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SPORADIC AND IRRELEVANT PRIME DIVISORS

STEPHEN MCADAM AND L. J. RATLIFF, JR.

ABSTRACT. Let / represent a regular ideal in a Noetherian ring R. If W is a

finite set of prime ideals in R, some conditions on W are given assuring that an

/ can be found such that W is exactly the set of primes which are in Ass R/I

but not in Ass R/In for all large n. Furthermore, if / is fixed, and if P is a

prime ideal containing /, some conditions are given assuring that in the Rees

ring R = R[u, It], (u, P, /£)R is a prime divisor of iiR.

1. Introduction. This paper discusses two closely related topics. Let I be

a regular ideal in a Noetherian ring R. It is known that the sequence Ass R/I,

Ass R/I2,
Ass R/I3,... eventually stabilizes to a set denoted A* (I). Thus Ass R/In = A* (I)

for all large n. However, for small n it may happen that there are prime ideals P

with P E Ass R/In - A*(I). Such a prime will be called a sporadic prime divisor of

I. While various examples have appeared, there has never been a systematic study

of such primes. Indeed, their nature leads us to suspect that there are limits to

how much can be said concerning the sporadic prime divisors of an ideal. However,

there is one not uncommon situation in which it is possible to find an ideal K such

that A*(K) — A*(I), and Ass R/K - A* (K) = W, where W is a predetermined set,

subject only to some mild restrictions. This will be presented in §2. §3 shows that

if one is willing to sacrifice having A*(K) = A*(I), one can get Ass R/K - A*(K)

equaling a predetermined set W in a very wide range of situations. In §4, we let

P be a prime containing I, and investigate situations in which in the Rees ring

R = R[u, It] of R with respect to 7", (u,P,It)R is a prime divisor of uR. We

discuss the strong connections between the ideas in §4, and those in the earlier

sections. §5 gives some examples of the results developed herein.

(1.1)   NOTATION. / will always be a regular ideal in a Noetherian ring R.

2. Sporadic prime divisors.

(2.1) DEFINITIONS. A* (I) = Ass R/T for all large n. (See [B] or [M, Chapter

1] to see that this is well defined.) For n > 1 let Sn(I) = AssR/In - A*(I). Let

S{I) — U Sn(I), over n = 1,2,3,_  We will call S(I) the set of sporadic prime

divisors of I. (Note that the existence of A*(I) shows that Sn(I) = 0 for all

sufficiently large n.) By (I)a, we will mean the integral closure of I.
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(2.2) LEMMA. Let I* denote the eventual stable value of the ascending chain

(I2 :I)Ç(I3:I2)Ç---.
(2.2.1) If J is an ideal containing I, then J Ç I* if and only if there is an

n> 1 withJn =In.

(2.2.2) If J is an ideal with I Ç J C I\ then A*(J) = A*(I).
(2.2.3) If S is a multiplicatively closed subset of R disjoint from I, then (Is)* =

(I*)s-
(2.2.4) IÇI*Ç(I)a.
(2.2.5) For all large n, In" = In.

(2.2.6) Forn> I, (I*)n Ci""".

(2.2.7) For n > 1, In is the eventual stable value of the increasing chain
(In+1 : I) C (In+2 : I2) Ç (In+3 : I3) Ç ■ ■ - .

(2.2.8) IfPEAssR/P, then P E Ass R/(I*)n for all n> 1. Also, Ass R/I* C
A*(I).

PROOF. (2.2.1), (2.2.4), and (2.2.5) are proved in [RR] (or in [M, Lemma 8.2]).

(2.2.3) is straightforward. (2.2.2) is trivial from (2.2.1) and the definition of A*(I).

(2.2.6) follows easily from (2.2.1). As for (2.2.7), the definition says that /"* is the

eventual stable value of (I2n : In) C (I3n : I2n) Ç (I4n : I3n) Ç ■ ■ ■. However, this

is just a subchain of the chain in (2.2.7), and so both chains have the same stable

value. Finally, for (2.2.8), suppose that P E AssR/I*. By (2.2.3), we may assume

that R is local at P. Write P = (I* : c) with c E R- I*. Obviously for n > 1,

P C ((/*)" : c(/*)n_1). We claim that equality holds. Since F is a maximal ideal,

we need only show that ((/*)" : c(/*)™-1) is a proper ideal. If not, we would have

c E ((I*)n : (I*)n~1) Ç (/*)* (by the definition). However, an easy exercise using

(2.2.1) shows that (/*)* = /*. Since c di /*, we have a contradiction, proving the

claim. The first part of (2.2.8) is immediate from the claim, while the second part

is by the first part and (2.2.2).

While it may well happen that / = /*, it is also true that for a large number of

ideals, I ^ I*, and it is these ideals in which we shall be interested. Given such

an I, we will seek an ideal K with I Ç K Ç I* such that Si(K) — W, with W a

predetermined finite set of primes. Note that by (2.2.2), A*(K) will equal A*(I).

Thus, by moving from I to K, we will leave the persistent prime divisors fixed, but

will gain some control over the sporadic prime divisors. In our work, we will need

three constraints on W. We now show the need for two of them.

(2.3) LEMMA. Let K be an ideal with I Ç K Ç I*, and let P E Si(K). Then
PÍA* (I), and (I : I*) Ç P.

PROOF. Since P E Si(K), P <£ A*(K). Now (2.2.2) shows that A*(K) = A*(I),

and so P £ A*(I), as desired. Next, suppose that (I : I*) <£P. Then it is easily seen

that Ip = (I*)p = I*P (by (2.2.3)). As I C K ç /*, we must have KP = I*p. Since

P E Si(K), P E Ass R/K. Therefore, PP E Ass RP/KP = Ass RP/I*P C A*(IP)
(using (2.2.8)). This shows that P E A*(I), which contradicts what we have just

proved.

We can now state the main result of this section. Of the three conditions imposed

on W in (2.4), the need for two of them is explained by (2.3). The third condition

(the most cumbersome of them), is needed to make an induction work.
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(2.4) THEOREM. Suppose that I ^ I*. Let W be a finite set of primes of R

with W Pi A*(I) — 0, and with (I : I*) Ç P for all P EW. Furthermore, suppose

that if Q is a prime minimal over (I : I*) such that (I : I*)q = Qq, then either

Q £ W or Q is maximal in W. (Note that if Q EW, it must be minimal in W.)

Then there is an ideal K with I Ç K Ç I*, and Si(K) = W.

The proof of (2.4) requires two tools, one for forcing primes to be in Ass R/J,

and one for excluding primes from Ass R/J, for certain ideals J. We now present

these tools.

(2.5) LEMMA. Let H be an ideal containing I, and let V — {Pi,...,Pn} be

a finite set of prime ideals. Suppose that if P is a minimal member of V, then

Ip ^ Hp. Suppose also that if P is a minimal member ofV which is not maximal

in V, then PPHP <£ IP. Let J = I + (Px ■■ ■ Pn)H.  Then

(2.5.1) V CAssR/J.
(2.5.2) IfQESi(J), then either P Ç Q for some P E V orQESi(H).

PROOF. Let P E V, and let K be the product of those primes in V which

are properly contained in P. (If P is minimal in V, K = R.) We claim that

Ip + KpHp t¿ Ip. If we have P minimal in V, then K = R and Ip + KpHp = Hp,

so the claim follows from the hypothesis. If P is not minimal in V, let q C P with q

minimal in V. Note that q is not maximal in V, and that g is a factor of K. If our

claim fails, then Ip + KpHp = Ip, and so localizing at qp gives Iq + qqHq = Iq.

Thus qqHq Ç Iq. This contradicts our hypothesis, and proves the claim. Now

Nakayama's Lemma shows that Ip + Pp(Ip + KpHp) C Ip + KpHp. Simplifying

gives Ip + PpKpHp clp + KpHp. Therefore, (IP + PPKPHP : IP + KPHP) is

a proper ideal which obviously contains (and so equals) Pp. This shows that Pp is

a prime divisor of Ip + PpKpHp — Jp. Thus P E Ass R/J, proving (2.5.1).

Next, suppose Q E Si(J) and P <£ Q for all P E V. Then JQ = HQ. Since Q E
Si(J) * Ass R/J - A*(J), we have QQ 6 Ass Rq/Jq - A*(JQ) = Ass Rq/Hq -
A*(HQ). Therefore, Q E Si(H).

In the proof of (2.4), we will apply (2.5) to sets V whose elements are pairwise

incomparable, so that the assumption on primes P which are minimal but not

maximal in V is not required.

(2.6) LEMMA. Let H be an ideal, and let I : (H) denote the eventual stable

value of (I : H) Ç (I : H2) Ç (I : H3) Ç ■ • •. If I = qi C\ ■ ■ ■ C\qn is a primary
decomposition of I, and if Rad qi contains H exactly when i E {1, ...,m}, then

I : (H) = qm+i PI • • • PI qn is a primary decomposition of I : (H). In particular, if

P E Ass R/(I : (H)), then H<£P.

PROOF. This is an easy exercise in primary decomposition.

PROOF OF (2.4). We first restate the hypotheses in the way we will use them.

Clearly to say that (1:1*) Ç P is equivalent to saying Ip ^ IP. Also, if P is

minimal but not maximal in W, the third hypothesis on W is easily seen to say

that PpIP <£ Ip.

For P EW, define the l^-height of P to be the length of a longest chain of the

form Po C Pi C • • • C Pn = P with P% E W for i = 0,..., n. Let r be the maximum

W-height of a prime in W, and for i = 0,..., r, let Wi = {P E W\W-liei^nt P = i}

(so that Wo is the set of minimal members of W).
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Let I-i = I*. We will inductively construct ideals Iq, ■ ■. ,Ir, between / and /*,

such that for 0 < i < r, Si(Ii) = W0 U • • • U Wx. The result will follow from taking

K = Ir. In our construction, we will have that (Ii)q ^ Iq, for all 0 < i < r and

all q E W0 with q not maximal in W. (This will be needed to keep the induction

going.)

Suppose we already have /t_i for 0 < i < r (recalling that I_i = /*). Be-

fore constructing /¿, we need an auxiliary ideal. We first claim that for P E Wi

(Ii-i)p ^ Ip. If instead (7¿_i)p = Ip, then let q Ç P with q E Wq. Localizing

at qp gives (/¿-i)Q = Iq- If i = 0, then this says that I* = Iq, which contradicts

the hypothesis. If i > 0, then q ^ P, and so q is not maximal in W. Part of our

inductive assumption on /¿-j says that (/¿_i)9 ^ Iq, giving a contradiction. This

proves the claim. Now let Jt — I -\-wtIi-i with Wi the product of the primes in Wt.

The above claim, together with the fact that there are no containment relations

among the primes in Wi, allows us to use (2.5.1) to see that Wi Ç AssR/Jx.

We now claim that if i > 0, then W0 U • ■ • U Wt-i Ç AssR/Jz as well. Let

Q E WoU- ■ -UWi-i. Clearly Q cannot contain any prime in Wi, and so (w%)q = Rq.

Thus (Ji)Q = (U-i)q. By induction, W0 U • ■ • U W¿-, = Si(/¿_i) Ç Ass#/7¿-i-
Therefore Qq E AssRq/(Ií-i)q = AssRq/(Jí)q, so that Q E AssR/Ji as desired.

We next claim that Wo U • • ■ U W¿ Ç Si(Jt). For this, we need only show that if

P E W0 U ■ • ■ U Wi, then P £ A*(Jt). However, since by induction I E h-i Ç I*,

clearly / Ç Jt C I*. (2.2.2) shows that A*(Ji) = A*(I), and the claim follows from

the hypothesis that W n A* (I) = 0.

YetUi = Si(Ji)-(W0U---UWi), and let P' E Ui. We claim that P' properly
contains a prime in Wi. If not, then since P' £Wi, P' does not contain (properly

or improperly) any prime in W%. By (2.5.2), P' E Si(h-i) = W0 U • • • U W¿_i (by

induction). This contradicts that P' EUt.

We now define I% = (Ji : (u¿)) n /*, with ut the product of the primes in t/¿. (If

Ui is empty, u¿ = R.) Clearly I Ç J¿ C /*, as desired. Now let q E Wo with q not

maximal in W. We claim that (It)q ^ Iq (as is required in the third paragraph).

Note that q cannot contain any P' E Ui, since such a P' has been shown to properly

contain a prime in Wi, and q is minimal in W. Thus (w¿)9 = Rq, and (h)q = (Ji)q-

However, J¿ = I + w¿/¿_i. If i — 0 (so that i¿_! = /*) then q is one of the factors

of Wi, and so (Ji)q = Iq + qqI*. By hypothesis (see the first paragraph), qqI* <£ Iq,

and our claim is true in this case. On the other hand, let i > 0. Then (wi)q = Rq,

and (Ji)q = (Ii-i)q t¿ Iq by induction, proving the claim.

To complete the proof, it remains to show that Si(/¿) = Wq U ■ ■ ■ U Wi. Let

P E Wo U ■ ■ • U Wi. Considering W-heights, we see that P does not contain any

prime P' in U¡, since we know that such a P' must properly contain a prime in

Wi. Therefore, (Ii)P = (Jt)p. Since P E W0 U • • • U Wi C Si(Jt), we easily see

that P ESi(Ii). Thus, W0 U • • • U W% Ç Si(/¿). Conversely, let Q E Si(h). Then
Q E Ass R/Ii. Now a primary decomposition of 7¿ can be obtained by intersecting

a primary decomposition of J¿ : (u%) with a primary decomposition of /*, and

then deleting redundancies. Thus Q must appear either in AssR/(Ji : (u¿)) or

in Ass R/I*. Suppose Q E Ass R/I*. Then (2.2.8) and (2.2.2) show that Q E

Ass R/I* Ç A* (I) = A*(Ii), which contradicts that Q E Si(Ii). Therefore, we

must have Q E AssR/(Jt : (u¿)). By (2.6), u¿ ^ Q. Therefore, (U)q = (Jí)q- As
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Q E Si(Ii), we get Q E Si(Ji) = W0 U • • • U Wi U Ux. However, Q cannot be in Ui,

since we already have u¿ $f Q. Thus Q E Wo U ■ • ■ U Wi as desired.

(2.7) COROLLARY. Suppose I ^ I*. Let W be a finite set of primes with

W n A*(I) = 0, and with (I : I*) Q P for all P E W. Furthermore, suppose that if

P is minimal but not maximal in W, then either of the following conditions holds.

(2.7.1) P is not minimal over (1:1*).

(2.7.2) P^AssR/I.
Then there is an ideal K with I C K Ç I* and Si(K) = W.

PROOF. If P is minimal over (I : I*), then P E Ass R/I. Thus (2.7.2)=»(2.7.1),
and we may assume that (2.7.1) holds for all P minimal but not maximal in W.

The result follows from (2.4).

Two cases warrant special mention. The first is when the primes in W are

pairwise incomparable. The second is when (I : I*)q ^ Qq for all primes Q

minimal over (I : I*). We treat these in the next two corollaries.

(2.8) COROLLARY. Suppose I ^ I*. Let W be a finite set of primes which are

pairwise incomparable. Then there is an ideal K with I Ç K Ç /* and Si (K) = W

if and only ifWf) A* (I) = 0 and (I : I*) Ç P for all PeW.

PROOF. Suppose that W n A* (I) = 0 and (/ : I*) Ç P for all PeW. The K
we seek is given by (2.4), since every Q EW must be maximal in W. The converse

is by (2.3).

(2.9) COROLLARY. Suppose I ^ I*. Suppose also that for any prime Q mini-

mal over (1:1*), we have (I '■ I*)q ■£ Qq- Let W be any finite set of primes. Then

there is an ideal K with I Ç K Ç I* and Si(K) = W if and only ifW n A*(I) — 0
and (I: I*) ÇP for all PEW.

PROOF. One direction is by (2.4), and the other is by (2.3).

(2.10) REMARKS. (2.10.1) Even if / = /*, it may happen that for some n > 1,

jn _¿ jn (However, by (2.2.5), n cannot be too large.) It does no harm to replace

/ by /", since A*(In) = A*(I). R. Cowsik has an (unpublished) example of a

prime P with P the only prime divisor of Pn for all n =£ 2, while P2 has a prime

divisor Q 5¿ P. Now (2.2.4) shows that P = P*. If P2 = P2", then by (2.2.8),

Q E AssR/P2 = AssR/P2' C A*(P2) = A*(P) = {P}, a contradiction. Thus

P2¿P2'.

(2.10.2) It may happen that In — In" for all n > 1. In that case, we can

still make some progress by replacing / by an ideal H projectively equivalent to I

(although there is a small price to be paid). We discuss this in the next section.

3. Projectively equivalent ideals. In the preceding section, we dealt with

an ideal / for which I ^ I*. As (2.10.1) points out, if In ^ In" for some n > 1,

it does no harm to replace I by J™, since A*(In) = A*(I). In this section, we will

discuss replacing I by an ideal H projectively equivalent to I.

(3.1) DEFINITION. The ideals / and H are projectively equivalent if for some

positive integers n and m, (In)a = (Hm)a. Here (J)a is the integral closure of the

ideal J.

There is a cost in replacing / by H, since in general, A*(H) ^ A*(I), so that

in moving from I to H, we have disturbed the persistent prime divisors. However,
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there is a limit to the cost. There are various important subsets of A* (I) which

are not disturbed by this replacement. In particular, if H is projectively equivalent

to I, then A*(H) = A* (I) and E(H) = E(I). For facts regarding A* (I) (the

asymptotic prime divisors of I) see [M, Chapter 3]. Concerning E(I) (the essential

prime divisors of I), see [KR]. (In [KR], the E(I) is denoted U(I) and called the

u-essential primes.)

Because replacing I by an ideal H projectively equivalent to I does not disturb

A (I) or E(I), such a replacement is often useful. Therefore, in this section we shall

investigate when we can find an H projectively equivalent to I such that H ^ H*,

so that the results of §2 can be applied to H. We will see that we very often can

find such an H, even when I" = I"' for all n > 1.

Recall that if J and L are regular ideals of R, then J is a reduction of L (i.e.,

there is an n > 1 with JLn = Ln+1) if and only if J E L Ç (J)a [NR1]. We will

call J a deep reduction of L if J is a reduction of L and JL ^ L2.

(3.2) LEMMA. Let J and L be a regular ideals of R with J a deep reduction

of L. Let H = JL.  Then H is projectively equivalent to J and H ^ H*.

PROOF. Since J ÇLÇ (J)a, clearly J2 Ç JLÇ (J2)a, so that (JL)a = (J2)a-
This shows that H = JL is projectively equivalent to J. Now for some n > 1,

JLn = Ln+1. We see that Hn = (JL)n = (L2)n. By (2.2.1), H ç L2 ç H*. Since

J is a deep reduction of L, H = JL ^ L2. Thus, H ^ H*, as desired.

Since for many ideals I, one can find a projectively equivalent ideal J such that

J is a deep reduction of some ideal L (quite often L = (J)a works), we can use

(3.2) to find an H projectively equivalent to J, and hence also to I, with H ^ H*.

The next result uses a variation of this idea.

(3.3) LEMMA.   Let I = (ai,...,an) where n>2. Let

H = (a3,...,a3n)(a3,...,a3n,a\a2).

Then H is projectively equivalent to I and Hp ^ Hp for any prime P for which

the images o/ai,...,a„ in Rp are analytically independent. (Note that if height

Ip = n, then a\,... ,an are analytically independent in Rp.)

PROOF. Let J = (af,...,a3), and let L = (J,a\a2). Since J Ç L Ç I3 ç
(73)a = (J)a, we see that J is projectively equivalent to I and also that J is a

reduction of L. It is easily seen that H = JL is projectively equivalent to J,

and so H is projectively equivalent to I. Suppose that ai,... ,a„ are analytically

independent in Rp. We need Hp ^ HP. Since Hp = JpLp, and since Jp is

a reduction of Lp, by (3.2) it will suffice to show that Jp is a deep reduction of

Lp. However, (a\a2)2 is in (Lp)2, but is not in JpLp, using that ai,...,a„ are

analytically independent in Rp. Thus JpLp ^ (Lp)2, as desired.

(3.4) COROLLARY.   Letn>2, and let I = (ai,...,o„). Let

H=(a3i,...,a3n)(a3,...,a3n,a\a2).

Let W be a finite set of primes such that ai,...,an are analytically independent

in Rp for all P E W. Suppose also that if Q is a prime minimal over (H : H*)

with (H : H*)q = Qq, then either Q £ W or Q is maximal in W. Finally suppose
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that W n A*(H) = 0.   Then there is an ideal K projectively equivalent to I with

Si(K) = W.

PROOF. By (3.3), we see that HP ¿ HP for all PeW. Thus (H : H*) Ç P for

all PeW. Thus, all the hypotheses of (2.4) are satisfied by H and W, so there is

a K with H Ç K Ç H* and Si(K) — W. Clearly K is projectively equivalent to /,

since H is.

(3.5) PROPOSITION. Let R be local and let the analytic spread of I equal n > 2.

Then there is an ideal H projectively equivalent to I with H ^ H*.

PROOF. We claim that for some m > 1, Im has a reduction B generated by n

elements. It is shown in [HO, Proposition 2] that n is the least positive integer

such that there are elements Ci,... ,c„ in R and positive integers di,...,dn, and

k such that Ik = ^Cilk~di, over I < i < n. It then follows as in the proof of

[NR2, Theorems 3, 4] that if m = di ■••dn,e2 = m/di, and <z¿ = (c¿)e/, then

B — (ai,..., an)R is a reduction of Jm, proving the claim.

Let R(X) = R[X]MR[X]. Then BR(X) is a reduction of ImR(X). Since the

analytic spread of ImR(X) is still n, and since BR{X) is generated by n elements,

the fact that the local ring R(X) has infinite residue field allows us to conclude

that BR(X) is a minimal reduction of ImR(X), and that ai,..., an are analytically

independent in R(X). It follows that ai,... ,an are analytically independent in R

(and that B is a minimal reduction of Im). Let H be as in (3.3). Then H ^ H*,

and H is projectively equivalent to B, and hence to I, and we are done.

(3.6) REMARK. Since for j > 1, (a{,... ,a3n)R is a reduction of Imj, the above

argument shows (a\,..., a3n)R is a minimal reduction of 7mj. Thus infinitely many

powers of I have minimal reductions (even when n = 1).

(3.7) REMARK. Let I = bR with 6 regular and i2 either normal, or as in [N,

Example 2, pp. 203-205]. Then H = H* for any .if projectively equivalent to I.

We know of no other cases of this behavior.

4. Irrelevant prime divisors.

(4.1) DEFINITIONS. (4.1.1) The Rees ring of R with respect to / is R(I) =

R[u,It] where t is an indeterminate and u = t~1. F(R,I) = R/I+I/I2+I2/I3 + -■ ■

is the form ring of R with respect to I. A prime Q in a graded ring is irrelevant if

it contains all homogeneous elements of positive degree. Otherwise, Q is relevant.

(4.1.2) An element b is a superficial element (of degree k > I) for I if b E Ih

and there is an m > 1 such that (In+k : b) Ci Im = I" for all large n. If in fact

jn+k .jj _ jn for ajj n > if we say that h ig strongly superficial.

(4.2) REMARK. It is easily seen that F(R,I) is isomorphic to R(I)/uR(I). If

Q E Spec R, then Q is an irrelevant prime divisor of uR if and only if Q/uR is an

irrelevant prime divisor of zero in F(R,I). The following results can be stated in

terms of either the Rees ring or the form ring. We opt for the former.

(4.3) and (4.5) show the relevance of irrelevant primes to the material discussed

in the previous sections.

(4.3)  THEOREM.   Let I C P e SpecR, and let R = R(I).  Then

(4.3.1) P E Ass R/In for some n > 1 if and only if there is a Q E AssR/wR
with Q n R = P.
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(4.3.2) P E A*(I) if and only if there is a relevant prime Q E AssR/uR with

QC\R = P.
(4.3.3) P E S (I) if and only if (u,P,It) is the only prime divisor of uR which

lies over P.

PROOF. (4.3.1) Let P E Ass R/In. Since unRnR = In, P lifts to a prime

divisor Q of unR. Since u is regular in R, Q E AssR/uR. Conversely, suppose

that Q E AssR/uR. Since uR is homogeneous, there is a homogeneous element

ctk with Q = (uR :ctk). Certainly k > 0, since ctk £ uR. Therefore, P = Q n R =

(uR : ctk)C\R= (Ik+1 : c), showing P E AssR/Ik+1.

Since J is regular, (4.3.2) is proved in [M, Propositions 1.15, 2.2].

(4.3.3) follows easily from (4.3.1) and (4.3.2) and the fact that (u,P,It) is the

largest homogeneous prime in R which lies over P.

(4.4) LEMMA. Let R = R(I), and let m > 1 and k > 1 be integers. When

j < 0, let P = R and P" = R. Then
(4.4.1) umR : (ItR)k has the form £((i"m+fe+n : Ik)nln)tn, over all integers

n.

(4.4.2) umR : (ItR) has the form £((/m+n)* nln)tn, over all integers n.

PROOF. (4.4.1) is straightforward. For (4.4.2), let J(k,n) = (Im+k+n ¡ Ik) n

/", so that umR : (ItR)k = £ J(k,n)tn. Now the sequence (umR : ItR) E

(umR : (ItR)2) E (umR : (ItR)3) ç •■• eventually stabilizes to wmR : (ItR).

Let k be large enough that this stabilization has occurred. Thus umR : (ItR) =

J2J(k,n)tn. It follows that for each integer n, the sequence J(l,n) Ç J(2,n) Ç

J(3,n) Ç • • • stabilizes to J(k,n). However, (2.2.7) shows that this last sequence

stabilizes to (Im+n)*r\In. The result follows.

The reader might be interested in [MR, (2.4)] in which R[u, I*t, I2't2,I3't3,...]

appears.

(4.5) PROPOSITION.   LetR = R(I).  The following are equivalent.

(4.5.1) uR has no irrelevant prime divisors.

(4.5.2) In =/"* for alln> 1.

(4.5.3) i" has a strongly superficial element.

(4.5.4) (In+2 : I)r\In = In+1 for alln>0.

(4.5.5) There is a k > 1 with (In+k : Ik) = In for all n > 1.

PROOF. (4.5.1)=>(4.5.3) If uR has no irrelevant prime divisors, then a fairly well-

known graded version of the prime avoidance lemma allows us to find an element

btk of ItR with btk a nonzero divisor modulo uR. Of course k > 1, and b E Ik. For

all n > 1, unR : btk = unR. Intersecting with R shows that In+k :b = In. Thus b

is strongly superficial of degree k for I.

(4.5.3)=>(4.5.5) Let 6 be a strongly superficial element of degree k for I. For any

n > 1, In Ç (In+k : Ik) C (In+k : b) = J", and so (4.5.5) holds.

(4.5.5)=>(4.5.2) Let (4.5.5) hold, and let n > 1. We claim that for any m > 1,
(In+mk : jmkj — ¡n   -jo see this, we induct on m, the key equation being

ijn+mk . jmk\ _ i/jn + mk . jk\ .   r(m-l)fc\ _ / jn+(m— l)fc .  j(m — l)fc\

the last equality by (4.5.5).  As (2.2.7) shows that for large m we have (In+mk :

Imk) = r', we see that (4.5.2) holds.
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(4.5.2)=>(4.5.4) Since In+1 Ç (In+2 : I) E In+V, if (4.5.2) holds, then (4.5.4)

easily follows.

(4.5.4)=K4.5.1) By (4.4.1) (with rr, = k = 1), we have

uR : ItR = Y,((in+2 : -0 n in)tn

over all integers n. If (4.5.4) holds, then this last expression equals J2 In+1tn = uR.

Thus, uR : ItR = uR showing that ItR does not consist of zero divisors modulo

uR. It follows that (4.5.1) holds.

(4.6) REMARKS. (4.6.1) A direct proof of (4.5.1)<i=>(4.5.2) is easily fashioned

from (4.4.2).

(4.6.2) The arguments for (4.5.2)=>(4.5.4)=K4.5.1) would work as well if (4.5.4)
said that there are positive integers m and k with (lm+k+n : Ik) C\ In — Im+n for

all n > 1 -m. Thus this statement is equivalent to the others. (Note this statement

differs from that of (4.5.5) only by the intersection with /".)

(4.6.3) The equivalence (4.5.1)^(4.5.3) first appeared in [S].

In the following circumstance, we can strengthen (4.5.3).

(4.7) PROPOSITION. Let (R,M) be local with R/M infinite. Then the state-

ments (4.5.1) through (4.5.5) hold if and only if I has a minimal reduction

(¿>i,..., bm)R with each bi a strongly superficial element of degree 1 for I.

PROOF. If (4.5.1) holds, then the proof of [NR1, Lemma 1, p. 152] shows
that / has a minimal reduction (bi,... ,bm)R with bit a nonzero divisor modulo

uR, i = l,...,m. Consider some &,, and some n > 1. Let c E (In+1 : bi).

Then c E (unR : bit) fl R. However, bit is a nonzero divisor modulo unR, and so

c E unRC\R = In. Thus In+1 : bi — In, so that bi is a strongly superficial element

of degree 1 for /. The converse is by (4.5).

Let P be a prime containing /. Then (u, P, It)R is an irrelevant prime of R =

R(J). We consider the interesting question of determining when (u,P,It)R is a

prime divisor of uR. Of course if P is a sporadic prime divisor of /, then (4.3.3)

tells us that (u, P, It)R must be a prime divisor of uR. Furthermore, (4.5) give

us some circumstances in which (u, P, It)R cannot be a prime divisor of uR. We

now consider some other results relating to this question. In what follows, R will

always denote R(I), and P E Spec/? with I Ç P.

(4.8) REMARK. Let S = R- P. Then Rs = Rs[u,Ist] is the Rees ring of Rs

with respect to Is- Also, ((u,P, It)R)s = (u,Ps,Ist)Rs- Thus in studying when

(u, P, It)R is a prime divisor of wR, we may assume that R is local at P.

(4.9) REMARK. The sequence Ass R/I, Ass I/I2, Ass I2 /I3,... eventually sta-

bilizes, and since / is regular, its eventual stable value is A*(I), as is shown in [B]

or [M, Chapter 1].

(4.10) LEMMA. Suppose that for some n > 1, P = (Jn : b) (so that (unR :

6R) Ç (u, P, It)R). Suppose also that (u,P,It)R is not minimal over (unR : bR).

Then for all k > 0, P E Ass R/In+k. If furthermore b E I"*1, then for all k > 0,
P E AssIn+k~1/In+k. (Note that the assumption on (u,P,It)R is fulfilled if that

prime is not a prime divisor of uR.)

PROOF. Since (unR :bR)C\R= (In :b)=P, there is a prime Q of R minimal

over (u"R : OR) with Q n R = P.   Since (u, P, It)R contains any homogeneous
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ideal which intersects R at P, and since Q is a prime divisor of unR, and hence is

homogeneous, we have Q Ç (u, P, It)R. By hypothesis, Q cannot equal (u, P, It)R,

and therefore we must have It £ Q. Yet c E I, with ct ^ Q. For any k > 0,

(unR : b(ct)kR) = ((unR : bR) : (ct)kR) E (Q : (ct)kR) = Q.

Contracting to R shows that (In+k : bck) E P. However, P Ç (In+k ■ bck) since

P = (In : b) and c E I. Thus P = (In+k : bck), so that P E AssR/In+k. If
b E Jn_1, then bck E /n+fc_1, and so P E AssIn+k-1/In+k.

(4.11) PROPOSITION. (4.11.1) If for some n> I, P E AssR/r but P £
AssR/In+1 (respectively, P E Ass r»-1//" but P <£ Assln/In+1) then (it, P, It)R

is a prime divisor of uR.

(4.11.2) If for some n> 1, PE Ass R/In but P £ Assit1//"*, then (u,P,It)R

is a prime divisor of uR.

PROOF. (4.11.1) follows immediately from (4.10) (using the parenthetical state-

ment). As for (4.11.2), suppose that P E AssR/In but P <£ AssR/In\ Yet

<7i Pi • • • n qr fi qr+i H ■ ■ • n qs be a primary decomposition of unR with qi primary to

Qi, and suppose the ordering is such that Qi is relevant for i = 1,..., r. By (4.3.1)

(and the fact that u is regular in R), we see that some of our primes Qi must lie over

P. To prove our result, we must show that for some i = r + 1,..., s, Qi lies over P,

so that Qi = (u, P, It)R. If not, then we may assume that Qi,..., Qw are the ones

lying over P, and that w < r (and we will get a contradiction). Since qi fl R is pri-

mary to QiC\R, and since unRC]R = In, we see that (qinR)D- ■ ■n(qrr)R)r\(qr+ir\

R)C\-- -n((7snÄ) = In. Let J — (qir\R)n---n(qwr\R), so that J is primary to P.

Then Jn(qw+inR)n- ■ ■r\(qrnR)r\(qr+ir]R)r]- ■ ̂(qsDR) =In, and by deleting

redundancies, this will lead to a primary decomposition of In. Since P E Ass R/In,

the J cannot be deleted. Therefore, (qw+inR)r\- ■ ■n(grnÄ)n(<3y+in.R)lT • -nfasHR)
is not contained in J.

On the othei hand, by (2.6), c7i fl • ■ • fl qr is a primary decomposition of unR :

(ItR). Since (4.4.2) shows that (unR : (ItR))DR = I"', we see that (qinR)D-■-n

(qrC\R) = In". Thus Jn(qw+iC\R)D- • -r\(qrr\R) = /"*, and deleting redundancies

leads to a primary decomposition of /" . However, since P £ Ass R/In , we see

that the J must be deleted. Thus, (qw-\-i C\R) C\ ■ ■ ■ fl (qr f\R) ç J. This contradicts

the final sentence of the previous paragraph.

Suppose that /" ^ In" for some n > 1. Then (4.5.1)^(4.5.2) shows that uR

has at least one irrelevant prime divisor, but does not identify any of them. The

next result shows how, in this case, to identify at least one irrelevant prime divisor

of uR.

(4.12) PROPOSITION. Assume I" ± In" for some n> I, and let P be a prime

divisor of (In : In ).  Then (u,P,It)R is a prime divisor of uR.

PROOF. Suppose this is false. Let qi,... ,qw,Qw+i, ■ ■ ■ ,Qr,Qr+i, ■ ■ ■ ,9s, and J

be as in the proof of (4.11.2). Note that since F is a prime divisor of (/" : /"*), P

is a prime divisor of /", and so (4.3.1) shows w > 1 (and w < r by supposition). If

we let L = (qw+iC]R)r\- ■ ■r\(qrnR)r\(qr+inR)r\- --n^sHR), then the previous

proof shows that In = J í) L. However, the second paragraph of that proof shows

that /"* Ç J. Therefore, (/" : In') = (J ClL : In') = (L : In"). Now F is a prime
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divisor of (In : In") = (L : In"), and so P is a prime divisor of L. However, clearly

the prime divisors of L come from among the set Qi fl R, for w + 1 < i < s, and by

the ordering, P is not one of these. This is a contradiction.

(4.13) QUESTIONS. (4.13.1) Does the converse of (4.12) hold? That is, if

(u, P, It)R is a prime divisor of wR, must F be a prime divisor of (In : In" ) for

some n > 1?

(4.13.2) If for some n > 1, P E Ass R/In but P <£ Ass R/In\ does it follow

that F is a prime divisor of (J™ : /"*)? (Example (5.2) shows that the converse

to this question is false, since in that example, F is a prime divisor of each of

(I : I*),I, and P.)

(4.14) PROPOSITION. (4.14.1) [R, (3.3)] There is a prime divisor of uR

containing (u,P,It)R if and only if for some n > 0, /n+1 is properly contained in

inn(in+2 :/)n(/"+1 :P).

(4.14.2) (u,P, It)R is a prime divisor of uR if and only if for some n > 0,

p = (jn+i ; b) for some b E (Jn+2 :I)C\In.

PROOF. (4.14.1) (u, P, It)R is contained in some prime divisor of uR if and only

if there is an element btn E R - uR with (u, F, It)R(btn) Ç uR. Now btn E R - uR

if and only if b E In — In+1 (which requires n > 0). Also, It(btn) Ç uR if and only

if b E (In+2 : I), and P(btn) C uR if and only if b E (In+l : P). Together, these

show that (u, P, It)R is contained in some prime divisor of uR if and only if there

is an element b of R with b E (In 0 (In+2 : I) n (In+1 : P)) - In+1, giving (4.14.1).

(4.14.2) As both the hypothesis and conclusion of (4.14.2) localize well, we may

assume that R is local at P. Now (u, P, It)R is the unique maximal homogeneous

ideal of R, so (4.14.1) shows that (u, P, It)R is a prime divisor of uR if and only if

there is an n > 0 and a b E In n (In+2 :1) n (In+1 : P) with b £ In+1. If such exist,

then b E (In+1 : P) shows that F C (/"+1 : b). However, b (£ In+1 and (R,P)

local shows that (In+1 : b) E P. Thus P = (In+1 : b) with b E In D (In+2 : I).

This shows one direction of (4.14.2). For the converse, suppose P = (In+1 : b)

with b E Inn (In+2 : I). Since (In+1 : b) = P, we have b <£ In+1. However,

b E In n (In+2 : I) n (In+1 : P), and we are done.

Our final result in this section discusses the sequence I* ,I2 ,I3 ,.... We still

assume that I E P e Spec R.

(4.15) PROPOSITION.   (4.15.1) Suppose that 0 < m < n.  Then

/rn*  .  jm~ \ _ / jn*  .  jm\ _ jn — m*

(4.15.2) For n > 1, let J be an ideal with J E /"*.   If P E AssR/J, then
PeAssF-'VJ.

(4.15.3) AssR/P EAssR/I2' EAssR/I3' E---.
(4.15.4) Forn> I, Sn(I) EAssIn'/In.

PROOF. (4.15.1) By (2.2.7), let k be large enough that (In+k : Ik) = /"*. An

easy exercise using (2.2.1) shows that (Im*)(In-m~) Q In*. Thus

jn—m* r~ fjn* . jm* \ r- (jn* . jm\ _ /rrn+k .  rfe'i .  Tm) = ( jn+k . jm+k\ r- jn—m*

by (2.2.7). Equality holds throughout, proving (4.15.1).
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(4.15.2) If n = 1, there is no problem. Let n > 1. If F € Ass R/J, write

P = (J : c) with c E R- J. As c E (J : P) E (J : I) E (/"* : /) = J"-1* by

(4.15.1), we have P E Ass/"_1*/J, as desired.

(4.15.3) Let P E Ass R/In\ We want F € Assfl//"+1\ It does no harm to

assume that R is local at P. Write P = (I71' : c). Thus P Ç ((In')I* : cl*) E

(In+V : cP). We claim that (In+1' : ci*) is a proper ideal, and hence contained

in P. This claim will then show that P = (In+V : cP), so that F E AssR/In+1',

as desired. To prove the claim, suppose it is false. Then c 6 (In+1' : I*) = In" by

(4.15.1). This contradicts that c E R - In".

(4.15.4) Suppose P E Sn(I). We need F 6 Assi""/In. We may assume that

R is local at P. Write P = (In : c). If c ^ /"*, then (/"* : c) is proper, and

hence contained in P. Thus P = (/"* : c) so P E Ass R/In'. By (4.15.3) and

(2.2.5), F e A*(I), contradicting that F E Sn(I). Therefore c E In', so that

PE Ass r"/in.

(4.16) REMARK. Combining (2.2.5) with (4.15.2) easily shows that for all

sufficiently large n, AssR/In = Ass/"-1//™. (This is not necessarily true if / is

not regular.)

5. Examples.

(5.1) EXAMPLE. Let R = F[X,Y,Zi,...,Zn] with F a field and X,Y,ZX,...,

Zn indeterminates, and with n > I. Yet Q = (X,Y)R, and let W be a finite set

of primes of R with each P E W properly containing Q. Then there is an ideal K

projectively equivalent to Q such that AssR/K2 = AssR/K3 = • • • = {Q}, while

AssR/K = WU {Q} (so that S(K) = Si(K) = W). (Note that in this example,

Q" = Q"* for all n > 1.)

PROOF. Let T = F[X,Y], and let q = (X,Y)T, so that R = T[ZU. ..,Zn] and

Q = qR. Yet H = (X3,Y3)(X3,Y3,X2Y)T, an ideal in T. By (3.3) applied to

(X,Y)T,Hq ¿ H*, and H is projectively equivalent to q = (X,Y)T. Using (2.2.5),

we can take m to be the largest integer for which H™ ^ H™*. Let / = HmR. We

claim that / only has one prime divisor, namely Q. As is well known, Q' is a prime

divisor of / = HmR = HmT[Zx,..., Zn], if and only if Q' = q'R for some prime

q' of T with q' a prime divisor of Hm. However, q is the only prime of T which

contains //, hence the only prime divisor of Hm, and so our claim follows. We next

claim that Ip ^ Ip for all F 6 W. Since R is a flat extension of T, the definition

of Hm' shows that /* = (HmR)* = Hm'R. Since Hm ^ Hm' (since this holds

upon localizing at q), I* ^ /. Now for an ideal J, it is easily seen that J ^ J* if

and only if Jp ^ Jp for some prime divisor P of J. As Q is the only prime divisor

of /, we must have Iq / Iq. For any P E W, we have Q E P, and so it follows

that Ip ^ Ip, proving our second claim. This says that (I : I*) E P for all P E W.

Thus we have shown that / and W satisfy one of the hypotheses of (2.7). Since

(/ : /*) = (HmR : (HmR)*) = (HmR : Hm"R) = (Hm : Hm')R, clearly Q = qR

is the only prime of R minimal over (I : I*). As every P E W properly contains Q,

a second hypothesis of (2.7) is satisfied. Furthermore, obviously A*(Hm) = {q},

and so A*(I) = {Q}. Therefore W D A*(I) = 0, satisfying the third hypothesis of

(2.7). By that result, there is an ideal K with / E K E /*, and with SX(K) = W.

We now show that Ass R/K2 = Ass R/K3 = •■■ = {Q}. Let k > 2. From
HmR = I Ç K E I* = Hm'R, we see that HmkR = Ik C Kk Ç (I*)k =
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(Hm")kR E (Hmk)*R. However, by the choice of m, H™k = //gmfc*, and since q

is the only prime divisor of Hmk, we must have Hmk = Hmk'. Combining this

with the above shows that Kk = Ik = HmkR for all k > 2. Since Q is the only

prime divisor of HmkR, we have Ass R/Kk = {Q} for all k > 2, as desired. Since

SX(K) = W, and since Q E Ass R/K (Q being minimal over K), we see that

Ass R/K = W U {Q}. It only remains to show that K is projectively equivalent to

Q, which follows from H being projectively equivalent to q.

(5.2) EXAMPLE. Let F be a field and X be an indeterminate. Let R —

F + X3F[X]. Yet P = X3F[X], and let / = (X3, XA)R. Then I ¿ I* = (I)a = P,

while for all n > 2, /" = /"* = (In)a = Pn. Also, in R = R(7), (u,P,It)R is an

irrelevant prime divisor of uR. Furthermore, «R also has a relevant prime divisor

lying over P.

PROOF. Note that P — (X3,X4,X5)R. Also, since X3R is principal, its integral

closure is X3F[X] f) R = P, using that FLY] is the integral closure of R. Since

X3R E I E P, we see that (I)a = P. Now I2 = (X6,X7,X8)R = P2, so that by

(2.2.1) and (2.2.4), P = /*. Clearly / ¿ /*, since X5 $ I. Now let n > 2. Then
/" = (X3n,X3n+1,X3n+2)R = F". This also equals X3nF[X] DR= (X3nR)a.

As X3nR E /" = (X3nR)a we have (7")a = /". By (2.2.4), /"* = /".

Since P2 = I2 Ç /, we have P E (I : P). Now P is maximal, and (/ : P) is

proper. Thus F = (/ : F) = (/ : /*). By (4.12), (u,P,It)R is a prime divisor of

uR. Furthermore, since height P = 1, clearly P E A*(I), and so (4.3.2) shows that

mR also has a relevant prime divisor lying over P.

(5.3) REMARK. An attempt at a converse to (4.10) would read, if for some

n > 1 and all k > 0, F 6 Ass/"+fc-1//n+fc> then there is ab ER with P = (/" : b)

and with (u, P, It)R not minimal over u"R : bR. We show that this is false.

Let the notation be as in (5.2). Now P = (I : X5), so P E AssR/I. Also, for

k > 2, P = (Ik : X3(*_1>), so F e Asslk-1/Ik. Therefore, with n = 1, we have

P E Ass jn+k-i jjn+k for ajj £ > o. To produce our counterexample, we must show

that for any b E R, if P = (/ : b), then (u, P, It)R is minimal over uR : bR. We

will in fact show that these two ideals are equal. Let m < 0. Then the component

of degree m of uR : bR is just Rtm, which is also the component of degree m of

(u,P,It)R. If m = 0, the component of wR : 6R of degree 0 is (/ : b), while the

component of (u,P,It)R of degree 0 is P. By choice of b, these are equal. For

m > 0, the component of uR : 6R of degree m is ((/m+1 : b) n Im)tm, while for

(u, P, It)R, that component is Imtm. We must show that these are equal. Thus,

we need Im E (Im+1 : b). We first claim that b E P. Since P = (I : b), bX5 E I.

This shows that b has no constant term, which proves the claim. Now Imb Ç ImP.

However, we have /m+1 E ImP E Pm+1 = Im+1, the equality from (5.2). Thus

jmp = jm+i^ and so jmb ç Im+\ showing Im E (Im+1 : b) as desired.

(5.4) REMARK. In (5.2), we have P = (I : X5), and X5 E P = /* so that

F € Ass/*//. However, F E A*(I), so P <£ SX(I). Thus, in (4.15.4), the inclusion

may be proper.

(5.5) EXAMPLE. Let F be a field and let X and Y be indeterminates. Let

R = F + (X3,Y)F[X,Y]. Yet P = (X3,Y)F[X,Y] n R, and let / = (X3,X4)R.

Then I ¿ I* = (I)a, but for all n > 2, /" = /"* = (In)a. Also, F ¿ AssR/In

except when n = 1. Furthermore, in R = R(/), (w, F,/i)R is an irrelevant prime
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divisor of uR, and is the only prime divisor of uR lying over P. (This example is

taken from [B].)

PROOF. Since X3R El E (X3,X4,X5)R = (X3R)a, we have

(I)a = (X3,X4,X5)R¿I.

However, I2 = (X6,X7,XS)R = ((I)a)2. By (2.2.1) and (2.2.4), I* = (/)a. For
n > 2, we easily see that /" = (X3n,X3n+1,X3n+2)R = (In)a = (X3nR)a. By

(2.2.4),/" =/"* = (/")a. Now it is easily seen that F = (/ : X5) but F £ Ass R/In

for n > 2. By (4.4.3), (u, P, It)R is the only prime divisor of uR lying over P.

(5.6) REMARK. Let F E AssR/In but P £ AssR/In+1. Then (4.11.1) shows

that (u, P, It)R is a prime divisor of uR. The easiest examples of this have P E

S (I), as in (5.5). It is harder to give an example with P d¿ S (I). For that,

we need P E AssR/In and F E A*(I), but P £ AssR/In+1. R. Cowsik has an

(unpublished) example of this behavior. (If we drop the restriction that / is regular,

examples are easier.)
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