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THUE EQUATIONS WITH FEW COEFFICIENTS

WOLFGANG M. SCHMIDT

ABSTRACT. Let F(x, y) be a binary form of degree r > 3 with integer co-

efficients, and irreducible over the rationals. Suppose that only s + 1 of the

r + 1 coefficients of F are nonzero. Then the Thue equations F(x,y) — 1

has -C (rs)1/2 solutions. More generally, the inequality \F(x,y)\ < h has

« (rs)1l2h2/r(l + \ogh1lr) solutions.

1. Introduction.  Our goal is the proof of the following

THEOREM 1. Let F(x,y) = aoxr + aixr~1y + ■ ■ ■ + aryr be a form of degree

r > 3 with integer coefficients which is irreducible over the rationals. Suppose that

not more than s + 1 of the coefficients ai are nonzero. Then given h > I, the

inequality

(1.1) \F(x,y)\<h

has

(1.2) <&(rs)1/2h2/r(l+logh1/r)

solutions in integers x,y.

Here and throughout, the constants implied by <C are absolute; they could be

explicitly given with some extra effort.

When working on this subject, I had initially only considered F(x,y) = 1 and I

showed that it has <C (rs)1/2 solutions. Since s <r, this bound yields the estimate

<C r which had recently been obtained by Bombieri and the author [1]. After being

repeatedly reminded by my colleagues that F(x,y) = 1 was a rather special Thue

equation, I turned to the general Thue equation F(x, y) = h and I derived the

bound (1.2) for the number of solutions. On the other hand Bombieri and I had

obtained the bound

(1.3) <r1+l/

for the number of primitive solutions (i.e. solutions with g.c.d.(x,y) = 1), where u

is the number of distinct prime factors of h. When r is given and h is large, then

(1.3) is better than (1.2), but when h is given and r is large, (1.2) is better. At

any rate, the bound (1.2), as a function of h, seems to be much too large for the

Thue equation. In fact it was not difficult to modify the proof (which is based on

the archimedean absolute value) to deal with the inequality (1.1) rather than the
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equation F(x,y) = h. For the inequality, it is clear that the factor h2lT in (1.2) is

needed. But the logarithmic factor is probably unnecessary.

It turns out that the number of solutions of (1.1) may be bounded in terms of

s and h only. This had been shown for s = 1 (i.e. for binomial forms) by Mueller

[3], for s — 2 (i.e. for trinomial forms) by Mueller and Schmidt [4], and in general

very recently by Mueller and Schmidt [5]. However, the bound in [5] is not strong

enough to imply the present theorem.

It would have been simpler in the formulation of Theorem 1 to suppose that

F has not more than s nonzero coefficients (rather than s + 1), but for technical

reasons, and to conform with other work, the notation as given above is preferable.

It is easily seen (e.g. in Lemma 1 below) that with F as in Theorem 1, the

polynomial

(1.4) f(z)=F(z,l)

has < 2s real roots. The form F = x2k + c(x — y)2(2x - y)2 ■ ■ ■ (kx - y)2 with c > 0

has no real roots but F(x, y) = 1 has the solutions ±(1,1), ±(1,2),..., ±(1, A;), so

that the number of solutions may not be estimated in terms of the number of real

roots.1 What we will actually need in our present argument is that with F, / as

above, / has few roots near the real axis.

The condition that uf'(z) has few real roots" is stronger than the condition

that f(z) has few real roots. But it lacks symmetry; it is not even invariant under

replacing F(x, y) by F(y, x). We will formulate a condition which is invariant under

substitutions in GL(2, Z). For A = (° bd) let us write Fa for the binary form

Fa(x, y) = F(ax + by, ex + dy);

we also write x for (x, y) and Ax for (ax + by, ex + dy).

The zero set in C2 of a form K(x,y) of positive degree consists of certain 1-

dimensional subspaces of C2. The "number of real zeros of K" is now defined

as the number of these subspaces which are defined over the reals, i.e. defined by

equations ax + ßy = 0 where a, ß are real and not both zero. (We do not count

multiplicities.) This number is invariant under substitutions A E GL(2,R).

We now define a class C(t) of forms of degree r as follows. It is the set of forms

F(x, y) of degree r with coefficients in Z, and irreducible over Q, such that for any

real u,v ^0,0 the form

(1.5) uFx+vFy

has at most t real zeros. Note that for r > 0, the irreducibility of F implies that

the form (1.5) of degree r - 1 is not identically zero. Note also that for F E C(t),

the derivative f'(z) = Fx(z, 1) has < t real zeros. The class C(t) is closed under

substitutions A 6 GL(2, Z). For when G — Fa, then

uGx(x) + vGy(x) = (ua + vb)Fx(Ax) + (uc + vd)Fy(Ax)

= uiFx(Ax) + viFy(Ax),

say.

We will show in Lemma 2 below that F as in Theorem 1 lies in C(4s — 2). (But it

may be seen that C(t) in general also contains forms which are not "lacunary" such

as the forms of Theorem 1.) At any rate, it follows that Theorem 1 is a consequence

of the following theorem.

'This example was told to me by M. Waldschmidt.
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THEOREM 2.   For F in C(t), the number of solutions 0/ (1.1) is

(1.6) «(rf)1/2Ä3/r(l+logÄ1/r).

With / given by (1.4) write

(1.7) f(z)=ao(z-ai)---(z-ar).

The Mahler height is

X

M(F) = M(f) = \a0\ n max(l, |of«|).
¿777=1

Let ImQj be the imaginary part of at. When M(F) > 1, define $j (i = l,...,r)

by

{$,=0   when |Ima¿| > 1,

M(F)-*' = I Imati\    when 0 < | Ima¿| < 1,
$i = +00    when ai is real.

Put

r

(1.9) S(F) = l + ^min(l,$t)-
i=i

THEOREM 3. Let C be a class of irreducible forms of degree r > 3 which is closed

under substitutions in GL(2, Z), i.e. Fa E C when F EC and A E GL(2, Z). Set

(1.10) S(C)=maxS(F),

where the maximum is over forms F in C with

(1.11) M(F)>e2r.

Then for forms F in C, the number of solutions (1.1) is <C S(C)h2lr(l + logh1^).

THEOREM 4.   S(C(t)) « (ri)1/2.

Clearly, Theorem 2 is an immediate consequence of Theorems 3, 4.

Our proofs have many points in common with [1]. But the treatment of (1.1)

for general h is new, and the analysis of the location of roots given in §§8, 9 has no

precedent in the earlier work.

2. The number of real roots of certain polynomials.

LEMMA l. Suppose g(z) is polynomial with g(0) / 0 and with real coefficients,

of which precisely s + 1 are nonzero.  Then g(z) has < 2s distinct real zeros.

PROOF. When s = 0, g(z) is a nonzero constant, and the assertion is correct.

When s > 0, then g'(z) does not vanish identically. We may write g'(z) = zmh(z)

where h is a polynomial with h(0) ^ 0, having precisely s nonzero coefficients. By

induction, h has < 2s - 2 real zeros, so that g' has < 2s - 1 real zeros, and g itself

has < 2s real zeros.
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LEMMA 2. Suppose F(x) = aoxr + ■ ■ - + aryr is irreducible and has s + l nonzero

coefficients.  Then F lies in C(4s — 2).

PROOF. Given u, v ^ 0,0, write

(2.1) uFx+vFy=xkylQ(x,y)

with Q(1,0) / 0, Q(0,1) ,é 0. The number of nonzero coefficients of (2.1) is < 2s,

and in fact the number of nonzero coefficients other than the coefficients of xr~l

or yr~l is < 2s — 2. The number of real zeros of Q(x, y) is the same as the number

of real zeros of g(z) = Q(z, 1). When k = I = 0, the number of real zeros of g(z)

is < 2 • (2s - 1) = 4s - 2 by Lemma 1, so that the number of real zeros of (2.1) is

< 4s - 2. When k > 0, / = 0 (or when k = 0, I > 0), the number of coefficients of

g is < 2s — 1, so that the number of real zeros of g(z) is < 2 • (2s — 2) = 4s — 4, and

the number of real zeros of (2.1) is < (4s - 4) + 1 < 4s - 2. When k > 0, I > 0, the

number of real zeros of g(z) is < 2 • (2s — 3) = 4s — 6, and the number of real zeros

of (2.1) is < (4s-6)+2 < 4s-2.

3. Preliminaries to the proof of Theorem 3. Let C be a class of binary

forms which is closed under substitutions from GL(2, Z). Given a prime p, let Cp

be the subclass of forms F in C whose discriminant D(F) has

(3.1) \D(F)\>pr{r-1].

Since

(3.2) D(FA) = \A\r^D(F)

where |A| is the determinant of A, the subclass Cp is again closed under substitu-

tions forms GL(2,Z). Given a finite set N of natural numbers, write P(C,N) for

the maximum number of primitive x with F(x) E N, the maximum being taken

over F EC. Similarly define P(CP, N).

LEMMA 3.   P(C,N) < (p+l)P(Cp,N).

PROOF. We use an argument already employed in [1]. Let

It is easily seen that Z2 = (Jj=0AjZ2. Therefore the number of primitive x with

F(x) E N does not exceed no + rti +-\- np, where n3 is the number of primitive

x with Faj(x) e N. But when F lies in C, then FAj lies in Cp by (3.2).

Write N(F, h) for the number of solutions of (1.1) and P(F, h) for the number

of primitive solutions of (1.1). Further write Pi(F, h) for the number of primitive

solutions of

(3.3) 2~Th < F(x) < h.

Now let C be a class of forms which is closed under substitutions from GL(2, Z).

Let N(C,h), P(C,h), Pi(C,h) respectively be the maximum of N(F,h), P(F,h),

Pi (F, h) over forms F EC.

Forms F, G will be considered equivalent, with the notation F ~ G, if G = Fa

with A E SL(2, Z). Now Pi(F, h) is not affected if we replace F by an equivalent
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form; nor is the discriminant affected. When (3.3) has at least one primitive solution

x°, there is an A € SL(2,Z) with A^x0 = (1,0), so that 2~rh < FA(1,0) < h.

Therefore in order to estimate Pi (C, h), we may restrict ourselves to forms F EC

which are normalized in the sense that 2~Th < F(1,0) < h, i.e. their leading

coefficient arj has 2~rh < ao < h. We will say that a form F is reduced if it is

normalized and has smallest Mahler height among all normalized forms equivalent

to F. Every form with a primitive solution to (3.3) is equivalent to at least one

reduced form.

PROPOSITION.   Suppose F lies in C, is reduced and has Mahler height

(3.4) M(F) > I00rh.

Then

F1(F,/i)<5(C7)(l + log/i1/'').

This Proposition will be proved in §§4, 5, and 6. Here we will deduce Theorem

3. Pick a prime

(3.5) p > I06h2/r.

Then F E Cp has |£>(F)| > pr^~1\ Now if Fj ~ F is reduced, we have

\D(F)\ = \D(Fi)\ < rrM(Fi)2r-2 < (rM(Fi))2r~2

by an inequality of Mahler [2], so that

M(Fi) > r~rpT/2 > r'^O^h > I00rh.

By the Proposition,

P1(Cp,/i)«S(C)(l + log/i1/'').

Let p be the least prime with (3.5); then Lemma 3 gives

Pi(C,h) < h2'TPi(Cp,h) « S(C)h2'r(l +log/i1/r).

Now, when u is the integer with 2ru <h< 2r(u+1), then

u + l

P(C,h) < F(C7,2r(u+1) - 1) = Y^PiiC2'3)

j=l

u+1

«S(C)£22^(l + log2')

3 = 1

<£S(C)22u(l + u)

(3.6) <S(G>2/r(l + log/i1/'-).

Given F E C, let n(F, h) be the number of primitive solutions of F(x) = h.

Then

tt(F, h) = P(F, h) - P(F, h-I)
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(with P(F,Q) = 0 and with [    ] denoting integer parts). We have

N(F,h) = Y^7r(F,n)
n=l

</i1/r^7r(F,n)n-1/r

n=l

= /ii/r J2(p(F> v - p(F>n - i))n~1/r
n=l

(h-1 >

J2 P(F, n)^-1^ - (n + l)-1'*) + P(F, h)h~1/r
n=l j

< h1/r I J2 P(P, n)r"1n-(1/r)-1 + P(F, h)h~1/r j .

h-l

In view of (3.6) we obtain

N(F, h) « h1/rS(C) I r-1 ^2 n^'^-1 + h1/r ) (1 + log hllr)

^S(C)h2'r(l + loghl'r).

4. Large and small solutions. Let |x| = max(|:r;|, \y\) be the maximum norm

of points x = (x, y). Given F with M(F) = M, set

(4.1) K = (2r1/2M)rh.

With F normalized and of the form

F = a0(x - aiy) ■ ■ ■ (x - ary),

every solution of (1.1) or (3.3) with y ^ 0 has

(4.2) min min    1,
Ki<r

X
Oti —-

y

<
K

x

according to [1, Lemma 1].

Fix numbers a, 6 with 0 < a < b < 1 and so small that

y/2\J?, + a2/(l - b) < 3.

t=^2/(r + a2),        A = 2/((l-6)i),

(4.3)

Put

(4.4)

so that by (4.3)

for r > 3. Set

(4.5)

(4.6)

Henceforth, solutions to (3.3) with |x| > Y will be called large, solutions with

|x| < Y will be called small.

A = s/2\/r-ra2/(l - b) < r

A=2^ (losM+r)'

Y = (2K)1/{r-x)(4eA)x/{r-x).
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In view of (4.2), every large solution with y ^ 0 will have

(4.7) \ai-x/y\<(4eA\s\)-x

for some at. Furthermore, by [1, §3, upper bound for n], the number of primitive

x with |x| > Y and (4.7) for some given ai is bounded by an absolute constant.

But (4.7) yields

\lma%\ < \ai - x/y\ < |x|"A < y'x < M~Xrnr-x) < M~\

so that $¿ > 1 by the definition (1.8). The number of such i is bounded by S(C).

Therefore the number of large solutions is <C S(C).

5. Estimation of linear forms. Let F be as in the Proposition, in particular

reduced and with (3.4), so that

(5.1) Q := M/h > 100r.

We have

(5.2) F(x)=a0L1(x).--Lr(x)

with L¿(x) = x — üiy.

LEMMA 4. Suppose G(x) = bo(x-ßiy) ■ ■ ■ (x—ßry) is normalized and equivalent

to F, and let

(5.3) in = \ßi - m\ + I       (¿ = l,...,r)

where m is an integer.  Then

(5.4) rii--nr>Q.

Proof.
G(x) = G(x + my, y) = b0 ]J(x + (m - ßi)y)

i
is normalized and equivalent to G, hence to F. Since F is reduced, M = M(F) <

M(G). On the other hand it is clear that M(G) < \bo\ni ■ ■ -nr < hr¡i ■ ■ ■ nr- The

lemma follows.

Given x0 = (x0,y0), x = (x,y), put F>(xo,x) = x0y - y0x.

LEMMA 5. Suppose F is as above, andxn, x are linearly independent primitive

integer points with (3.3).  Then there are numbers ipi,... ,ipr, where each

(5.5) ipi=0    or has    l/2r < ipz < 1,

with

(5-6) E^>i,
i=l

such that

(5.7) |L,(x0)/Lt(x)|>(Q^-7/2)|F»(x0,x)|        (i=l,...,r).

PROOF. Pick x' £ Z2 with D{x', x) = 1, so that x', x is a basis of Z2. We may

write xn = ax-r-fex'. Then F)(xo,x) = 6Z)(x',x) = b, so that xn = ax + F>(x0,x)x'.

Therefore

(5.8) ^M=a + jD(Xo,x)^l=a_I)(xo,x)A,

say (i= l,...,r).
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Set G(v, w) = F(ux + tux'), so that G ~ F and G is normalized. Moreover,

r T

G(v,w) = an ||L¿(crx + wx') = a0 ^Q(i>L,(x) + ^¿¿(x'))

2=1

boU(v + ^^w)=bof[(v-ßlW)
¿77=1      ̂  ^^ / ¿777=1

with /j0 = F(x). Note that 0 < F(xo)/F(x) < 2r. We may suppose that

|Lr(x0)/Lr(x)| = min |L¿(x0)/L¿(x)|,
i

so that |Lr(x0)/Lr(x)| < 2, and \a - D(x0,x)/?r| < 2 by (5.8), which in turn yields

(5.9) |a-£>(x0,x)/?|<2,

where ß is the real part of ßr. Let m be an integer with \m — ß\ < \ and define

t)i, ... ,r)r by (5.3), so that (5.4) holds by Lemma 4. Put

(Q   ifvi>Q,
n'^hi   if Q1,2r <Vi<Q,

(l     ifntKQ1'2*,

so that n'x ■ ■ ■ n'r > Q1^2. The numbers ip¡ defined by n[ = Q^i (i = 1,..., r) satisfy

(5.5), (5.6). Now from (5.8), (5.9),

\Li(xo)/Li(x.)\ = \(ß- ft)Z?(xo,x) + a - D(x0,x)/3|

>\ß- Ä||D(xo,x)| - 2 > (|m - ßi\ - §)|£>(xo,x)| - 2

= (Vi - |)|£>(xo,x)| -2 > (m - |)|£>(xo,x)|.

Since rji > n[ = Q^', the assertion follows.

LEMMA 6. Suppose F is as above, and x is primitive with y > 0 and (3.3).

Then there are numbers V>¿ = tpi(x) (i = 1,..., r) with (5.5), (5.6) such that

(5.10) |L<(x)| < l/(Q^/2y)

for each i with tpi > 0.

PROOF. We first note that for i with ^ > 0 we have tpt > l/2r and Qti >

Qi/îr > 7 by (5.1), so that Q*" - \ > \Q^< > Q^>'2. We now apply Lemma 5

with x0 = (1,0). Then D(x0,x) = y and La(x0) = 1 (i = 1,.. .,r), so that (5.10)

is an immediate consequence of (5.7).

6. Proof of the Proposition and of Theorem 3.

LEMMA 7. Make the same hypotheses as in the last section, including (5.1).

Let X be the set of primitive integer points with (3.3) and with 0 < y < Y. Then

for i = l,...,r,

(6.1) J2 ^W « (1 +log/î1/r)min(l,$l).

PROOF. Given i, let xi,... ,x„ be the elements of X with Vt(x) > 0, ordered

such that î/i < • • • < y„. Now (5.10) yields

\lmaA < \at - Xj/yj\ < l/(Q^x>"2y2)
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for j = 1,...,v. When |Ima,| > 1 this is impossible and the sum of the lemma is

zero. When |Ima¿| < 1, so that |Ima,| = M_<ï>i (with M~°° = 0), we have

M"*- < l/(Q*<(x')/ai£),

and therefore

(6.2) y3<M*>'2,     ^(xJ)<21g^$i.

In particular, yv < min(y M*'/2) = y, say.

When v > 1 and 1 < j < v, we have

\Ll(xJ)\ = \x3-aly3\<l/(Q^V2y3),

|L¿(xJ+1)| = \xJ+i -alVj+i\ < l/(Q^^+l)/2yj+i).

Since D(xj,x.j+i) ^ 0, we may infer that

i<mr 7,1 yj+i      ,_%_ 2/7+1      , 1
- I^W'^'+^l <  y.QWi)/*  + 2/J + 1Q^(xJ + 1)/2   ̂   ^.Q^fjc,-)^  + 3'

since Q^.(xJ + ,)/2 > gi/4r > 3 by (5.1). Therefore ("gap principle")

yJ+i > lQ^^'2y3 > Q^x^4y3        (1 < j < u),

again using (5.1). We may conclude that

Q(l/4)dh(Xl)-f-"HMx„-l))   < <  y.

and

(6.3) E*fc.>«jg£
J = l

Now A as given by (4.4) has r1/2 «A« r1/2, and A given by (4.5) is A —

a"2(logM + \r) < log M by (5.1), and Y given by (4.6) has

logy <r-1(log2C)+r-1/2(A-r-log4).

But by (4.1), (5.1), log2C7 <C r(logM + logr) + logh < r logM, so that in fact

logy <£. logM. From the definition of y,

log y < min(l, $,-) log M.

Note that by (5.1)

^ = l + J2f*<l + r-ilogÄ=l + log^.
logQ logQ

Since by (5.5), (6.2),

, /    N •   (,  logM^ \  „    .   .„   _ .logM
t/>¿(x„)<min   1,-5-^^    <mm(l,$^

logQ    7 " logQ'

we may infer from (6.3) that

E, ,    ,      logy     logM    .  ,, ^ .      logM    .   .„  _ ,
,=/i(Xj) <<: foig + To|g mm(1'$í) « ufemm(1'$l)

<(l + logrl1/r)min(l,$2)-



250 W. M. SCHMIDT

PROOF OF THE PROPOSITION. In view of what we have said in §4, we need

to show that the number of small solutions is <S (1 + loghl/r)S(C). But small

solutions have \y\ < Y. By (5.6), (6.1)

£l<2¿X>(x)
x€X z=lx€X

r

< (1 + log hl'r) Y,min(l, $i) < (1 + log hl'T)S(C).

¿=i

(We used that F has (3.4), hence (1.11).) Small solutions with y < 0 are counted

similarly. The only other small solutions are (1, 0) and possibly (when r is even)

(-1,0).
This proves the Proposition and thus Theorem 3.

7. A general lemma on roots of polynomials.

LEMMA 8. Let f(z) = ao(z — af)---(z — ar) be a polynomial with integer

coefficients and without multiple roots; let M be its Mahler height. Given a set S of

pairs (i,j) with 1 < i < j < r, put

P(S)=    n   (az-a3).
(id)es

Then

(7.1) \P(S)\ >2-r2M1-r.

PROOF. Let T be the complement of S in the set of pairs and put

P*(T) = aiy-1    n   (ai-a3).
(«J)€T

Then P*(T) is the sum of 2* terms of the type

(7.2) ±aro~lall ■■■au

where t is the cardinality of T. Any particular a¡ can occur at most r — 1 times in

the product (7.2), so that by the definition of Mahler height, the product (7.2) has

modulus < Mr~l. Therefore

(7.3) l^'Cni < 2iMr-1 < 2(2)Mr-1 < 2r2MT-\

But |P(5)||P*(T)[ = |D|X/2 > 1 where D is the discriminant, and (7.1) follows

from (7.3).

8. The clustering of roots with small imaginary parts. The purpose of

this section is to show that if f(x)f'(x) ^ 0 for real x in some interval Xi < x < X2,

and if there are many roots with real parts in this interval, and with small imaginary

parts, then there are many such roots which are clustered together, i.e. whose

mutual distances are small.
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LEMMA 9. Let f(z) be a polynomial of degree r with real coefficients. Let

z3 = Xj + iy3 (j = 1,..., w) be roots of f lying in a square a — s<x<a,0<y<e.

Suppose f(x)f'(x) < 0 for every real x in the interval a + s<x<a + 8re. Then

there are > w/120(logw + 1) roots in the square

(8.1) a < x < a + 8re,        0 < y < 8re.

PROOF. Let q be a real number in a + e < q < a + 2e, which will initially be

fixed. Let z3 = x3 + iy3 (j = 1,..., r) be all the roots of /, ordered such that

Zj+W =Zj (j = 1,... ,w), where the bar denotes complex conjugation. We further

may suppose that x3 < q for j = 1,..., u and x3 > q for j = u + 1,..., r; then

clearly u > 2w.

Our hypothesis implies that

(8-2) f'(q)/f(q) < 0-

Here

= V    1    = IV (   1    +    1   ^ = V     9~Xj
f(Q)      fZ<¡-*i      2éíV9-^      q-Vi)     f^x(q-x3)2 + y2

For j = 1,..., 1w we have \y3\ < £ < q — a < q - x3 < 3e, so that

o — Xi q — Xi 1
> oT      A2 > ^       (J = l,...,2«;).(9-ii)a+y? -2(9-xJ)2 -6e

Since the summands with j < u are positive,

U 2W r,
■\—\        q — Xj v->        q — Xj 2w       w

¿J (q-Xj)2+y2 - ¿- fa-s^+y,2 ~ o7 = 3?

In conjunction with (8.2) this yields

^-^ Xj — q w

¿»te-tf + v]**'

so that
r ,El w

12,- - q\ > 3?
3 = u+l  '   3        y|

where (of course) \zj — q\ = ((xj — q)2 + y2)1^2-   Since there are fewer than r

summands, the summands with \zj — q\ > Qer/w contribute less than w/6e, so that

3=u+l

\Zj-q\<6er/w

Put

(8.4) l = [logw] + l.

Let To be the interval 0  <  £  <  e/w;  for k =  I,...,I let Ik be the interval
(e/w)ek~l < £ < (e/w)ek; and finally let Ii+X be the interval (e/w)el < £ < Qre/w.
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(Since el < ew < 6r, the last interval is not empty.) There is by (8.3) a k in

0 < k < I + 1 with

r ,
El W W

\zj - q\ > 6(i + 2)e _ Ï8Z?
j=u+l

\*i- <i\eh

When k = 0, there is a Zj with Xj > q and \zj —q\< e/w. When 1 < k < I, then

each summand is < (w/e)el~k, so that the number of summands is > ek~1 /181 >

ek/60l. Thus in general when 0 < k < I, there are

(8.5) more than e /60Z roots Zj with Xj > q and \zj — q\ < (e/w)ek.

When k = I + 1, there are > e'/60Z > w/60(logw + 1) roots with Xj > q and

\zj - q\ < Ore/w < 6re.

In each case, half of the roots in question will have positive imaginary parts.

Thus if k = I + 1 for some q in a + e < q < a + 2e, there will be > w/120(log w + 1)

roots in the square a < x < a + 8re, 0 < y < 8re. We may therefore suppose that

for each q in a + e < q < a + 2e, there is a k = k(q) in 0 < k < I with (8.5).

We set qo = a + e, and when qt lies in a + e < qt < a + 2e, we set

qt+i=qt + (£/w)ek^.

We obtain qo < qi < • • ■ < q„ < a + 2e < qu+i, say. For t = 0,1,... ,v, the square

Qt- qt <x<qt + (e/w)ek{qt) = qt+1,        0<y < qt+i - qt,

contains

> ek^/l20l = (w/l20le)(qt+i - qt)

roots. The squares Qo,---,Qv are pairwise disjoint, and they lie in the square

(8.1), since

qt + (e/w)ek(qt) <a + 2e+ (e/w)el < a + 2e + (e/w)ew <a + 8re.

Thus (8.1) contains

w    \-^, , ^     w   ^ w>        Y^(      -   ) >        >
- 120te ¿   t+1 ~ 120/ - 120(logw + 1)

roots of /.

LEMMA 10. Let f(z) be a polynomial of degree r with real coefficients. Let

a = A + Bi be a root with B > 0. Suppose that f(x)f'(x) < 0 for every real x in

the interior of

(8.6) A < x < A + (9r)hB,

where h is a natural number. Then f has at least e^h/16 roots in the square consisting

of numbers z = x + iy with (8.6) and with 0 < y < (9r)hB.

PROOF. For m = 0,1,..., h let Pm be the square

Pm:A<x< A + (9r)mB,        0<y<(9r)mB,
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and let wm be the number of roots in this square. Then wo > 1 by hypothesis.

Given m < h we apply Lemma 9 with a = A+ (9r)mB, w = wm, and with (9r)mß

in place of e. The conclusion is that / has > wm/(120 logewm) roots in the square

A + (9r)m5 < x < A + (9r)mB + 8r(9r)mB,        0<y< 8r(9r)mB.

This square is disjoint from Pm and is contained in Pm+i- Thus

Wm+l >Wm + ——-.
120 logeirjm

We have wq > 1, w\ > 2, w2 > 3. For m > 2,

1
(logwm+1)   >    logwm + log    1 +

120 logewr,

> (logwm +
1

240 log ew-rr,

^ /, n2   ,      !     loSwr;
> (log wmy +

120 log ewm

> (logwm)2 + —.

Therefore (logwm)2 > m/240 (m = 0,1,..., h), and wh > e^/16.

Put

(8.7) R = eS00^^3.

LEMMA 11. Suppose f(z) is a polynomial of degree r > 3 with real coefficients.

Suppose there are u > 2 roots z — x + iy with Xi < x < X2, 0 < y < e. Finally

suppose that f(x)f'(x) ^ 0 in Xi < x < X2. Then there are u roots with Xi < x <

X2, 0 < y < Re, and with mutual distances < 2Re.

PROOF. Let the given roots be Zj — x3 + iyj (j = 1,... ,u) with xi < ■ ■ ■ < xu.

We may suppose that Xi = Xi, X2 = xu. The assertion is obvious if xu — xi < Re;

suppose then that xu — xi > Re. Let h be the smallest integer with ev^/ie > U;

then

256 log2 u < h< 256 log2 u + 1 < 256 log2 r + 1 < 257 log2 r

and

(9r)he < (9r)2571og2r£ < Re < xu - Xl.

We may suppose without loss of generality that f(x)f'(x) < 0 in xi < x < xu. By

Lemma 10 with a = zi and with B < e, there are at least u roots in the square

xi < x < xi + Re, 0 < y < Re.

9. Proof of Theorem 4.

LEMMA 12. Let f(z) be a polynomial of degree r with rational integer coeffi-

cients, of Mahler height M and without multiple roots. Suppose that f(x)f'(x) has

not more than q — 1 real roots, where q > 1. Suppose f has u roots with imaginary

parts in

(9.1) 0<y<l/K
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where

(9.2) K > 36/72 = 36e1600 lo«3 r.

Then

,__. /    /27^i+2rqlogM\1/2\
(9.3) «<max^-—-j     j.

PROOF. We may suppose that u > q. There are q intervals Jk'.Xk < x <

Yk (k = l,...,q) with //' not vanishing in Xk < x < Yk, and such that the

real parts of the u roots in question lie in the union of these intervals. There is a

partition

(9.4) u = it(l) + • • • + u{q)

such that for k — l,...,q there are u(k) roots with real parts in Jk and imaginary

parts in (9.1). By Lemma 11 there are then u(k) roots with real parts in Jk, with

imaginary parts in 0 < y < R/K and mutual distances < 2R/K. If we consider

their complex conjugates as well, we obtain 2u(k) roots aki, ■ ■ ■, a^2u(/c) with real

parts in Jk and with mutual distances < 6R/K < K~xl2 by (9.2). The number of

pairs », j with 1 < i < j < 2u(k) is (2 ^    ), so that

p.=ti  n  i««-"«i<n*-i,"n/2-
k=l l<K3<2u(k) fc=l

But by (9.4), and the fact that (2£) = 2x2 - x has a positive second derivative,

A f2u(k)\        (2u/q\      2u2 u2

since u > q. We obtain P < K~u l2q. Comparison with (7.1) gives e~r M~r <

K-"2/2", so that

u2 log K < 2r2q + 2rq log M,

whence (9.3).

COROLLARY. Make the same assumption on f(z) as in Lemma 12. Suppose

further that M > e2r.  Then for <f> in

(9.5) 1700r-1(logr)3 < cb < 1,

the number of roots with imaginary parts in 0 < y < M-* is < (8rq/<j))1'2.

PROOF. Apply Lemma 12 with

K = M*/2 > er* > e170010«3 r > 16Ä2.

The number u of roots with imaginary part in (9.1) satisfies

u < max(g, (4rq logM/logK)1/2) = max(q, (8r<?/$)1/2).

Since the conclusion of the corollary is obvious when q > r, we may suppose that

q < r, and then q < (8rg/$)1/2.
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The proof of Theorem 4 is now accomplished as follows. Suppose F E C(t) with

M(F) > e2r. Then f(z) = F(z,Y) has f'(z) = 1 • Fx(z,l), so that f'(z) has < t

real roots, and //' has <2i + l = g — 1 real roots with q — 2t + 2.

Let $i,... ,3>r be defined by (1.7); we may suppose that $i > • • • > 3>r. The

number of summands in

r

(9.6) ^min(l,^)

¿=i

with $, > 1, i.e. with | Im a* | < M_1, is <C (rç)1/2 -C (ri)1/2 by the corollary.

These summands contribute -C (ri)1/2. Summands with $t < 1700r_1(logr)3

contribute -C (logr)3 <C (ri)1/2. (Since C(0) is easily seen to be empty, we may

suppose that t > 1.) The remaining summands have 1700r_1(logr)3 < $¿ < 1.

Since llmayl = M~®' < M-*1 for j < i, the corollary yields i < (rt/^i)1/2, so

that $¿ <t; rt/i2. We may conclude that these terms contribute

oo

< ^min(l,rí/¿2) < (r¡!)1/2

¿=i

to the sum (9.6).
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