= det(Iq - (27rR)-1~(_)) if q is even. 

Therefore, in any case, we have 

/(1, <f,) = det(Ip - (27rR)-l<1>(+))!\ det(Iq - (27rR)-1~(_)) 

= fp(1, <I>(+))!\ fq(1, ~(-)). 

The first term of the right-hand side clearly represents the total Chern class 
c( ~+ ® C) of the complexified bundle ~+ ® C. Since ~(_) is considered as the 
curvature 2-form of the conjugate bundle ~_ ® C, the polynomial 

represents the total Chern class c( ~_ ® C) of ~_ ® C. 0 
Therefore, if ~_ is flat, then the total pseudo-Chern class c(M) coincides with 

the total Chern class c(M). 
Since the kth Chern class Ck(~- ® C) is equal to (_1)kck(~_ ®C) [M-S, Lemma 

14.9], the total pseudo-Chern class c(M) is expressed in terms of the Chern classes 
Ci(~+ ® C) and cJ(~- ® C) as follows: 

c(M) = (1 + Cl(~+ ® C) + C2(~+ ® C) + ... + cp(~+ ® C)) 
. (1- Cl(~- ® C) + C2(~- ® C) - ... + (-1)qcq(~_ ® C)). 

(6) 

From this formula, we have useful expressions for the pseudo-Chern class as follows. 
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PROPOSITION 8. The kth pseudo-Chern class ck(M) of (M, J, ( , )) is deter-
mined by the Chern classes Ci (~+ 129 C) and c) (~- 129 C) as follows: 

(i) for p 2 q 2 k, 

cdM) = Ck(~+ 129 C) - Ck-l(~+ 129 C)cd~- 129 C) 
+ Ck-2(~+ 129 C)C2(~_ 129 C) - ... + (-l)kck(~_ 129 C), 

(ii) for p 2 k 2 q, 

ck(M) = Ck(~+ 129 C) - Ck-l(~+ 129 C)cd~- 129 C) 
+ Ck-2(~+ 129 C)C2(~- 129 C) - ... + (-l)qck_q(~+ 129 C)Cq(~_ 129 C), 

(iii) for n = p + q 2 k 2 p 2 q, 

ck(M) = (-l)k-Pcp(~+ 129 C)Ck_p(~_ 129 C) 
+ (_l)k-p+lcp_l(~+ 129 C)Ck-p+l(~- 129 C) 
+ (-1)k-P+2cp_2(~+ 129 C)Ck-p+2(~- 129 C) 

+ (-l)qck_q(~+ 129 C)Cq(~- 129 C). 
Concerning the top pseudo-Chern class, we have 

PROPOSITION 9. (i) cn(M) = (-l)qcn(M). (ii) cn(M) = (-1)Pe(~)2 (e(~): 
the Euler class of ~). 

PROOF. (i) From the third formula in Proposition 8, with k = n = p + q, we 
have 

cn(M) = (-l)qcp(~+ 129 C)Cq(~_ C29 C), 
where cp(~+ 129 C)Cq(~- 129 C) is equal to the top Chern class cn(M). 

(ii) It is known that the top Chern class Cn (M) = Cn (~ C29 C) is equal to the Euler 
class e((~Q9C)R) of the underlying real vector bundle (~Q9C)R of ~Q9C. Moreover, 
there is a relation between e( (~Q9 C)R) and the Euler class e(~ EB~) of the Whitney 
sum ~ EB ~ as follows [M-S, §15.7,8]: 

e((~ 129 C)R) = (-1)ne(~ EB ~). 

Since e( ~ EB 0 = e(~)2, together with i), we have 

cn(M) = (-l)qcn(M) = (_1)n+qe(~)2 = (-1)Pe(~)2. 
This completes the proof. 0 

We now turn our attention to the pseudo-Chern character. Corresponding to 
the formula (5), we have 

PROPOSITION 10. The pseudo-Chern character ch(M) of (M, J, ( , )) is deter-
mined by the Chern characters ch( ~+ 129 C) and ch( ~_ C29 C) as follows: 

ch(M) = ch(~+ 129 C) + ch(~_ 129 C). 

PROOF. From Definition 3, the pseudo-Chern character cll(M) is represented 
by the polynomial 

trace(exp( _~I /21rH)). 
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Since <1>' takes the form (3) on the Whitney sum ~+ ® C EEl ~_ ® C with (J, ( , )), 
we have 

trace( exp( -<1>' /27rR)) 

(' [-<I>(+)/21fJ=I 
= trace exp 0 

= trace [ exp( -<I>( + Jl21fJ=I) 0 ] 
o exp( <I> ( _ Jl21fJ=I) 

= trace( exp( -<I>( + )/21fR)) + trace( exp( <I> ( _ )/21fR)). 

The first term represents the Chern character ch( ~+ ® C). Concerning the second 
term, further we have 

trace( exp( <I> ( _ ) /27rR) = trace(t (exp( <I> ( _ ) /21fR))) 
= trace(exp(t<I>(_)/27rR)) 

= trace(exp(-~(_Jl21fR)). 
The last expression represents the Chern character of ~_ ® C. This completes the 
proof. D 

PROPOSITION 11. The difference between Ch(M) and ch(M) depends only on 
the complexified sub bundle ~_ ® C: 

Ch(M) - ch(M) = ch(~_ ® C) - ch(~_ ® C). 
PROOF. This relation is easily verified from Proposition 10 and (5). D 
If ~_ is fiat, then we have the coincidence ch(M) = ch(M). 
Let - ( , ) denote an indefinite metric ( , ) with the opposite signature 

(-"'-+"+), 2p~2q, 2p+2q=2n. 
2p 2q 

A manifold carrying an indefinite metric (, ) clearly admits the opposite one - ( , ). 
Associated with (M, J, ( , )), we now consider an almost pseudo-Hermitian man-

ifold (M, J, -( , )). The metric -( , ) is negative definite and almost Hermitian 
on the 2p-dimensional sub bundle ~+, and is positive definite and almost Hermi-
tian on the 2q-dimensional subbundle ~_. According to Definition 2, the total 
pseudo-Chern class of (M, J, -( , )), denoted by c_(M), is represented by 

(-l)P det( -Ip,q - (21fR)-1<1». 

From this polynomial, we can obtain a formula analogous to that in Theorem 7 as 
follows: 

c_(M) = c(~+ ® C)c(~- ® C). 
If we denote by ch_ (M) the pseudo-Chern character of (M, J, - ( , )), then we also 
have a formula corresponding to that in Proposition 10 as follows: 

Ch_(M) = ch(~+ ® C) + ch(~_ ® C). 

Moreover, the difference between ch_(M) and ch(M) depends only on ~+ ® C (cf. 
Proposition 11): 
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If the negative definite part ~+ is fiat, then we have the coincidences 

c_(M) = c(M) and clL(M) = ch(M). 

675 

Thus, the pseudo-Chern classes and the pseudo-Chern character are not invariant 
by an overall change of sign of the metric. 

We may therefore say that the pseudo-Chern classes and also the pseudo-Chern 
character of (M, J, ( , )) are considered as the characteristic classes which charac-
terize the negative definite part ~_ of an almost pseudo-Hermitian tangent bundle 
~::= ~+ EEl ~-. 

7. Remarks. We end this paper with some remarks. 
A. We now explain why we can construct the pseudo-Chern classes in addition 

to the Chern classes on the almost pseudo-Hermitian manifold M. The complexifi-
cation ~ 0 C of the tangent bundle ~ splits into a Whitney sum ~+ 0 C EEl ~_ 0 C. 
Thus, we can construct four kinds of ad(U(p) X U(q))-invariant curvature forms 
corresponding to the following bundles: 

~+ 0 C EEl ~- 0 C, ~+ 0 C EEl ~- 0 C, ~+ 0 C EEl ~_ 0 C, ~+ 0 C EEl ~- 0 C. 
By an overall conjugation, we can make the third and the fourth bundles coin-
cide with the first and the second bundles, respectively. Therefore, we have two 
essentially different characteristic classes up to conjugation: 

The former is the total Chern class considered by Borel [B], and the latter is the 
total pseudo-Chern class constructed in this paper. 

B1. A 4-dimensional almost pseudo-Hermitian manifold (M, J, (, )) of signature 
(2p,2q) = (2,2), with U(l, 1) as the structure group, is interesting for the follow-
ing reasons. (1) It is a lowest-dimensional example of an almost pseudo-Hermitian 
manifold. (2) Every 4-dimensional pseudo-Riemannian manifold of metric signa-
ture (2,2) admits an almost complex structure. Here, we know that an orientable 
pseudo-Riemannian 4-manifold of signature (2,2) admits a field of nonsingular ori-
ented 2-planes [8, §40; M2, Lemma A], and thanks to Hirzebruch and Hopf [H-H, 
4.5, 6] that it also possesses an almost complex structure. 

B2. A simple and illustrative example may be a product space M = Cpl X Cpl 
of two projective spaces of complex dimension 1. Let CP(~) (i = 1,2) denote the ith 
component Cpl of M , and ( , )i and Ji be the standard Hermitian metric and the 
complex structure on CP(~)' respectively. Then, we have a 4-dimensional (almost) 
pseudo-Hermitian manifold (M, J, (, ), ( , )), where J = J1 +h, ( , ) = ( , h -( , h, 
and ( , ) = ( , h + ( , h. CP(~) has the first Chern class Cl (CP(~)) = 2ai such that 
the Kronecker index (ai, J-li) = 1, where ai and J-li are a suitably chosen generator 
for H2 (CP(~); Z) and the fundamental homology class of CP(~)' respectively. We 
have the Chern classes and the pseudo-Chern classes as follows: 

cl(M) = 2al + 2a2, cl(M) = 2al - 2a2, 
c2(M) = 4ala2, c2(M) = -4ala2· 

Concerning the pseudo-Chern numbers, we have, for example, 

cl(M)2[M] = ((2al - 2a2)2,J-l1 x J-l2) 
= -8(al,J-ll)(a2,J-l2) = -8. 
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B3. For a 4-dimensional almost complex (or Hermitian) manifold, Wu's relation 
[W] is known as follows: 

Pl(M) + 2X(M) = cl(M)2, 

where Pl (M) is the first Pontrjagin class, X(M) the Euler class and Cl (M) the first 
Chern class. If M is a 4-dimensional almost pseudo-Hermitian manifold, then both 
Pl (M) and X( M) in the above relation can be determined by its underlying real 
pseudo-Riemannian structure (see [MI] for pdM) and [A, C] for X(M)). However, 
Cl (M) in the right-hand side cannot be replaced by the first pseudo-Chern class 
cl(M). 

C. It is not hard to see the coincidence of the pseudo-Pontrjagin classes with 
the Pontrjagin classes in terms of the pseudo-Chern classes, which is an alternative 
proof of the main theorem in [MI]. 

D. The pseudo-Chern numbers do not in general coincide with the Chern num-
bers (cf. B2 above). 

El. The condition [8, §40] for a manifold to possess a pseudo-Riemannian metric 
is rather restrictive. Consider, for example, whether a complex projective space 
cp4m-2 of complex dimension 4m - 2 admits a reduction of the structure group 
to U(p, 4m - P - 2), with P = 1 mod 2. Suppose that it admits such a structure. 
Then its underlying real manifold has an indefinite metric of signature (2p,8m -
2p - 4) (2p = 2 mod 4), and hence from an earlier result [M3, Proposition 9] its 
Euler characteristic X is even and is congruent modulo 4 to the Hirzebruch index 
T. However, X(cp4m-2) = 4m - 1, and moreover X(cp4m-2) - T(CP4m-2) = 
4m - 2 =!=- 0 mod 4, which is a contradiction. Thus, cp4m-2 does not admit such 
a structure. 

E2. Since the complex projective spaces are the special cases of the complex 
Grassmann manifolds, the above example suggests that we must take care about 
which types of signature for the metrics can be admitted on the complex Grassmann 
manifolds. 

F. However, there are many nontrivial examples of (almost) pseudo-Hermitian 
manifolds, or more specifically, pseudo-Hermitian symmetric spaces, pseudo-Kahler 
manifolds, etc. The complex Heisenberg manifold is an interesting example that is 
pseudo-Kahler but not Kahler, and whose Chern classes and pseudo-Chern classes 
are all zero. We will develop further discussions on theses manifolds elsewhere. 
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