TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 301, Number 2, June 1987

QUADRATIC GEOMETRY OF NUMBERS

HANS PETER SCHLICKEWEI AND WOLFGANG M. SCHMIDT

ABSTRACT. We give upper bounds for zeros of quadratic forms. For example
we prove that for any nondegenerate quadratic form F(z1,...,zn) with ra-
tional integer coefficients which vanishes on a d-dimensional rational subspace
(d > 0) there exist sublattices I'g,I'1,...,I'_q of Z™ of rank d, on which ¥
vanishes, with the following properties:

rank(ToNT;) =d—-1, rank(ToUT;U---UT,_4)=n

and .
(detTo)" %detTy ---detTp_g « F(P=°

where F is the maximum modulus of the coefficients of §.

1. Introduction. Let A be a lattice of determinant A in n-dimensional Eu-
clidean space E™. Let

n n

(1) FX) =) fiiXiX,

1=1j=1

be a quadratic form with f;; = f;; which assumes only integral values at the points
(z1,...,2p) of A. Put

(2) F=F®) = (> > 1}

1=17=1

1/2

Suppose there is some point of A, other than the origin, at which §(z1,...,z,) =0.
It was proved by Cassels [2] in the case A = Z™ and by Birch and Davenport [1] in
the general case that then there is such a point which satisfies the estimate

(3) x| = (22 + - - + 22)Y/2 <« F(v=D/2A,

Here and in the sequel, the constant implied by < depends only upon n. Recently
Schlickewei [5] generalized (3) in the following way. Suppose that

4) 0<d<n

and that § vanishes on a d-dimensional sublattice I' of A. Then there is such a
sublattice satisfying

(5) detT' <« F(n=d)/2),
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In his paper [4] Davenport asked for an inequality involving n linearly independent
lattice points at which § vanishes. He says that he is able to prove such an inequality
only for two independent lattice points.

More precisely he shows that for d = 1 in (4) there exist two linearly independent
points x and y of A such that

(6) $(x)=3(y)=0
and
(7) x|l - flyll < F*~ A2

Schulze-Pillot [6] established inequalities involving n linearly independent zeros.
One of his results is as follows. Suppose § is nondegenerate and has a nontrivial

zero in A. Then there exist n linearly independent lattice points xg, . ..,X,—1 with
§(x;)=0(:=0,...,n—1) and with
(®) ol x| -+ lxn 1| < F=D7 A%,

It is the purpose of this paper to prove a theorem which contains all the results
quoted above as particular cases.

THEOREM 1. Let§ be a quadratic form as in (1), which assumes integral values
at the points of the lattice A. Let 0 < d < n and suppose § has rank > n—d. Suppose
moreover that § vanishes on a d-dimensional sublattice T' of A. Then there exist
d-dimensional sublattices ['g,'1,...,Tpn_q of A with the following properties:

(i) For each v (1=0,1,...,n —d) § vanishes on T;.

(i) For each 7 (j=1,...,n—d) ToNT; has dimension d — 1.

(iii) The union of To,T'1,...,Tp_g4 spans E™.

(iv) For eachj (j=1,...,n—d)

(9) detTodetT; < F"4A2.

It is clear that (9) immediately implies that there is a d-dimensional sublattice
I of A on which § vanishes with detT" <« F(™~9/2A which is the main result of
(5]

Moreover for d = 1 we have an extension of Davenport’s Theorem [4]. A direct
consequence of Theorem 1 is

COROLLARY. Let the hypotheses be the same as in Theorem 1. Then the lattices
Lo, T'y,...,[n_g satisfy
(10) det T2 4 detTy - - detT,y_g < FD*A2n=d),

If d = 1, this is Schulze-Pillot’s Theorem 2 [6], as quoted in (8). The following
example shows that Theorem 1 is best possible. Consider the form
FX)=0- X2+ 4+0-X2_, — (Xat1—1Xa)*— (Xa42—1Xa+1)? = —(Xn—1Xn-1)?

where [ is a large integer. Take A = Z™. Here § has rank n —d + 1 and it vanishes

on the d-dimensional sublattice generated by ey,...,eq_1, eq + legy1 + 12eqys +

cootlmrmd-1le, 1+ (I""?+1)e,, where ey, ..., e, is the canonical basis of E™. Now

any nontrivial integral zero of the nonsingular part of §, X2 — (X441 — 1 X4q)? —
<= (Xp —1X,_1)? has

max |z;| > ("¢ > Fn=4/2,
d<i<n
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In fact this is Kneser’s well-known counterexample, cf. Cassels [3]. Therefore any
d-dimensional sublattice T on which § vanishes has detT' > F(~9/2_ Hence
Theorem 1 and the Corollary are best possible.

The following result gives an estimate for the determinant of n linearly indepen-
dent lattice points at which § vanishes.

THEOREM 2. Let§ be a quadratic form as in (1). Suppose that § is nonsingular
and assumes integral values at the points of the lattice A. Suppose moreover that
there exists a d-dimensional sublattice I' of A with d > 0 on which § vanishes. Then

there exist linearly independent points x1,...,X, in A with §(x;) =0(:=1,...,n)
and
(11) |det(xy,...,%,)| < | det F|(m~/2dAn/d,

The case d = 1 of Theorem 2 was shown by Schulze-Pillot [6].

2. The case d = n — 1. We may assume that § is primitive, i.e., there is no
integer m > 1 such that m~!F assumes only integral values on A. This is equivalent
to the condition that the Z-module generated by the values §(x) with x € A is Z.

By hypothesis § vanishes on an (n — 1)-dimensional linear subspace, which is
defined by a linear equation Lo(x) = 0. Therefore we have either

(i) §(X) = Lo(X)L1(X)
with nonproportional linear forms Lg, L

or

(i) F(X) = cLo(X)%.

We call a sublattice I' of A primitive if ' = AN S(T"), where S(I') is the subspace
of E™ generated by I'.

LEMMA 1. If § is of type (i), then there are ezxactly two primitive (n — 1)-
dimensional sublattices To,T1 of A on which § vanishes. Any (n — 1)-dimensional
sublattice on which § vanishes is contained in either Tg or T'1. If § is of type (ii)
there 1s ezactly one primitive (n—1)-dimensional sublattice g on which § vanishes.
Any (n — 1)-dimensional sublattice on which § vanishes is contained in I'g.

PROOF. There is a nonsingular linear transformation A such that A = AZ™.
The form §*(X) = F(AX) maps Z" into Z. Here §* is of type (i) resp. (ii) if and
only if § is of type (i) resp. (ii). It suffices to prove the assertion for §*. So we may
restrict ourselves to the case A = Z".

Now § vanishes on an (n — 1)-dimensional sublattice of Z™, hence on a subspace
Ly(x) = 0 where Lg has rational coefficients.

If (i) holds, then L; has rational coefficients as well. The equations Lo(x) = 0
resp. L;(x) = 0 define two different rational hyperplanes Sp,S1. It is clear that
I'o=2Z"NSy and I'y = Z™ N S; have the desired properties.

If (i) holds, then Ty = Z™ N Sy where again Sp is the subspace defined by
LO (X) =0.

The case d = n — 1 of Theorem 1 is a consequence of the following proposition.
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PROPOSITION. If § is of type (i), then

(12) A?F < detTydetT; < v2A%F.
If § s of type (ii), then
(13) A%F < (detTo)? < V2A%F.

To deduce Theorem 1 in the case d = n — 1, we remark that if § is of type (i) it
has rank 2, whereas a form § of type (ii) has rank 1. Since we assume in Theorem
1 rank § > n — d, we may conclude that § is of type (i), and Theorem 1 holds with
the lattices I'g and T'; of (12).

PROOF OF THE PROPOSITION. If § is of type (i), the intersection I'* = I'o NIy
is an (n — 2)-dimensional sublattice of A. Let a;,...,a,_2 be a basis of I'*. Choose
bo, by such that ay,...,a,_2,b; is a basis of I'; (¢ = 0,1). This is possible since
I';nS(I'*) =T*, where S(I'*) is the subspace generated by I'*. (If n =2, b, is a
basis of [';.) Put

(14) MZ(X) = det(ay,...,an—2,b;, X) (z=0,1),

i.e., the determinant with rows ay,...,a,_2,b;,X. Then M; is a nonzero linear
form which vanishes on I';. Hence M; is proportional to L; (z =0, 1).
If § is of type (ii), let ay,...,a,_1 be a basis of T'y and put

(15) M(X) = det(ay, ..., an_1,X).

As in case (i) we see that M is proportional to Ly.
We need the following

LEMMA 2. If § 1s of type (i), then
(16) F(X) = A2 Mo(X) M1 (X),
where M; s defined in (14).

If § 1s of type (ii), then
(17 F(X) = A2M(X)?,
where M 1is as in (15).

PROOF. We shall treat only case (i), since case (ii) may be done in a completely
analogous way.

Let A’ be the sublattice of A with basis a;,...,a,_2,bg,b;. Let I be the index
of A’ in A. (14) implies that any y € A’ satisfies

A_2M0(y)M1(y) € A_2(det(a1, .. .,an_z,bo,bl))2z = A‘2(det A/)2Z = I%Z.

Hence A=2My(y)M;(y) is an integral multiple of I2. Since any x € A is of the
shape x = I~ly where y € A’, we may infer that

A™2My(x)M;(x) € Z for any x € A
Therefore the right-hand side in (16) is a quadratic form which assumes integral

values on A. Since it is proportional to §, it suffices to show that it is primitive.
Notice that

A~2My(bo + b1)M;(bo +by) = A~2(det A")? = I°.
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By the remark made at the beginning of this section it will suffice to find a g € A
with
A7 My(g)M;(g) =v and g.c.d.(I%,v) =1.

Since AN Sy = I'p, there exists a basis of A of the shape ay,...,a,_2,bg,h. There-
fore the group A/Ty is cyclic and this implies that A/A’ is cyclic as well.
Suppose g € A represents a class which generates A/A’. g may be written as
g =1I""(u1a; + -+ Un_2ap_3 + vobg + v1by)
with integers wi,...,un—2,v0,v1 satisfying g.c.d.(uy,...,un—2,v0,v1,I) = 1. If
we have g.c.d.(I,v9) = m then
(I/m)g =m ™ (u1a; + - + Um_2a,_2 + v1b1) + (vo/m)bg

lies in A. Here the second summand on the right-hand side is in A, hence the same
holds true for the first one. We may infer that the first summand lies in I';. As a
consequence we see that m divides all coefficients u;,v;, and therefore m = 1.

Hence we get g.c.d.(I,v0) = 1 and similarly g.c.d.(I,v;) = 1. Since we have
A2My(g)M1(g) = wov1, with g.c.d.(I%,vgv;) = 1, the assertion of Lemma 2
follows in case (i).

Now the proof of the Proposition may be easily finished. Suppose we are in case
(i). Write
Ml(X) =u1 X1+ -+ uin Xn (iZO, 1)

and
(18) IMi| = (u} + - +u)V? (1=0,1).

The coeflicients u;; of M; are the determinants of order n — 1 of the matrix with
rows ap,...,a,_2, b;. Therefore we have

(19) |M;| = detT; (1=0,1).
By assertion (16) of Lemma 2, the coefficients f;; of § satisfy

1 - . -
fi]’ = -2—A 2(uOiU1j + Ulz‘UOj) (1 < 1,7 < n),

and we obtain using (18)

n

=225
=1

=1j=1

1. n n
= "A 4 ZZ U U1y +u12u0])2

(20) n 2
At ( uOZ Zulj (Zuoﬂm)
7=1 =1
2
(IMOI |Mll2 Zuoﬂtu )

.
-

l\.’)lr—l

||M:

A —4
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On the other hand by Cauchy’s inequality and in view of (19) we have

2
n

(21) 0< <Z uOi“li) < |Mo|?|My|* = (detTg)*(det I'y ).
i=1

Combination of (20) and (21) yields
2A74(detTp)?(detT1)? < F2 < A=*(det [p)%(det I'1)?,

which is the assertion of the Proposition in case (i).
The proof in case (ii) goes along completely analogous lines, using (17) in Lemma
2 instead of (16).

3. Proof of Theorem 1. Let I'g be a d-dimensional sublattice of A on which
§ vanishes and such that det 'y is minimal. Then I'y is a primitive sublattice of A.
Let S(To) be the subspace generated by I'g. Let S+ be the subspace of dimension
n —d which is perpendicular to S(Tg) with respect to the Euclidean inner product.
The projection of A on S+ is a lattice I'g. Since I'g is primitive we have

detTodetTg = detA = A.

A well-known result in reduction theory says that I' has a basis p1,...,Pn_d
satisfying
(23) IP1|- - |Pn-d| < detTg = A/ det T.

Here we may assume moreover that
(24) Ip1] < P2 < -+ < [Pn-dl.
LEMMA 3. Suppose § has rank > n — d. Then
|p1| e |pn—d—1l > F"(n'—d—l)ﬂ‘

PROOF. We shall prove that there exists an integer  with 0 <1< (n—d—1)/2
having the following properties:

There are pairs (1,1;),(2,72),- .-, ({,%) of 2l distinct numbers among {1,2, ...,
n —d — 1} satisfying

(25) Flpil lpo,| >1 (1<A<])

and

(26) Flpi1? > 1.

It is clear that the assertion of Lemma 3 follows at once from (24), (25) and (26).
We proceed to deduce the existence of [. Let xy,...,X4 be a basis of I'g satisfying

(27) Ix1| < xo| < - < xal

and

(28) [x1]- - - |xq| >< detTo.

In general, the points p1,...,Ppn_q Will not lie in A. However there exist points

(29) Zy, = AX1+ -+ AaXg+ Py €A (1<v<n-d).
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Here we may suppose that
(30) M| <3 (1<i<d, 1<v<n-—d).

Let §(X,Y) be the symmetric bilinear form associated with § which has §(X,X) =
§(X). Since rank § > n — d and since § vanishes on the d-dimensional subspace
S(To) there exist a point x € I'g and a v (1 < v < n — d) such that

(31) 5(x,2z,) #0.
Let r be the smallest among the numbers v satisfying (31). We distinguish the
casesr=1and 7 > 1.

If r = 1, we consider the (d + 1)-dimensional sublattice A’ of A generated by I'g
and z;. We have

(32) det A’ = det Tg|p1|.

Consider the restriction §’ of § to the (d+ 1)-dimensional subspace S’ generated by
A’. Now §' vanishes on the d-dimensional sublattice I'g of A’. Since §(T'o,21) Z0
we are in the situation of case (i) of the Proposition, with n, A, § resp. replaced by
d+1,A",§’. Therefore there are two primitive sublattices of A’, both of dimension
d on which §’ vanishes. One of these lattices is I'g. Let I'yy be the other. Then by
(12) we have
detTodet Ty < (det A')?F’ < (det A')%F,

where F’ is defined with respect to §’ in the same way as F with respect to §.
Using (32) and the fact that det 'y is minimal we get

(detTo)? < (detTo)?|py|*F,
which means
(33) Flpi*> 1.

So if r =1, (25) and (26) hold true with [ = 0.
Now suppose r > 1. Recall the definition of z; in (29). Since F(x,2z1) = 0 for
all x € T’y we have §(z1) = §(p1) € Z. Therefore if F(p1) # 0 we may infer that

Flpi|* > |5(p1)| > 1,

and again (25), (26) are satisfied with [ = 0.
Consequently we may assume that § vanishes on the (d + 1)-dimensional lin-
ear subspace Sy generated by I'g and z;. In particular § vanishes on the d-

dimensional sublattice I' generated by xy,...,X4_1,21. As 'y was chosen minimal
we have
(34) detTg < detT.
On the other hand by (29) we obtain

(XI,XI) (Xlaxd—l) (xl’zl)

(detT)? = det ' : ~
(xq-1,%1) -+ (Xa—1,Xa-1) (Xa—1,21)
(21,%1) - (21,%X4-1) (21,21)

(Xl,xl) (xhxd—l)
= )\Zl(det F0)2 + |p1l2 det .

(xd—hxl) o (Xd-1,%d-1)
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where we have used the fact that p; is perpendicular to x3,...,X4. Combining this
with (28), (30) and (34) we get
Ipal?x1|? - - [xa—1]® > [x1]? - - [xal?.
In view of (24) and (27) this means that

(35) 1<iSn—d [pif > 12524 I3l

Now § vanishes on the (d + 1)-dimensional subspace Sy, generated by x;,...,xq,
pi1 but it has rank > n — d. Therefore there exists an 72; with 2 <43 <n—-d—-1
such that

(36) S(X, zi1) = 3()(, pi1) 7é 0

for some x € Sy;1. Choose 7; minimal. Since §(x) assumes integral values on A,
the bilinear form §(x,y) assumes values in %Z for x,y in A. Hence by (36) either

|§(xi, piy)| > 4 for some s (1 <¢<d)

or
1§(P1,pi)| > 3-
Any of these two inequalities together with (35) imply

(37) Flp1| |ps;| > 1.

If (37) holds with 4; = 2, then (25) and (26) are true with [ = 1.
So we may assume z; > 2. Our next task then is to deal with po. Since 7; in
(36) was chosen minimal we have

(38) F(x,22) =0 forallx € Sg41.
Notice that (38) and (29) imply

(39) §(z2) = §(p2) € Z.

We distinguish two cases:

Either

(40) §(z2) = §(p2) #0

or

(41) 3(z2) = §(p2) = 0.

If (40) holds, we have again (25) and (26) with | = 1. If (38) holds together
with (41) then § vanishes on the (d + 2)-dimensional subspace Sq4+2 generated by

X1,.-.,Xd,21,22. Since rank § > n—d, thereisan i € {3,4,...,n—d—1}, i3 # 11
such that
(42) §(x,2:,) #0 for some x € Sg42.

Notice that (42) is completely analogous to (36). In conjunction with (29) and (35)
it yields

(43) Fip2| |pi,| > 1,
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which is of the same type as the inequality (37). It is clear that by repeating our
procedure in the same way as after (37) and collecting all inequalities of the type
(387) and (43) we finally obtain th eassertion of Lemma 3.

The proof of Theorem 1 is now finished easily. By (23) and Lemma 3 we have

(44) IPn_d| < F("=4=D/2A(det Ty) 1.
Define vectors p},...,pl,_4 by
. if there exists an x € I'g with §(x, p;
(45) p;« - { ll:j + p, otherwise, wheere rois deﬁiid’ilx)ljz;lé)o (lsgjsn-d).
We have
(46) Ipjl < IPn-al (1<j<n-d),
moreover the basis X1, ...,xq of I'g together with p,...,p} _, as defined in (45)

generate E™. There exist points
z; = XNjx1+-+Ayxa+p; €A (J=1,...,n—d)

with suitable real coefficients A;;, just as in (30).

For j = 1,...,n — d consider the lattice A; generated by I'g and zg. We may
apply the Proposition. Since §(I'o,2}) # 0 we are in case (i) of Lemma 1, and there
are two primitive sublattices of A’ on which the restriction of § to A;- vanishes. One

J
is g, let I'; be the other one. According to the Proposition we have

detTodetI'; < (det A})?F = (det I'g)?|p}|*F.
We now use (44) and (46) to get
detTodetT; < AZFn—4

which is (9). Finally, it is clear from our construction that I'o N I'; has dimension
d — 1. Since I'g,T'1,...,I'n_q span [y, pi,...,P),_4 they also span E™.

4. Proof of Theorem 2. There exist a diagonal matrix D with entries +1
and a nonsingular matrix A such that the matrix associated with § is A*DA. The
diagonal form §(X) = F(A~'X) assumes integral values on the lattice AA. If

¥1,---,¥Yn are linearly independent zeros of % on AA satisfying
|det(y1,...,y¥n)| < |det §|~D/24(det(AA))™/? = | det A|VEA™1,
then the vectors x; = A~ 'y,,...,x, = A1y, are linearly independent zeros of §

in A and we have
|det(x1,. .., %n)| = [det A| | det(y1, ..., ¥a)l
& | det A|(P=D/AAM D — | det, F|(m—D/2d /4,

Therefore we may assume in the remainder of the paper that § has diagonal matrix
with entries +1. In particular this implies

(48) F>< 1.

As in §3 let 'y be a d-dimensional sublattice of A on which § vanishes and whose
determinant is minimal. Let xi,...,X4 be a basis of 'y as in (27). Moreover we
consider again a basis py, . .., Pn_g4 of the projection of A on the (n—d)-dimensional
subspace perpendicular to I'g. Recall that for ps,...,pn—q we have (23) and (24).
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LEMMA 4. If § has rank n, then |p1]|- - |Pn—24| > 1.

PROOF. The proof goes along the same lines as that of Lemma 3. The only
difference is that we have rank § = n, which gives

Ip1|- - [Pn2a| > F~(n"24)/2,

The assertion now follows from (48).
Since rank § = n, there exists for any 7 (1 < j <d) ani; (1 <i; < n—d) with
(49) $(x;,ps,) #0

and such that moreover i; # i for j # k. Using (23), (24) and (28) we obtain in
view of Lemma 4 that

(50) xa| -« [xal - [Piy |-+ [Pigl < |x1]- - [xa| - [Pr—2at1] - [Pn—a| < A.

In general, the subscripts #1,...,%4 are not ordered according to increasing size.
However there is a permutation o of {1,...,d} such that the subscripts 71,...,%4
we obtain from X4 (1),...,Xq(q) in that order satisfy

(51) 11 <ty < -+ < 1gq.

So (50) may be written as

(52) o)l Xa(@] - IPiy |-+ [Pig| < A
In particular (52) implies that there exists a k with 1 < k < d and
(53) Xo (k)| IPr—24+k| < A4,
On the other hand we have by (24) and (51)
(54) IPii| < [Pn—2d+kl-
We now define vectors p7,...,p%_, as follows.
For y =1,...,n— 2d we put
(55) pl = { P; %f §(Xo(k), Pj) # 0,
p; +Pi.  if §(Xo@k), P;) =0,

whereas for j=n—-2d+1 (Il =1,...,d) we put

P = { P; if $(x00),p5) # 0,
7o lpi+pi 3, p;) =0.

Notice that (54) and (55) imply

(56)

(57) Ip}| < |Pn-2a+kl (G =1,...,n—2d).

Similarly we obtain from (56)

(58) IPrn—2d+il < Pn—24+i]  (1=1,...,4d).

The definition (55), (56) shows moreover that x1,...,X4,pY,...,P)_,4 are linearly
independent. As in §3 we can find vectors zf,...,z,,_, € A of the shape

(59) zZ, = A[,X1+ -+ AgXd + Py

with real coefficients [\, | < 1 (1<i<d,1<v <n-—d).
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We next define points y;,...,yn—d € A by

(60) Yo = &(ZZ)xa(k) - 23(%(@,2:,')23 (1 Sv<n-— 2d)1
(61) Yn—2d1i = §(2n_2a+i)Xo(i) — 28 (Xo(i)s Zn—2d+i)Zn—2d4+i (1 <1< d).

It follows from (55), (56), (59), (60), (61) and the fact that § vanishes on I'g that
X1,---,Xd,¥1,---,Yn—a are linearly independent. For the points in (60) we have

3(}':}) = _43’(25) (S(xa(k)’zg))2 + 48(ZZ) (%(xa(k)»ZZ))2 =0,

and similary for the points defined by (61).
As for the determinant of x;,...,X4,¥1,...,Yn_d We obtain
(62)
| det(xla ey Xdy Y1, - - ayn—d)‘
= |det(x1,...,Xd, 25 (Xo (k) 21)27, - - -, 28 (Xo (k) > Zoy—24) Ty —2d7

ZS(xa(l), ZZ_2d+1)zlyi—2d+17 cee 2S(x0(d) B d)Zn—d)|
n—2d d
= 2n_d| det(xla -y Xd, zllla LR zg—d)' H |g(xa(k)’zg)| H |'S(xa(i)a zx_2d+i)l
v=1 =1
n—2d d
= 2" det(xy,...,X4,P1,- - - Prn_d)| H I (%o (k) 21,)] H 18 (X0 ()s Zn—2d+4)|-
v=1 i=1

Here we have used elementary matrix operations, together with (55), (56), (59),
(60) and (61).

(23) and (28) imply
(63) |det(x1,...,Xd, P1,---,Pn-d)| = A.
On the other hand by (59), (57), (48) and (53) we have
(64)  13(Xo(k) 20)| = 1% (k) PL)| < [Xo (k)] - [Pr—2ark| < A4

(1<v<n-2d).

From (59), (58), (48) and (50) we infer that

d
111360 2 —244)]

=1
(65) d " d
= H i%(xa(i)ypn—2d+i)| < H lS(xa(i)7pn—2d+i)|

=1 =1
L |x1] -+ [xd| [Pr—2d+1] - [Pn—a] < A.
Combining (62), (63), (64) and (65) we get

|det(X1, .-y Xd, ¥1,-- - Yn-d)| K An=2d)/d A A = AM4,
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