
TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 301, Number 2, June 1987 

PRIME IDEALS IN POLYCYCLIC CROSSED PRODUCTS 

D. S. PASSMAN 

ABSTRACT. In this paper, we describe the prime ideals P in crossed products 
R * C with R a right Noetherian ring and with C a polycyclic-by-finite group. 
This is achieved through a series of reductions. To start with, we may assume 
that P n R = 0 so that R is a C-prime ring. The first step uses a technique 
of M. Lorenz and the author to reduce to a prime ring and a subgroup of 
finite index in C. Next if R is prime, then we show that the prime ideals of 
R * C disjoint from R are explicitly determined by the primes of a certain 
twisted group algebra of a normal subgroup of C. Finally the prime ideals in 
twisted group algebras of polycyclic-by-finite groups are studied by lifting the 
situation to ordinary group algebras where the results of J. E. Roseblade can 
be applied. 

Let G be a multiplicative group, let R be a ring and let R * G be a crossed 
product of Gover R. The aim of this paper is to study the prime ideals P of R * G 
disjoint from R, that is with P n R = o. The main result here describes these 
primes when R is right Noetherian and G is polycyclic-by-finite. 

This description is achieved in a series of steps. First suppose that there is a 
prime of R * G disjoint from R. Then R must be a G-prime ring and hence, since R 
is Noetherian, there exists a minimal prime Q of R with nxEG QX = O. If H denotes 
the stabilizer of Q in G, then IG : HI < 00 and, by a modification of the proof in 
[2], there exists a precisely defined one-to-one correspondence between the primes 
P of R * G with P n R = 0 and the primes L of (R/Q) * H with L n (R/Q) = O. 
This therefore reduces the consideration to prime coefficient rings. 

Now let R be prime. In this case, r = R * G extends uniquely to r' = S * G 
where S = Qs(R) is the symmetric Martindale ring of quotients of R. If F = Z(S) 
is the extended centroid of R, then Cr,(S) = Ft[Ginn ] is a twisted group algebra 
over F of Ginn, the normal subgroup of G consisting of those elements which induce 
inner automorphisms on S. Furthermore there is a precisely described one-to-one 
correspondence between the prime ideals P of r with P n R = 0 and the G-prime 
ideals P of Ft[Ginn ]. Indeed P = Pr' n r and the problem is therefore reduced 
to the consideration of G-primes in a twisted group algebra. The argument here is 
actually an offshoot of recent work [7] on Lie algebra smash products. 

Finally the G-primes of Ft [Ginn] are closely related to the G-orbital prime ideals 
of Ft [Ginn]. Since Ginn is polycylic-by-finite, the structure of the primes of Ft [Ginn] 
follows easily from the work of [8] by lifting the group Ginn. We therefore obtain a 
number of corollaries on incomparability and prime length. 
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This paper is in essence a combination of ideas and techniques from several 
different sources. The results obtained extend the finite group theorems of [1] to 
polycyclic-by-finite groups under the additional assumption that the coefficient ring 
is Noetherian. 

1. G-prime coefficient rings. Let G be a multiplicative group and let R be 
a ring with 1. Then a crossed product R * G of Gover R is an associative ring 
containing for each x EGan element x E R * G. The set G = {x I x E G} is a left 
R-basis for R * G so that every element 0: is uniquely writable as a finite sum 

0: = 2:= rxx 
xEG 

with rx E R. The addition in R * G is the obvious one and the multiplication is 
given by the formulas 

xf) = t(x, y)xy, rx = xrx 
for all x, y E G and r E R. Here t : G x G ----; U is a map from G x G to the group 
of units U = U(R) of R. Furthermore for fixed x E G the map x : r ----; rX is an 
automorphism of R. 

The ring R*G has an identity element, namely 1 = t(l, 1)-11 and hence without 
loss of generality we will assume that I = 1. Moreover each x is invertible and in 
fact 

<!3 = {ux I U E U, x E G} 
is a multiplicative group of units of R * G, the group of trivial units. Note that <!3 
acts by conjugation on the naturally embedded subring R of R * G. Furthermore 
U <J <!3 and <!3 IU :::::: G. Observe that conjugation by U stabilizes all ideals of Rand 
thus there exists a well-defined permutation action of G :::::: <!3 IU on the set of these 
ideals. We say that the G-invariant ideal I of R is G-prime if for all G-stable ideals 
A, B of R the inclusion AB ~ I implies that A ~ I or B ~ I. In particular, R is a 
G-prime ring if I = 0 is a G-prime ideal. 

LEMMA 1.1. Let R * G be given. 
(i) If A is a G-stable ideal of R, then 

A(R * G) = (R * G)A = A * G <J R * G 
and (R * G)/(A * G) :::::: (RIA) * G. 

(ii) If P is a prime ideal of R * G then P n R is a G-prime ideal of R. 
PROOF. (i) It is clear that A * G is an ideal of R * G and that (R * G)/(A * G) is 

generated by (RIA) and the image of G. Since the latter is independent over RIA, 
it then follows that (R * G)/(A * G) is a suitable crossed product of G over RIA. 

(ii) Let A, B be G-stable ideals of R with AB ~ P n R. Then 
(A * G)(B * G) ~ (P n R) * G ~ P 

so the primeness of P yields A * G ~ P or B * G ~ P. Hence either A or B is 
contained in P n R. 

Recall that a group G is polycylic-by-finite if there exists a finite subnormal 
series 

1 = Go <J G1 <J ••• <J Gn = G 
with each quotient GiH/Gi either infinite cyclic or finite. The following is well 
known (see for example [5, Theorem 10.2.7]). 
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LEMMA 1. 2. Let R * G be given with R right Noetherian and with G polycyclic-
by-finite. Then R * G is right Noetherian. 

If P is a prime ideal of R * G, then P :2 (P n R) * G and hence P /(P n R) * Gis 
a prime ideal in (R * G)/(P n R) * G c::: (R/ P n R) * G. Since the homomorphism 
R * G --+ (R/ P n R) * G is well understood, it suffices to replace P and R * G 
by their images. Equivalently we can assume that P n R = 0 and hence that R 
is a G-prime ring by Lemma 1.1(ii). In this section we study this situation and 
show how to reduce the problem to prime coefficient rings. To do this we use the 
techniques of [2] with some minor changes. To avoid confusion we have opted to 
include all relevant details here even though there is considerable duplication. 

We assume throughout the remainder of this section that R * G is given with R 
right Noetherian and with G polycyclic-by-finite. Furthermore R is G-prime. 

LEMMA 1. 3. Let Q be a minimal prime of R. Then 
(i) nXEG QX = 0 so R is semiprime. 
(ii) {Qx I x E G} is the finite set of minimal primes of R. 
(iii) Let H denote the stabilizer of Q in G and set N = annR Q. Then H is a 

subgroup of G of finite index, 

and 
o = NxN = N n N X = N n Q 

for all x E G\H. 
(iv) If A is a nonzero ideal of R with A <;;;; N, then annR A = Q. 

PROOF. (i) Since R is Noetherian there exist just finitely many minimal primes, 
say Q = Ql, Qz, . .. ,Qn, and (ni Qi)m = 0 for some m. Clearly G permutes these 
ideals and we let A = nXEG QX and B equal the intersection of the remaining 
primes if any. Then A and B are both G-stable and (AB)m = 0 so either A or B 
is zero. But B = 0 implies that Q :2 B contradicting the fact that Q is a minimal 
prime of R. Thus A = 0 and part (i) follows. Part (ii) is now also immediate. 

(iii) Since R is semiprime, right and left annihilators of two-sided ideals are 
equal. Thus N = annR Q is unambiguously defined and it is clear from (i) that 
N :2 nxltH QX. On the other hand if x tI- H then QX :2 Q N = 0 and QX ~ Q 
so QX :2 N and we have N = nx<tH QX i=- o. It follows from this formula that if 
x tI- H then Q:2 NX so NnNx <;;;; NnQ = O. Finally 0 = NXN = x-1NxN yields 
NxN = 0 as required. 

(iv) If 0 i=- A <;;;; N then certainly Q <;;;; annR N <;;;; annR A. On the other hand, 
Q :2 A . annR A and Q ~ A so we obtain Q :2 annR A. 

The notation of the preceding lemma will be kept throughout the remainder of 
this section. Thus Q is a minimal prime of R, N = annR Q and H is the stabilizer 
of Q in G. Furthermore we set M = LXEG NX so that M is a nonzero G-stable 
ideal of R. If a = Laxx E R * G then we let Suppa = {x E G I ax i=- O}. If Tis 
any subset of G we let 

R * T = {a E R * G I Supp a <;;;; T} . 
In particular R * H is the naturally embedded crossed product over H. Part (ii) of 
the following lemma is a crucial observation; part (i) is needed for its proof. 
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LEMMA 1.4. Let Hand N be as above. 
(i) Let V be a nonzero right R-submodule of NG and let T be a finite subset of 

G. Suppose that V n (R * T) -=I- 0 but that V n (R * T') = 0 for all T' < T. Then T 
is contained in a right coset of H. 

(ii) Let I be an ideal of R * G. Then there exists a nonzero G-stable ideal E of 
R (depending on 1) with 

EI ~ GN(In R * H)G. 

PROOF. (i) Fix sET. By assumption there exists 0 -=I- a = Lad E V n R * T. 
Since V ~ NG we have at E N for all t E T and the minimality condition on T 
implies that at -=I- 0 for all t. Now for any q E QS we have 

aq= Latl-llEVn(R*T) 
t 

and since SET, the summand asqS-l E NQ = O. Thus by minimality again 
atqt- 1 = 0 for all t so af E annR QS = NS. Thus 0 -=I- af ENs n Nt = (N n NtS-1)S 
so ts- 1 E H by Lemma 1.3(iii). 

(ii) We show first that there exists a nonzero ideal B of R with 

BI~GN(InR*H)G 

and this is clear if N I = O. Thus we may suppose that V = N I -=I- O. Note that V 
satisfies the hypothesis of (i) and that V is a right ideal of R * G. Let T denote the 
family of all finite subsets T of G such that V n (R * T) -=I- 0 but V n (R * T') = 0 
for all T' < T. By (i) above, each T E T is contained in a right coset of H. For 
convenience we choose a canonical element y = y(T) E T for each T E T and we 
let 

AT = {r E RI there exists /3 = Lbd E V with r = by}. 
tET 

Since V is an (R, R)-subbimodule of NG, it is clear that each AT is a nonzero ideal 
of R contained in N. 

For convenience we also arbitrarily linearly order the elements T E T. If S is a 
finite subset of G we can then define Bs = N· TITCS AT where the product is taken 
with the T's in T in increasing order. By Lemma 1.3(iv) each Bs is a nonzero ideal 
of R contained in N. If a E V with 1 Supp al = m we show by induction on m that 
Bsa ~ N(I n R * H)G where S = Supp a. This is clear for m = 0 so assume that 
m > 0 and that the result is true for all smaller support sizes. Since 0 -=I- a E V 
there exists T ~ S = Supp a with T E T. We assume T is largest possible in the 
ordering of T and we set y = y(T). 

Let a = ay + ... and let d E AT. Then by definition there exists /3 E V n R * T ~ 
V n R * 5 with /3 = dy + .. '. Since T ~ 5 it follows that 

i = da - /3aY E V n (R * 5). 

But the y coefficient of i is zero so Supp i = 5' has size less than m. By induction, 
BS'i ~ N(InR*H)G. Furthermore since T ~ Hy, it is clear that /3 = (/3y-l)y E 
(InR*H)G so since Bs' ~ N we have Bs,/3aY ~ N(InR*H)G. This all implies 
that Bs' da ~ N(I n R * H)G. Note that y rf: 5' so T ct 5'. Thus if B' denotes the 
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obvious product with Bs = B' AT, then BSI ;2 B' so B' da ~ N(I n R * H)G. But 
this holds for all dE AT so Bsa ~ N(I n R * H)G as required. 

Now R * G is right Noetherian by Lemma 1.2 so N I = L:~ aiR * G for suitable 
ai E V. By the above for each i there exists a nonzero ideal Bi ~ N with Biai ~ 
N(I n R * H)G so letting B = n Bi =I- 0 we have BNI ~ N(I n R * H)G since the 
latter is a right ideal of R * G. Again B N =I- 0 so we have shown that 

E = {r E R I rI ~ GN(I n R * H)G} 

is not zero. But with the extra G factor in front, GN(I n R * H)G <1 R * G so it is 
clear that E must be a G-stable ideal of R and the result follows. 

If I <1 R * G we define 

IH = {a E R * HI Na ~ I} 

and if L <1 R * H we set 

xEG 
Furthermore let tr H : R * G ----+ R * H denote the natural projection given by 

LEMMA 1. 5. With the above notation we have 
(i) IH <1 R * H and if I n R = 0 then IH n R = Q. 
(ii) LG is the unique largest two sided ideal of R * G contained in LG and if 

L n R = Q then LG n R = o. 
(iii) LG is the unique largest ideal I of R * G with trH(I) ~ L. 

PROOF. (i) Since 1<1 R * G and N <1 R, it follows that IH is a left R-module and 
a right R * H-module. Furthermore both N and I are H-stable under conjugation 
so I H is also H -stable. This along with the above implies that I H <1 R * H. Finally if 
I n R = 0 then rEI H n R if and only if N r ~ I n R = 0 so I H n R = ann R N = Q. 

(ii) If I is an ideal of R * G contained in LG, then since I is G-invariant we have 
I ~ nXEdLG)X = LG. On the other hand, LG is clearly a right R * G-module, 
a left R-module and it is G-invariant. Thus LG <1 R * G. Finally if L n R = Q, 
then LG n R ~ LG implies that LG n R ~ L n R = Q. But LG n R is G-stable so 
LG n R ~ nXEG QX = O. 

(iii) Let 1<1 R * G. If I ~ LG then clearly trH(I) ~ L. On the other hand if 
trH(I) ~ L, then I ~ trH(I)G ~ LG. Thus the result follows immediately from 
(ii) above. 

It is clear that the maps G and H are monotone. They also have the following 
multiplicative properties. 

LEMMA 1.6. (i) If hand h are ideals of R * G then (IdH(N * H)(h)H C 
(hh)H. 

(ii) If L1 and L2 are ideals of R * H then L1 G L2G ~ (L 1L2)G. 

PROOF. (i) By definition NIH ~ I so N(IdH· N(h)H ~ hh Thus we have 
(IdHN(h)H ~ (hh)H and the result follows since (IdH <1 R * H. 
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(ii) Since L 2G <J R * G we have GL2G ~ L 2G and hence 

L 1GL 2G ~ L 1GL2G ~ L 1L 2G ~ L1L2G. 

Thus since L1 G L2 G <J R * G, Lemma 1.5 (ii) yields L1 G L2 G ~ (L1 L 2)G . 

LEMMA 1.7. (i) LetL<JR*HwithLnR2Q. ThenGNLG~LG~LGand 
L ~ (LG)H. Furthermore N(LG)H ~ L. 

(ii) If I <J R * G, then M(IH)G ~ I. Moreover there exists a nonzero G-stable 
ideal E of R with EI ~ (IH)G. 

PROOF. (i) If x E H, then iN LG ~ LG since L is an ideal of R * H. If x 1:- H 
then 

- --1 --1- -

iN LG = N X LX G ~ Q(R * G) ~ LG 

since Nx- 1 ~ Q ~ L for x 1:- H. Thus GN LG ~ LG and since GN LG <J R * G we 
have GNLG ~ LG ~ LG. In particular NL ~ LG so L ~ (LG)H. In the other 
direction, N(LG)H ~ LG ~ LG so clearly N(LG)H ~ L. 

(ii) We have N(IH)G ~ N IHG ~ IG = I, where the second inclusion holds by 
definition of I H . Since I and (IH)G are both G-stable it then follows 
that M(IH)G ~ I. In the other direction, we know by Lemma 1.4(ii) that EI ~ 
GN(I n R * H)G for a suitable nonzero G-invariant ideal E of R. Furthermore 
I n R * H ~ IH and IH <J R * H with IH 2 Q = annR N. Thus by (i) above 

EI ~ GN(I n R * H)G ~ GNIHG ~ (IH)G 

as required. 
The following is the main result of this section. 

THEOREM 1.8. Let R * G be given with RaG-prime right Noetherian ring 
and with G polycyclic-by-finite. Let Q be a minimal prime of R and let H be its 
stabilizer in G so that IG : HI < 00. Then the maps P ~ PH, L ~ LG as described 
above yield a one-to-one correspondence between the prime ideals P of R * G with 
P n R = 0 and the primes L of R * H with L n R = Q. 

PROOF. We start with an observation on a form of cancellation. Let L be a 
prime ideal of R * H with L n R = Q and suppose EI ~ LG where I <J R * G and 
E is a nonzero G-stable ideal of R. Then EI ~ LG so by applying the trace map 
trH we have EtrH(I) ~ L and hence (E * H) trH(I) ~ L. But certainly E * H rt L 
since E is G-stable, L n R = Q and nx QX = O. Thus since L is prime we deduce 
that trH(I) ~ L and hence I ~ LG by Lemma 1.5(iii). 

Now let P be a prime ideal of R * G with P n R = 0 and set L = PH. By 
Lemma 1.5(i), L n R = PH n R = Q. Let us first observe, by Lemma 1.7(ii) that 
P 2 M(PH)G = (M * G)(PH )G. Thus since P is prime and M * G rt P, we see 
that P 2 (PH)G = LG. Next we show that L is prime. Indeed if L1 and L2 are 
ideals of R * H containing L with L 2 L 1L 2, then Lemma 1.6(ii) yields 

P 2 LG 2 (L1L2)G 2 L1 G L 2G. 

Hence since P is prime, P 2 LP for some i and then, by Lemma 1.7(i), since 
Li n R 2 L n R = Q, we have L = PH 2 (LiG)H 2 Li . Thus L is a prime ideal of 
R * H with L n R = Q. Finally by Lemma 1.7(ii) there exists a nonzero G-stable 
ideal E of R with EP ~ (PH)G = LG. Hence by the cancellation property of LG 
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mentioned above we have P <;;;; LG so P = LG ?nd this half of the correspondence 
is proved. 

In the other direction let L be a prime ideal of R * H with L n R = Q and set P = 
LG. By Lemma 1.5(ii) we have PnR = 0 and, by Lemma 1.7(i), L <;;;; (LG)H = PH 
and L :2 N(LG)H = (N * H)PH. But L is a prime ideal of R * Hand L 1- N * H, 
since N n Q = 0, so the latter yields L :2 PH and hence L = PH. Next we show 
that P is a prime ideal of R * G. To this end let 11,12 <JR * G with hIz <;;;; P. Then 
by Lemma 1.6(i) 

(I1)H(N * H)(Iz)H <;;;; (hI2 )H <;;;; PH = L 
and thus since L is prime and L 1- N * H we have L :2 (Ii)H for some i. Now 
applying Lemma 1.7(ii) to Ii we obtain Eli <;;;; (Ii)H G <;;;; LG for some nonzero 
G-stable ideal E of R. Hence, by the cancellation property for LG , we have Ii <;;;; 

LG = P and P is prime. Since L = PH, the result follows. 
Finally we observe, with the above notation, that there is an obvious one-to-one 

correspondence between the prime ideals L of R * H with L n R = Q and the prime 
ideals L of 

(R * H)/(Q * H) = (R/Q) * H = R * H 
with L n R = O. Since R is prime, we have therefore reduced the study of prime 
ideals in R * G with RaG-prime ring to those of R * H with R a prime ring. We 
consider the latter situation in the next section. 

We note also that the Noetherian assumption is used only twice in this section. 
First it yields the existence of the prime ideal Q of R having only finitely many 
G-conjugates and satisfying nx QX = O. However if we merely assume that Q 
exists, then most of the work here is valid in this more general context. The second 
use occurs at the end of the proof of Lemma 1.4(ii). Again most of that result, if 
properly formulated, holds more generally. In particular, the proof shows that if 
X is any finite subset of G, then there exists a nonzero ideal E of R with E <;;;; N 
which satisfies E· (I n R * X) <;;;; N· (I n R * H)G. 

2. Prime coefficient rings. In this section we study crossed products R * G 
with R prime and we describe its prime ideals P with P n R = O. The goal is to 
show that these correspond in a natural manner to the G-prime ideals of a certain 
twisted group algebra. For the most part the argument goes through without 
any additional assumptions on Rand G. However at the last step we require a 
Noetherian hypothesis. The work here closely parallels that of [7] on enveloping 
algebras but it is surprisingly easier. 

It will be necessary to localize the prime ring R. Specifically we extend R to its 
symmetric Martindale ring of quotients Qs(R). The latter exists and is uniquely 
characterized by the following four properties: 

1. Q,(R) :2 R with the same 1. 
2. If q E Qs then there exist 0 #- A, B <J R with Aq, qB <;;;; R. 
3. If q E Qs and 0 #- I <JR then either Iq = 0 or qI = 0 implies that q = O. 
4. Let f: RA ---+ RR and g: BR ---+ RR be given with 0 #- A, B <J R and suppose 

that for all a E A, bE B we have (af)b = a(gb). Then there exists q E Qs with 
af = aq and gb = qb for all a E A, bE B. 

For details see [6, §1]. In the following lemma we list some basic properties of 
Qs(R). 
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LEMMA 2.1. Let R be a prime ring and set S = Qs(R). 
(i) Z(S) = Cs(R) is a field called the extended centroid of R. 
(ii) Any automorphism of R extends uniquely to one of S. 
(iii) If R * G is given then there exists a unique extension to a crossed product 

S*G. 
(iv) Let (J E AutR and let a, b, c, d be nonzero elements of S. Suppose that for 

all r E R we have arb = crUd. Then there exists a unit q E S with rU = rq = q-1rq 
for all r E R and with a = cq-l, b = qd. 

PROOF. These exist in the literature in various forms for the left Martindale 
ring of quotients so we will not repeat the arguments here. For example an obvious 
modification of the proof of [4, Lemma 2.1(v), (iv)] yields (i) and (ii) and [4, Lemma 
2.3] yields (iii). Finally (iv) is an extension of [4, Lemma 2.2] with essentially the 
same proof. 

We will require the following two technical lemmas 

LEMMA 2.2. LetF be afield, letS andT be F-algebras andletf = (S®FT)*H 
be a crossed product. Assume that H normalizes both Sand T and let I be an H-
stable ideal of T. Then 

f / If = (S ® T) * H / (S ® I) * H 
c::::c(S'®T')*H=f' 

where S' c::::c Sand T' = T / I. Furthermore C r , (S') = Cr( S)', where the latter is 
the image of Cr( S). 

PROOF. Since I <l T is H-stable, it is clear that S ® I <l S ® T is H-stable. Thus 
If = (S ® I) * H <l f and it follows from Lemma 1.1(i) that 

f / If = (S ® T) * H / (S ® I) * H 
c::::c (S ® T / S ® I) * H. 

But (S ® T)/(S ® I) c::::c S ® (T / I) so we have obtained the appropriate structure 
for f' = f / If. 

It remains to consider the centralizers and certainly Cr(S)' S;;; Cr'(S'), that is 
the centralizer of S in f maps into the centralizer of S' in f'. For the other direction, 
let {h, t2, ... } be an F -basis for a complement for I in T and let a' E Cr' (S'). 
Then we may assume that a, an inverse image of a', is of the form 

0.= L (aix ® ti) x 
i,x 

with aix E S. Let s E S. Since H normalizes S we have 

so. - as = L [( saix - aiXsx~l) ® ti] X. 
",X 

On the other hand, so. - as E (S ® I) * H since a' E Cp(S'). By definition of 
{ti} it therefore follows that so. - as = O. Since this is true for all s E S we have 
a E Cr( S) and hence a' E Cr( sy. 
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LEMMA 2.3. r = (S0FT)*H be as in the previous lemma. In addition assume 
that R is a prime ring, S = Qs(R) and that H normalizes R, S, and T. If I is a 
nonzero (R, R) -subbimodule of r with I H = I then there exists 0 =I- 0: E Cd S) and 
o =I- A <l R with Ao: <;;; I. 

PROOF. Let {to, tl, ... } be an F-basis for T. Then every element !3 E r is 
uniquely writable as 

i,x 

with bix E S. Choose 0 =I- !3 E I with a minimal number, say n, of nonzero 
coefficients bix . We may suppose boy =I- o. 

Let r E R. Since I is an (R, R)-subbimodule of r we have ,= boyr!3 - !3rYb8y E I. 
Furthermore 

t,X 

and the (0, y)-term here is zero. Thus the minimality of n implies that 1=0 and 
hence that 

---1 ---1 

boyrbix = bixrYx b~; 

for all r E R. It follows from Lemma 2.1(iv) that there exist units qix E S with 

xy-lryx- l = rYX - 1 = q;;/rqix 

and bix = bOyqix for all i, x which occur in the support of /3. 
Set 

i,x 

Since qixxy-l centralizes R and normalizes S, it follows from the uniqueness part 
of Lemma 2.1(ii) that qixxy-l centralizes S and hence that 0 =I- 0: E CdS). 
Furthermore since bix = boyqix we have 

boyO: = L (bix 0 ti) xy-l = /3y-l E I 
i,x 

- --1 
since I H = I implies I H = I. 

Finally there exists an ideal A of R with 0 =I- Aboy C R. Thus since I is an 
(R, R)-bimodule and 0: commutes with R we have 

(AboyR)o: = A(boyo:)R <;;; I 
and the lemma is proved. 

We now fix some notation for the remainder of this section. Let r = R * G be 
a crossed product with R a prime ring. By Lemma 2.1(iii), if S = Qs(R) then r 
extends uniquely to a crossed product r' = S * G. Set F = Z(S) = Cs(R), the 
extended centroid of R. Recall that an automorphism a of R is said to be X-inner 
if its unique extension to S becomes inner. Since conjugation by every unit of R is 
obviously X-inner it follows that 

Ginn = {X E G I x is X-inner on R} 

is a subgroup of G and in fact Ginn <l G. 
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LEMMA 2.4. If T = Crt (S) then T = Ft [Ginn], some twisted group algebra of 
Ginn over F, and G acts on T normalizing the group of trivial units. Furthermore 
S * Ginn = S ®F T and f' = (S * Ginn) * H = (S ®F T) * H, a suitable crossed 
product of H = G/Ginn over S ® T. 

PROOF. It is clear that a = Eaxx E T = Crt(S) if and only if each axx E T. 
Now suppose sx E T with 0 'I s E S. Then for all r E R we have 

--1 
r sx = sxr = srx X 

and thus, by Lemma 2.1(iv), s is a unit of S with s-lrs = r",-1 for all r E R. Thus 
x E Ginn and it follows that T ~ S * Ginn. 

For each x E Ginn choose a unit Sx E S inducing the automorphism '" on R 
and let x = S;lX. We claim that the elements x for all x E Ginn form an S-basis 
for S * Ginn and an F-basis for T. The former is obvious and for the latter we 
know at least that the x's are F-linearly independent. Observe that x acts on S 
by conjugation and centralizes R. Thus x centralizes S so x E T. Finally suppose 
that (3 E T ~ S * Ginn. Then we can write (3 = E bxx with bx E S. Since each 
bxx E T and since x is a unit in T, it follows that bx E Z(S) = F. We conclude 
that the elements x do indeed form an F-basis for T and S * Ginn = S ®F T. 

Now T is an F-algebra with basis Ginn and for each x, y E Ginn we have xy = sxy 
for some 0 'I s E S. Since x, y, xy E T we conclude that sET so s E F and 
T = Ft[GinnJ is a suitable twisted group algebra of Ginn over F. Note that ~ 
normalizes S so it normalizes T and then clearly normalizes the group of trivial 
units ofT. Furthermore U = U(R) centralizes T so we obtain an action of G ':::::' ~ /U 
on T. The remaining property, namely that f' = (S * Ginn) * (G/Ginn ), is clear 
since Ginn <l G. 

For the remainder of this section we will write T = Crt (S). In addition, if I is 
a (f, f)-subbimodule of f' = S * G we set 

i = {a E T I Aa ~ I for some 0'1 A <l R}. 

LEMMA 2.5. With the above notation, i is a G-stable ideal of T. Furthermore 
if (3 E if' then there exists 0 'I B <l R with B(3 ~ I. 

PROOF. If a, (3 E i with Aa, B(3 ~ I, then (A n B)(a + (3) ~ I so a + (3 E 1. 
Now let lET and choose 0 'I C <l R with C, ~ f. Since a and I centralize R we 
have 

and 
CA,a = (C,)(Aa) ~ fI = I 

so a" ,a E 1. Thus i <l T. Furthermore since I and R are V-stable, so is 1. 
Finally if (3 E if' then (3 = E~ ai/i with ai E i and Ii E f'. Choose 0 'I A, C <lR 

with Aai ~ I and C,i ~ f for all i = 1,2, ... ,n. Then 
n n 

AC(3 ~ LACai/i = L(Aad(C,d ~ If = I 
1 1 

and the lemma is proved. 
The following result is crucial. It applies when I <l f or I <l f'. 
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LEMMA 2.6. If I is a (f, r) -subbimodule of f', then if' <l f' and I <;;; if'. 

PROOF. By Lemma 2.4, f' = (S ®p T) * H where H = G/Ginn and, choosing 
H <;;; G, we see that R, S and Tare H-invariant. Furthermore i is an H-stable 
ideal of T. By Lemma 2.2, if' <l f' and 

f' / if' = (S ® (T / i)) * H = f". 

Furthermore T = Cr' (S) maps onto the centralizer of S in this quotient. 
Suppose I ct. if'. Then the image I" of I in f" is a nonzero (R, R)-subbimodule 

of f" with I" H = I". It follows from Lemma 2.3 that there exists 0 -=I a" E C r " (S) 
with Aa" <;;; I" for some 0 -=I A <;;; R. As we observed, a" is the image of some 
element a E T and certainly Aa <;;; I + if'. Choose a E A with a -=I 0 and write 
aa = ,+ (3 with, E I and (3 E if'. Then, by Lemma 2.5, there exists 0 -=I B <l R 
with B(3 <;;; I. Since B, is certainly contained in I we have Baa <;;; I and hence, 
since a centralizes R, we obtain (BaR)a = BaaR <;;; I R = I. But 0 -=I BaR <l R 
implies that a E i, by definition of i, and therefore the image a" of a is zero, a 
contradiction. We conclude that I <;;; if'. 

Recall that G acts on T. If Q -=I T is a G-stable ideal, then Q is G-prime if for 
all G-stable ideals I, J of T the inclusion I J <;;; Q implies I <;;; Q or J <;;; Q. We can 
now set up the correspondence between the primes of f = R * G disjoint from R 
and the G-prime ideals of T. With little additional work we can add to this link 
the primes of f' = S * G disjoint from S. 

LEMMA 2.7. Let Q be a G-stable ideal of T and set P = Qf' n f, P' = Qf'. 
Then P <l f and P' <l f' with P n R = P' n S = 0 and P = p, = Q. Furthermore if 
Q is G-prime then P is a prime ideal of f and P' is a prime ideal of f'. 

PROOF. We apply Lemma 2.4 and write f' = (S ®p T) * H where H = G /Ginn . 

Since Q is a G-stable ideal of T, it follows that S ® Q is an ideal of S ® T which is 
H-stable. Thus by Lemma 1.1(i) we have 

P' = Qf' = (S ® Q) * H <l f' 

and P' n (S ® T) = S ® Q. Thus P = P' n f <l f and P n (S ® T) <;;; S ® Q. This 
implies that P' n S = P n R = O. 

Let a E P or P'. Then by definition there exists 0 -=I A <l R with 

Aa <;;; P' n (S ® T) = S ® Q 
and hence a E Q. Conversely if (3 E Q then there exists 0 -=I B <l R with B (3 <;;; f 
and thus 

B(3 = (3B <;;; Qf' n f = P <;;; P'. 
We conclude therefore that P = p, = Q. 

Finally assume that Q is G-prime. We show that P is prime, the proof for P' 
being identical. Let I, J <l f with I J <;;; P and let a E i, (3 E J. If 0 -=I A, B <l R 
with Aa <;;; I, B(3 <;;; J then 

ABa(3 = (Aa)(B(3) <;;; IJ <;;; P 

so a(3 E P. In other words, i J <;;; P = Q. But i and J are G-stable ideals of T, by 
Lemma 2.5, and Q is G-prime. It follows that one of i or J is contained in Q, say 
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i ~ Q. We conclude from Lemma 2.6 that 

I ~ if' n f ~ Qf' n f = P 

and the lemma is proved. 
For the last step we require a Noetherian hypothesis. In some sense it is used to 

compensate for the fact that the ideals A of R we have considered are not necessarily 
G-stable. 

LEMMA 2.8. Assume in addition that R is right Noetherian and G is polycyclic-
by-finite. Let P be a prime ideal of R * G with P n R = 0 or let P' be a prime 
ideal of S * G with P' n S = O. Then P and P' are G-prime ideals of T with 
P = Pf' n f, P' = PT'. 

PROOF. We first show that P = Pf' n f. To this end let W = Pf' n f so that 
W <l f and W ;2 P by Lemma 2.6. Since f is right Noetherian by Lemma 1.2, we 
can write W = L~ aif and, since ai E W ~ Pf', it follows from Lemma 2.5 that 
there exists 0 :j::. Ai <l R with Aiai ~ P. Letting A = n~ A we have 0 :j::. A <l R and 
AW ~ P. Now P is a prime ideal of f and W <If so this implies that either A ~ P 
or W ~ P. But by assumption P n R = 0 so the first possibility cannot hold and 
we conclude that W = P as required. 

The argument for P' is slightly different since we are not given that S is right 
Noetherian. But note that T = Ft[Ginnl and Ginn is polycyclic-by-finite so T is 
right Noetherian by Lemma 1.2. Set W' = P'f' so that W' <l r' and W' ;2 P'. 
Since T is right Noetherian, P' is a finitely generated right ideal of T and hence 
W' = PT' is a finitely generated right ideal of f'. Now proceed as above. 

Finally we show that P and P' are G-prime. Since the proofs are identical in 
the two cases, we will only consider P. Let I and J be G-stable ideals of T with 
IJ ~ P. Since If' and Jf' are ideals off', by Lemma 2.7, we have f'J ~ Jf' and 
hence (If')(Jf') ~ IJf' ~ Pf'. It follows that 

(If' n f)(Jf' n r) ~ Pf' n f = P 

and thus since P is prime one of these factors is in P, say If' n f ~ P. By Lemma 
2.7 again this yields I = (If' n fr ~ P so P is G-prime. Similarly P' is G-prime. 

The above two results now combine to form the main theorem of this section. 
At this point it is essentially all notation and requires no additional proof. 

THEOREM 2.9. Let f = R * G be a crossed product with R prime and right 
Noetherian and with G polycyclic-by-finite. Let S = Qs(R), F = Z(S) and let 
f' = S * G be the natural extension. Then T = Crl(S) = Ft[GinnJ is a twisted 
group algebra of the group Ginn <l G and G acts on T as automorphisms normalizing 
the group of trivial units. Furthermore there exist one-to-one order preserving cor-
respondences between the primes P of f with P n R = 0, the primes P' of f' with 
P' n S = 0, and the G-prime ideals Q of T. Specifically these maps are given by 

Q ---+ Qf' = P', P' ---+ p' n f = P, P ---+ P = Q 

where 
P = {a E T I there exists 0 :j::. A <l R with Aa ~ P}. 

To proceed further we will have to describe the G-prime ideals in a twisted group 
algebra. We handle the prime ideals in the next section. 
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3. Twisted group algebras. It remains to study the prime ideals in twisted 
group algebras of polycyclic-by-finite groups. Let Ft[G] be such an algebra and let 
Q;, as usual, denote its group of trivial units. Then Q; j r ::::= G and since G is finitely 
generated there exists a finitely generated subgroup X of Q; with Xj(Y nX)::::= G. 
Furthermore G is finitely presented, by [5, Lemma 12.3.12(iv)]' so it follows from 
[5, Lemma 12.3.12(ii)] that r n X is finitely generated as a normal subgroup of 
X. But r n X is central in X so we conclude that it is a finitely generated abelian 
group and hence that X is polycyclic-by-finite. 

Now the homomorphism X ----t Q; ~ Ft[G] extends to a ring homomorphism 
F[X] ----t Ft[G] which is clearly onto. Hence any prime ideal of Ft[G] determines 
a prime ideal of F[X]. Since the prime ideals of F[X] have all been described in 
[8 and 3], we can therefore transfer the appropriate information to Ft[G]. Our 
goal is to obtain a reasonable characterization of the primes of Ft [G] in a fairly 
economical manner. The route we take is independent of the choice of X and yields 
the necessary uniqueness properties almost immediately. There is presumably a 
good deal more which could be said here. 

We follow the notation of [8]. If G permutes a set 0, an element 0: E 0 is said 
to be orbital, or more precisely G-orbital, if the G-orbit of 0: is finite. In particular 
G permutes its elements by conjugation and the set of orbital elements is 

~(G) = {x E G I IG: Cc(x)1 < oo}, 

the f.c. center of G. Furthermore G permutes its subgroups by conjugation and 
hence N ~ G is orbital if and only if IG : Nc(N)1 < 00. A polycyclic-by-finite 
group G is said to be orbitally sound if for every orbital subgroup N of G there 
exists M <l G with M ~ N and IN : MI < 00. 

LEMMA 3.1. Let G be polycyclic-by-finite, let Z be a central subgroup of G 
and assume that G j Z is orbitally sound. Define W <l G to be minimal with G -;2 
W -;2 Z and GjW an elementary abelian 2-group. Then IG : WI < 00 and any 
automorphism of G which normalizes Z also normalizes W. 

(i) Let N ~ W with N orbital in W. If N contains no nonidentity normal 
subgroup of G, then IN: Z(W) n NI < 00. 

(ii) W is orbitally sound. 

PROOF. Since G is finitely generated, its homomorphic images which are el-
ementary abelian 2-groups are of bounded order. It follows that there exists a 
unique minimal W with G -;2 W -;2 Z and G jW an elementary abelian 2-group. 
Thus IG : WI < 00 and the uniqueness of W yields the result on automorphisms. 

(i) We proceed by induction on the Hirsch number h(N). The case h(N) = 0 
is trivial so assume h(N) 2 1. Since IG : WI < 00, N is orbital in G so there 
exists H <l G with IG : HI < 00 such that H normalizes N. We may assume that 
W -;2 H -;2 Z. 

Since G j Z is orbitally sound and Z N j Z is an orbital subgroup, there exists C <lG 
with ZN -;2 C -;2 Z and IZN: CI < 00. Replacing C by C n H, we may assume 
that C ~ H. We have C = Z(NnC) so IN: NnCI < 00. Note that NnC is also 
orbital in Wand normalized by H, so replacing N by N n C we may assume that 
C=ZN. 
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Since N contains no nontrival normal subgroup of G we have Z n N = 1. Also 
H <lG and N <lH, since N ~ C ~ H, so we have [C,H] <lG and 

[C,H] = [ZN,H] = [N,H] ~ N. 

Thus [C, H] = [N, H] = 1 so N is central in H and in particular N is abelian. If 
h(N) ~ 2 we can write N = Nl X N2 with h(Nl ), h(N2) < h(N). Since N l , N2 are 
central in H, they are orbital in W. It follows by induction that IN1 : Z(W)nNll < 
00 and IN2: Z(W) n N21 < 00 so IN: Z(W) n NI < 00, as required. 

It remains to consider h(N) = 1. Now there exists an integer n with zn and 
Nn both torsion free abelian. Then cn = zn X Nn <l G so replacing N by Nn we 
can assume that D = T x N <l G with T = zn a torsion free central subgroup and 
N infinite cyclic. Let us now think of D as being additive so that the finite group 
G I H acts linearly on D. Furthermore if Q denotes the field of rational numbers, we 
can let G I H act on D (>9 Q. Since G I H acts in a completely reducible manner and 
T (>9 Q is a central subspace of codimension 1 we see that G I H can be diagonalized. 
In fact each element of G I H acts like diag(1, 1, ... , 1, A) where A: G I H -> Q. is a 
linear character. This implies that A2 = 1 so, by definition of W, W ~ ker A and 
hence W centralizes D (>9 Q. Thus W centralizes N ~ D (>9 Q and (i) is proved. 

(ii) Let N ~ W with N orbital in W. Set M = ng Ng <l G and consider G = 
GIM. We have G ;2 Z = ZMIM so Z is central in G. Also GIZ c::::: GIZM is 
a homomorphic image of GIZ so GIZ is orbitally sound. Since W ;2 ZM, it is 
clear that W is minimal in G subject to W ;2 Z and G IW being an elementary 
abelian 2-group. Notice that nil Nil = M = 1 so (i) applies and we conclude that 
IN: Z(W) n NI < 00. If T denotes the complete inverse image of Z(W) n N in G, 
then clearly T <l Wand IN: TI < 00. Thus W is orbitally sound. 

We remark that G above need not be orbitally sound. For example let G = 
C wr C2 be the wreath product of the infinite cyclic group C by C2 , the group of 
order 2. If Z = Z(G), then GIZ has Hirsch number 1 and hence is orbitally sound. 
But G itself is not orbitally sound. 

Let G be polycyclic-by-finite. By [8, Theorem C2], Go = nio G is a characteristic 
orbitally sound subgroup of G of finite index. Let G l = ni02 G be the subgroup of 
G generated by the squares of all elements of nio G. Then GOIG l is an elementary 
abelian 2-group and clearly the largest such homomorphic image of Go. 

PROPOSITION 3.2. If G is polycyclic-by-finite, then ni02 G is a characteristic 
subgroup of finite index. Furthermore let X be any polycyclic-by-finite group such 
that XIZ c::::: G for some central subgroup Z of X. If Y is the complete inverse 
image of ni02 G in X, then Y is orbitally sound. 

PROOF. Write Go = nio G and G l = ni02 G. Then IG: Gol < 00 and IGo: Gil < 
00 so G l is clearly a characteristic subgroup of G of finite index. Now let XIZ c::::: G 
and let Xi be the complete inverse image of Gi. Then XolZ c::::: Go is orbitally 
sound so, by Lemma 3.1 and the definition of G l , Xl is orbitally sound. 

If G is polycyclic-by-finite and N is orbital in G, then N is an isolated orbital 
if any orbital Nl properly larger than N satisfies IN1 : NI = 00. It turns out [8, 
§3.1] that any orbital N is a subgroup of finite index in a unique isolated orbital 
subgroup ic(N), its isolator. The isolated orbitals are important because their 
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normalizers are largest among all nearby orbital subgroups. This latter concept is 
more useful in dealing with twisted group algebras. 

If G is any group and N is a subgroup of G, we say that N is bounding in G if, 
for all subgroups T of finite index in N, we have Nc(N) 2 Nc(T). The next two 
lemmas list a number of properties of such subgroups. We note that if H is a finitely 
generated group and n is an integer, then H has only finitely many subgroups of 
index S n by [5, Lemma 6.3.3]. The intersection Tn of these subgroups is therefore 
a characteristic subgroup of H of finite index which is contained in any subgroup 
of index S n. 

LEMMA 3.3. Let G be a polycyclic-by-finite group and let N be an orbital sub-
group. 

(i) If N is G-bounding and H 2 N with IH : NI < 00, then Nc(N) 2 Nc(H). 
(ii) N is G-bounding if and only if Nc(N) = Nc(ic(N)). 
(iii) N has a unique subgroup bc(N) which is maximal with the property that 

IN: bc(N)1 < 00 and bc(N) is bounding in G. Indeed bc(N) is the largest normal 
subgroup of Nc(ic(N)) contained in N. 

PROOF. (i) Choose T char H with T ~ N ~ Hand IH : TI < 00. Since T char H 
we have Nc(H) ~ Nc(T) and since N is bounding we have Nc(T) ~ Nc(N). 

(ii) Let 1= ic(N) and assume first that N is bounding. Since II: NI < 00, (i) 
implies that Nc(N) 2 Nc(I). On the other hand, since I = ic(N) we have 
N c (N) ~ N c (1). Conversely assume that N c (N) = N c (1) and let T be a 
subgroup of N of finite index. Then T is orbital in G and ic(T) = I so Nc(T) ~ 
Nc(I) = Nc(N) and N is bounding. 

(iii) Again let I = ic(N) and set M = Nc(I). Since the finitely many M-
conjugates of N all have finite index in I, B = nXEM NX <JM also has finite index in 
I. Clearly B is orbital, ic(B) = I and B<JM so we have Nc(B) = Nc(ic(B)) = M 
and B is bounding by (ii). Conversely, if T ~ N is a G-bounding subgroup of 
finite index, then T is orbital, ic(T) = ic(N) = I and, by (ii), T <J M. Thus 
T ~ nXEM NX = Band B has the appropriate property. 

LEMMA 3.4. Let G /Z( G) be polycyclic-by-finite and let N be a finitely gener-
ated orbital subgroup of G. 

(i) N has a unique subgroup bc(N) which is maximal subject to IN: bc(N)1 < 00 

and bc(N) is G-bounding. 
(ii) If X is any subgroup of G with G = XZ(G) and X 2 N, then bx(N) = 

bc(N). 

PROOF. Let X be any subgroup of G with G = XZ(G) and X 2 N. If T is 
any subgroup of N, then Nc(T) = Nx(T)Z(G) and Nx(T) = X n Nc(T). It 
follows that Nc(Td 2 Nc(T2) if and only if Nx(Td 2 N x (T2)' In particular T 
is G-bounding if and only if it is X-bounding. 

Since G/Z(G) and N are both finitely generated, we can now suppose that X is 
finitely generated. As we observed at the beginning of this section this implies that 
X is polycyclic-by-finite. By Lemma 3.3(iii), bx(N) exists and we conclude from 
the above that bc(N) exists and is equal to bx(N). 

The prime ideals in group algebras of polycyclic-by-finite groups are character-
ized in [3 and 8]. The next result is merely a reformulation of the work of [3]. 
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Recall that if I <l F[G] then 

It = {x E Gil - x E I} 

is a normal subgroup of G. Furthermore if N ~ G, then Y' c(N) :2 N is defined by 
Y' c(N)/N = ~(Nc(N)/N). Note that if N is a bounding orbital subgroup of G 
and if M = ic(N), then Nc(N) = Nc(M) by Lemma 3.3(ii). Since 1M: NI < 00 

it then follows easily that Y' c(N) = Y' c(M). We will use this observation freely 
below. 

Since group algebras and twisted group algebras are crossed products, we can 
use the induced ideal notation LC as described immediately preceding Lemma 1.5 
in either of these rings. 

PROPOSITION 3.5. Let G be a polycyclic-by-finite group and let H be a normal 
orbitally sound subgroup of finite index. 

(i) Let P be a prime ideal of F[G] and write P n F[H] = nXEC QX where Q is 
a minimal covering prime of the intersection. If N = bc( Qt), then there exists a 
prime ideal L of F[Y' c(N)], unique up to conjugation by Nc(N), with P = LC. 
Furthermore L is Nc(N)-orbital and bc(Lt) n H = N. 

(ii) Conversely let N be a bounding orbital subgroup of G contained in Hand 
let L be a prime ideal of F[Y'c(N)] with bc(Lt) n H = N. Then LC = P is a 
prime ideal of F[G] and there exists a minimal covering prime Q of P n F[H] with 
N = bc(Qt). 

PROOF. (i) Since Qt <l H, Qt is certainly orbital in G. If M = ic(Qt) and 
N = bc(Qt), then M = ic(N) and Y' c(M) = Y' c(N). With this observation [3, 
Theorem 2.3(iii)] yields all of (i) except for the uniqueness of L and the information 
on bc(Lt). For the remainder let A = Nc(M) = Nc(N) and let T = LA. Then 
by [3, Theorem 2.3(ii)], T is a uniquely determined prime ideal of F[A]. We study 
Tt. 

Since Y'c(M) <lA and T = LA we have T = (naEA La)F[A]. It follows first that 
Tt ~ Y' c (M) and then that 

aEA 
Next by [3, Theorem 2.3(ii)] again, Tn F[H] = naEA Qa, so clearly 

Tt n H = n (Qt)a = bc(Qt) 
aEA 

where the last equality follows from Lemma 3.3(iii). In particular Lt :2 Tt :2 
bc(Qt) = Nand we see that L is the complete inverse image of a prime ideal 
of F[Y'c(M)/N] = F[Y'c(N)/N]. But A = Nc(N) acts like a finite group of 
automorphisms on Y'c(N)/N = ~(A/N) and therefore L has only finitely many 
A-conjugates. 

We conclude from this and Tn F[Y' c(N)] = naEA La that {La I a E A} is 
the finite set of all minimal covering primes of the intersection. But T is uniquely 
determined by P and hence so is {La} so we have proved the uniqueness of L up 
to A-conjugation. In addition Lt is orbital in A and hence in G. 

Finally by [3, Theorem 2.3(iii)] there exists at least one such prime L1 with 
1M: L11 < 00 and thus, by uniqueness, 1M: L t I < 00 for all such L. It follows that 



PRIME IDEALS IN POLYCYCLIC CROSSED PRODUCTS 753 

M = ic(Lt) and hence that 

Tt = n (Lt)a = bc(Lt) 
aEA 

by Lemma 3.3(iii). Since Tt n H = bc(Qt) = N, part (i) is proved. 
(ii) Here we use [3, Theorem 2.4] which applies equally well to any orbitally 

sound normal subgroup H of G of finite index. Again if M = ic(N), then A = 
Nc(M) = Nc(N) and \7 c(M) = \7 c(N). Now by assumption, \7 c(N) :;2 Lt :;2 N 
so Lt is orbital in A and hence in G. Thus bc(Lt) does indeed make sense and 
bc(Lt) n H = N implies that ILt: NI < 00 and M = ic(Lt). By [3, Theorem 2.4 
(i)], P is a prime ideal of F[G] and there exists a minimal covering prime Q1 of 
P n F[H] with M = ic(Qi). It remains to compute bc(Qi). 

To this end let N1 = bc(Qi) and let L1 be the prime ideal of F[\7 c(Nd] given by 
(i) with P = Lf. Since M = ic(Nd, it follows that \7c(Nd = \7c (M) = \7c(N) 
so L1 and L are both prime ideals of F[\7 c(Nd] with LC = Lf = P. By the 
uniqueness in (i) we therefore have L~ = L for some a E A. Then (Ll)a = Lt so 
bc(Li)a = bc(Lt) and hence since H <l G, 

Nf = (bc(Li) n H)a = bc(Li)a n H = bc(Lt) n H = N. 
Since N = Nf = bc(Qi)a, the result follows with Q = Q~. 

We now require analogous notation for twisted group algebras. If I <l Ft [G] we 
let 

It = {a E Q) I 1 - a E I}. 
Then It is the kernel of the group homomorphism Q) -+ Ft [GlI I so It <l Q). Fur-
thermore if I#- Ft[G], then It n F' = 1. 

Again assume that Ft[G] is given. If N is a subgroup of Q) we define \7b(N) ~ G 
as follows. First we form N l!l (N) and then let D :;2 N be the complete inverse 
image in Nl!l(N) of the f.c. center ~(Nl!l(N)/N) so that D = \7l!l(N). Note that 
N l!l (N) :;2 D :;2 F' and we set 

\7b(N) = D/F' ~ Q)/F' = G. 
We remark that if Nl!l(N) :;2 M ~ N with 1M : NI < 00 and Nl!l(M) = Nl!l(N), 
then it follows immediately that \7b (M) = \7b (N). The main result of this section 
IS 

THEOREM 3.6. Let Ft[G] be a twisted group algebra of the polycyclic-by-finite 
group G. Set H = ni02 G and let S:J denote the group of trivial units of Ft[H] ~ 
Ft[G]. 

(i) Let P be a prime ideal of Ft[G] and write P n Ft[H] = nXEC QX where Q 
is a minimal covering prime of the intersection. If N = bl!l (Qt) then there exists a 
prime ideal L of Ft[~b(N)], unique up to conjugation by Nl!l(N), with P = LC. 
Furthermore Lis Nl!l(N)-orbital and bl!l(U)nS:J = N. 

(ii) Conversely let N be a bounding, orbital subgroup of Q) contained in S:J with 
N n F' = 1 and let L be a prime ideal of Ft[\7b(N)] with bl!l(Lt) n S:J = N. Then 
P = LC is a prime ideal of Ft[G] and there exists a minimal covering prime Q of 
P n Ft[H] with N = bl!l(Qt). 

PROOF. (i) Since H = ni02 G is a normal subgroup of G of finite index, the 
structure of P n Ft[H] is immediate from Lemma 1.3. Furthermore Qt <l S:J and 
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115: .\j I < 00 so Qt is orbital in 15 with Qt n F' = 1. The latter implies that Qt 
embeds isomorphic ally in 15 / F' = G so Qt is finitely generated. By Lemma 3.4(i), 
br5 (Qt) = N exists. 

If there exists a prime ideal Ll of Ft['Vb(N)] with Lf = P, then choose one 
such. Again Li n F' = 1 so Li is finitely generated. We can now let X be a 
finitely generated subgroup of 15 with F' X = 15 and X 2 Qt, Li. As we observed 
at the beginning of this section, this implies that X is polycyclic-by-finite. To avoid 
confusion we set Z = X n F', the kernel of the homomorphism of X onto G. 

Now the map X -t 15 ~ Ft[G] extends to a ring epimorphism F[X]-t Ft[G] and 
we pull certain information back to F[X]. In particular we let P be the complete 
inverse image of P in F[X] and we let Xl be the inverse image of H = ni02 G in 
X so that F[Xl ] maps onto Ft[H]. In addition we let Q be the complete inverse 
image of Q in F[Xl]' Then P is a prime of F[X], Q is a prime of F[XI] and 
P n F[Xl ] = nxEx Qx. From this we see that Q is a minimal covering prime of the 
intersection. Furthermore Xl is an orbitally sound normal subgroup of finite index 
in X, by Proposition 3.2, so Proposition 3.5 applies. 

Note that X 2 Qt implies that Qt = Qt and hence, by Lemma 3.4(ii), that 

bx(Qt) = bx(Qt) = br5(Qt) = N. 

We conclude from Proposition 3.5(i) applied to F[X], Xl, P, and Q that there 
exists a prime ideal L of F['V x(N)] with Lx = P. Furthermore L is unique up 
to conjugation by Nx(N) and bx(£t) n Xl = N. It remains to translate this 
information back to Ft [G]. 

Since 15 = F' X it is clear that N r5 (N) = F' N x (N) and hence that 'V r5 (N) = 
F''V x(N). Furthermore 'V x(N) 2 Z so it follows that 'V x(N) is the complete in-
verse image in X of 'Vb (N) and in particular that F ['V x (N)] maps onto Ft ['Vb (N)]. 
If 1 denotes the kernel of the homomorphism F[X] -t Ft[G], then clearly 1 = 
(1 n F[Z])F[X] where F[Z]/(1 n F[Z]) ~ F. Since 1 ~ P = LX ~ LF[X] and 
Z ~ 'V x (N), it follows that 1 n F[ Z] ~ L. Thus L is the complete inverse image of 
an ideal L of Ft['VMN)] and certainly L is prime. In addition, the formula 

P = n (LF[XW = LX 
xEX 

maps into Ft[G] to yield 

P = n (LFt[GW = LG 
xEG 

and we have proved the existence of an appropriate prime L. 
We now know that L l , as chosen in the second paragraph of the proof, exists 

and we let Ll denote its complete inverse image in F['V x(N)]. Since 

P = n (LlFt[GW = Lf 
xEG 

it follows by taking complete inverse images that 

P = n (LIF[XW = Lf. 
xEX 
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Thus by uniqueness in F[X] we see that L1 and L are conjugate under Nx(N) and 
therefore L1 and L are conjugate under NI!\(N). This proves the uniqueness of L. 

Finally, by assumption, X ~ Li so LI = Li and bl!\(Li} = bl!\(LI) = bx(LD 
by Lemma 3.4(ii). Since Lf = P, Proposition 3.5(i) yields bx(LD n Xl = Nand 
hence, since X n Sj = Xl, that bl!\ (Li) n Sj = N. But Land L1 are conjugate under 
N I!\ (N) so since Sj <lIB we conclude that bl!\ (Lt) n Sj = N. 

(ii) The argument here is of course similar and we freely use a good deal of the 
notation and observations of (i). Let X be a finitely generated subgroup of IB with 
Y X = IB and X ~ Lt ~ N. In addition, assume that X ~ Q~ for the finitely 
many minimal covering primes Qi of LG n Ft[H]. Clearly N is a bounding, orbital 
subgroup of X with N ~ Xl, the complete inverse image of H = ni02 G in X. 
Set Z = Y n X and let 1 = (1 n F[Z])F[X] be the kernel of the epimorphism 
F[X]-- Ft[G]. Observe that F[Y' x(N)] maps onto Ft[Y'b(N)] so L, the complete 
inverse image of L, is a prime ideal of F[Y' x (N)]. By assumption X ~ Lt so we 
have V = L t and hence 

N = bl!\(Lt) n Sj = bl!\(Lt) n Sj. 

But bl!\(Lt) = bx(Lt) by Lemma 3.4(ii), N ~ X, and Sj n X = Xl so this implies 
that N = bx(Lt) n Xl. We can now apply Proposition 3.5(ii) since Xl is orbitally 
sound. 

We conclude that P = LX is a prime ideal of F[X] and that there exists a 
minimal covering prime Q of P n F[X1] with bx(Qt) = N. Since L ~ 1 n F[Z] 
it follows that P ~ 1 so that P is the complete inverse image of a prime P of 
Ft[G]. As we observed above, the formula P = Lx maps to P = LG. In addition, 
Q ~ P n F[X1] ~ 1 n F[Z] so Q is the complete inverse image of a prime ideal Q 
of Ft[H]. Since the formula P n F[Xd = nXEX QX maps to P n Ft[H] = nXEG QX 
we see that Q is a minimal covering prime of the latter intersection and hence of 
LG n Ft[H]. Finally, by assumption, X ~ Qt so Qt = Qt and we conclude from 
Lemma 3.4(ii) that 

bl!\(Qt) = bl!\(Qt) = bx(Qt) = N. 
This completes the proof. 

We remark that the function of the above result, as with the work of [3 and 8], 
is to reduce the study of prime ideals to essentially commutative situations. Indeed 
let Ft[G] and N ~ IB be given with N n Y = 1 and suppose for convenience that 
G = Y'b(N). Let I be the ideal of Ft[G] generated by all 1- a with a E N. Since 
N <lIB and N n Y = 1, it follows easily that Ft[G]1 I:::::: Ft[e] where e = IB I Y N 
is a suitable homomorphic image of G = IB I Y. Furthermore the group of trivial 
units of Ft[e] is I!; = IBIN and this is an f.c. group (that is I!; = ~(I!;)) since 
IB = Y'I!\(N) by assumption. 

Since e is finitely generated, I!; = Y X for some finitely generated subgroup X 
and we conclude from [5, Lemma 4.1.5] that II!;: Z(I!;)I < 00 and that II!;'I < 00. In 
particular if Z(I!;)IY = iI ~ e, then iI is a central subgroup of e of finite index 
and indeed Ft[iI] is a central subring of Ft[e]. Furthermore if T is a torsion-free 
subgroup of iI of finite index, then since Ft[T] is commutative it follows easily that 
Ft[T] is isomorphic to the ordinary group algebra F[T]. In other words, Ft[e] is a 
finite module over the well-understood central subring F[T]. 
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Finally if L is a prime ideal of Ft [G] with ILt: NI < 00, then L :2 I so L is 
the complete inverse image of a prime ideal L of the essentially commutative ring 
Ft[e]. 

4. Conclusion. In this final section we combine our earlier results to indicate 
how the primes of R * G can be described. As a consequence we obtain a bound on 
the classical Krull dimension, that is the prime length, of R * G. 

LEMMA 4.1. Let G be an arbitrary group acting as automorphisms on the right 
Noetherian ring R. 

(i) A G-stable ideal P of R is G-prime if and only if there exists a G-orbital prime 
Q of R with P = nXEG QX. Furthermore this yields a one-to-one correspondence 
between the G-primes P of R and the G-conjugacy classes {Qx I x E G} ofG-orbital 
primes of R. 

(ii) The G-prime length of R is equal to the G-orbital prime length of Rand 
hence less than or equal to cl- K dim R. 

PROOF. (i) The argument of Lemma 1.3 shows that if P is a G-prime ideal of 
Rand Q is a minimal covering prime, then P = nXEG QX and {Qx I x E G} is 
precisely the finite set of minimal covering primes. Thus P determines {QX} and 
certainly {QX} determines P. Conversely let Q be a G-orbital prime of R and set 
P = n xEG QX so that P is G-stable. If A and Bare G-stable ideals of R with 
AB S;;; P S;;; Q then, since Q is prime, we have' A S;;; Q or B S;;; Q, say the latter. 
But B is G-stable so B S;;; nXEG QX = P and thus P is G-prime. Finally since Q 
is G-orbital, P = nXEG QX implies that {QX} is the finite set of minimal covering 
primes and hence is determined by P. 

(ii) Let Qo < Q1 < ... < Qn be a chain of G-orbital primes of R and set 
Pi = nXEG Qf· Then each Pi is G-prime and Po < P1 < ... < Pn by the uniqueness 
in (i). Conversely let Po < P1 < ... < Pn be a chain of G-prime ideals of Rand 
let Qn be a minimal covering prime of Pn. We choose Qn-1, Qn-2,.,., Qo in 
turn as follows. Given Qi+1 we have Qi+1 :2 Pi+1 > Pi so Qi+1 contains Qi, a 
minimal covering prime of Pi. By the uniqueness in (i) we have Qi+1 > Qi and 
thus Qo < Q1 < ' , . < Qn is a chain of G-orbital primes of R. 

In particular in this Noetherian context the study of G-prime ideals is essentially 
equivalent to the study of G-orbital primes. For this reason we require the following 
companion to Theorem 3.6. 

PROPOSITION 4.2. Let Ft[G] be a twisted group algebra of the polycyclic-by-
finite group G and let Q{ be a group acting as automorphisms on this ring, nor-
malizing both \B and F. Set H = ni02 G, let 5J be the group of trivial units of 
Ft[H] S;;; Ft[G] and let N be a bounding, orbital subgroup of \B with N S;;; 5J and 
NnF" = 1. If L is a prime ideal of Ft[\7b(N)] with b~ (Lt) n5J = N, then P = LG 
is an Q{-orbital prime ideal of Ft [G] if and only if both Nand L are Q{-orbital. 

PROOF. If both Nand L are Q{-orbital, then they are both stabilized by a 
subgroup 113 of finite index in Q{. Clearly 113 stabilizes the right ideal L· Ft[G] and 
hence the largest two-sided ideal contained in it, namely L G. 

Conversely let P be Q{-orbital. Since Q{ normalizes \B and F, it acts on G = \B / F" 
and hence normalizes H = ni02 G and therefore also 5J. If P n Ft[H] = nXEG QX 
as in Theorem 3.6(i), then {QX} is finite and uniquely determined by P n Ft[H]. 
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It follows that there exists a subgroup !l3 of finite index in Qt which stabilizes P 
and all elements of the set {QX}. In particular !l3 stabilizes the prime Q given by 
Theorem 3.6(ii) with N = b(!5 (Qt) and hence !l3 stabilizes N. This implies that 
!l3 stabilizes 'Vh (N) and therefore it stabilizes the finite set {LY lyE N (!5 (N)) of 
primes of Ft['Vh(N)] determined by P and N. An appropriate subgroup of finite 
index in !l3 therefore stabilizes L. 

It is now a simple matter to put this all together to describe the primes in these 
Noetherian crossed products. Thus let R * G be given with R right Noetherian and 
G polycyclic-by-finite. If P is a prime ideal of R*G then, by Lemma 1.1, A = PnR 
is a G-prime ideal of R. Furthermore P ;2 A*G and hence P is the complete inverse 
image of a prime P of (R * G)/(A * G) c:::: (RIA) * G with P n (RIA) = o. Thus 
via this well-understood homomorphism, it suffices to assume that P n R = 0 and 
hence that R is G-prime. 

Now Theorem 1.8 applies and we use its notation. In particular we let Q be a 
minimal prime of R with H its stabilizer in G. Then P = LG where L = PH is a 
precisely determined prime ideal of R * H with L n R = Q. Thus by passing to the 
subgroup H of finite index in G and moding out by Q * H as above, it suffices to 
assume that P n R = 0 and that R is prime. 

At this point Theorem 2.9 applies and we use its notation. Thus we extend R * G 
to 8 * G where 8 = Qs(R) and then 

T = C S *G(8) = Ft[Ginn ] 

is a twisted group algebra of Ginn <1 G over the extended centroid F = Z(8). 
Furthermore G acts as automorphisms on Ft [Ginn] normalizing F and the group of 
trivial units and P is uniquely determined by a G-prime ideal P of T. Specifically 
we have P = (8 * G)p n (R * G). 

It remains to describe the G-prime ideals P of Ft[W] where W = Ginn and of 
course the latter ring is right and left Noetherian by Lemma 1.2. Then by Lemma 
4.1, P = nXEG QX where Q is a G-orbital prime of Ft[W] and, by Theorem 3.6 
and Proposition 4.2, Q = LW for a suitable G-orbital prime L of Ft['Vfv(N)]. Here 
of course N is a bounding, orbital subgroup of the group of trivial units of Ft [W] 
with N n Y = 1. Since Q = LW = nWEw(L. Ft[W])W and W ~ G it follows that 

P = n (L . Ft [WW· 
xEG 

Finally as we observed at the end of the previous section, L is the complete 
inverse image of a prime ideal L of a certain twisted group algebra Ft[DJ, where 
D is a homomorphic image of 'Vfv (N). If G I is the stabilizer of N in G, then 
IG : GIl < 00, GI acts on Ft[DJ, and L is clearly Gl-orbital. Furthermore D 
contains a torsion free abelian subgroup T of finite index with Ft [T] a central 
subring of Ft[D] and Ft[T] c:::: F[T]. Thus a prime of a Noetherian crossed product 
R * G eventually depends on a prime of an essentially commutative twisted group 
algebra Ft[D] where D is a group involved in G. 

We consider a corollary on incomparability and prime length. If G is polycyclic-
by-finite and if 1 = Go <1 GI <1 •.• <1 Gm = G : a subnormal series with quotients 
which are infinite cyclic or finite, then we recall that the number of infinite cyclic 
factors here is an invariant of G called its Hirsch number and denoted by h( G). It 



758 D. S. PASSMAN 

follows from [9,§2] that if R is right Noetherian then 

KdimR * G:S; KdimR + h(G). 
In particular since R * G is also right Noetherian we have 

cl-KdimR * G:S; KdimR * G:S; KdimR + h(G). 
Among other things, the next result bounds the classical Krull dimension of R * G 
in terms of cl-KdimR and h(G). The bound is surely not sharp. 

COROLLARY 4.3. Let R*G be given with R right Noetherian and G polycyclic-
by-finite with h(G) = n If Po < PI < ... < Pn +1 are prime ideals of R * G, then 
Po n R < Pn +1 n R. Hence 

cl-KdimR * G < (n + 1)(1 + cl-KdimR). 

PROOF. For the first part, let us suppose by way of contradiction that Po n R = 
Pn +1 n R so that all Pi n R are equal. We can now follow the reductions as 
described above. Thus we can assume that Po n R = 0 and then, by dropping down 
to a subgroup of finite index which necessarily has the same_ Hirs~h number, !hat 
R is prime. This then gives rise to a chain of G-prime ideals Po < PI < ... < Pn +1 
of Ft[Ginn] and thus, by Lemma 4.1(ii), n + 1 :s; cl-KdimFt[Ginn]. On the other 
hand, since K dim F = 0 we have 

cl-K dim Ft[Ginn] :s; h(Ginn ) :s; h(G) = n 
so we have obtained the appropriate contradiction. We conclude therefore that 
Po n R < Pn +l n R. 

For the second part suppose that Po < PI < ... < Pm is a strictly increasing 
chain of primes of R * G. Then by the above and Lemma 1.1(ii) 

Po n R < Pn + l n R < P2(n+l) n R < ... 
is a strictly increasing chain of G-primes of R. By applying Lemma 4.1(ii) to the 
group Q; acting on R, we see that the latter chain can contain at most 1 +cl-K dim R 
terms. Hence (n + 1)(1 + cl-K dim R) > m as required. 

This extends [1, Theorem 5.8] at least in the Noetherian situation. Presumably 
one should be able to replace the Hirsch number bound above by the smaller pa-
rameter defined in [8] and called the plinth length. Roughly speaking the latter 
measures the number of infinite factors in a normal, rather than a subnormal, se-
ries for G. More precisely p( G) can be described as the largest number of infinite 
factors Hi+ 1 / Hi in all series of the form 

1 = Ho ~ HI ~ ... ~ Hm = H ~ G 
where each Hi is normal in Hand IG : HI < 00 (see [8, §2.3] for basic properties). 
In particular p(G) :s; h(G) and if IG: GIl < 00 then p(G) = p(Gd. By [8, Theorem 
H1] the prime length of an ordinary group algebra F[G] is equal to the plinth length 
of G. This can be lifed to 

PROPOSITION 4.4. Let Ft [G] be a twisted group algebra of the polycyclic-by-
finite group G. Then cl- KdimFt[G] :s; p(G). 

PROOF. By reducing to a normal subgroup of finite index which changes neither 
the prime length [1, Theorem 4.4] nor the plinth length, we can assume that G is 
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poly-(infinite cyclic). Let X be a finitely generated subgroup of (5 with F"X = (5 
so that X is polycyclic-by-finite. To avoid confusion we set Z = X n F". Then Z is 
a central subgroup of X, X / Z = G and it follows easily that p( X) = p( G) + h( Z). 

Now the homomorphism X ----+ (5 extends to an epimorphism F[X] ----+ Ft[G] 
with kernel I = (I n F[Z])F[X] and F[Z]/(I n F[Z]) c:::: F. The latter implies that 
In F[Z] is conjugate via an automorphism of F[Z] to the augmentation ideal and 
it then follows that there exists a chain of primes 

Qo < QI < ... < Qh = In F[Z] 
of F[Z] with h = h(Z). Furthermore since X/Z c:::: G is poly-(infinite cyclic) and 
Z <;;;: Z(X), we conclude that each QiF[X] is a prime ideal of F[X]. In particular I 
is a prime ideal and Ft[G] is a prime ring. 

Finally let 0 = Po < PI < ... < Pn be a chain of prime ideals of Ft[G] and let 
Pi denote the complete inverse image of Pi in F[X]. Since Po = I, we obtain 

QoF[X] < QIF[X] < ... < QhF[X] = Po < PI < ... < Pn 

a chain of primes of F[X] of length n + h. Hence by [8, Theorem HI] 

n + h ~ cl-K dim F[X] = p(X) = p(G) + h 
so n :::; p( G) as required. 

We remark that equality need not hold in the above. For example, let G = 
(x) x (y) be free abelian of rank 2 and let Ft [G] be determined by the relation 
xf} = )..f}x where).. is an element of infinite multiplicative order in F. Then Ft[G] 
is a simple ring and hence has prime length o. On the other hand, p( G) = 2. 

This result per se does not improve the bound in Corollary 4.3. The reason for 
this is that if H <l G then it is quite possible to have p( H) > p( G). Hence the 
argument fails when we drop from G to Ginn <lG. To proceed further would require 
an extension of [8, Theorem D] to the situation where r acts on F[A] normalizing 
both F and the group of trivial units. A little thought shows that such a result will 
not follow immediately from [8, Theorem D] by lifting and therefore this is best 
left for a later project. 
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