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QUADRATIC GEOMETRY OF NUMBERS 

HANS PETER SCHLICKEWEI AND WOLFGANG M. SCHMIDT 

ABSTRACT. We give upper bounds for zeros of quadratic forms. For example 
we prove that for any nondegenerate quadratic form ~(Xl, ... , xn) with ra-
tional integer coefficients which vanishes on a d-dimensional rational subspace 
(d> 0) there exist sublattices fo, fl. ... , f n-d of zn of rank d, on which ~ 
vanishes, with the following properties: 

rank{fo n fi) = d - 1, rank{fo U fl U ... U f n-d) = n 

and 
{detfo)n-ddetfl ... detfn_d« F(n-d)2, 

where F is the maximum modulus of the coefficients of ~. 

1. Introduction. Let A be a lattice of determinant A in n-dimensional Eu-
clidean space En. Let 

n n 

(1) ~(X) = L L IijXiXj 
i=1 j=1 

be a quadratic form with lij = Iji which assumes only integral values at the points 
(X1, ... ,Xn ) of A. Put 

(2) 

Suppose there is some point of A, other than the origin, at which ~(Xl' ... ' xn) = O. 
It was proved by Cassels [2] in the case A = zn and by Birch and Davenport [1] in 
the general case that then there is such a point which satisfies the estimate 

(3) Ilxll = (xi + ... + x~)1/2 « F(n- 1l/2 A. 

Here and in the sequel, the constant implied by « depends only upon n. Recently 
Schlickewei [5] generalized (3) in the following way. Suppose that 

(4) O<d<n 

and that ~ vanishes on ad-dimensional sublattice r of A. Then there is such a 
sublattice satisfying 

(5) det r « F(n- dl/2 A. 
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In his paper [4] Davenport asked for an inequality involving n linearly independent 
lattice points at which ~ vanishes. He says that he is able to prove such an inequality 
only for two independent lattice points. 

More precisely he shows that for d = 1 in (4) there exist two linearly independent 
points x and y of A such that 

(6) ~(X) = ~(y) = 0 
and 

(7) 
Schulze-Pillot [6] established inequalities involving n linearly independent zeros. 
One of his results is as follows. Suppose ~ is nondegenerate and has a nontrivial 
zero in A. Then there exist n linearly independent lattice points XO, ... ,Xn-l with 
~(Xi) = 0 (i = 0, ... , n - 1) and with 

(8) Ilxolln-11IxtII·· .llxn-lll «F(n-l)2 ~2(n-l). 

It is the purpose of this paper to prove a theorem which contains all the results 
quoted above as particular cases. 

THEOREM 1. Let ~ be a quadratic form as in (1), which assumes integral values 
at the points of the lattice A. Let 0 < d < n and suppose ~ has rank> n-d. Suppose 
moreover that ~ vanishes on ad-dimensional sublattice r of A. Then there exist 
d-dimensional sub lattices r 0, r 1, ... , r n-d of A with the following properties: 

(i) For each i (i = 0, 1, ... , n - d) ~ vanishes on rio 
(ii) For each j U = 1, ... , n - d) ro n r J has dimension d - 1. 
(iii) The union of r o, r 1, ... , r n-d spans En. 
(iv) For each j U = 1, ... , n - d) 

(9) detrodetrJ « Fn-d~2. 
It is clear that (9) immediately implies that there is ad-dimensional sublattice 

r of A on which ~ vanishes with det r « F(n-d)/2 ~ which is the main result of 
[5]. 

Moreover for d = 1 we have an extension of Davenport's Theorem [4]. A direct 
consequence of Theorem 1 is 

COROLLARY. Let the hypotheses be the same as in Theorem 1. Then the lattices 
rO,r1, ... ,rn- d satisfy 

(10) det r~-d det r l' .. det r n-d « F(n-d)2 ~ 2(n-d). 

If d = 1, this is Schulze-Pillot's Theorem 2 [6], as quoted in (8). The following 
example shows that Theorem 1 is best possible. Consider the form 
~(X) = o· Xr+" -+0,XJ-l-(Xd+l-lXd)2_(Xd+2-lXd+l)2_ .. ·_(Xn-lXn_d 2 

where l is a large integer. Take A = zn. Here ~ has rank n - d + 1 and it vanishes 
on the d-dimensional sublattice generated by el, ... , ed-1, ed + led+! + l2ed+2 + 
... + In-d-l en_1 + (In-d + 1)en , where el,' .. ,en is the canonical basis of En. Now 
any nontrivial integral zero of the nonsingular part of ~, XJ - (Xd+1 - lXd)2 -
... - (Xn - lXn_d 2 has 

max IXi I » In-d » F(n-d)/2. 
dSiSn 
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In fact this is Kneser's well-known counterexample, cf. Cassels [3]. Therefore any 
d-dimensional sublattice f on which J' vanishes has det f »F(n-d)/2. Hence 
Theorem 1 and the Corollary are best possible. 

The following result gives an estimate for the determinant of n linearly indepen-
dent lattice points at which J' vanishes. 

THEOREM 2. Let J' be a quadratic form as in (1). Suppose that J' is nonsingular 
and assumes integral values at the points of the lattice A. Suppose moreover that 
there exists ad-dimensional sublattice f of A with d > 0 on which J' vanishes. Then 
there exist linearly independent points x 1, ... ,Xn in A with J' (Xi) = 0 (i = 1, ... , n) 
and 

(11) 

The case d = 1 of Theorem 2 was shown by Schulze-Pillot [6]. 

2. The case d = n - 1. We may assume that J' is primitive, i.e., there is no 
integer m > 1 such that m -1 J' assumes only integral values on A. This is equivalent 
to the condition that the Z-module generated by the values J'(x) with x E A is Z. 

By hypothesis J' vanishes on an (n - 1 )-dimensional linear subspace, which is 
defined by a linear equation Lo(x) = O. Therefore we have either 

(i) J'(X) = Lo(X)Ll (X) 

with nonproportional linear forms La, L1 
or 

(ii) 

We call a sublattice f of A primitive if f = An S(r), where S(r) is the subspace 
of En generated by f. 

LEMMA 1. If J' is of type (i), then there are exactly two primitive (n - 1)-
dimensional sublattices fa, f 1 of A on which J' vanishes. Any (n - 1) -dimensional 
sublattice on which J' vanishes is contained in either fa or fl. If J' is of type (ii) 
there is exactly one primitive (n-1)-dimensional sub lattice fa on which J' vanishes. 
Any (n - l)-dimensional sublattice on which J' vanishes is contained in fa. 

PROOF. There is a nonsingular linear transformation A such that A = Azn. 
The form J'*(X) = J'(AX) maps zn into Z. Here J'* is of type (i) resp. (ii) if and 
only if J' is of type (i) resp. (ii). It suffices to prove the assertion for J'*. So we may 
restrict ourselves to the case A = zn. 

Now J' vanishes on an (n - 1 )-dimensional sublattice of zn, hence on a subspace 
Lo(x) = 0 where La has rational coefficients. 

If (i) holds, then Ll has rational coefficients as well. The equations Lo(x) = 0 
resp. Ll(X) = 0 define two different rational hyperplanes 50,51, It is clear that 
fa = zn n So and f1 = zn n S1 have the desired properties. 

If (ii) holds, then fa = zn n So where again So is the subspace defined by 
Lo(x) = O. 

The case d = n - 1 of Theorem 1 is a consequence of the following proposition. 
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PROPOSITION. If'J is of type (i), then 

(12) 

If'J is of type (ii), then 

(13) 

To deduce Theorem 1 in the case d = n - 1, we remark that if'J is of type (i) it 
has rank 2, whereas a form 'J of type (ii) has rank 1. Since we assume in Theorem 
1 rank 'J > n - d, we may conclude that 'J is of type (i), and Theorem 1 holds with 
the lattices fo and f1 of (12). 

PROOF OF THE PROPOSITION. If 'J is of type (i), the intersection f* = f onf1 
is an (n - 2)-dimensional sublattice of A. Let aI, ... ,an -2 be a basis of f*. Choose 
ho, hI such that a1,"" an -2, hi is a basis of fi (i = 0,1). This is possible since 
fi n S(f*) = f*, where S(f*) is the subspace generated by f*. (If n = 2, hi is a 
basis of fi') Put 

(14) (i=O,l), 

i.e., the determinant with rows aI, ... ,an -2, hi, X. Then Mi is a nonzero linear 
form which vanishes on fi. Hence Mi is proportional to Li (i = 0, 1). 

If 'J is of type (ii), let aI, ... ,an -1 be a basis of fo and put 

(15) M(X) = det(a1,'" ,an -1,X). 

As in case (i) we see that M is proportional to Lo. 
We need the following 

LEMMA 2. If'J is of type (i), then 

(16) 'J(X) = ~ -2 Mo(X)M1(X), 

where Mi is defined in (14). 
If'J is of type (ii), then 

(17) 

where M is as in (15). 

PROOF. We shall treat only case (i), since case (ii) may be done in a completely 
analogous way. 

Let A' be the sublattice of A with basis a1,'" ,an -2, ho, hI. Let I be the index 
of A' in A. (14) implies that any y E A' satisfies 

~ -2 Mo(y)M1(y) E ~ -2(det(a1,"" an -2, ho, ht))2Z = ~ -2(det A/)2Z = J2Z. 

Hence ~-2Mo(y)M1(Y) is an integral multiple of 12. Since any x E A is of the 
shape x = I- 1y where y E A', we may infer that 

~ -2 Mo(x)M1(x) E Z for any x E A 

Therefore the right-hand side in (16) is a quadratic form which assumes integral 
values on A. Since it is proportional to 'J, it suffices to show that it is primitive. 
Notice that 
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By the remark made at the beginning of this section it will suffice to find agE A 
with 

~-2Mo(g)M1(g) =V and g.c.d.(I2,v) = 1. 

Since A n So = f 0, there exists a basis of A of the shape a 1, ... , an - 2, bo, h. There-
fore the group A/f 0 is cyclic and this implies that AI A' is cyclic as well. 

Suppose g E A represents a class which generates AI A'. g may be written as 

g = I- 1(U1 a1 + ... + Un-2an-2 + vobo + v1 b d 
with integers U1, ... ,Un-2,VO,V1 satisfying g.C.d.(U1, ... ,Un-2,vO,V1,I) 1. If 
we have g. c. d.(I, vo) = m then 

(Ilm)g = m- 1(u1 a1 + ... + Um -2an-2 + v1 b d + (volm)bo 

lies in A. Here the second summand on the right-hand side is in A, hence the same 
holds true for the first one. We may infer that the first summand lies in fl. As a 
consequence we see that m divides all coefficients Ui, Vj, and therefore m = 1. 

Hence we get g. c. d.(I, vo) = 1 and similarly g. c. d.(I, vd = 1. Since we have 
~ -2 Mo(g)M1 (g) = VOVll with g. c. d.(I2, vovd = 1, the assertion of Lemma 2 
follows in case (i). 

Now the proof of the Proposition may be easily finished. Suppose we are in case 
(i). Write 

(i=0,1) 
and 

(18) (i=0,1). 

The coefficients Uij of Mi are the determinants of order n - 1 of the matrix with 
rows a1, .. " an -2, bi. Therefore we have 

(19) IMil = detfi (i=0,1). 

By assertion (16) of Lemma 2, the coefficients Ii) of ~ satisfy 

1 -2 lij = 2 ~ (UOiU1j + U1iUOj) (1:::;i,j:::;n), 

and we obtain using (18) 

i=l j=l 

(20) 
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On the other hand by Cauchy's inequality and in view of (19) we have 

(21) 0'; (t. UQ,Uh)' ,; IMol'IM,I' ~ (detro)'(detr,j'. 

Combination of (20) and (21) yields 

~~-4(detro)2(detrt)2 ::; F2 ::; ~-4(detro)2(detrd2, 

which is the assertion of the Proposition in case (i). 
The proof in case (ii) goes along completely analogous lines, using (17) in Lemma 

2 instead of (16). 

3. Proof of Theorem 1. Let robe ad-dimensional sublattice of A on which 
J vanishes and such that det ro is minimal. Then ro is a primitive sublattice of A. 
Let 8(ro) be the subspace generated by roo Let 81. be the subspace of dimension 
n - d which is perpendicular to 8(ro) with respect to the Euclidean inner product. 
The projection of A on 81. is a lattice rcl-. Since ro is primitive we have 

detrodetrc} = detA =~. 

A well-known result in reduction theory says that rcl- has a basis Pl,···, Pn-d 
satisfying 

(23) 

Here we may assume moreover that 

(24) 

LEMMA 3. Suppose J has rank> n - d. Then 

IP1!·· ·IPn-d-ll »F-(n-d-l)/2. 

PROOF. We shall prove that there exists an integer l with 0 ::; l ::; (n - d - 1)/2 
having the following properties: 

There are pairs (1, it), (2, i2), ... ,(l, id of 2l distinct numbers among {1, 2, ... , 
n - d - 1} satisfying 

(25) 

and 

(26) 

It is clear that the assertion of Lemma 3 follows at once from (24), (25) and (26). 
We proceed to deduce the existence of l. Let Xl, ... ,Xd be a basis of r 0 satisfying 

(27) 

and 

(28) 

In general, the points Pl, ... , Pn-d will not lie in A. However there exist points 

(29) (1 ::; v ::; n - d). 
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Here we may suppose that 

(30) IAivl ~ ! (1 ~ i ~ d, 1 ~ v ~ n - d). 
Let ~(X, Y) be the symmetric bilinear form associated with ~ which has ~(X, X) = 
~(X). Since rank ~ > n - d and since ~ vanishes on the d-dimensional subspace 
S(fo) there exist a point x E fo and a v (1 ~ v ~ n - d) such that 
(31) ~(x, zv) 1= o. 
Let r be the smallest among the numbers v satisfying (31). We distinguish the 
cases r = 1 and r > 1. 

If r = 1, we consider the (d + I)-dimensional sublattice A' of A generated by fo 
and Zl. We have 
(32) det A' = det folpli. 
Consider the restriction ~' of ~ to the (d + 1 )-dimensional subspace S' generated by 
A'. Now~' vanishes on the d-dimensional sublattice fo of A'. Since ~(fo,zd =j:. 0 
we are in the situation of case (i) of the Proposition, with n, A, ~ resp. replaced by 
d + 1, A', ~'. Therefore there are two primitive sublattices of A', both of dimension 
d on which ~' vanishes. One of these lattices is fo. Let fa be the other. Then by 
(12) we have 

det f 0 det f~ « (det A')2 F' « (det A')2 F, 
where F' is defined with respect to ~' in the same way as F with respect to ~. 
Using (32) and the fact that det f 0 is minimal we get 

(det f 0)2 « (det f 0)21Pl12 F, 
which means 
(33) 
So if r = 1, (25) and (26) hold true with l = o. 

Now suppose r > 1. Recall the definition of Zl in (29). Since ~(x, zd = 0 for 
all x E fo we have ~(zd = ~(pd E Z. Therefore if ~(pd 1= 0 we may infer that 

Flpll 2 » I~(pdl 2 1, 
and again (25), (26) are satisfied with l = o. 

Consequently we may assume that ~ vanishes on the (d + I)-dimensional lin-
ear subspace Sd+l generated by fo and Zl. In particular ~ vanishes on the d-
dimensional sublattice f generated by Xl, ... ,Xd-l, Zl. As fo was chosen minimal 
we have 
(34) det fo ~ det f. 
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where we have used the fact that PI is perpendicular to Xl, ... ,Xd. Combining this 
with (28), (30) and (34) we get 

IPI12IxI12 .. ·IXd_112 » IXI12 .. ·IXdI 2. 

In view of (24) and (27) this means that 

(35) 

Now J vanishes on the (d+ I)-dimensional subspace 8d+1 generated by Xl, ... ,Xd, 

PI but it has rank> n - d. Therefore there exists an i l with 2 ::; i l ::; n - d - 1 
such that 

(36) 

for some X E 8d+l. Choose i l minimal. Since J(x) assumes integral values on A, 
the bilinear form J(x,y) assumes values in !Z for x,y in A. Hence by (36) either 

IJ(X;,Pil)1 :::::! for some i (1::; i::; d) 

or 
IJ(PI,PiJI ::::: !. 

Any of these two inequalities together with (35) imply 

(37) 

If (37) holds with i l = 2, then (25) and (26) are true with l = 1. 
So we may assume i l > 2. Our next task then is to deal with P2. Since i l in 

(36) was chosen minimal we have 

(38) 

Notice that (38) and (29) imply 

(39) J(Z2) = J(P2) E Z. 

We distinguish two cases: 
Either 

(40) 

or 

( 41) 

If (40) holds, we have again (25) and (26) with l = 1. If (38) holds together 
with (41) then J vanishes on the (d + 2)-dimensional subspace 8d+2 generated by 
X!, ... , Xd, Zl, Z2. Since rank J > n-d, there is an i2 E {3, 4, ... , n-d-l}, i2 =I i l 

such that 

(42) J(x, Zi2) =I 0 for some X E 8d+2. 

Notice that (42) is completely analogous to (36). In conjunction with (29) and (35) 
it yields 

(43) 
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which is of the same type as the inequality (37). It is clear that by repeating our 
procedure in the same way as after (37) and collecting all inequalities of the type 
(37) and (43) we finally obtain th eassertion of Lemma 3. 

The proof of Theorem 1 is now finished easily. By (23) and Lemma 3 we have 

(44) IPn-dl« F(n-d-1)/2 Ll(detfo)-1. 

Define vectors pi, ... ,P~-d by 

( 45) I _ {pj if there exists an x E fo with ~(x, Pj) i- 0 
P (1 S: j S: n - d). 

J - Pj + Pr otherwise, where r is defined in (31) 
We have 

(46) (1 S: j S: n - d), 

moreover the basis Xl, ... ,Xd of f 0 together with pi, ... ,P~-d as defined in (45) 
generate En. There exist points 

I \ I \ I I A Zj = A1jX1 + ... + AdjXd + Pj E (j = 1, ... ,n - d) 

with suitable real coefficients ).~j' just as in (30). 
For j = 1, ... , n - d consider the lattice A~ generated by fo and zj. We may 

apply the Proposition. Since ~(fo, z~) i- 0 we are in case (i) of Lemma 1, and there 
are two primitive sublattices of A~ on which the restriction of ~ to A~. vanishes. One 
is fo, let f J be the other one. According to the Proposition we have 

detfodetfj « (detA~)2F = (detfo)2IpjI2F. 

We now use (44) and (46) to get 

det fo det fj « Ll2 F n - d 

which is (9). Finally, it is clear from our construction that fo n fj has dimension 
d - 1. Since fo, f 1,· .. , f n-d span fo, pi, ... , P~-d' they also span En. 

4. Proof of Theorem 2. There exist a diagonal matrix D with entries ±1 
and a nonsingular matrix A such that the matrix associated with ~ is At D A. The 
diagonal form J(X) = ~(A -1 X) assumes integral values on the lattice AA. If 
Y1, ... ,yn are linearly independent zeros of J- on AA satisfying 

I det(Y1' ... ,yn)1 « I det J-1(n-d)/2d( det(AA))n/d = I det Aln/d Ll n/d, 

then the vectors Xl = A-1y1 , ... ,Xn = A-1Yn are linearly independent zeros of ~ 
in A and we have 

I det(x1, ... ,xn)1 = I detAI- 11 det(Y1, ... ,Yn)1 
«ldetAI(n-d)/dLln/d = Idet~l(n-d)/2dLln/d. 

Therefore we may assume in the remainder of the paper that ~ has diagonal matrix 
with entries ±1. In particular this implies 

(48) F »« 1. 

As in §3 let f ° be ad-dimensional sublattice of A on which ~ vanishes and whose 
determinant is minimal. Let X!, ... ,Xd be a basis of f ° as in (27). Moreover we 
consider again a basis P1, ... , Pn-d of the projection of A on the (n - d)-dimensional 
subspace perpendicular to fo. Recall that for P1, .. " Pn-d we have (23) and (24). 
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LEMMA 4. If ~ has rank n, then IPII ... IPn-2d I » 1. 

PROOF. The proof goes along the same lines as that of Lemma 3. The only 
difference is that we have rank ~ = n, which gives 

IPII·· ·IPn-2dl »F-(n-2d)/2. 

The assertion now follows from (48). 
Since rank ~ = n, there exists for any j (1 ::; j ::; d) an i j (i ::; i j ::; n - d) with 

(49) 

and such that moreover ij -=J. ik for j -=J. k. Using (23), (24) and (28) we obtain in 
view of Lemma 4 that 

In general, the subscripts i l , ... ,id are not ordered according to increasing size. 
However there is a permutation (J of {1, ... , d} such that the subscripts i l , ... , id 

we obtain from Xo-(l) , ... ,Xo-(d) in that order satisfy 

(51) 

So (50) may be written as 

(52) Ix.,.(l) I ... IXo-(d) I . Ipi l I· .. Ipid I « ~. 

In particular (52) implies that there exists a k with 1 ::; k ::; d and 

(53) IXo-{k)IIPn-2d+k1 «~l/d. 

On the other hand we have by (24) and (51) 

(54) Ipik I ::; IPn-2d+kl· 

We now define vectors p~, ... ,P~-d as follows. 
For j = 1, ... , n - 2d we put 

(55) /I {pj P -
j - Pj + Pik 

if ~(Xo-(k)' pj) -=J. 0, 
if ~(Xo-(k),Pj) = 0, 

whereas for j = n - 2d + l (l = 1, ... , d) we put 

(56) /I {pj P -
j - Pj + Pil 

Notice that (54) and (55) imply 

(57) Ip~'1 « IPn-2d+k1 

Similarly we obtain from (56) 

(58) 

if ~(x.,.(l)' pj) -=J. 0, 
if ~(xo-(l), Pj) = 0. 

U = 1, ... , n - 2d). 

(i=1, ... ,d). 

The definition (55), (56) shows moreover that X!, ... ,Xd, p~, ... , P~-d are linearly 
independent. As in §3 we can find vectors z~, ... , z~_d E A of the shape 

(59) 

with real coefficients I'\~~I ::; ! (1 ::; i ::; d, 1 ::; 1/ ::; n - d). 



QUADRATIC GEOMETRY OF NUMBERS 689 

We next define points Y1, ... ,Y n-d E A by 

(60) YI/ = J(Z~)Xa(k) - 2J(Xa (k), z~)z~ (1::; v ::; n - 2d), 

(61) Yn-2d+i = J(Z~-2d+i)Xa(i) - 2J(xa(i), Z~-2d+i)Z~-2d+i (1::; i ::; d). 
It follows from (55), (56), (59), (60), (61) and the fact that J vanishes on ra that 
Xl, ... ,Xd,Y1, ... ,Yn-d are linearly independent. For the points in (60) we have 

J(y 1/) = -4J(z~) (J(Xa(k), Z~)) 2 + 4J(z~) (J(Xa(k) ' Z~)) 2 = 0, 
and similary for the points defined by (61). 

As for the determinant of Xl, ... , Xd, Yl, ... , Yn-d we obtain 
(62) 
I det(x1' ... ,Xd,Yl,···, Yn-d)1 

= I det(x1, ... ,Xd, 2J(Xa (k), z~)z1, ... , 2J(Xa(k) ' Z~-2d)Z~-2dl, 

2J(x".(1), Z~-2d+1 )Z~-2d+1' ... ,2J(Xa(d), Z~_d)Zn-d) I 
n-2d d 

= 2n - d
l det(x1' ... ,xd,z1,··· ,z~_d)1 II IJ(Xa(k),Z~)1 II IJ(Xa(i),Z~-2d+i)1 

1/=1 i=l 
n-2d d 

= 2 n - d l det(x1' ... ,Xd, P1, ... ,Pn-d)1 II IJ(Xa(k), z~)1 II IJ(Xa(i)' Z~-2d+i)l· 
1/=1 i=l 

Here we have used elementary matrix operations, together with (55), (56), (59), 
(60) and (61). 

(23) and (28) imply 

(63) I det(x1' ... ,Xd, P1, ... ,Pn-d) I = ~. 
On the other hand by (59), (57), (48) and (53) we have 

(64) IJ(Xa(k),Z~)1 = IJ(Xa(k),P~)1 « IXa (k)I.IPn-2d+kl« ~l/d 

From (59), (58), (48) and (50) we infer that 
d 

II IJ(Xa(i),Z~-2d+i)1 
i=l 

d d 

(1 ::; v ::; n - 2d). 

(65) 
= II IJ(Xa(i), P~-2d+i)1 « II IJ(Xa(i), Pn-2d+i)1 

i=l i=l 
«IX11·· ·IXdIIPn-2d+11·· ·IPn-dl «~. 

Combining (62), (63), (64) and (65) we get 

I det(x1, ... ,Xd,y1, ... ,yn-d)1 «~(n-2d)/d. ~. ~ = ~n/d. 
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