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HARDY SPACES OF HEAT FUNCTIONS 

H. S. BEAR 

ABSTRACT. We consider spaces of solutions of the one-dimensional heat equa-
tion on appropriate bounded domains in the (x, t)-plane. The domains we 
consider have the property that they are parabolically star-shaped at some 
point; i.e., each downward half-parabola from some center point intersects the 
boundary exactly once. We introduce parabolic coordinates (r,8) in such a 
way that the curves 8 = constant are the half-parabolas, and dilation by mul-
tiplying by r preserves heat functions. An integral kernel is introduced by 
specializing to this situation the very general kernel developed by Gleason and 
the author for abstract harmonic functions. The combination of parabolic co-
ordinates and kernel function provides a close analogy with the Poisson kernel 
and polar coordinates for harmonic functions on the disc, and many of the 
Hardy space theorems for harmonic functions generalize to this setting. More-
over, because of the generality of the Bear-Gleason kernel, much of this theory 
extends nearly verbatim to other situations where there are polar-type coor-
dinates (such that the given space of functions is preserved by the "radial" 
expansion) and the maximum principle holds. For example, most of these 
theorems hold unchanged for harmonic functions on a radial star in R n . As 
ancillary results we give a simple condition that a boundary point of a plane 
domain be regular, and give a new local Phragmen-Lindelof theorem for heat 
functions. 

1. Introduction. In this paper we study one dimensional heat functions 
(uxx = ud on an appropriate class of bounded domains. These domains, which 
we call parabolic stars, are characterized by the property that each downward half-
parabola from some central point intersects the boundary exactly once. There are 
polar-type coordinates (r,O) in a parabolic star, and these coordinates are natural 
for heat functions in that such functions are perserved by contraction and dilation; 
i.e., for fixed p > 0, u(pr,O) is a heat function if u(r, 0) is. 

We introduce a global kernel for heat functions in a parabolic star by specializing 
a very general result proved some years ago by A. M. Gleason and the author [2]. In 
this setting much of the Hardy-space theory for harmonic functions can be carried 
over to heat functions. Thus finite signed measures on the Shilov boundary r 
are in one-to-one correspondence with an appropriately defined space H1 of heat 
functions, Lp functions on r correspond to a space Hp of heat functions, etc. 

Although all our work here is specific to heat functions, part of our intent is to 
indicate how these Hardy-space theorems can be proved in many other settings. For 
example, most of our results of §4 apply, nearly verbatim, for harmonic functions 
on any bounded domain in Rn such that each ray from some point intersects the 
boundary once. The kernel function of [2] exists quite generally for any function 
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space determined by local integral kernels. The only requirements are an appropri-
ate polar-type coordinate system, and the maximum principle. 

In §2 we introduce parabolic coordinates (r, ()) into a general parabolic star e. 
We also give a very simple condition that a boundary point of e be regular for 
the heat equation. This theorem, which is the result of joint work with G. N. Hile, 
extends for the plane earlier results of Effros and Kazdan for domains in Rn [4] 
and simplifies an earlier result of Petrowsky [13]. The theorem says that a point 
(xo, to) of Be is regular provided it can be reached by an ascending curve x = ,(t) 
in the complement of e which is nowhere flatter than a parabola. In particular this 
result shows that a regular domain can have such arcs removed and the result will 
still be regular. 

In §3 we introduce the kernel from [2] and develop some necessary additional 
properties. In passing we prove a local Phragmen-Lindelof theorem which may be 
of some interest in its own right. This result also represents joint work with Hile. 

A global integral kernel for heat functions has also been given by Kemper [10, 
11], using techniques of Hunt and Wheeden [8, 9] and Carleson [3] for harmonic 
functions. Rather than trying to adapt Kemper's kernel to our setting, we have 
used the Gleason-Bear kernel from [2] to emphasize its general applicability. We 
do, however, make use of Kemper's work in §4. 

§4 is devoted to Hardy-space theorems about apppropriately defined Hp spaces 
of heat functions. 

2. Parabolic coordinates. In this section we introduce "parabolic coordi-
nates" for an appropriate class of domains in the (x, t)-plane. These coordinates 
are analogous to polar coordinates in that heat functions are preserved by contrac-
tions and dilations in the same way that harmonic functions are preserved by radial 
contractions and dilations. 

Fix a point (a, T), and let Pe be the half-parabola whose equation is 

(2.1) ()= (x-a)/vT-t, t < T. 

The vertex of Pe is at (a, T), and the half-parabola points down. The union of the 
half-parabolas Pe, for -00 < () < 00, fills the half-plane t < T. We will denote by 
P-oo and P+ oo the left and right horizontal half-lines from (a, T). 

For any point (x, t) with t < T we define 

(2.2) Xr = rx + (1- r)a; tr = r2t + (1- r2)T, 
and for any function u(x, t) defined in the half-plane t < T we let 

(2.3) 
As r runs from 0 to +00, the point (xr' t r ) runs from (a, T) down along the half-
parabola Pe through (x, t), with (Xl, tt) = (x, t). Heat functions are preserved by 
the transformation (x, t) --+ (xr,tr), since B2ur / Bx2 = BUr / Bt. 

DEFINITION 2.1. Let e be a bounded open set in the half-plane t < T, such 
that Be intersects the line t = T in a closed interval a - h :::; x :::; a + k, t = T. 
Assume further that each half-parabola Pe, -00 < () < 00, from (a, T) intersects 
Be exactLy once. Let G be the union of e and the open interval (a - h, a + k) X {T}. 
Then either e or G will be called a parabolic star at (a, T). The hat on a star will be 
used systematically to denote the inclusion of the top open interval. The compact 
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set r = r( G) = r( C) is defined to be G - C, and is called the lower boundary of G 
or C. H(G) and H(C) will respectively denote the space of heat functions on G, 
and the space of heat functions on C, where the one-sided t-derivative is used on 
the top line. In order for a parabolic star to be regular for the Dirichlet problem, 
we will also assume that each of the top points (a - h, T) and (a + k, T) of r is the 
vertex of a downward pointing half-parabola which lies outside G (see Theorem 2.2 
below). 

The set r is the Shilov boundary of the set of continuous functions on G which 
are in H (C). This is well known, and follows easily by considering the functions 
Wn of (3.6). 

If C is a parabolic star at (a, T), we introduce parabolic coordinates (determined 
by C and (a, T)) into the half-plane t :S T as follows: (1,0) will denote the point 
where Po intersects BC for -00 < 0 < 00, and (1, -(0), (1, +(0) will be the 
coordinates of the points (a - h, T) and (a + k, T) where r intersects the line t = T. 
If (1,0), for -00 :S 0 :S 00, has cartesian coordinates (x, t), then (r,O) will denote 
the point with cartesian coordinates (xr,tr) (see (2.2)). We topologize [-00,00] in 
the usual way so the correspondence 0 ---+ (1,0) is a homeomorphism onto r. The 
set of points (r,O), 0 < r < 1, -00 < 0 < 00, is the open set G whose closure is 
CUr. The set C consists of the points (r,O) with 0 :S r < 1, -00 :S 0 :S 00. 

We show next that the Dirichlet problem for heat functions is solvable on para-
bolic stars. In fact, we show much more; namely, a boundary point of a plane 
domain is regular in the sense of the Perron method if it can be reached from 
outside G by an upward arc which is nowhere flatter than a parabola; 

Ix(t) - x(t')1 :S Mit - t'1 1/ 2 . 

This means, for example, that such slits can be removed from Dirichlet domains 
and the result will still be a Dirichlet domain. Note that some condition on such 
slits is necessary, since Pini has shown [14] that if BG is too flat at a boundary 
point (xo, to), with G below (xo, to), then (xo, to) is definitely not regular. For other 
regularity conditions see Petrowsky [13] and Evans and Gariepy [5]. 

THEOREM 2.2. Let (xo,to) be a boundary point of a domain G. Let x = i( t), 
tl :S t :S to, be an arc in the complement of G, such that (xo, to) is its topmost 
point, and 

(2.4) h(t) -i(t')1 :S Mit - t'1 1/ 2 

for some M and all t, t' E [h, to]. Then (xo, to) is a regular point for G in the sense 
of the Perron method. 

Condition (2.4) says that i can be any downward arc from (xo, to) which is 
never flatter than a parabola. In our application to a parabolic star, i can be 
simply the arc 0 = 00 , 1 :S r :S 2, where (xo, to) has parabolic coordinates (1, (0 ). 

For 00 = ±oo, the existence of i is part of the definition of a star. 
PROOF. We make essential use of a theorem of Effros and Kazdan [4], which 

says that a point of a domain in Rn x R is regular for the heat equation if it can 
be touched from outside G by a "parabolic tusk". For our case, n = 1, this says 
that (xo, to) is regular if the region between two half-parabolas, Pa and Pb , with 
their vertices at (xo, to), lies outside G. 
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Let R = (a, b) x (tl' t2) be a small rectangle with (xo, to) in its interior, and 
1 extending through the bottom boundary line of R. We assume that R ~ 1 is 
contained in G, which is the worst case, and of course does not happen in the case of 
a parabolic star. To construct a barrier function v which is positive on R ~ " and 
zero at (xo, to), we use the Effros-Kazdan result to construct first a heat function 
which is positive on the part of R below (xo, to) and to the right of 1, and vanishes 
at (xo, to). We do the same for the part of R to the left of 1 and below (xo, to). We 
then extend these two functions to the part of R above (xo, to) by using their values 
on t = to (which are positive except at (xo, to)), and positive boundary values on 
the sides of R. The resulting function on R - 1 satisfies the heat equation except 
possibly on the line t = to. However, since the function is continuous across t = to 
it is easy to show that it is a heat function on all of R - ,. 

3. The parabolic kernel for a star domain. In this section we apply the 
main result of [2] to heat functions on a parabolic star, and prove some additional 
properties of the kernel. 

We start with a fixed parabolic star G with its parabolic coordinates (r, 0) for 
the half-plane below the center. We apply Theorem 4.1 of [2] to this situation to 
obtain Theorem 3.1 below. The topological space X of [2] is G, and the linear space 
of functions A of [2] is H(G). The local kernel representation required by [2] also 
holds for top points of G. The space F of [2] is assumed to be a linear subspace 
of A = H(G) intersected with the bounded continuous functions on X = G. Here 
we let F be the functions of H(G) which extend continuously to G. The r of [2] is 
our r, and restriction of functions in F to r is an isometrty onto C(r) by Theorem 
2.4. With these conventions, and parabolic coordinates for G, Theorem 4.1 of [2] 
reads as follows. 

THEOREM 3. 1. There is a Borel probability measure v on r and a measurable 
function B(r, 0; 'P) on G x r such that Be, " 'Po) E H( G) for each 'Po E r, and 

(3.1) g(r,O) = ! B(r,O;'Pk('P)dv('P) 

defines a function 9 E H (G) for every bounded measurable function ~ on r, and 

(3.2) f(r,O) = ! B(r,O;'P)f(1,'P)dv('P) 

for every f E H(G) n C(G) and every (r,O) E G. 

The measure B (r, 0; .) dv(·) is of course the unique representing measure for the 
point (r,O) and the continuous heat functions on G. These measures are positive 
probability measures, so each B(r, 0;·) ~ 0 a.e. von r. 

In the sequel we will sometimes deal with functions in H (G) and sometimes with 
functions in H(G). It will be important to know that the representation (3.2) holds 
for functions in H(G) which are continuous on G n {(x, t): t < T}, and we state 
this property as a first lemma. 

LEMMA 3.2. If ~ is a measurable function on r which is bounded on r n 
{(x,t): t ::; T - E} for each E > 0, then (3.1) defines a function 9 E H(G). If 
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f E H(G) and f is continuous on G n {(x,t): t < T}, then (3.2) holds for all 
(r,O) E G. 

PROOF. It follows from the maximum principle that the representing measure 
B(r, 0;·) dv(-) is identically zero on the part of r above (r,O). If ~ is measurable on 
r and bounded except possibly at t = T, then (3.1) exists for (r,O) E G, and agrees 
on some neighborhood of each (r,O) E G with the function in H(G) obtained by 
integrating a function ~, where ~ is bounded and measurable on r, and ~ = ~ up 
to a level above (r,O). A similar argument applies to a function f E H( G) which 
is continuous on the part of G strictly below t = T. For any fixed (r,O) E G, let f 
be a continuous function on r which agrees with f up to a level above (r,O). The 
integral of f agrees with the integral of f on a neighborhood of (r,O). 

In the next few lemmas we draw out some of the properties of the representations 
(3.1) and (3.2). In particular we show that (3.1), like the function furnished by the 
Perron method, is continuous wherever the boundary function ~ is. We also show 
that v can have no point masses. 

LEMMA 3.3. Let m(r,iI) be the representing measure for (r,O); i.e., dm(r,iI) = 
B(r, 0; .) dv(·). If U is any open subset of r containing (1, tpo), then m(r,iI) (U) -t 1 
as (r,O) -t (l,tpo). 

PROOF. Let f(tp) be a continuous nonnegative function on r, with f(tpo) = 1 
and 0 ::s; f ::s; 1 and f = 0 off U. Let f(r,O) be its extension to H( G). Then 

(3.3) f(r, 0) = ! f dm(r,iI) ::s; m(r,iI) (U) ::s; I, 

and f(r,O) -t 1 as (r,O) -t (l,tpo). 

LEMMA 3.4. Let ~ be a bounded measurable function on r and let g(r,O) be 
its integral as in (3.1). Then g(r, 0) -t ~(tpo) as (r,O) -t (l,tpo) at every point tpo 
where ~ is continuous. 

PROOF. Let U be an open set about a continuity point tpo, with 1 ~ (tp ) - ~(tpo) 1 < 
c for tp E U. Then 

(3.4) 
Ig(r,O) - ';(tpo) 1 ::s; ! I~(tp) - ~(tpo)ldm(r,9)(tp) 

= i + Ir-u' 
The first integral is less than c for all (r,O), and the second integral is less than 
211~lloom(r,iI)(r - U), which tends to zero as (r,O) -t (l,tpo) by Lemma 3.3. 

The next result is a local Phragmen-Lindelof theorem for heat functions. We 
will use this result to show the measure v of Theorem 3.1 has no point masses, but 
the result is of some interest in its own right. It is more convenient for this proof 
to revert to cartesian coordinates since it is not necessary for this theorem that G 
be a parabolic star. 

For convenience in stating the next theorem, we agree here that a heat function 
u(x, t) in a domain G is 0(1/ Jt=1O) over parabolas at the boundary point (xo, to) 
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provided there is some neighborhood U of (xo, to) such that u is bounded in G n 
Un {(x, t): t :s; to}, and for every parabola P = {(x, t): t - to = A(x - XO)2}, with 
A>O, 

(3.5) u(x, t)vt=To ~ 0 

as (x, t) ~ (xo, to), with (x, t) in e and above P. Notice that the condition above 
is formally weaker than simply requiring that (3.5) hold for (x, t) ~ (xo, to) with 
t> to. Notice also that if u has zero boundary values on 8e near (xo, to), except 
possibly at (xo, to), then u is automatically bounded on some set Unen{(x, t): t :s; 
to}. (We assume here that the line t = to is not the top of e to preclude the 
possibility that u(x,t) ~ 00 as t r to for all x.) 

THEOREM 3.5 (LOCAL PHRAGMEN-LINDELOF). Let e be a bounded domain 
with parabolic boundary r. Let (xo, to) be a point of r which can be reached from 
below by a parabolic arc 1 lying outside e (or any arc 1 as in Theorem 2.2). Let U 
be a neighborhood of (xo, to) and u(x, t) a heat function in e such that u(x, t) ~ 0 
as (x,t) approaches any point of r n U ~ {(xo, to)}· If u is o(l/vr=To) over 
parabolas at (xo, to), then u(x, t) ~ 0 as (x, t) ~ (xo, to). 

COROLLARY. If u is a heat function in e and u is locally bounded at (xo, to) 
and u(x, t) ~ 0 on r near (xo, to), except possibly for (xo, to), then u(x, t) ~ 0 also 
as (x, t) ~ (xo, to). 

PROOF. We will first prove the theorem in the case that u is bounded on U, 
and then show how the proof is modified to cover the case where u is possibly 
unbounded above t = to, but (3.5) holds over each parabola. 

Since (xo, to) is a regular point of e by Theorem 2.4, there is a heat function 
rp ~ 0 in en u, with rp continuous on the closure of en u, and rp = 0 only at 
(xo, to). Hence there is a constant c > 0 such that u + crp ~ 0 on 8U n e, and of 
course also on r n U ~ {( Xo, to) }. There is also a sequence {w n} of heat functions 
which are nonnegative on e, with wn(xo, to) ~ 00, and {wn(Xl, h)} bounded for 
each (Xl, h) E en Uj for example, let 

(3.6) 

where k is the fundamental solution 

(3.7) k(x, t) = (47rt)-1/2 exp( _x2 /4t), 

and (xn' tn) is a sequence of points approaching (xo, to) upward along 1. 
Let (xI,td be any fixed point of en U. We will show U(XI' td +crp(xl,td ~ O. 

Let € > 0 and choose n = n(€) so that u + €W n ~ 0 on en 8V for some small 
neighborhood V of (xo, to) such that (Xl, tt} is outside V. Now we have 

(3.8) u + crp + €W n ~ 0 

on the boundary of a neighborhood en U ~ V of (Xl, tt}, so 

(3.9) 

Now let € ~ 0 in (3.9). Although n depends on €, {Wn(Xl, h)} is bounded, so 

(3.10) 
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Letting (Xl, h) ----) (xo, to), and recalling that rp(xo, to) = 0, gives 

(3.11) 

The same argument applied to -u completes the equality in the case where u is 
bounded on U. 

Now assume only that u is bounded on t ::; to, and o(1/Vt - to) above parabolas 
on t > to. Let (Xl, h) E Un G. The same argument as before shows that (3.10) 
holds if h ::; to, so assume h > to. Let P be a parabola pointing upward from 
(xo, to), with (Xl, td above P. Let £ > O. Notice that 

(3.12) £~k(x - xo,t - to) 

is bounded away from zero above every parabola t - to = A(x - XO)2, A > O. Hence 
(3.13) 

1 
£k(x - Xo, t - to) ± u(x, t) = ,;t=TO [£Vt - to k(x - Xo, t - to) ± vt=To u(x, t)] 

t - to 

approaches +00 as (x, t) ----) (xo, to) above any parabola. Let V be a small neigh-
borhood of (xo, to) such that (Xl, td is outside V, and 

(3.14) ±u(x, t) + £k(x - Xo, t - to) > 0 

on part of av n G above P. 
Now we have 

(3.15) ±u(x, t) + £k(x - Xo, t - to) + crp(x, t) > 0 

on the boundary of a neighborhood of (Xl> h); namely, on the part of au n G 
above P, the part of P n G outside V (make c bigger if necessary for this part) and 
the upper part (possibly empty) of r n U outside V. Therefore (3.15) holds with 
(Xl, td for (x, t), and for every £ > O. Hence we again have (3.10), and the desired 
conclusion. 

The condition that u(x, t)yT=tO ----) 0 above parabolas cannot be relaxed, for 
example, to the condition that u(x, t),;t=TO be bounded above parabolas. The 
kernel function k(x, t) on t > 0 near (0,0) provides a counterexample. Moreover 
[1, Theorem 3.6], if u(x, t) is any nonnegative heat function in any rectangle with 
(xo, to) in its base, then u(x, t),;t=TO is bounded near (xo, to). 

All of our results so far hold, usually with the same proofs, for harmonic functions 
on a regular radial star in Rn. In particular, the analogous Phragmen-Lindelof 
theorem holds, and a sufficient hypothesis is that u(P) = o(d(p,Qo)2-n), where 
d( P, Qo) is the distance from P to the boundary point Qo. Local boundedness of 
u is of course sufficient. 

Now we return to a star domain G with its coordinates (r, B). 

LEMMA 3.6. The (unique) representing measures m( r,O) for points (r, B) of G 
have no point masses. 

PROOF. Let m be the representing measure for a fixed point (ro, Bo) E G, and 
let ~ be the characteristic function of {rpo}, for any rpo E r. Let g(r, B) be the (3.1) 
integral of~. Then g(r,B) = m(r,O) ({rpo}) for all (r,B). By Lemma 3.3, g(r,B) ----) 0 
as (r,B) ----) (1,rp) for all rp i= rpo, and 9 is bounded. By Theorem 3.5, g(r,B) ----) 0 as 
(r,B) ----) (l,rpo) also. Hence g == 0, and m(r,O)({rpo}) = 0 for all (r,B). 



838 H. S. BEAR 

Now we rearrange the kernel-measure combination in a way that singles out the 
center (a, T) of the star G, and makes the Harnack properties of the functions more 
apparent. 

DEFINITION 3.7. A domain G is Harnack ordered provided for every two carte-
sian points (Xl, h), (X2, t2) in G with t2 < h there is a strictly descending curve 
in G from (Xl,lt) to (X2,t2)' 

A bounded domain is Harnack ordered iff its lower boundary consists of two 
curves X = 1/i(t), a::::; t ::::; b, with 1/l(t) < 1/2(t) for a < t < b. The functions 1/i can 
have jump discontinuities (1/1 can jump down and 1/2 can jump up) in which case 
the horizontal segments which constitute the jumps will be part of r. 

If G is Harnack ordered and t2 < tl, then there is a constant M depending on 
(Xl, h) and (X2, t2) such that for every nonnegative function u E H(G) 

(3.16) 

If G is a parabolic star, so all continuous functions on r extend to H ( G), then 

(3.17) 

where mi is the unique representing measure for (Xi, ti). The constant M of (3.16) 
is bounded as (X2, t2) ranges over any compact subset of G strictly below (Xl, It). 
The facts above follow from [6, 12, 14]. 

Let E = {tp: B(O, 0; <p) = O}, and let ~ be the characteristic function of E, and 
f(r,O) its integral. Then f ;::: 0 and f(O, 0) = O. It follows from Harnack's theorem 
that f == 0 on G, so B(r, 0; <p) = 0 for v-almost all tp on E, for each (r,O) E G. In 
this case the behavior of v on E is irrelevant for the integral representation, and we 
can assume without loss of generality that v(E) = O. (I.e., replace v if necessary 
by v where v(A) = v(A ~ E). Instead of relabeling we simply assume v(E) = 0.) 
Now we redefine B(r, 0; tp) for <p E E so that B(r, 0; tp) == 1 for (r,O) E G and 
tp E E. The new B and the new v satisfy all the conditions of Theorem 3.1, and in 
addition we have 

(3.18) B(O,O;tp) > 0 for all tp E r. 
Now we rewrite the representing measures in terms of the representing measure 
B(O,O;·)dv(·) for (0,0). 

LEMMA 3.8. Let J.L be the representing measure for (0,0): 

(3.19) dJ.L(·) = B(O,O;·)dv(-). 

There is a nonnegative measurable function K (r, 0; tp) on G x r such that K (r, 0; .) E 
Ll (J.L) for each (r, 0) E G, K (r, 0; tp) is bounded on F x r for each closed set F c G, 
K(·,·; tp) E H(G) for each tp E r, and 

(3.20) B(r,O;tp)dv(tp) = K(r,O;<p)dJ.L(tp). 

PROOF. For (r,O) E G we know that 

(3.21) B(r,O;tp)::::; M(r,O)B(O,O;tp) 

for v-almost all tp, by Harnack's theorem. Hence if we let 

(3.22) K(r,O;tp) = B(r,O;<p)jB(O,O;tp) 
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then we have (3.20) with K(r,B;·):S M(r,B) for Il-almost all <p. For (r,B) on the 
top line of G (i.e., B = ±oo), Harnack's theorem still implies that the representing 
measure for (r, B) is absolutely continuous with respect to 11, and vice versa. Hence 
K (r, B; .) E L1 (11) for all (r, B) E G, although K (r, B; .) is not bounded for B = ±oo. 
Clearly K is measurable and K (., .; <p) E H (G) for all <p. 

The measure 11 of (3.19) will be referred to as the standard measure of G with 
its specified center. 

THEOREM 3.9. IfuEH(G), then for allrE (0,1), 

(3.23) u(O,O) = ! u(r,B)dll(B). 

If ° :S r < 1, then 

(3.24) 

(3.25) 

u(rp,B) = ! u(r,<p)K(p,B;<p)dll(<P) 

= ! u(p,<p)K(r,B;<p)dll(<P)' 

As special cases, we have for all r, p E [0,1) and all <Po E [-00,00], 

(3.26) 

(3.27) 

! K(r,B; <Po) dll(B) = 1, 

K(rp,B;<po) = ! K(r,<p;<po)K(p,B;<p)dll(<P)' 

PROOF. If r < 1, then ur(O, 0) = u(O, 0) and U r is continuous on G. Hence 

ur(O,O) = ! ur(1,<p)dll(<P), 

which is the same as (3.23). Similarly, if r,p E [0,1), then U r is continuous on G, 
so 

ur (p, B) = u( r p, B) 

(3.28) = ! ur(l, <p)K(p, B; <p) dll(<p) 

= ! u(r, <p)K(p, B; <p) dll(<P); 

(3.25) results from (3.24) by interchanging r and p. 
It follows immediately from (3.24) that if u is a bounded function in H(G) and 

u has "parabolic" limits zero a.e. 11 (i.e. as r -+ 1, u(r, <p) -+ ° for each fixed <p in 
some set of Il-measure one), then u == 0. We will improve on this result in the next 
section. 

The mean value property of (3.23) characterizes heat functions. This is hardly 
surprising, but the result does not seem to be explicit in the literature even for 
mean values on rectangles. We formalize what we mean by mean value property in 
the following definition. 

DEFINITION 3.10. A function u, continuous on some parabolic star G, centered 
at a point P, has the mean value property (MVP) at P iff u satisfies (3.23) for 
arbitrarily small values of r. The coordinates and standard measure are those of G. 
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THEOREM 3. 11. If u is continuous on an open set S and has the MVP at each 
point of S, then u is a heat function on S. 

PROOF. The local stars can all have different shapes, or can all be rectangles in 
the closest analogy to the usual theorem for harmonic functions. 

We assume that u has the MVP in S and show that each P l E S is interior to a 
rectangle on which u is a heat function. Fix Pl E S, with Pl interior to a rectangle 
R, with ReS. Let v be the heat function in R which agrees with u on r(R). We 
let w = u - v and show that w == 0 in R. Since v is a heat function in Rand u has 
the MVP in R by hypothesis, w has the MVP in R. Assume w =t=. 0 in R and to be 
specific assume the maximum value of w in R is m > O. Let P2 be a lowest point 
in R such that w(P2 ) = m. Let G(P2 ) be the hypothesized star at P2 , and assume 
G(P2 ) c k Since w < m on the lower boundary of G(P2 ), except possibly at the 
two top points, we have a contradiction from (3.23). 

Clearly the same argument holds for sets S which contain some horizontal top 
boundary segments. 

The argument above yields a slightly different mean value characterization for 
harmonic functions in R n. If G is any regular radial star at 0, and /.l is the repre-
senting measure for 0 on r = BG, then the local MVP with /.l on homothetic copies 
of G characterizes the harmonic functions. 

4. Some boundary properties of H(G). In this section we deal with a 
fixed star G, with coordinates (r, B), standard measure /.l, and representing kernel 
K(r,B;'P). 

For the work of this section it is convenient and apposite to use the terminology 
of Hardy theory. Thus we let Hoo (G) (resp. H 00 (G)) denote the bounded functions 
in H(G) (resp. H(G)). Similarly, for p ::::: 1 we let Hp(G) denote the functions 
f E H(G) such that Ilfrllp is bounded for 0 ~ r < 1, where 

(4.1) Ilfrllp = {J I/(r, OW d/.l(O)} lip 

Our terminological pilfering is unabashed, since our thesis here is that Hardy space 
theorems are not peculiar to harmonic functions or to discs and balls, but depend 
rather on the existence of local kernels, the maximum principle, and the appropriate 
coordinate system. 

We start with the fact that Ilfrllp is an increasing function of r. 

THEOREM 4.l. If I E H( G), then Il/r lip is an increasing function of r for each 
p, 1 ~ p ~ 00. 

PROOF. For 1 ~ p ~ 00 the result follows from Jensen's theorem and (3.19), 
and for p = 00 from the maximum principle. 

We already know from Theorem 3.1 that each bounded measurable function ~ on 
r gives rise to some I E Hoo(G). We show next that each I E Hoo(G) is obtained 
this way, and consequently that H 00 (G) = H 00 ( G). 

THEOREM 4.2. I E Hoo (G) iff there is some bounded measurable function F 
on r such that 

( 4.2) I(r, 0) = J F('P)K(r, 0; 'P) d/.l('P) 

for all (r,O) E G. 
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PROOF. We need only prove the one implication, so assume f E Hoo(G), and 
11F0011 = M. Let 

fr({}) = f(r, 0) = fr(l, 0), -00 < 0 < 00. 
The functions {fr} form a net, as r ~ 1, in the closed M-ball of L1 (/-L)*. Hence 
some subnet, {ir,,}, r", ~ 1, converges w* (pointwise on L1 (/-L)) to a bounded 
measurable function F with Ilflloo ~ M. For (p,B) E G, K(p,O;.) E L1 (/-L), so 

f(p,O) = lim f(r",p,O) 
ro.~l 

(4.3) = lim J Ir" (1, cp )K(p, 0; cp) d/-L( cp) 
To---+l 

= J F(cp)K(p, 0; cp) d/-L(cp). 

Since the right side of (4.3) defines a heat function on all of G, (4.3) gives the 
automatic extension of each f E Hoo(G) to a function in Hoo(G). 

An exactly similar proof shows that each f E H p ( G), p > 1, is the integral 
of a function F E Lp(/-L), with 1IFIlp ~ sUPr Ilfrllp (cf. [7] for similar results on a 
rectangle). The fact that the integral (4.2) for F E Lp(/-L), does yield a function 
f E H(G) will follow from Theorem 4.4, and the fact that Ilfrllp ~ 1IFIlp follows 
from Jensen's inequality. Hence we have the following result. 

THEOREM 4.3. f E Hp(G) and Ilfrllp ~ M for 0 ~ r < 1, with p > 1, iff there 
is F E Lp(/-L) such that 1IFIlp ~ M and (4.2) holds for all (r,O) E G. 

Next we show there is a one-to-one correspondence between finite signed mea-
sures on r and functions in HI ( G). 

THEOREM 4.4. If a is a finite signed measure on r, and 

(4.4) g(r,O) = J K(r,O;cp)da(cp), 

for (r,O) E G, then 9 E H(G). 
PROOF. For (r,O) E G, K(r, 0;·) is zero for cp above (r, (}), so we may as well 

assume that a is a measure on (-00,00) (i.e., has no mass at (1,±00)). 
We use the mean value property characterization of Theorem 3.10. Let (ro, 0o) E 

G and let R be a rectangle in G which is top-centered at (ro,Oo). Let /-Lo be the 
standard measure for R, so /-Lo represents (ro, 0o) for all heat functions on R, and 
in particular for the functions K(r, 0; CPo). We show that the integral of 9 over 
1 = r(R) gives g(ro,Oo), which suffices by Theorem 3.11. In the following, (r,O) 
are G coordinates, and r = qG). 

(4.5) 

I, g(r,O)d/-Lo(r,O) = I,Ir K(r,O; cp)da(cp) d/-Lo(r,O) 

= Irl, K(r, 0; cp) d/-Lo(r,O) da(cp) 

= Ir K(ro,Oo;cp)da(cp) 

= g(ro, 0o). 

The Fubini interchange is justified since the kernel is bounded on 1 x r. 
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Alternatively, we could write the integral (4.4) as a pointwise limit of Riemann 
sums, which are in H(G). These sums form an equicontinuous family on G, and 
hence the pointwise limit is uniform on compact subsets of G. The mean value 
proof appears to be simpler. 

THEOREM 4.5. If 9 is defined on G by (4.4) for a finite signed measure 0: on 
(-00, (0), then for all r E (0,1), 

(4.6) 

PROOF. 

(4.7) 

I Igr(O)1 dl1(O) = I Ig(r, 0)1 dl1(O) 

= I II K(r,O;~)do:(~)1 dl1(O) 

::::: II K(r,O;~)dlo:l(~)dl1(O) 
= II K(r, O;~) dl1(O) dlo:l(~) 
= 110:11· 

The last equality is (3.26). 
Now we will invoke some results of Kemper on heat kernels [10, 11]. In the one 

dimensional case (treated specifically in [10]), Kemper assumes a domain G of the 
form 'fIl (t) < x < 'fI2 (t), 0 < t < T, where 171 and 'fI2 satisfy a Lipschitz condition 
of order!. Following the ideas of Hunt and Wheeden [8, 9] and ultimately of 
Carleson [3] for harmonic functions, Kemper obtains the kernel K(r, 0; ~) as a 
limit of functions hI (r,O)/I1(I), where hI is the parabolic measure of an interval I, 
and thelimit is taken as I decreases to {~}. Thus 

K(r, O;~) = lim (11) r dm(r,()(~) 
I->{cp} 11 iI 

= 11'm m(r,()(I) ( ) 
( ) a.e. 11 . 

I->{cp} 11 I 

The critical part of all the works cited above is showing that the function K (', .; ~) 
has zero boundary values on r ~ {~}. The kernel K (', .; ~) can be characterized as 
the unique nonnegative heat function which is one at (0,0) and has zero boundary 
values on r ~ {~}. From this it follows that K (r, 0; ~) is a continuous function of 
~ for fixed (r,O) E G. Kemper's methods appear to extend to any Harnack ordered 
parabolic star. However, we will emphasize the specific properties we need in the 
following definition. 

DEFINITION 4.6. A parabolic star G is a standard star provided the kernel K 
of (3.15) has the properties: 

(i) K(r, 0; ~o) approaches zero as (r,O) -> (1, ~) for all ~ =I=- ~o; 
(ii) K(ro, Oo ;~) is continuous for ~ E r for each fixed (ro, 00 ) E G. 
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THEOREM 4.7. If G is a standard star, then the mapping (4.4) of finite signed 
measures on r is onto Ht(G). 

PROOF. Let g E Hl(G), with Ilgrll ::; M for all r < 1. The measures gr(B) d/1(B) 
are all in the M-ball of C(f)*, which is w* -compact. Hence there is a w*-convergent 
subnet {grj (B) d/1(B)}, r) ---t 1, which converges pointwise on C(f) to some measure 
0:, with 110:11 ::; M. Since K(p, B;·) E C(f) for (p, B) E G, we have 

g(rjp, B) = ! g(r), I{!)K(p, B; I{!) d/1(I{!) 

---t ! K(p,B; I{!) dO:(I{!). 
(4.8) 

We also have g(r)p,B) ---t g(p,B) as rj ---t 1, which gives (4.4). 

COROLLARY 4.8 (HERGLOTZ THEOREM; cf. [1]). IfG is a standard star and 
g is a nonnegative function in H ( G), then 

(4.9) g(r,B) = ! K(r,B;I{!)dO:(I{!) 

for some nonnegative measure 0: with 110:11 = g(O, 0). 

PROOF. If 9 2 0, then by the mean value property (3.18), Ilgr 111 = g(O,O) for 
all r. 

We will show finally that the mapping (4.4) of measures 0: onto HI (G) is one-
to-one, for which we need the following lemma. 

LEMMA 4.9. If I is an open interval in (-00,00), and G is a standard star, 
then 

(4.10) lim jK(r,e;l{!)d/1(B) = {I i!1{! ~~' 
r->l I 0 if I{! 'F- I. 

PROOF. If I{! 1- I, then K(r, B; I{!) < £ for all BEl and all r 2 ro by condition 
(i) of Definition 4.6. Hence the limit is zero for I{! 1- 1. The other limit follows by 
replacing I by r ~ I. 

Now we show that the mapping of measures onto Ht(G) is one-to-one (cf. [7, 
pp. 375, 387-389] for the case where G is a rectangle). 

THEOREM 4.10. If G is a standard star then the mapping (4.4) of signed mea-
sures onto HI (G) is one-to-one. 

PROOF. Let 0: be a finite signed measure on (-00,00), and assume that for each 
(r, B) E G, 

(4.11) f(r,B) = ! K(r,B; I{!) do: (I{!) = O. 

Let I be any interval (a,b) C r such that o:({a}) = o:({b}) = O. By Lemma 4.9 

(4.12) lim jK(r,B;I{!)d/1(B) = XI (I{!) a.e. [0:]. 
r->1 I 
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Since K is bounded for f) E J, rp E r for every fixed r < 1, 

(4.13) 

0= I f (r,f))df.i(f)) 

= l1r K(r, f); rp) da(rp) df.i(f)) 

= 1rl K(r,f);rp)df.i(f))da(rp). 

The limit in (4.12) is bounded convergence in rp, so taking the limit in (4.13) as 
r ~ 1 gives 

(4.14) 0= 1r XI(rp) da(rp) = a(J). 

There are at most a countable number of points where a has mass, so a(I) = 0 for 
all J with endpoints off this countable set. Hence a == O. 
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