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POSITIVE FORMS AND DILATIONS 

WACLAW SZYMANSKI 

ABSTRACT. By using the quadratic form and unbounded operator theory a 
new approach to the general dilation theory is presented. The boundedness 
condition is explained in terms of the Friedrichs extension of symmetric op-
erators. Unbounded dilations are introduced and discussed. Applications are 
given to various problems involving positive definite functions. 

1. Introduction. There are two principal conditions in general bounded dila-
tion theory: positive definiteness and the bounded ness condition. While the first 
one is naturally justified and generally accepted, the second one is rather compli-
cated, usually not easy to verify, and several simplifications of this condition are 
known under some additional assumptions. This paper originated as an attempt 
to explain and understand this boundedness condition. It occurred to us that the 
positive quadratic form theory provides an appropriate framework for suchan ex-
planation. However, consequences of this theory are much deeper than just an 
explanation of the boundedness condition. They lead naturally to a new general 
dilation theory, which deals not only with bounded but also with unbounded dila-
tions. 

In §2 of this paper some known and some new results on positive quadratic 
forms and unbounded operators are discussed. In §3 a general dilation theory is 
presented, which contains the known bounded dilation theory as a special case. §4 
deals with several applications of the previous results, in particular to *-semigroups, 
*-algebras, Gramians, operator moment problems, and quantum mechanics. 

The general reference to quadratic forms and unbounded operators used here 
is [8]. There is an extensive literature on the bounded dilation theory. A general 
treatment can be found in [6, 7, 1]. 

All linear spaces are assumed to be complex. If X, Yare linear spaces, then 
L(X, Y) (B(X, Y), respectively) stands for the linear space of all linear (bounded 
linear, if X, Yare normed, respectively) mappings from X to Y. Moreover, L(X) = 
L(X, X), B(X) = B(X, X). The semi group structure in L(X) or B(X) is always 
the multiplicative one, with the composition. Ix or I denotes the identity operator 
in X. A subspace of a Hilbert space H is a linear subset of H. An operator T in 
H is a linear mapping from a subspace D(T) of H into H. D(T), kerT denote 
the domain and the kernel of T, respectively, C=(T) denotes the intersection of 
all D(Tn), n = 1,2, .... Let H, K be Hilbert spaces, let D(T) be a subspace of 
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H, and let T: D(T) ----+ K be a linear mapping. T is closable if for each sequence 
Xn E D(T), Xn ----+ 0, IIT(xn - xm)11 ----+ 0 implies TXn ----+ O. T is closed if for each 
sequence Xn E D(T), Xn ----+ x, IIT(xn - xm)11 ----+ 0 implies that x belongs to D(T) 
and TXn ----+ Tx. N denotes the additive semi group of all nonnegative integers. C 
denotes the complex plane. 

2. Positive forms. Let X be a linear space. With no risk of confusion a 
mapping p: X X X ----+ C linear in the first variable, conjugate linear in the second 
one (such mappings are usually called sesquilinear or quadratic forms) and such 
that p(x, x) 2: 0 for x E X will be called a positive form on X. If p is a positive 
form on X, then the set 

Np = {x EX: p(x,x) = O} 

is a linear subspace of X, by the Schwarz inequality. The quotient space X/Np has 
a natural inner product 

(2.1) x,y in X. 

The Hilbert space defined as the completion of X/Np under the norm given by this 
inner product will be denoted by Xpo 

Throughout this paper the symbols Np, Xp used in connection with a positive 
form on a linear space will have the fixed meaning just described. 

(2.2) LEMMA. Let X be a linear space. Let p,q be positive forms on X. If 
N q C N p, then the mapping p~: X/Nq x X/Nq ----+ C defined by 

p~(x + N q, y + N q) = p(x, y) 

for x,y in X is a positive form on X/Nq and the Hilbert spaces Xp and (X/Nq)p-
are unitarily isomorphic. 

PROOF. Since N q C Np, p~ is well defined, and since p is positive, so is p~. If 
x,y E X, then 

(x+Np,y+Np) = p(x,y) = p~(x+Nq,y+Nq) = ((x+Nq)+Np-, (y+Nq)+Np-). 

Hence the mapping U: (X/Nq)/Np- ----+ X/Np defined by U((x+Nq)+Np-) = x+Np 
for x E X, extends to a unitary mapping from (X/Nq)p- onto Xp. Q.E.D. 

When dealing with two forms related as in this lemma, the two unitarily isomor-
phic Hilbert spaces mentioned above will be treated as identical. 

Next, positive forms on subspaces of Hilbert spaces will be considered. Let M be 
a dense subspace of a Hilbert space H. A positive form p on M is called closable if 
for each sequence Xn E M, Xn ----+ 0, p(xn - xm , Xn - xm) ----+ 0 implies p(xn, xn) ----+ O. 

(2.3) PROPOSITION. Let M be a dense subspace of a Hilbert space H. Let p 
be a positive form on M and let M/\ be the completion of M under the norm II 11+ 
given by the inner product 

(x, y)+ = (x, y) + p(x, y) for x, y E M. 

Then there is a closed positive form p/\ on M/\ that extends p, and Mp embeds 
isometrically into M;". Moreover, p is closable if and only if M/\ can be embedded 
injectively into H. 
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PROOF. If x belongs to MA, then there is a sequence Xn E M such that 
Ilxn - xll+ --+ O. By the Schwarz inequality for p, 

Ip(xn, xn) - p(xm, xm)1 :::; p(xn - Xm, Xn - Xm)1/2[P(Xn, Xn)1/2 + p(xm' Xm )1/2]. 

Since Xn converges in the norm II 11+, p( Xn , xn) :::; II Xn II ~, and p( Xn - Xm , Xn - xm) :::; 
Ilxn - xmll~ --+ 0, it follows that the sequence p(xn' xn) converges. The mapping 
pA: MA X MA --+ C defined by pA(X,X) = limp(xn,xn ) for x E MA is a closed 
positive form on MA which extends p. For each x EM: Ilx + N pll 2 = p(x, x) = 
pA(X, x) = Ilx + Np" 112. Hence the mapping V: M/Np --+ MA /Np" defined by 
V (x + Np) = x + N p" for x EM, extends to an isometry embedding Mp into M;". 
Finally, let i: M --+ H be the inclusion mapping. Since lIi(x)11 = Ilxll :::; Ilxll+ for 
x E M, it follows that if x E MA and a sequence Xn EM is such that Ilxn -xll+ --+ 0, 
then i(xn) converges in the norm II II. It is a routine matter to verify that the 
mapping i A: MA --+ H defined by iA(x) = lim i(xn) for x E MA is injective if and 
only if p is a closable form. Q.E.D. 

This proposition, in the case when p is defined by a positive operator on M, 
can be found in the proof of Theorem X.23 of [8]. It is stated and proved here, 
because for farther applications it is important to distinguish between properties 
coming just from positive forms, and properties, in which the presence of a positive 
operator is necessary. 

(2.4) PROPOSITION. If p is a positive form on a dense subspace M of a Hilbert 
space Hand Xn --+ 0 implies p( Xn , xm) --+ 0 for each sequence Xn EM, then p is 
closable. 

PROOF. P(Xn -xm, xn -Xm) = P(Xn' Xn)+P(Xm, Xm) -2Rep(xn, xm). Q.E.D. 
The next proposition, whose proof is an application of the Riesz-Fischer theorem, 

is stated for the sake of completeness. 

(2.5) PROPOSITION. Let p be a positive form on a dense subspace M of a 
Hilbert space H. Then the following conditions are equivalent: 

(a) For each x in M there is m(x) ;:::: 0 such that Ip(x, y)1 :::; m(x)llyll, y E M. 
(b) There is a unique positive operator P: M --+ H such that p(x,y) = (Px,y) 

for all X,y E M. 

The following theorem is the main result of this section. Some of its assertions 
are known. The known ones are stated here for two reasons: to formulate properly 
the new ones, and, more importantly, to gather in one place everything that is 
necessary to develop the dilation theory in the next sections. 

(2.6) THEOREM. Let H, K be Hilbert spaces, let M be a dense subspace of H, 
let p be a positive form on M, let P: M --+ H, T: M --+ K be linear mappings. 

(a) Ifp(x,y) = (Tx,Ty) for X,y E M, then p is closable (closed, resp.) if and 
only if T is a closable (closed, resp.) linear mapping. 

(b) If p(x, y) = (Tx, Ty) for x, y E M, p is a closable form, and pA is the closed 
positive form on MA C H extending p (cf. Proposition (2.3)), then T extends to 
a closed linear mapping TA: MA --+ K such that pA(X, y) = (TAX, TAy) for all 
x,yEMA. 

(c) If p(x, y) = (Px, y) for x, y EM, then p extends to a closed positive form pA 
on MA C H, P extends to a selfadjoint, positive operator p A: D(PA) --+ H such 
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that Me D(PA) c MA, pA(X,y) = (PAx,y), for x E D(PA), Y E MA, and Mp 
embeds isometrically into M:),. Moreover, 
(2.7) 

pA(X, x) .:::: Jl(x)llxI1 2 for each x E COO(pA), where Jl(x) = liminf IIPA2n xllTn. 

(d) If p(x, y) = (Tx, Ty) = (Px, y) for all x, y E M, then TA defined in (c) is 
bounded and M A = H if and only if there is a dense subset G of coo (PA) such that 
sup{Jl( x): x E G} is finite. 

PROOF. (a) is clear by the equality p(x,x) = IITxl1 2 for each x E M. 
(b) If x E M A, then there is a sequence Xn E M that converges to x in the norm 

II 11+· Since IITxl1 2 = p(x, x) :::; Ilxll~ for x in M, it follows that the sequence TXn 
converges in the norm II II. Put TAX = lim Txn. It follows from the definition of 
pA that 

pA(X,X) = limP(xn,xn) = lim(Txn, Txn) = (TAx,TAx). 
Thus pA(X,y) = (TAx,TAy) for all x,y E MA. Since pA is a closed form, TA is 
a closed mapping, by (a). It should be mentioned that the inclusion MA cHis 
understood in the sense that MA is injectively embedded into H as in Proposition 
(2.3). 

(c) The existence of M A, pA, and pA such that M C D (PA) C MAC H, pA is a 
closed, positive form on MA, extending p, pA is a selfadjoint, positive extension of 
p and pA (x, y) = (PA x, y) for all xED (PA ), y E M A, follows from the Friedrichs 
extension theorem [8, Theorem X.23]. Since pA extends p, Mp can be isometrically 
embedded into M[;A, which is shown in the proof of Proposition (2.3). Let now 
x E COO(PA) C D(PA). Then 

pA(X,X) = (PAX,X):::; IIPAXllllxll, 

and for each n = 0, 1,2, ... 

These two inequalities are the first and the "n =;. n + I" step, respectively in the 
inductive proof of the inequality 

pA(X, x) :::; IIPA 2n x11 2 - n Ilxll1+T1++2 - n, 

which holds for each n = 0, 1,2, .... Now (2.7) follows. 
(d) Firstly notice that if Q: M -+ H is a selfadjoint operator, then Coo (Q) is 

dense in H, which is remarked on p. 201 of [8, vol. II] after the definition of Coo_ 
vectors, and which is a consequence of Corollary 1, p. 203 of [8, vol. II]. A direct 
proof of this assertion can be given using the spectral theorem as follows: Let F be 
the operator-valued spectral measure of Q and let Un be the closed interval [-n, n]. 
Since QIF(un)H is a bounded operator, for each n, it can be shown that COO(Q) 
contains the union of all F(un)H, n = 1,2, .... This union is dense in H, because 
F(un)x -+ x for each x E H. 

Now suppose that G is a dense subset of Coo (PA) such that c = sup{Jl(x): x E 
G} is finite. Then, by (b) and (2.7), 

IITAxl1 2 :::; cllxl1 2 , X E G. 
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Since Coo (pl\) is dense in H, as shown above, G is dense in H. Let now x E H. 
Then there is a sequence Xn E G such that Xn --+ x. The crucial property of the 
Friedrichs extension pl\ of P is that the domain D(P/\) of pl\ is contained in the 
domain M 1\ of the extended form pl\. Therefore Xn E G c Coo (pl\) C D( pl\) C 
MI\. Since IITI\xl1 2 :s cllxl1 2 for x E G, it follows that the sequence T/\xn converges. 
Since TI\ is a closed mapping, x E D(TI\) = MI\ and Tl\xn --+ Tl\x. This proves 
that MI\ = H and that IITI\xl1 2 :s cllxl1 2 for x E M/\. Hence TI\ is bounded. 

Conversely, if MI\ = Hand TI\: M --+ K is a bounded mapping, then (TI\'Tl\x, y) 
= (T/\x,T/\y) = (pl\x,y) for each x E D(PI\), Y E M/\. Hence TI\'T/\x = pl\x 
for x E D(PI\). Since D(PI\) is dense in H, if x E H, then there is a sequence 
Xn E D( pl\) that converges to x. By the last equality, pl\ Xn --+ TI\' T/\ x. Since 
pl\ is closed, x E D(PI\) and Pl\xn --+ pl\x. Hence D(PI\) = H and pl\ = TI\'TI\. 
Moreover, for each x E Hand n = 0, 1, 2, ... : 

IIpl\2 n xll Tn :s Ilpl\ 1lllxllTn. 
Thus p,(x) :S Ilpl\ll for each x E H. Q.E.D. 

The arguments at the end of the proof of (c) in this theorem prove 
(2.8) If M is a dense subspace of a Hilbert space H and if P: M --+ H zs a 

positive operator, then 

for each x E COO(P). 
However, positive operators may have no nonzero Coo-vectors. The reasoning in 

the middle part of the proof of (d) justifies the following. 

(2.9) COROLLARY. Let M be a dense subspace of a Hilbert space H, let K be 
a Hilbert space and let T: M --+ K be a closed linear mapping. Then M = Hand 
T is bounded if and only if there is a dense subset G of M and c ~ 0 such that 
IITxl1 :S cllxll for x E G. 

Finally, notice that if p is a positive form on a linear space X, then there exist a 
Hilbert space K and a linear mapping T: X --+ K such that p(x,y) = (Tx,Ty) for 
x,y E X. Simply take K = Xp and let T be the quotient map from X onto X/Np. 

3. Dilations. The purpose of this section is to show that a fairly general 
dilation theory, which contains the well-known bounded dilation theory, is governed 
by positive forms and can be completely derived from the main theorem of the 
preceding section. Besides, from the positive form standpoint it occurs to be natural 
to consider not only bounded dilations, but also closed, and even arbitrary ones, as 
long as the algebraic properties improve. 

The basic setting of the dilation theory presented here is purely algebraic, i.e., 
no topology is involved. This has been done on purpose to exhibit the strength of 
positive forms. Whether the initial functions take values in the set of bounded oper-
ators of just in the set of linear mappings, is of secondary importance. Topological 
results can be obtained if an appropriate topology is introduced, when desired. 

Throughout this section two linear spaces E, E' are fixed. It will be assumed 
that they are related by a fixed "duality," i.e. a mapping < , >: E X E' --+ C linear 
in the first variable, conjugate linear in the second one is defined. For instance, if 
E is a Hilbert space, then E' is usually taken equal E and the duality is the inner 
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product in E. The linear space L(E, E') will be denoted by L. If S is a set, then 
F = F(S, E) will denote the linear space of all functions from S to E that equal 
zero off a finite subset of S. A function A: S x S -+ L will be called positive definite 
(PD) if 

L(f(t), A(s, t)f(s)) :::: 0 for each f E F. 

A positive definite function A: S x S -+ L defines a positive form q: F x F -+ C 
by 

(3.1) q(g,j) = L(g(t),A(s,t)f(s)), f,g E F, 

which will be called the form associated with A. 
If s E S, x E E, then fs,x stands for the function from S to E whose only 

possible nonzero value is x attained at s. Clearly, fs,x E F. Let A: S x S -+ L be 
a PD function and let q be the positive form associated with A. For s E S define 
a linear mapping X(s): E -+ F/Nq by 

(3.2) X(s)x = fs,x + Nq , xEE. 

Then for s, t E S, x, Y E E 

(3.3) (y,A(s,t)x) = q(ft,y,fs,x) = (X(t)y,X(s)x), 

and for each f E F 

(3.4) L X(s)f(s) = f + Nq . 

This construction proves the so-called Kernel Theorem (cf. [1, §2]) in the bounded 
dilation theory. A similar theorem can be easily formulated in the general case 
discussed here. Also, the minimality problem can be formulated and solved analo-
gously to the bounded dilation case. 

The positive definiteness gives rise to a natural partial order in the set of all PD 
functions from S x S to L. Namely, if A: S x S -+ L, B: S x S -+ L are PD, 
then B « A if A - B is PD. This partial order has been completely described in 
Theorem (2.2) of [1] for the case of bounded mappings and this description can 
be carried over to the present case without difficulty. Since positive forms are the 
main point of interest here, three more ways of comparing PD functions become 
available. This is described in the following theorem. 

(3.5) THEOREM. Let A: S x S -+ L, B: S x S -+ L be PD functions. Let q,r 
be the positive forms associated with A, B, respectively. Let X: S -+ L( E, F / N q) 
be as defined in (3.2). Then 

(a) N q C NT if and only if there is a Hilbert space K and a linear mapping 
T: F /Nq -+ K such that 

(y, B(s, t)x) = (TX(t)y, TX(s)x), s, t E S, x, Y E E. 

(b) For each sequence fn E F, q(fn' fn) -+ 0, r(fn - fm, fn - fm) -+ 0 im-
plies r(fn, fn) -+ 0 if and only if there is a Hilbert space K and a closed mapping 
T/\: D(T/\) -+ K such that F /Nq C D(T/\) C Fq and 

(y, B(s, t)x) = (T/\ X(t)y, T/\ X(s )x), s, t E S, x, Y E E. 
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(c) There is a function m: F / Nq -+ R such that 

Ir(g,1)I::; m(g+Nq)q(J,1)1/2, f,g E F, 

767 

if and only if there is a positive, selfadjoint operator Q: D( Q) -+ Fq such that 
F /Nq C D(Q) C Fq and 

(y, B(s, t)x) = (QX(t)y,X(s)x), s,t E S, x,y E E. 

PROOF. (a) If Nq C Nn define K = Fr and T: F /Nq -+ F /Nr by T(J + Nq) = 
f + Nn f E F. By the assumption, T is well defined. It is plain that T is linear. If 
s,t E S, x,y E E, then, by (3.3), 

(y, B(s, t)x) = r(Jt,y, fs,x) = (it,y + Nr, fs,x + Nr) = (T X(t)y, T X(s )x). 

Conversely, if such K, T exist, then for f, 9 E F 

r(g,1) = 2)g(t), B(s, t)f(s)) = 2)TX(t)g(t), TX(s)f(s)) 

= (T2:X(t)g(t), T2:X(s)f(s)) = (T(g + Nq), T(J + Nq)), 

by (3.4). Thus q(J,1) = 0, i.e. f + Nq = 0, implies r(J,1) = IIT(J + Nq )112 = 0, 
fEF. 

(b) Suppose that q(Jn, fn) -+ 0, r(Jn - fm, fn - fm) -+ ° implies r(Jn' fn) -+ ° for 
each sequence fn E F. Taking arbitrary f E F and the constant sequence fn = f 
one sees immediately that Nq C Nr. Hence a positive form p: F / Nq x F / Nq -+ C 
is well defined by the formula p(g+Nq, f +Nq) = r(g, 1), f, 9 E F, and p is closable 
by the initial assumption. On the other hand, let K = Fr , T: F / Nq -+ K be as 
defined in (a). Then for f, 9 E F 

p(g+Nq,f+ Nq) = r(g, 1) = (g+Nnf+Nr) = (T(g+ Nq),T(J+ Nq)). 

By Theorem (2.6)(b), there is a closed linear mapping TA: D(TA) -+ K such 
that F / Nq C D(TA) and TA extends T. The last equality in (b) follows from 
the corresponding one for T in (a). Conversely, if such K, TA exist, then, by a 
calculation similar to the one at the end ofthe proof of (a), r(J, 1) = IITA(J +Nq )112 
for f E F. Hence (b) follows. 

(c) If Q with the stated properties exists, then, again by a calculation as at the 
end of the proof of (a), 

f,g E F, 

which proves the "if" part of (c). For the "only if" part take m as stated. Then 
Nq C Nr. If p is the positive form on F /Nq defined in the proof on (b), then 

f,g E F. 

By Proposition (2.5), there is a positive operator P: F/Nq -+ Fq such that 
p(g + Nq, f + Nq) = (P(g + Nq), f + Nq), f, 9 E F. Taking 9 = it,y, f = fs,x, 
s,t E S, x,y E E, one gets (y,B(s,t)x) = (PX(t)y,X(s)x). An application of 
Theorem (2.6)(c) finishes the proof. Q.E.D. 

Until now S was an arbitrary set. From now on S will be assumed to be a 
semigroup with unit. Let A: S x S -+ L be a function. A triple (K, 7r, R) will be 
called a dilation of A if K is a Hilbert space, R: E -+ K is a linear mapping and 
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for each s E S an operator 1r ( S ): D ( s) ----+ K is defined so that 
(D1) 1r(1) = I K . 

(D2) RE is contained in each D(s), s E S. 
(D3) The linear span M of {1r(s)Rx: s E S, x E E} is dense in K and it is 

contained in D( s) for each s E S. 
(D4) 1r(s)1r(t)k = 1r(st)k, s, t E S, k E M. 
(D5) (y, A(s, t)x) = (1r(t)Ry, 1r(s )Rx), s, t E S, x, Y E E. 

A dilation (K, 1r, R) of A will be called closed (bounded, respectively) if 1r( s) is 
a closed (bounded, respectively) operator for each s E S. If a dilation (K, 1r, R) 
is bounded, then, since D(s) is dense in K, 1r(s) can be extended to a bounded 
linear mapping on K, for each s E S, 1r is a semigroup homomorphism, and the 
above definition coincides with the one commonly used in the bounded dilation 
theory. The density of M in K is assumed in (D3) for the sake of convenience. 
This assumption, however, is not a restrictive one, for it will become clear that if 
a dilation of a function can be found, then the attention can always be restricted 
to the closure of M. In the terminology known from bounded dilations (D3) is the 
minimality condition. 

A calculation as at the end of the proof of Theorem (3.5)(a) shows that the 
linearity of R and of each 1r(s), s E S, together with (D5) implies that if A has a 
dilation, then A is PD. In the bounded dilation case it is known that there are PD 
functions with no bounded dilation (for a complete discussion of this problem see 
[1]). It will be shown that there are PD functions with no dilation at all. Necessary 
and sufficient conditions for the existence of various kinds of dilations will be given 
in terms of associated positive forms. 

Fix a semigroup S and a PD function A: S x S ----+ L. Let q be the positive form 
on F associated with A. For each u E S define a PD function Au: S x S ----+ L by 

Au(s,t) = A(us,ut), s,t E S. 

Let qu be the positive form on F associated with Au. For each u E S define a linear 
mapping a(u): F ----+ F by 

(3.6) (a(u)f)(t) = I: f(s), t,u E S, f E F. 
s: us=t 

(3.7) PROPOSITION. (a) The mapping a: S ----+ L(F) defined in (3.6) zs a 
semigroup homomorphism such that a(1) = IF, 

(b) qu(g,f) = q(a(u)g,a(u)f), u E S, f,g E F, 
(c) For each u E S there is an isometry i ( u) from Fq" in Fq . 

PROOF. (a) If u, v, t E S, f E F, then 

(a(u)a(v)f)(t) = t' :~=t (a(v)f)(t') = t' :~=t c: ~t' f(S)) 

I: f(s) = (a(uv)f)(t). 
s: uvs=t 

(b) follows by a straightforward calculation. 
(c) If u E S, f E F, then, by (b), 

Ilf + Nq"l12 = qu(f, f) = q(a(u)f, a(u)f) = Ila(u)f + Nq 1l 2, 
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which shows that the mapping f + Nqu -+ a(u)f + Nq extends to an isometry i(u) 
from Fqu into Fq. Q.E.D. 

The next theorem is the principal result on the existence of dilations. 

( 3 . 8) THEOREM. Let S be a semigroup, let A: S X S -+ L be a P D function. 
Let q, qu (u E S) be the positive forms on F associated with A, Au, respectively. 
Let X be as defined in (3.2). 

(a) A has a dilation if and only if Nq is contained in each Nqu ' u E S. 
(b) A has a closed dilation if and only if for each sequence f n E F, q(f n, f n) -+ 0, 

qu(fn - fm' fn - fm) -+ 0 implies qu (fn , fn) -+ 0, for each u E S. 
(c) A has a bounded dilation if and only if 
(i) for each u E S there is a positive operator P( u): F / Nq -+ Fq such that 

(y, Au(s, t)x) = (P(u)X(t)y,X(s)x), s, t E S, x, Y E E, and 
(ii) for each u E S there is a dense subset Gu of COO (P( U y\) suth that sup{J,l( u, x) : 

x E Gu } is finite, where P(u)/\ is the Friedrichs extension of P(u) and J,l(u,x) = 
liminf IIP(uy2

n xI1 2 - n
• 

The proof will be preceded by some comments on bounded dilations. The first 
necessary and sufficient condition for the existence of a bounded dilation was found 
in case of *-semigroups by Sz.-Nagy [12]. His condition was then generalized by 
several authors to an arbitrary semi group case (see e.g. [7, 1]). Apart from PD, 
the boundedness condition was introduced, which can be equivalently formulated 
as follows: 

(Be) There is a real function c on S such that 

qu(f, I) :S c(u)q(f, I), f E F, u E S. 

PD and (Be) together are known to be necessary and sufficient for the existence of 
a bounded dilation (see e.g. [1, Dilation Theorem]). The conditions (i) and (ii) of 
(c) in the above theorem are equivalent to (Be). There are two reasons why they are 
significant. The first one is that in many cases they are easier to check separately 
than (Be). The second one is that they explain what is happening behind (Be), 
in terms of properties of positive forms. In case of *-semigroups, which will be 
discussed in the next section, Szafraniec's result [11] is a major simplification of 
(Be). 

PROOF OF THEOREM (3.8). To prove (a) suppose first that N q is contained 
in each Nqu ' u E S. Let a be the mapping defined by (3.6). If follows from the 
assumption and from (3.7)(b) that for each u E S the mapping 7r(u): F/Nq -+ 

F/Nq, 7r(u)(f + Nq) = a(u)f + Nq, f E F, is well defined, and it is linear, because 
a(u) is. By (3.4), 7r(u) can be written as 

7r(u) LX(s)f(s) = LX(us)f(s), u E S, f E F. 

This formula was first suggested by Masani for the proof of the existence of bounded 
dilations (cf. [7, p. 296]). It is clear that 7r: S -+ L(F/Nq) is a semigroup homo-
morphism. Notice that 

(3.9) 7r(u) equals the composition of the mapping T from Theorem (3.5)(a) (let 
B = Au, r = qu) and the isometry i(u) from (3.7)(c). 



770 WACLAW SZYMANSKI 

Let R = X(l). Then 7r(s)R = X(s), s E 5, and (Fq ,7r,R) is a dilation of A. For 
the converse suppose that (K, 11', R) is a dilation of A. Then for f, 9 E F 

(3.10) q(g, f) = (2:: 7r(t)Rg(t), 2:: 7r(s)Rf(s)) , 

and, by (3.6) and (3.7)(b), 

qu(g, f) = q(a(u)g, a(u)f) = (2:: 7r(t)R(a(u)g)(t), 2:: 7r(s)R(a(u)f)(s)) 

(3.11) = (2:: 7r(ut')Rg(t'), 2:: 7r(us')Rf(s')) 

= (7r(u) 2:: 7r(t)Rg(t), 7r(u) 2:: 7r(s)Rf(s)) . 

Hence Nq is contained in Nqu for each u E 5. 
It follows from (3.10) and (3.4) that the mapping U: F / Nq ----+ K defined by 

U(f + N q ) = LX(s)f(s) = L7r(s)Rf(s), f E F, extends to a unitary mapping 
from Fq onto K, by (D3). (This is the proof of the uniqueness of the minimal 
dilation.) 

The proof of (b) is a consequence of Theorem (3.5)(b) and of (a) above. For a 
fixed u E 5 that theorem is applied to B = Au, r = quo The closed operator 7r(ut 
resulting from there is identified with the closure of the operator 11'( u) defined in 
the proof of (a), by (3.9). In the "only if" part of the proof of (b), (3.11) is used. 

To prove (c) firstly notice that 
(3.12) The condition (i) implies that A has a closed dilation. 

For, it follows from Theorem (3.5)(c) that if (i) is satisfied, then the mapping 
Pu(g + Nq, f + Nq) = qu(g, f), f, 9 E F, is a well-defined, positive form on F / Nq 
for each u E 5. It is plain that 

f,gE F. 

By (2.4), Pu is a closable form. Hence for each sequence fn E F if q(fn, fn) = 
Ilfn + Nql1 2 ----+ 0 and qu(fn - fm' fn - fm) = Pu(fn - fm + Nq, fn - fm + Nq) ----+ 0, 
then qu(fn, fn) = Pu(fn + Nq , fn + N q ) ----+ 0, U E 5. By (b), A has a closed dilation 
(K, 11'/\, R). Thus (3.12) is proved. 

It follows from the definition of 11'( u) in (a) and from the construction of 11'( u)/\ 
that Pu(g + Nq, f + Nq) = (7r(u)/\(g + Nq), 7r(u)/\(f + Nq)), f, 9 E F. If (ii) is 
satisfied, then Theorem (2.6)(d) implies that 7r(u)/\ is a bounded operator on Fq , 

for each u E 5. 
Conversely, let (K, 11', R) be a bounded dilation of A. Let U be the unitary map-

ping from Fq onto K as at the end of the proof of (a). Let P(u) = U*7r(u)*7r(u)U, 
U E 5. Then for u,s,t E 5, X,Y E E 

(P(u)X(t)y, X(s)x) = (7r(u)7r(t)Ry, 7r(u)7r(s)Rx) = (y, Au(s, t)x), 

which proves (i). The condition (ii) follows by the boundedness of P(u), as in the 
proof of Theorem (2.6)(d). Q.E.D. 

Notice that, by Theorem (3.5)(c), the condition (i) of (c) in the last theorem is 
equivalent to the following one: 

(3.13) There is a real function m on 5 x (F /Nq ) such that 

u E 5, f,g E F. 
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The substantial difference between this condition and (BC) is that the constant 
m(u,g -t- N q ) is allowed to depend on 9 + N q , 9 E F, whereas c(u) in (BC) must 
not depend upon elements of F. This difference becomes even clearer when one 
realizes that PD and (BC) imply the existence of a bounded dilation, whereas PD 
and (3.13) imply merely the existence of a closed dilation, by (3.12). 

(3.14) COROLLARY. Let Pn be a sequence of positive, bounded operators on a 
Hilbert space H, let Po = I. Let A: N x N -+ B(H) be defined by A(m,m) = Pm 
for all mEN, A(m,n) = 0 ifm,n E N, m -=I- n. Then A is PD and 

(a) A has a dilation if and only if ker Pn C ker Pn +1 for each n = 1,2, .... 
(b) If either each Pn has a bounded inverse, or there is mEN such that Pn = 0, 

n 2: m, and each Pn has a bounded inverse for n < m, then A has a closed dilation. 

PROOF. If f E F = F(N, H), k = 0,1,2, ... , then 

qk(f, J) = L Ilp~~2d(n)112. 
n 

Hence A is PD. Moreover, qk(f, J) = 0 if and only if f(n) E ker p~~2k = ker Pn +k 
for each n. An application of Theorem (3.8)(a) proves (a). If Q is a bounded, 
boundedly invertible operator and QXm -+ 0 for a sequence Xm of vectors, then 
Xm -+ O. Therefore (b) follows from the first equality in this proof and from 
Theorem (3.8)(b). Q.E.D. 

Following Theorem (3.8)(b) a necessary and sufficient condition for the existence 
of a closed dilation of A defined in (3.14) can be formulated. Also, from this 
corollary it is easy to construct examples of PD functions without dilations. Here 
is one of them: 

( 3 . 15) EXAMPLE. Let H be at least a two-dimensional Hilbert space, let Q 
be an orthogonal projection in H, Q -=I- 0, Q -=I- I. The function A: N x N -+ B(H) 
defined by A(O,O) = I, A(I,I) = Q, A(n, n) = I, n = 2,3, ... , A(m, n) = 0 
elsewhere, is PD and it has no dilation, by Corollary (3.14)(a). 

In the next example a function is presented such that it has a dilation but it has 
no closed dilation. 

( 3. 16) EXAMPLE. Let H be an infinite-dimensional Hilbert space, let P, Q 
be bounded, positive operators on H and let A: N x N -+ B(H) be defined by 
A(O,O) = I, A(I,I) = P, A(2,2) = Q, A(m,n) = 0 elsewhere. Assume that 
ker P = {O}. By Corollary (3.14)(a), A has a dilation. If f E F, then 

q(f, J) = Ilf(0)112 + IIP1/2 f(I)112 + IIQ1/2 f(2)112, 
q1(f,J) = IIP1/2f(0)11 2 + IIQ1/2f(I)112, 
q2(f,J) = IIQ1/2f(0)112, 
qdf, J) = 0 if k > 2. 

It follows from Theorem (3.8)(b) that A has a closed dilation if and only if p 1/ 2 x n -+ 
0, IIQ1/2(xn - xm)11 -+ 0 implies Q1/2Xn -+ 0 for each sequence Xn E H (in a 
sequence fn E F in Theorem (3.8)(b) take Xn = fn(1)). Now positive, bounded 
operators P, Q and a sequence Xn will be found so that ker P = {O}, p 1/2Xn -+ 0, 
and Q1/2xn has a nonzero limit. The above defined function A with these P, Q 
will have a dilation without having a closed one. Assume that H is separable. 
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Let el, e2, ... be an orthonormal basis of H. Let Xn = 2nen , let p l /2 be given 
by the diagonal matrix with the diagonal entries 2- 2n , n = 0, 1,2, ... , and let 
Ql/2 be given by the exponential Hilbert matrix whose (i, j) entry is 2-(i+j+1), 
i,j = 0,1,2, .... Then ker P = ker pl/2 = {O}, and pl/2 xn = 2-nen ---+ O. By 
[4, Problem 47], Ql/2 is a bounded, positive operator on H. Finally, Ql/2xn is a 
constant, nonzero sequence equal to 2-lel + 2-2e2 + . ". 

A straightforward weak convergence argument shows that the choice of P, Q and 
Xn with the above properties is possible only if Xn is an unbounded sequence. 

(3.17) COROLLARY. Let S be a semigroup, let H be a Hilbert space. Suppose 
a function A: S X S ---+ B(H) has a bounded dilation (K, n, R). Let M be the linear 
span of {n( s )Rx: s E S, x E H}. Let P: M ---+ K be a linear mapping. Define 
Ap: S X S ---+ L(H) by Ap(s, t) = R*n(t)* Pn(s)R, s, t E S. Then 

(a) Ap is PD if and only if P is positive. 
(b) If P is positive, then Ap has a closed dilation. 
(c) Ap has a bounded dilation if and only if P extends to a bounded, everywhere 

defined, positive operator pA such that n( s) * pA 1/2 K is contained in p A 1/2 K for all 
s E S. 

(d) If B: S x S ---+ B(H) is PD and B« A, then B has a closed dilation. 

PROOF. It follows from the definition of Ap that 

2)f(t), Ap(s, t)f(s)) = (p L n(t)Rf(t), L n(s)Rf(s)) , fEF. 

Hence (a) is proved. 
If u, s, t E S, x, Y E H, then 

(y, Ap(us, ut)x) = (n(u)* Pn(u)n(t)Ry, n(s)Rx). 

Hence (i) of Theorem (3.8)(c) is satisfied with P(u) = n(u)* Pn(u), u E S. By 
(3.12), Ap has a closed dilation, which proves (b). 

The "if" part of (c) follows from Theorem (3.3) of [1]. For the "only if" part 
notice that, by Theorem (3.8)(c), and Theorem (2.6)(d), the Friedrichs extension 
P(U)A of P(u), u E S, is a positive, everywhere defined, bounded operator. In 
particular, P(l) = P. Hence P extends to a bounded operator P(l)A on K. 
The remainder of the assertion (c) follows from Theorem (3.3) of [1]. Finally, by 
Theorem (2.2) of [1], if B « A, then there is a bounded, positive operator P :s: I 
on K such that B = Ap. Now (d) follows from (b). Q.E.D. 

In particular, this corollary allows one to give examples of functions which have 
a closed dilation without having a bounded one. One such example, with a two-
dimensional H, is the function Cs of Example (3.11) in [1]. 

(3.18) COROLLARY. Let S be a semigroup. Let A: S x S ---+ L be a PD 
function. Assume that there is a function d: S ---+ S such that 

(y, A(us, ut)x) = (y, A(s, d(u)t)x), u, s, t E S, x, Y E E. 
Then 

(a) A has a closed dilation. 
(b) A has a bounded dilation if and only if there are real function b on E x E 

and c on S such that 
c(st) :s: c(s)c(t), s,t E S, 
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and 
I(y, A(s, t)xll :::; b(x, y)c(s)c(t), s, t E S, x, Y E E. 

PROOF. (a) It follows from the assumption that 

qu(g, f) = q(a(d(u))g, f), u E S, j,g E F, 

where a is defined by (3.6). By the Schwarz inequality for q, 

Iq(a(u)g, a(u)f)1 = Iqu(g, f)1 ::; q(a(d(u))g, a(d(u))g)1/2q(f, f)1/2, 

for each u E S, j, 9 E F, by (3. 7)(b). This inequality applied to d( u) gives for 
j,g E F 

Iq( a( d( u ))g, a( d( u))f) I :::; q( a( d( d( u)) )g, a( d( d( u)))g) 1/2q(f, f) 1/2. 

This proves that the mapping P(u): F /Nq ----t F /Nq, P(u)(f+Nq) = a(d(u))j +Nq, 
j E F, is well defined. Clearly, P( u) is linear and 

j,g E F. 

By (3.12), A has a closed dilation. 
(b) Let P(uY' be the Friedrichs extension of P(u), u E S. Since P(u) maps 

F/Nq into itself, F/Nq is contained in COO(P(U)A). 
Assume that the functions b, c exist. The existence of a bounded dilation will be 

proved by using Theorem (3.8)(c). For u E S let Gu = F/Nq . This set is dense in 
Fq, thus it is dense in COO(P(U)A). By the definition of P(u) it follows from (3.7) 
(a) that 

j E F, n = 1,2, .... 

Therefore, if j E F, n = 1,2, ... , then 

IIP(U),,2n (f + Nq )112 = (p(u)A2n+l (f + Nq), j + Nq) = q(a(d(u)2n+l)j, f) 

= LU(t),A(s,t)(a(d(u)2n+1 )f)(s)) 

= LU(t), A(d(u)2n+l S, t)j(s)) 

:::; L b(f(s), j(t))c(d(u))2n+l c(s)c(t). 

Hence liminf IIP(U)A 2n (f + Nq)IITn :::; c(d(u)), j E F. 
By Theorem (3.8)(c), A has a bounded dilation. Conversely, if (K, 7r, R) is a 

bounded dilation of A, then for x, y E E, s, t E S 

l(y,A(s,t)x)1 = 1(7r(t)Ry,7r(s)Rx)l::; 117r(t)IIII7r(s)IIIIRyIIIIRxll· 

Now the functions: b(x, y) = IIRxIIIIRyll, x, y E E, and c(s) = 117r(s)ll, s E S, satisfy 
the suitable conditions. Q.E.D. 

4. Applications. 
4.1. *-Semigroups. A *-semigroup is a semi group with a mapping * from S into 

itself such that (st)* = t* s*, (s*)* = s, s, t E Sand 1* = 1. 
Let S be a *-semigroup, let L be as defined in the previous section and let 

A: S x S ----t L be a function. A dilation (K, 7r, R) of A will be called a * -dilation 
if 7r(s*) C 7r(s)*, S E S. 
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( 4. 1. 1) PROPOSITION. Let S be a * -semigroup, let A: S x S ---> L be a func-
tion. 

(a) A has a *-dilation if and only if A is PD and 
(4.1.2) (y,A(us,t)x) = (y,A(s,u*t)x), u,s,t E S, x,y E E. 

(b) If A has a *-dilation (K, 7r, R), then 7r(u) is a closable operator in K for each 
u E S. If 7r( u) /\ denotes the closure of 7r( u), u E S, then (K, 7r\ R) is a closed 
*-dilation of A. 

(c) A has a bounded *-dilation if and only if A has a *-dilation and there are 
functions b,c that satisfy the conditions of Corollary (3.18)(b). 

PROOF. (a) Suppose A is PD and (4.2) holds. Then 
(y,A(us,ut)x) = (y,A(s,u*ut)x), u,s,t E S, x,y E E. 

By Corollary (3.18)(a) with d(u) = u*u, u E S, A has a closed dilation. By the 
construction of this dilation, the linear span M of {7r( s )Rx: s E S, x E E} is dense 
in K, and 7r(u) is the closure of 7r(u)IM, u E S. Now fix u E S. By (4.1.2), for 
s, t E S, x, Y E E: 

(7r(t)Ry,7r(u)7r(s)Rx) = (7r(u*)7r(t)Ry, 7r(s)Rx). 
Hence 7r(u*)IM C (7r(u)IM)*. By Theorem VIII.1, (a), (c) of [8], (7r(u)IM)* is a 
closed operator, and (7r(u)IM)* = 7r(u)*. Therefore 7r(u*) C 7r(u)*. 

The converse implication is immediate. 
(b) If (K,7r,R) is a *-dilation of A, then 7r(u*) C 7r(u)*, U E S. Since D(u*) is 

dense in K, so is D(7r(u)*), hence 7r(u) is closable, by Theorem VIII.1, (b) of [8]. 
Since 7r( u)* is a closed extension of 7r( u*), and 7r( U*)l1 is the least closed extension 
of 7r(u*), it follows from Theorem VIII.l, (c) of [8], that 7r(u*)/\ C 7r(u)* = 7r(u)/\*. 
Hence (K, 7r\ R) is a closed *-dilation of A. 

(c) If A has a *-dilation (K,7r,R), and b,c exist, as stated in Corollary (3.18) 
(b), then, by (4.1.2) and that corollary, A has a bounded dilation (K, 7r/\, R). From 
its construction it follows that 7r(u)/\ is the closure of 7r(u), and, by Theorem (3.8) 
(c), 7r(uY is a bounded, everywhere defined operator, for each u E S. By (b), 
7r(u*)/\ C 7r(u)/\*. Thus 7r(u*y = 7r(u)/\*, U E S. The converse implication is 
clear. Q.E.D. 

The last part of the proof shows that the above definition of a *-dilation coincides 
with the common one in case of bounded dilations. 

It may happen that if S is a *-semigroup, then a function A: S x A ---> L 
has a bounded dilation without having a *-dilation. The following example is a 
consequence of Proposition (4.3) of [1]. 

( 4. 1.3) EXAMPLE. Let S be a group. Then S is a *-semigroup with u * = U -1, 

U E S. Suppose that there is a *-semigroup homomorphism 7r: S ---> B(H), i.e., 
a unitary representation in a Hilbert space H, such that the double commutant 
of 7r(S) is strictly larger than the set of all scalar multiples of the identity in H. 
Then there is an orthogonal projection Q that does not commute with 7r(S). If 
P = !(I + Q), then the function B(s, t) = 7r(t)* P7r(s), S, t E S, has a bounded 
dilation, and it has no bounded *-dilation, as shown in Proposition (4.3) of [1]. On 
the other hand, if x, y E H, s, t E S, then 

l(y,B(s,t)x)l:s:; 117r(s)IIII7r(t)IIIIPllllxIIIIYII· 
It follows from Proposition (4.1.1)( c) that B has no *-dilation. 
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( 4 .1. 4) COROLLARY. Let S be a *-semigroup, let H be a Hilbert space. Sup-
pose A: S x S --+ B(H) has a bounded *-dilation (K, 7r, R). Let M, P, and Ap: S x 
S --+ L(H) be as defined in Corollary (3.17). Then 

(a) Ap has a *-dilation if and only if P is positive and 7r(u)P = P7r(u)IM, u E S. 
(b) Ap has a bounded * -dilation if and only if P extends to a bounded, everywhere 

defined operator p/\ such that 7r(u)P/\ = P/\7r(u), U E S. 

PROOF. If x,y E H, u, s, t E S, then 

(y, Ap(us, t)x) = (7r(t)Ry, P7r(u)7r(s)Rx), 
(y, Ap(s, u*t)x) = (7r(t)Ry,7r(u)P7r(s)Rx). 

Hence (a) follows from Corollary (3.17)(a) and Proposition (4.1.1)(a). The part (b) 
is a consequence of (a) and Theorem (4.1) of [1]. Q.E.D. 

From this corollary examples of functions which have *-dilation and have no 
bounded *-dilations can be obtained. Here is one. 

( 4. 1.5) EXAMPLE. Let H be an infinite-dimensional Hilbert space and let 
M be its dense subspace. Let P: M --+ H be a positive, selfadjoint operator 
which cannot be extended to a bounded operator on H. Let Fp be its operator-
valued spectral measure. Choose a real number k so that the orthogonal projection 
Q = Fp([-k, k]) is proper (not 0 or 1). Let R: QH --+ H be the inclusion mapping. 
The semigroup N is a *-semigroup with n* = n, n E N. Let 7r: N --+ B(H) be 
defined by 7r(n) = Qn = Q, n EN. The function A: N x N -7 B(H), A(m,n) = 
R*7r(n)*7r(m)R, m, n E N, has a bounded *-dilation (H, 7r, R). Since QH is a 
subspace of M and PQIM = QP, the function Ap: N x N --+ L(QH), Ap(m, n) = 
R*7r(n)* P7r(m)R, m, n E N, has a *-dilation, and it has no bounded *-dilation, by 
Corollary (4.1.4). 

Finally, the previous results will be interpreted for the case originally studied by 
Sz.-Nagy [12]. 

( 4 .1. 6) COROLLARY. Let S be a *-semigroup. Let <P: S -7 L be a function. 
Define A: S x S --+ L by A(s,t) = <p(t*s), s,t E S. 

(a) If A is PD, then A has a *-dilation. 
(b) A has a bounded *-dilation if and only if A is PD and there are real functions b 

on Ex E, c on S, such that c(st) :::; c(s)c(t), s, t E S, and I(y, <p(s)x)1 :::; b(x, y)c(s), 
SES, x,yEE. 

PROOF. By the definition of A, A(us,t) = A(s,u*t), u,s,t E S. Thus (4.1.2) 
holds, and, by (4.1.1)(a), A has a *-dilation. Hence (a) is proved. Concerning (b), 
this is a rephrasing of (4.1.1)( c) by using <P. One should notice that the inequalities 
assumed in (b) imply 

I(y, A(s, t)x)1 :::; b(x, y)c(s)c(t*), s,tES, x,yEE, 

which is not exactly the second inequality in (3.18)(b). However, a look at the 
proof of (3.18)(b) makes it clear that it does not matter, as far as that proof is 
concerned. Q.E.D. 

If E = E' is a Hilbert space, L = B(E), and b(x, y) = allxllilyll, with some 
a 2: 0, x, Y E E, then part (b) of this corollary is Szafraniec's result [11]. 

4.2. *-algebras. The Stinespring theorem says that each completely positive 
function on a CO-algebra D has a bounded *-dilation (K,7r,R) such that 7r is a 
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*-representation of D (see e.g. [2] for this theorem and appropriate definitions). 
This is one of the cases in which (BC) is a consequence of PD (see [6, §9, Theorem 
3] for a straightforward proof). The basic reason why it happens here is that each 
positive, linear functional on a C* -algebra is bounded. This, as well as a certain 
converse of this, is explained in the following corollary. Let 5 be a *-semigroup. 
Call a function h: 5 --+ C positive if h( s* s) ~ 0 for each s E 5. 

( 4.2.1) COROLLARY. Let 5 be a *-semigroup. Consider the following condi-
tions: 

(a) For each positive function h: 5 --+ C there is a real function c on 5 and a 
constant a(h) such that c(st) :::; c(s)c(t), s, t E 5, and Ih(s)1 :::; a(h)c(s), s E 5. 

(b) For each Hilbert space H, each dense subspace M of H, and each function 
<I>: 5 --+ L(M, H) if the function A: 5 x 5 --+ L(M, H), A(s, t) = <I>(t*s), s, t E 5, 
is PD, then A has a bounded *-dilation. 

Then (a) implies (b). If 5 is a * -algebra, then (b) is equivalent to (a) with 
h: 5 --+ C being a positive, linear functional. 

PROOF. Suppose (a) holds. Let <I> be as in (b). Fix x E M. Then hx: 5 --+ C, 
hx(s) = (<I>(s)x, x), s E 5, is positive. By the assumption, 1(<I>(s)x, x)1 :::; a(x)c(s), 
s E 5. By the polarization, if x, y E M, s E 5, then 

1(<I>(s)x, y)1 :::; i(a(x +- y) +- a(x - y) +- a(x +- iy) +- ~(x - iy))c(s). 

By Corollary (4.1.6)(b), A has a bounded *-dilation. 
Suppose now that 5 is a *-algebra and that (b) holds. Let h: 5 --+ C be a 

positive, linear functional. Then p: 5 x 5 --+ C defined by p( s, t) = h( t* s), s, t E 5, 
is a positive form on 5. Let M = 5/Np, H = 5p, and <I>(u)(s +- N p) = us +- N p, 
u, s E 5. So far, this is the GNS construction. Now A(s, t) = <I>(t*s), s, t E 5, is PD. 
By (b), A has a bounded *-dilation. By Corollary (4.6)(b), there are real functions b 
on M x M, con 5, such that c(st) :s: c(s )c(t), s, t E 5, and I(t+-N p, <I> ( u)(s+- Np)) I :::; 
c(u)b(t +- Np, s +- N p), u, s, t E 5. If s = t = 1, then 

Ih(u)1 = Ip(u, 1)1 = 1(1 +- Np, <I>(u)(l +- Np))1 
:::; c(u)b(l +- N p, 1 +- Np), u E 5. 

Thus (a) follows. Q.E.D. 
If 5 is a C* -algebra, then (a) of this corollary is satisfied, because each positive, 

linear functional on a C* -algebra is bounded. In this case the implication ( a) =? (b) 
is the Stinespring theorem. 

4.3. Gramians. Let H, K be Hilbert spaces, let 5 be a subset of H, let M be the 
linear subspace of H spanned by 5, and let h: 5 --+ K be a function. The results 
of the previous sections will be applied to answer the following 

QUESTION. When does there exist a linear (closed, bounded) mapping T: M --+ 

K such that TI5 = h ? ' 
If H is finite dimensional, then an obvious answer to this question is: if all 

elements of 5 are linearly independent. 
Let now H be arbitrary. Without loss of generality it can be assumed that M is 

dense in H. The inner product ( , ) in H is a PD, scalar-valued function on H x H. 
Its restriction to 5 x 5, which is also PD, will be denoted by A. Let F = F(5, C). 



POSITIVE FORMS AND DILATIONS 777 

The positive form q associated with A has the form q(g, j) 
f, 9 E F. Since for each f E F 

I:(t, s)g(t)f(s), 

(4.3.1) 

it follows that the mapping U(f +Nq ) = I: f(s)s, f E F, is an isometry form F /Nq 

onto M and it extends to a unitary isomorphism of Fq onto H. Let B: S x S ---+ C 
be defined by B(s, t) = (h(s), h(t)), s, t E S (the inner product here is in K). Let 
r denote the positive form on F associated with B, i.e., 

(4.3.2) r(g, j) = 2::(h(t), h(s))g(t)f(s), f, 9 E F. 

The same way as U was defined above, one finds a unitary V from Fr onto the 
closed linear span of h(S), such that V(f + N r ) = I: f(s)h(s), f E F. 

(4.3.3) COROLLARY. (a) There is a linear mapping T: M ---+ K such that 
TIS = h if and only if I: f(s)s = 0 implies I: f(s)h(s) = 0 for each f E F. 

(b) There is a closed linear mapping T: D(T) ---+ K such that M C D(T) and 
TIS = h if and only if q(fn, fn) ---+ 0, r(fn - fm' fn - fm) ---+ 0 implies r(fn, fn) ---+ 0 
for each sequence f n E F. 

(c) The following conditions are equivalent: 
(i) There is a bounded linear mapping T: H ---+ K such that TIS = h. 
(ii) There is c ~ 0 such that r(f, j) :::; cq(f, j), f E F. 
(iii) There is a positive operator P: F/Nq ---+ K such that r(g,j) = (Pg,j), 

f, 9 E F, and there is a dense subset G of c= (PA) such that sup{/t( x): x E G} is 
finite, where p A is the Friedrichs extension of P, and /t( x) is defined as in (2.7). 

PROOF. The "only if" part of (a) is clear. For the "if" part, it follows from the 
assumption, (4.3.1), and (4.3.2), as in the proof of Theorem (3.5)(a), that one can 
define a linear mapping T': F /Nq ---+ F /Nr by T'(f + N q ) = f + N r , f E F. If U, V 
are the unitary operators introduced before this corollary, and if T = VT'U', then 
Ts = VT'(fs,1 + N q ) = V(fs,1 + N r ) = h(s), s E S. 

The proof of (b) is similar to the proof of Theorem (3.5)(b), with the above 
unitary identification. The equivalence of (i) and (ii) in (c) is clear. The equivalence 
of (ii) and (iii) is a consequence of (a), (b), and Theorem (2.6)(d). Q.E.D. 

It follows from (a) in this corollary that, like in the case of a finite-dimensional 
H, an answer to the question raised at the beginning for arbitrary H with linear T 
is: if each finite number of vectors in S is linearly independent. 

Finally, the title of this subsection will be explained. Following Halmos [4, 
Solution of Problem 48], if S1, ... , Sn are vectors in a Hilbert space H, then the 
n x n matrix whose (i,j) entry is (Si' Sj) is called the Gramian of S1,"" Sn, and 
it will be denoted by G(S1,"" sn). The condition (ii) in (c) in the last corollary is 
equivalent to 

(4.3.4) There is c ~ 0 such that G(h( sd, ... ,h( sn)) :::; cG( S1, ... ,sn), for each 
n = 1,2, ... , S1, ... , Sn E S. 

Recently Halmos has asked [5] whether a weaker condition 
(4.3.5) For each n = 1,2, ... , S1, ... , Sn E S there is C(S1, ... , sn) ~ 0 such that 



778 WACLAW SZYMANSKI 

is equivalent to the existence of a bounded operator T: H ----+ K such that TIS = h. 
After a look at (c) of Corollary (4.3.3) and at Proposition (2.5), one may suspect 
that the answer is no. To justify this answer, suppose that T: H ----+ K is a linear 
mapping. Then for each n = 1,2, ... , Sl, ... , Sn E H, x = (Xl, ... , Xn) E en, 

Hence (4.3.5) means that T is bounded on each finite-dimensional subspace of M. 
This holds for any, not necessarily bounded linear mapping. 

4.4. Operator moment problems. As the next application of results of §3 the 
following problem will be solved: Let S be a semigroup. Let H, K be Hilbert 
spaces, let X: S ----+ L(H, K) be a function and let M be the linear subspace of K 
spanned by vectors X(s)x, s E S, X E H. 

QUESTION. WhencanXberepresentedin the form X(s) = 7r(s)R, s E S, where 
R: H ----+ M is a linear mapping, 7r( s) is a linear mapping from a linear subspace 
D(s) of K containing Minto K for each s E S, and 7r(st)IM = 7r(s)7r(t) 1M, s, t E 
S? 

A pair (7r, R) satisfying the above conditions will be called a solution of the 
moment problem for X. A solution (7r, R) will be called closed (bounded, contractive, 
respectively) if 7r( s) is closed (bounded, contractive, respectively) for each s E 
S. This is a general formulation of several operator moment-like problems whose 
particular cases (S = N, S = all nonnegative real numbers, H = K, and all 
operators in question are bounded) were considered in [9 and 10J. 

For simplicity assume that M is dense in K. Let F = F(S, H). Let q: Fx F ----+ e 
be defined by q(g, f) = I:(X(t)g(t), X(s)f(s)), f, 9 E F, and for u E S define 
qu(g, f) = I:(X(ut)g(t), X(us)f(s)), f, 9 E F. Since 

(4.4.1) 
q(f,f) = II2: X (s)f(s)f and 

qu(f, f) = II2: X (us)f(s)11 2
, f E F, u E S, 

it is clear that q and qu, u E S, are positive forms on F. 
It follows from (4.4.1) that the mapping f + Nq ----+ I:X(s)f(s), f E F, is an 

isometry from F /Nq onto M. Since M is assumed to be dense in K, this mapping 
extends to a unitary isomorphism of Fq onto K. Therefore in what follows Fq will 
be identified with K, and F /Nq will be identified with M. 

A comparison of the definition of q with (3.1) and (3.3) makes it clear that the 
function X is the starting point here instead of a PD function A in §3. The reason 
for which A is not explicitly stated in the form A(s, t) = X(t)* X(s), s, t E S, is to 
avoid the use of the adjoint in the present case. As an immediate consequence of 
Theorem (3.8) one gets the following solution of the moment problem. 

(4.4.2) COROLLARY. Let S,H,K,X,M be as above. 
(a) The moment problem for X has a solution if and only if for each f E F 

I:X(s)f(s) = 0 implies I:X(us)f(s) = 0 for each u E S. 
(b) The moment problem for X has a closed solution if and only if for each 

sequence fn E F q(fn' fn) ----+ 0, and qu(fn - fm' fn - fm) ----+ 0 implies qu (fn , fn) ----+ 

0, for each u E S. 
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(c) The following conditions are equivalent: 
(i) The moment problem for X has a bounded (contractive, respectively) solution. 
(ii) For each u E S there is c(u) 2: 0 such that qu(f, I) ::; c(u)q(f, I) for each 

f E F (qu(f, I) ::; q(f, I), f E F, respectively). 
(iii) For each u E S there is a positive operator P(u): M ---+ K such that 

(X(ut)y, X(us)x) = (P(u)X(t)y, X(s)x), u, s, t E S, x, Y E H, 

and (ii) of Theorem (3.8)(c) holds (with sup{J1(x,u): x E Gu}::; 1 for each u E S, 
respectively) . 

Recall that such P( u) can be obtained by checking an appropriate inequality-cf. 
Proposition (2.5). 

A formal adjustment of Example (3.15) ((3.16), respectively) provides an exam-
ple of a function X for which the moment problem has no solution (has a solution, 
but has no closed one, respectively). 

4.5. Reconstruction of quantum mechanics. 

( 4.5.1) THEOREM. Let S be a semigroup, let H be a Hilbert space, let r: S ---+ 

B(H) be a semigroup homomorphism, and let M be a subspace of H which is 
invariant for r(u) and r(u)*r(u), u E S. Let q be a positive form on M such that 
q(r(u)x, r(u)y) = q(x, r(u)*r(u)y), x, y E M, u E S, and q(x, x) ::; cllxl12 for all 
x E M, with some c 2: O. 

Then there is a semigroup homomorphism 7r: S ---+ B(Mq) such that 
(i) 7r(u)(x + Nq) = r(u)x + Nq, u E S, x E M, and 
(ii) 117r(u)11 ::; Ilr(u)ll, u E S. 

PROOF. To simplify the notation in the proof fix u E S and let Z = r(u). By 
the assumed properties of q and r, and by the Schwarz inequality for q, 

q(Zx, Zy) = q(x, Z* Zy) ::; q(x, x)1/2 q(Z* Zy, Z* Zy)1/2, x,yEM. 

Therefore the formula T(x + Nq) = Zx + Nq, x E M, properly defines a linear 
mapping T: M/Nq ---+ M/Nq. If x,y E M, then 

(T(x + Nq), T(y + Nq)) = q(Zx, Zy) = q(x, Z* Zy) = (x + Nq, Z* Zy + Nq). 

Hence the range of T is contained in D(T*), and T*T(x + Nq) = Z* Zx + Nq, 
x E M. Thus P = T*T is a positive, densely defined operator in Mq, and 

x,yEM. 

If p/\ denotes the Friedrichs extension of P, then M / Nq is dense in Coo (p/\ ). 
Moreover, if x EM, then 

IIP/\2n (x + Nq)IITn = (p/\2n (x + Nq), p/\2n (x + Nq))2-n- 1 

= q((Z* Z)2n x, (Z* Z)2n x)2- n- 1 

::; C2- n- I II(Z* Z)2n xll Tn ::; (C 1/ 21Ixll)2-n IIZI12. 
It follows from Theorem (2.6)(d) that IIT(x+Nq)11 ::; IIZllllx+Nqll, x E M. Hence T 
extends to a bounded linear operator 7r(u) on M q , which satisfies (i) and (ii). Since 
r is a semi group homomorphism, it is easy to check that the mapping u ---+ 7r( u) is 
also a semigroup homomorphism. Q.E.D. 
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Notice that without the assumption q(x, x) :S cllxl1 2 , x E M, the definition of the 
operator T in the above proof still makes sense. In this case, by Theorem (2.6)(b), 
(c), T is a closable operator. Letting 1l'(u) be the closure of T, U E S, one obtains 
a mapping U ----> 1l'(u) from S to the family of densely defined, closed operators in 
Mq such that M/Nq C D(1l'(u)) , U E S, (i) of Theorem (4.5.1) is satisfied, and 
1l'(s)1l'(t)IM/Nq = 1l'(st)IM/Nq, s, t E S. The reconstruction of quantum mechanics 
from the field theory axioms-Theorem 6.1.3 of [3]-is a particular case of the 
above theorem. Using the notation and terminology of Chapter 6 of [3] to obtain 
this reconstruction from Theorem (4.5.1) one takes 

S = the additive semigroup of all nonnegative real numbers-positive time, 
H = C = L 2 (D'(Rd ), df.l)-the "path space" for quantum operators, 
T = the restriction to S of the time translation subgroup T( ), 
M = c+-the positive time subspace of H, 
q = the positive form on M defined by using the time reflection e (cf. [3, p. 91, 

(6.1.11)]). 
Clearly, M is invariant under the positive time translation T( u), U 2: 0, as well 

as under T(U)*T(U) = IH, because T(U) is a unitary operator, for each U E S. 
Proposition 6.1.2 of [3] shows that q(x,x) :S Ilx11 2 , X E M. The other assumption 
made on q in Theorem (4.5.1) follows from the unitarity of T(U), U E S. Finally, 
Mq = j/-the quantum mechanical Hilbert space, and 1l'( ) = T( )I' is a contraction 
semigroup, because IIT(U)II = 1. 
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