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THE ASYMPTOTIC BEHAVIOR OF THE SOLUTIONS
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ABSTRACT. Existence of stationary states is established by means of the

method of upper and lower solutions. The structure of the solution set is

discussed and a uniqueness property for certain classes is proved by a gener-

alized maximum principle. It is then shown that all solutions of the parabolic

equation converge to a stationary state.

1. Introduction. Let D c R^ be a bounded, open, connected set with bound-

ary 3D E C1. Denote by x a generic point and let wq E L°°(D), x 6 C1(dD) be

two nonnegative functions. This paper deals with degenerate parabolic problems of

the following type:

(P)

' wt - A$(w) = a(x)f(w)     in Dx (0, T),

w = x ondDx(0,T),

w = w0 in D x {0},

where

(i) $ E C1[0, oo) is an increasing function satisfying $(0) = $'(0) = 0, whose

inverse $_1 is Holder continuous;

(ii) / E Cx[0, oo) is also increasing and /(0) = 0;

(iii) a E Ca(D) is an arbitrary function changing sign in D, a E (0,1).

We shall be interested only in nonnegative solutions of (P). Problems of this type

arise in population dynamics [N, GM] and in reaction-diffusion processess. The

investigations of this paper were motivated by the special case

(1.1) wt - A(wm) = a(x)wp     inDx (0, T)

where m > 1, p > 1 and m > p; this was proposed by Namba [N] as a mathematical

model of population dynamics. The existence of an equilibrium solution for D —

RN was proved in [Sch] and its uniqueness was established in [Sp]. Peletier and

Tesei [PeT] used a shooting method to handle the one-dimensional stationary case;

Pozio and Tesei [PT] studied problems of this type in a more general context.

We first describe the set of equilibrium solutions for a general class of nonlinear-

ities $ and / which includes $(s) = sm and f(s) = sp.

An equilibrium solution of problem (P) is an element w E L°°(D) which satisfies

(1.2) - /  $(w)Ar}dx+(b    <i>(x)^-ds = /  a(x)f(w)ndx
Jd JdD an JD
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for any n E C2(D) such that n = 0 on 3D. By an upper solution of the stationary

problem (1.2) (namely, by an equilibrium upper solution of (P)) we mean any

w E L°°(D) which satisfies (1.2) with the inequality sign >, for any positive n as

above. Similarly, w E L°°(D) is called a lower solution of (1.2) if the inequality

sign is reversed.

The plan of the first part is to use a modified version of the classical maximum

principle to estimate from above the number of the equilibrium solutions. The

existence is then established by means of the method of upper and lower solutions.

In a further step we embed problem (P) in a family of problems (P)^ depending

on a positive parameter A. It turns out that for small and large values of A a

complete picture of the number of stationary solutions can be obtained, whereas

for A ranging in some interval (Ao,Ai) only estimates are available.

Monotonicity methods are also used to investigate the attractivity properties

of equilibrium solutions of (P). Our main result in this respect is that, under

rather mild assumptions on a, all solutions of (P) converge to a stationary state.

A function w E C([0,T]; L1(D)) C\L°C(QT) is called a solution of (P) if it satisfies

/   w(x,T)o(x,T)dx -        [wot+$(w)Ao] dxdt+       dt i    $(x) • -£- ■ ds
Jd Jqt Jo        JdD an

= /   WQ<j(x,0)dx + j    af(w)o(x,t)xdt
Jd Jqt

for all a 6 C2(QT) with o = 0 on 3D x (0,T). Here we have put QT := D x

(0, T), d/dn stands for the outer normal derivative at dD. The local existence and

uniqueness of solutions of (P) (in the above referred sense) is known (see [ACP] and

the references therein). The investigations concerning the time dependent solutions

of (P) rely on the following result [dMST].

LEMMA 1.1. Suppose that Wq and wq are lower and upper solutions of the

stationary problem (1.2) such that Wq < Wq a.e in D. Let w(x,t;wç>) stand for the

solution of (P).

(i) If Wq < wo < wo a.e. in D, then w(-,t;wo) exists for all t > 0 and satisfies

Wq < w(-,t;wo) < wq a.e. in D.

(ii) The mapping t —► w(x,t;w0) is nondecreasing for a.e. xE D. The mapping

t —> w(x,t;wo) is nonincreasing for a.e. x E D.

(iii) w(-,£;u^) converges to a stationary solution w* and w(-,t;wo) converges to

the stationary solution W* (which are the minimal and maximal solutions of (1.2),

respectively, in the interval set K := {w E L°£(D) : w^ < w < wo}) as t —► oo.

The main idea for showing the convergence of all solutions of (P) is to construct

upper and lower solutions such that Wq < wo < wo and to apply the above result.

If the equilibrium solution is unique then it attracts all solutions of (P). This is

the case when a(-) is of constant sign and / o $_1 is concave. However, when a(-)

changes sign many equilibrium solutions may exist. In fact, we have constructed

an example (see §2.3) with infinitely many positive solutions. It turns out that the

stationary states can be classified in a natural way and that in each of these classes

there is at most one solution. This is an important fact for proving convergence.
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2. Stationary case.

2.1. Classification of the solution and uniqueness results. Yet g := f ° í>_1 and

4> := $[x(-)]- If w is a time independent solution of (P), then u :— $(w) satisfies

(in the classical sense)

(Ps) A« + a(x)5(ti) =0     in D,        u = <j>     on 3D.

It follows immediately from the assumptions of the previous section that g has the

following properties:

(A-l) i/eC,u([0,oo))nC1((0,oo))     for some a E (0,1) and

g(s) > 0     for s > 0;

(A-2) g'(s) > 0     for s > 0;

(A-3) g(0) = 0.

In addition, we shall assume that

fS
(A-4) h(s) := /    (l/g(a))da exists      and     h(0) = 0;

Jo
(A-5) g(s)     is strictly concave in (0, oo).

In the first part we shall study the question of uniqueness for the solutions of (Ps).

The case a > 0 has already,been treated by Laetsch [L], who has shown that there

exists at most one nontrivial solution. The same is true when a < 0. Indeed, if there

were two different solutions ui,u2, we would have ui > u2 in D' ED, ui — u2

on 3D'. By (A-2) it would then follow that A(iti - u2) > 0 in D', which implies

Ui < u2 in D'. Obviously this contradicts our assumption.

The situation is more involved when a(-) changes sign. Consider the open sets:

D+ := {xED: a(x) > 0} ,

D- := {xED: a(x) < 0}

and

D° :=int{x ED: a(x) = 0} .

In view of the continuity of a(-), D+ consists of a countable number of connected

components Df ,k E M :— {1,2,... ,r}, where r < oo.

Throughout this paper it is assumed that

,tt-v        all points x E 3D+ H D satisfy an inner sphere condition with

respect to D+.

The following observations were already made by Pozio and Tesei [PT] for a dif-

ferent class of problems.

LEMMA 2.1.   Let u be a nonnegative solution of (Ps).

(i) Either u = 0 or u > 0 in Df.

(ii) lfu>0 in Df, then u>0in~Dfn D.

PROOF, (i) Since Au < 0 in Df, u > 0 on 3Df, u cannot attain its minimum

u = 0 in an interior point unless u = 0 in Df.
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(ii) Let u(xo) — 0 for some xrj € 3Df HD. Since u attains there its minimum we

must have Vti(zn) = 0. On the other hand, in view of (H), Hopfs strong maximum

principle applies which asserts that |Vu(io)| ¥" 0. This proves (ii).

This lemma gives rise to the following classification of the positive solutions of

(P.).
DEFINITION 2.1.  (i) For any subset / Ç M let S/ be the class of solutions of

(Ps) which are positive in Df :— \Jk€I Df.

(ii) N/ denotes the set {u E Sj : u = 0 on D+ — Df}. We are now in position

to formulate the main result of this part.

THEOREM 2.1. Let g satisfy (A-l)-(A-5). Then for any finite I EM, N/ has
at most one element. If I EM. is infinite the statement remains true provided that

D+E({Jk€MDf)UdD.

The proof of the theorem is based on an elementary lemma already used by

Spruck [Sp] in a slightly different context.

LEMMA 2.2. Let e > 0 be a fixed number and u a solution of (Ps). Then the

function U — h(u + e) (h being defined in (A-4)) satisfies

AU = -g'(u + e)\VU\2 - a(x)g(u)/g(u + e).

PROOF. Follows from a straightforward calculation.

PROOF OF THEOREM 2.1. Suppose there exist two different solutions ui,u2 E

N/. Let D' — {x E D: ui(x) > u2(x)}. Since ui = u2 on 3D, we must have

m = u2 on 3D1. Let <7¿ = h(ui) (i = 1,2). Because of the monotonicity of h we

have

(2.1) Ui > U2     in D',        Ui = U2     on 3D'.

Hence there exists a point xo E D' where the difference 6 := Ui — U2 attains its

maximum. Let us now distinguish two cases.

(i) Suppose that U2(xq) > 0 for some xo E D' where 6 takes its maximum.

Denote by V the maximal connected component of the set D[ := {x E D' : U2(x) >

0} containing xo- Then 6 belongs to C2(V) and Lemma 2.2 with s = 0 gives in V

(2.2) A«5 = -g'(ui)\VUi\2 + g'(u2)\VU2\2.

From (A-5) we deduce that

(2.3) g'(ui)<g'(u2)     in £>',

which together with (2.2) implies

(2.4) A6 + g'(u2)(V(Ui+U2),Vö)>0     in V.

Since 6 assumes its maximum at an interior point of V, the maximum principle

entails that 6 = constant in V. It then follows that

(2.5) 0 = V¿ = ^\-^     mV.
g(ui)     g(u2)

Inserting (2.5) into (2.2) we get

(2.6) 0 = Ai=f l^i)   (g'(u2)-g'(ui))     in V.



ASYMPTOTIC SOLUTIONS OF PARABOLIC EQUATIONS 491

From (2.3), (2.5) and (2.6) we then conclude that Vi¿i = Vm2 = 0 in V and

ui = u\,u2 = u2 in V, where u\ > u2 are two positive constants. On the boundary

of V we have either U2 = 0 or U2 = Ui. This implies that either u2 = u2 = 0 or

u2 = Uj. Both cases lead to a contradiction.

(ii) Suppose now U2(xo) = 0 for all xo where 6 achieves its maximum. Let

C :={xED': 6(x) = 6(x0)}.

Note that by assumption U2 = 0 in C; since

(2.7) S = 6(xQ) > 0     in C,

we have Ui > 0 in C. On the other hand, «i E N/ implies ui = 0 in D+ — Df.

Hence by (2.7) and the monotonicity of h we get

(2.8) Cn(D+ -Df) = 0.

According to Lemma 2.1(h) we also have U2 > 0 in Dk C\D Vfc E I. If 3Df <~)3D is

nonempty for some fc E I, we have i¿i = u2, thus 6 = 0 in such intersection. Hence

(2.9) C7nDfc=0     forallfcei.

(2.8) and (2.9) imply that (since / is finite by hypothesis)

(2.10) Cf)D+=0.

C and D are therefore at a positive distance from each other. Then there exists

a connected neighborhood U D C such that U n D =0 and 6(x) > 0 in U. The

monotonicity of h implies that

rnin(ui(a;) — u2(x)) > 0,
u

where W is a connected component of U.

Thus there exists b > 0 such that S(x) < b < 6(xq) for any x E 3W.  For any

s > 0 define

Uie ■= h(u2 + e),        6£ := <7i - U2e-

Clearly 6£ < 6 in D. By the previous remarks there exists e > 0 such that

(2.11) ui>u2+e     inW and 6s(x0) > b.

It then follows that 6e(x) < 6(x) < b < 6e(xo) for any x E 3W. Hence 6£ attains

its maximum at some interior point in W and is not constant in W. On the other

hand, Lemma 2.2 implies, in view of (2.11) and (A-5)

A¿v > -g'(u2 + e)(V(Ui + U2e), V6£) - a(x) (l -   ¡>[U2}    )      in W.

Since W n D    is empty, we have a < 0 in W, and therefore

Aô£ + g'(u2 + e)(V(/7i + U2£),V8£) > 0    in W.

By the maximum principle 6£ cannot achieve its maximum in W unless it is constant.

This is a contradiction, whence the result follows.
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2.2. Existence of solutions in S¡. The results of this section hold under the

following conditions on g:

(A-6) lim g(s)/s = 0     (sublinearity at infinity);
73—»OO

(A-7) g(0) = 0     and   lim g(s)/s = oo     (superlinearity at zero).
73—>o+

Observe that (A-3) and (A-4) imply (A-7).

The next lemma has already been derived in [PT]. Since it is important for our

investigation, we shall repeat its proof.

LEMMA 2.3.   Assume (A-6) and (A-7).

(i) For any M > 0 there exists a stationary upper solution u such that ü > M

in D.

(ii) For any /CM and any open set U such that U E Df, U C\ Df / 0 Vfc E I,

there exists a family of lower solutions up,p E (0,po], such that suppup Ç U,

suppup n Df / 0 Vfc € / and limp_o 11 Mp 11 oo = 0.

PROOF, (i) Let B be an open ball, B D D and £ > 0 be the first eigenfunction

of

(2.12) Ac; + Acf = 0     in B,        Ç = 0     on 3B.

Then £ > e > 0 on 3D, thus by construction we have £ > e in D. Since

M"tYA(vZ)+a(x)g(vO = -A + a(x)'- H,

«„={

there exists by (A-6) a number u0> 0 such that A(i>Ç)-\-a(x)g(u£) < 0 in D, i/£ > <j>

on 3D for all v > uo- Hence vt] =: ü is an upper solution and for v sufficiently

large we have u > M in D. This proves assertion (i).

(ii) For fc E I let Bk be a ball such that Bk C U PI Df and set ak := infßfc a(x).
Consider the function

p£fc     in Bk (p > 0) Vfc E I,

0 elsewhere,

where £fc > 0 is the first eigenfunction of A£fc + A^afc^ = 0 in Bk, ^ = 0 on 3Bk-

Then

— /   unAndx+<f>    (f>——ds— f   a(x)g(u )ndx
Jd JdD   3n fD p

fa UbA Up    J   P JdBk    dn     J     JdD   3n

Vr; E C2(D), n > 0 in D, n = 0 on 3D.

Since dup/dn < 0 on 3Bk and 3n/3n < 0 on 3D for n > 0, it follows for sufficiently

small p, that

[ (u An + ag(u)n)dx- I <p-^-ds > 0 Vr? E C2(D), n > 0 in D, n = 0 on 3D.
Jd JdD   3n

Hence up is a lower solution with the desired properties.

The next result is an immediate consequence of the previous lemma [PT, ACP,

dMST] and the method of upper and lower solutions.
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THEOREM 2.2. Under assumptions (A-l), (A-6) and (A-7) we have for any

IEM\:
(i)S/#0;
(ii) there exists a minimal and a maximal solution u¡ and U¡ in Sj, such that

u¡ <u <U¡ for any other solution uE S¡;

(iii) the maximal solution U¡ coincides with the maximal element o/Sm;

(iv) if the minimal solution differs from Uj, then u¡ E Nj, where I = f]{I' : I1 2

/.N///0}.

PROOF, (i) is a consequence of Lemma 2.3 and the classical method of lower

and upper solutions.

(ii) A proof of this assertion can be found in [PT, Theorem 4].

(iii) Suppose that U¡ ^ /7m- Then U¡ = 0 in Df for some fc E M — /. Since
£/M belongs to S/, it follows from the maximality of Uj that <7m < Uj and thus

C/m = 0 in Df contradicting the definition of l/m •

(iv) We have u¡ < u' for u' E N/< defined above. Hence u¡ = 0 in D^ — Df,

and therefore u¡ E N¡.    Q.E.D.

The maximal solution U := í/m can be constructed by means of a variational

principle. Instead of (Ps) we consider the problem

(2.13) Av + a(x)g(v + h) = 0     in D,        v = 0     on 3D,

where Ah = 0 in D, h = <f> on 3D. Clearly the function u = v + h is a solution of

(Ps). Let

J[w]~ f |Vw|2da;-2 f a(x)G(w + h)dx,        G(s) := [  g(r)dr.
Jd Jd Jo

THEOREM 2.3.   Under the same assumptions as for Theorem 2.2, the following

assertions hold:

(i) the problem

(2.14) J[w] = inf,        wEHl(D),

possesses a solution wo;

(ii) if in addition r < +oo and (A-2)-(A-5) hold, then (2.14) is uniquely solvable

and wq + h = U, where U is the maximal solution of (Ps).

PROOF. The proof of (i) is standard. In a first step we show that J[w] is

bounded from below. Let

f max-T5o(a;)     if a(x) > 0 for some x E D, -
a :— \ h :— maDí-=h(x).

\ 0 if a < 0,

Then for any w E H¿ (D)

(2.15) J[w] >  i \Vw\2 dx-2a j   G(w + h) dx.
Jd Jd

By H. Poincaré's inequality

/   | Vw|2 dx > c0 /   w2 dx     for all w E H¿ (D) (c0 > 0)
Jd J d
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and by (A-6) there exist s0 and ci such that G(s + h) < (cn/4a) • s2 + ci for all

s > so. Hence

(2.16) J[w] >^- [ w2dx-2a f {G(s0 + h) + ci}dx > c2,
2 3d 3d

where c2 is independent of w. Thus there exists a minimizing sequence

{wn}?°=1 C Hq(D)     suchthat   lim J[wn] =      inf      J[w] =: d.
n-»oo wEH¿{D)

This means that for every e > 0 there exists no(e) such that d + e > J[wn] Vn >

n0(e), whence by (2.15)

/   |Vw„|2 dx < C4    Vn > no(s).
J D

We can therefore extract a subsequence {wr¡k}kxL1 such that wnic —► wo weakly in

Hq(D) and wnk —» wo strongly in L2(D). Then standard arguments and Lebesgue's

dominated convergence theorem yield

lim J[wnk] = J[wo],        wq E Hq(D),
k—>oo

which establishes (i). On the other hand, if wo is any solution to (2.14), it follows

from the standard regularity arguments that wo solves (2.13). Thus U := wq + h

is a solution of (Ps). The uniqueness of wq follows as soon as we prove that U

is the (unique) maximal solution of (Ps). Under the additional hypotheses in (ii),

by Theorem 2.1, this is equivalent to prove that U > 0 in D+. By contradiction

suppose that U = 0 in Df for some fc E M. Consider a ball B C Df and let £ > 0
be the first eigenfunction of A£ + A£ = 0 in B, £ = 0 on 3B. Define

{ wo in D — B,
w := {

(  - h + eÇ     in B.

Then

J[w] = J[w0] + e2 i |V£|2 dx-2 [ a(x)G(eÇ) dx.
J B J D

Let a(x) > a > 0 for any x in B and choose e so small that

g(e£) > (2\/a)ed     in B.

This is possible in view of (A-7). Thus G(etl) > (X/a)e2t¡2. Hence

J[w] < J[w0] +e2X      t¡2dx-e2 / a(x)£2 dx < J[w0]
Jb í        Jb

contradicting statement (i). Thus (ii) follows.

2.3. On the number of stationary solutions. Let A E R+ and put a\(x) :=

a+(x) — \a~(x), where a±(x) :— max{0,±o(x)} and a+ ^ 0. The aim of this

section is to study the number of solutions of

(Ps)a Au + a\(x)g(u) — 0     in D,        u = <p     on 3D

for various A > 0. We start with some general remarks about the solutions of (Ps)a-
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LEMMA 2.4. Assume (A-6) and (A-7). Denote by U\ and u\ the maximal and

the minimal solution of (Ps)x in S/, /CM fixed. Then for any 0 < A' < A we

have

(S) Uy > Ux;
(Ü) UX' > Ux-

PROOF, (i) Since aX'(x) > a\(x), it follows that AUx + ay(x)g(Ux) > AUx +

ax(x)g(Ux) — 0. Moreover by Lemma 2.3(i) there exists an upper solution ü > Ux

for (Ps)a'- Hence there exists a solution ü > u > Ux of (Ps)a' and consequently

Ux- >u>Ux-
(ii) We have Auv + o,x(x)g(ux') < Aux> + aX'(x)g(ux') = 0 and by Lemma

2.3(h) there exists a lower solution up < ux; hence there is a solution up < u < ux'

of (Ps)a- Thus ux < u < ux>■ Similarly we obtain for N/(A) given in Definition

2.1 with (Ps) replaced by (Ps)x-

COROLLARY 2.1. If N/(A0) ^ 0 for some A0 > 0, then N7(A) ^ 0 for all

A> An.

COROLLARY 2.2. (i) There exists a constant C independent of X such that

u < C for any solution u of (Ps)a-

(ii) For all X < An and for all solutions u of (P3)x in S/ we have u > ux0, where

ux0 is the minimal solution of (Ps)a0 in S/.

PROOF,  (i) From Lemma 2.4(i) we get u < Ux < Uo, where Uo is the maximal

solution of (Ps)o- In view of our assumption a+ ^0, Uo ^ 0.

(ii) follows from Lemma 2.4(h).

THEOREM 2.4. Assume (A-l)-(A-6) and r < oo. Then there exists a number

An > 0 such that (Ps)x possesses a unique nontrivial solution for all X E [0, An],

which moreover is positive in D+.

PROOF. As we already know from Theorems 2.2 and 2.1, for each A > 0 there

is a unique solution Ux E Sm- Observe that if (Ps)x possesses another nontrivial

solution ux, this one must vanish identically in some Df. Suppose that the assertion

of Theorem 2.4 is false. Then there exists a sequence {Xn}^=1, Xn —> 0, for

n —► oo such that uxn ^ Uxn and hence uxn = 0 in Df . By Corollary 2.2(i)

{ux„}^Li is uniformly bounded. If G(x,y) stands for the Green's function of the

Laplace operator, which vanishes on the boundary, we have for uxn the integral

representation

u\n(x)=      G(x,y)axn(y)g(uxn(y))dy - f    -—(x,y)<p(y)ds       (xED).
JD JdD any

Therefore by Corollary 2.2(i)

\uxn(x) - uXn(z)\ < c0 /   \G(x,y) - G(z,y)\dy[ \G(x,y)-<
3d

fJadD idny 3ny
(¡)(y)ds

where en is independent of A.    The right-hand side of this inequality tends to

zero as x —► z, which proves that {wa„}^Li is equicontinuous.   The lemma of
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Arzelà-Ascoli now applies and we can extract a subsequence, say {ua„}, which

converges uniformly to a continuous function uq- Since M is finite we can choose

this subsequence such that uxn = 0 in Df for some fixed fco E M. Hence Uq = 0

in Df. We next observe that
/Cn

u0(x) =       G(x,y)a+(y)g(u0)dy - ¿     -—(x,y)cf>(y)ds        (xED),
3d 3dD any

which implies that uo is a solution of (Ps)o-  Since (Ps)o has only one nontrivial

solution Uq, which is positive in D+, we must have

(2.16) u0 = 0.

On the other hand, uxn was supposed to be a nontrivial solution of (Ps)a„, hence

uxn > 0 in some Df~. Again the finiteness of M implies that we can choose a

subsequence, say {uxn}, such that ux„ —* «o and uxn > 0 in Df' for some jo E M.

From Corollary 2.2(h) we deduce that uxn > u£ for all An < e, where ue is the

minimal solution of (Ps)£ in S {_,-„}. Thus u0 > u£ > 0 in Df~o, contradicting (2.16).

This establishes the theorem.

REMARK. The next example shows that in general Theorem 2.4 does not hold

if M is infinite.

EXAMPLE. Take D :— {x E R2 : x\ + x\ < 4tt2} and consider the sequences

{cn}£Li, defined by cx := tt, c„ := ^YTk=o 2~k ■< and {nn}%Li, where hn := l/2n+1.

From these definitions it follows that lim„_oo cn = 2tt, limn^^ hn = 0 and c„+i =

cn + 2ithn. Let r = |x| and define

' 4/i2[l -4cos2((r-c„)//zri) - hnsin((r - cn)/hn)cos((r - c^/h^/rï-i-

iî cn < r < cn + 7rhn, n = 1,2,...,

0    if 0 < r < ■k or cn + Trhn < r < c„+i, n = 1,2,...,

or r = 27T,

' 4ftn[l -4 cos2((r -cn)/hn) - hn s'm((r - cn)/hn) cos((r - cn)/hn)/r]~

if cn < r < cn + nhn, n = 1, 2,...,

a~(r) := {  3    if 0 < r < tt,

12hn+i - 12(hn+i - hn)(cn+i - r)/(cn+i - c„ - nhn)

if cn +7rri„ < r < Cn+i.

Consider the problem

(2.17)a Au + aA(x)w1/2 =0    in D,    u = 0   on 3D.

Define

a+(r) :=

u(r) = {

( hi shT((r - cn)/hn) if cn < r < cn + irhn, n = 1, 2,

0    if 0 < r < 7T and cn + irhn < r < cn+i, n = 1,2,...,

or r = 27T

and

un(r) =
u(r)     if cn < r < 2-K,

0 if0<r<c„.
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A straightforward calculation yields

,        (0 if un = 0 or a = a+ > 0,
Aün+axü,/   = i 1/2

I (A — hn)aun        it a = —a    < 0,

which shows that for n sufficiently large, un is an upper solution. By Lemma 2.3(h)

we can construct a lower solution u<un such that u ^ 0 in each connected com-

ponent of D+ n supp ün and u = 0 for r < cn. Hence for any A there exists a

nontrivial solution u < u < ü, whose support has infinitely many connected com-

ponents. This proves that problem (2.17)a has for any A infinitely many nontrivial

solutions whereas (2.17)o has a unique nontrivial solution.

As we have shown in Theorem 2.4, if r < +oo N/(A) is empty for small A and

for any I E M. It seems reasonable to expect that for large A, N/(A) contains an

element. However, this is not always the case, as the following example shows.

Consider the situation in Figure 1.

Figure l

Here N{x}(A) = N{2}(A) = 0, for any A > 0. In fact, if u E N^}(A), by Lemma

2.1(h) we have u > 0 on 3Df and (by continuity) u > 0 at some points in D°. Due

to the regularity of the boundary of D° we assume in this example, the arguments

of Lemma 2.1 apply to D°, too. Hence u > 0 in D°. In particular, u > 0 on 3Df,

which implies it ^ 0 in Df. This contradicts the assumption u E N{!}(A).

Another case where N/(A) = 0 for all A, is when cb ̂  0, 3D E 3Df and j £ I.

In order to prevent such a situation we shall introduce the notion of admissible I.

More precisely, let Y+ := {x E 3D: <b(x) > 0}; then

DEFINITION 2.2. I C M is called admissible if there exist two closed sets

Ci,C2 E D, such that

(i)CinC2 = 0, DfuY+ECi, D^jECr,
(ii) {xED: a(x) = 0} E C, UC2.

THEOREM 2.5. Assume (A-l)-(A-3), (A-5), (A-6) and instead of (A-A) the

stronger assumption1

(A-4)' /   ds/y/G(s) < oo[ ds/^/Gjt
3o

xBy (A-2) we have sg(s) > G(s) and by (A-4)' co = lims_0+ G(s)/s2 = lims^0+ g(s)/2s.

Hence l/g(s) < 1/WG(s) for s < s0.



498 CATHERINE BANDLE, M. A. POZIO AND ALBERTO TESEI

If I E M is admissible, then there exists Ao > 0 such that N/(A) / 0 for all

A> A0.

When proving Theorem 2.5, we shall make use of the following result which

appears in [DH, Sch, PT].

LEMMA 2.5. Let B = {x E Rn : |x| < 6} and g > 0 be an increasing function

in [0, oo) satisfying fj ds/y/G(s) < oo, where G(s) := fQa g(o)do. Denote by ü the

unique solution of

(2.18) Aö = c2g(u)     in B,        ü = 7     on 3B.

Then there exists a number Co > 0 such that u(0) — 0 for all c>cq-

PROOF OF LEMMA 2.5. Consider the ordinary differential equation

z" = c2g(z)  in (0,6).    z(0) = z'(0) = 0,    z(S) > 7.

An elementary calculation shows that this boundary value problem has a solution

if and only if
1      f     dz ,

c > —= /        .- =: c .
V26J0   s/Gjz)

If c > c', for x E B, z([x\) is such that z(\x\) > 7 for x E 3B, A2(|x|) = 0 for x =

0 and, for |x| / 0

N — 1 N — 1   i"'1'
Az = z" + —r^z' = c2g(z) + —— /     c2g(z(s)) ds < Nc2g(z)

\x\ \x\    3o

where the last inequality follows by (A-2) since z is increasing. Consequently,

2(|x|), x E B, is an upper solution for (2.18) with c2 replaced by A^c2. The

method of upper and lower solutions together with the uniqueness of ü implies that

0 < ü < z, hence we have u(0) < z(0) = 0. The assertion is thus established.

PROOF OF THEOREM 2.5. Let Ci,C2 be two bounded closed disjoint sets

related to the admissibility property of I. Then e := dist(Ci,C2) > 0. Taking

S := e/4, the set N :— {x E D~ : dist(x, Ci U C2) > 6} is nonempty and the sets

Di := D n (Ci)s, D2 := D D (C2)s are such that Di U D2 U N = D and Dx, D2:

N are disjoint (here for any A E RN, As := {x E RN : dist(x, A) < 6}).

Let U be the maximal solution of (Ps)a- We shall prove the existence of Ao > 0,

such that for all A > Ao U(x) = 0 for all x E N. Thus the function

Í U     in £>j,

(0      in N l)D2,

is still a solution of (Ps)a and belongs to N¡(\), i.e. N¡(X) ^ 0. Indeed by Corollary

2.2(i), there exists C E R, independent of A, such that U < C. For any x0 E N,

consider a ball B(x0) of radius 6/2 centered at xo- By definition U is the unique

solution to the problem

Ait - Xa~(x)g(u) - 0     in B(x0)(~\ D,
(P~)
v     ' (u = U ond(B(x0)f)D).

Due to the admissibility of I and the definition of N, we have a(x) < 0 for any

x E Ns/2 n D.   Hence the continuity of a implies that a > 0 exists, such that
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a < a~(x) for x E Ns/i H D. Let ü be the solution of Au = Xag(u) in B(0), u — C

on 9B(0). In view of (A-4)', Lemma 2.5 applies to prove that Ao > 0 exists, such

that ü(0) = 0 for any A > Ao- Moreover, for any xo E N, û(x) :— ü(x — xo) (x E

B(xo) !~\D), is an upper solution for (P~). Then a comparison argument yields

0 < U(xq) < ü(xo) = ü(0) = 0 for any xo E N, provided that A > A0 (see [DH] for

details).

COROLLARY 2.3. Assume (A-l)-(A-3), (A-4)', (A-5)-(A-6). Suppose {x E

D: a(x) = 0} Ç 3D+ and dist(Df ,Df) > e > 0 for all k ^ I. Let h be the number

of connected components of D    which do not intersect Y+.

(i) Then for A > Ao, (Ps)x has exactly 2h solutions.

(ii) There exists a number Ai such that for all X > Ai and for all solutions u of

(Ps)a we have u = U in suppw, U being the maximal solution of (Ps)a-

Remark that in Theorem 2.5 r = +oo is allowed, while the hypotheses in Corol-

lary 2.3 imply r < +00.

3. Parabolic case.

3.1. Regions of attractivity. Consider problem (P) of §1. The results of this

section are based on [dMST] and extend some ideas of [PT, ACP] to problem

(P). The aim is to study the asymptotic behavior of the solution of (P). For this

purpose we shall need the following

DEFINITION 3.1. An interval [wi, w2] := {w E L^(D): wi < w < w2} is

called Lp-attractive if there is a set Q E L°£(D) such that:

(i) [wi,w2] E Q;

(ii) for any wq E Q, the solution w(-,t;wo), of problem (P) exists and satisfies

dist{w(-,í;u;o), [«ú, W2]} —► 0 for t —> 00 in LV(D).

In the sequel we shall put w¡ := $_1(u/) and W := $_1(C//) = <É>-1(l/), where

u¡ and U are the minimal and maximal solutions of (Ps) in S/. Since $ is monotonie

we have

(3.1) wi < w < W     in D

for any stationary solution w of (P) which is positive in Df. Yet us denote by

Ck (k = 1,2,... ,h) the connected components of the set {x E D: W > 0} which

do not intersect r+.

THEOREM 3.1.   Assume (A-l), (A-6) and (A-7).

(i) [u)/,iy] attracts all solutions w(-,t;wo) of (P) withwo ^0 in Cfcn(Uî€J Df)

for any k — 1,2,... ,h, in the Lv-sense (p being any number in [1,00) if N > 2 and

p = 00 if N = 1, or if w(x,t;wo) is uniformly continuous in [e, 00) x D for some

e>0).

(ii) If wo < wi and wo ^ 0 in Ck (~l ((Jl€I D+) for any k = 1,2,..., h then

w((-,t; wo) —* wj in LP(D) as t —* 00 (here p is as in (i)).

PROOF. Follows from a suitable application of Lemmas 2.3 and 1.1 (see also

Theorem 8 in [PT]).

COROLLARY 3.1. Under the assumptions (A-l)-(A-6), if r < 00, for any wq ¿è

0 in Df (i E M) we have limt_00 w(-, t; wo) = W, where W is the unique stationary

solution of (P) which is positive in D+.



500 CATHERINE BANDLE, M. A. POZIO AND ALBERTO TESEI

PROOF. The proof is a straightforward consequence of Theorems 2.1 and 3.1. In

connection with the above corollary, it is worth observing that W may be regarded

as "the minimum of the energy" (see Theorem 2.3(h)).

3.2. Global behavior of the solutions of (P). Throughout this section we shall need

the continuity of w(x, t; wo) in Qoo- As it was shown by Sacks [S] and Di Benedetto

[DB], this is true under very general hypotheses. Under this assumption we have

THEOREM 3.2. Assume (A-l)-(A-6) and suppose that M is finite. Then for

any initial condition wo, w(-,t;wo) converges to a stationary solution as t —* oo.

PROOF. Let us first suppose that for each fc E M there exists xk E Df and tk >

0 such that w(xk,tk;wo) > 0. Due to the continuity of w, Lemmas 2.3 and l.l(i)

give w(xk,t;w0) > 0 for all t > max{ti,... ,tr} =: t0. Hence Corollary 3.1 applies

to the function w(-,t + to;wo) = w(-,t;w(-, to;wo)) and yields limt_00 w(-,t;wo) =

W.

Next we consider the case where w(-,t;wo) = 0 in Df for any j = 1,...,q

(q < r), for any t > 0. Then w is a solution of (P) with a replaced by

¿.     i°     inDf (j = l,...,q),
( a     elsewhere;

this problem will be denoted by (P).

Since w(-,t;wo) is a solution of (P), we can argue as in the first part of the

proof. Hence w(-,t;wo) converges to the maximal solution W of (P) as t —> oo.

Since w(-, t; w) vanishes identically in Df U • ■ • U Df for any t > 0, we have W = 0

in Df U • ■ • U Df. Hence W is a stationary solution of (P), too; in fact, W is the

unique solution of Nr9+1,...,,-}.

Corollary 3.2. The statement of Theorem 3.2 remains valid ifWL — 'N,

provided that for any I Ç M, D¡  E (\JkeI Dk ) U 3D.

PROOF. We may assume that for any fc E M = N there exists xk E Df, tk > 0,

such that w(xk,tk;wo) > 0. Otherwise this is true if we replace (P) by (P) as

in the proof of Theorem 3.2, possibly taking q = +oo; the case where M asso-

ciated to (P) is finite follows as in Theorem 3.2. Let us consider the sequence

{WLnW^Li where w, := Win, ■ ■ ■ iMLn := ^{i,...,n}> ■ • • are the minimal solutions (in

S{i},..., S{i,...,n}, ■ • ■ i respectively) whose existence has been proved in Theorem

2.2.

Then {wn}n%1 is nondecreasing and bounded from above by the maximal solu-

tion W. Hence there exists the pointwise limit w < W of {«¿„j^j and an argument

similar to that used in the proof of Theorem 2.4, implies that w_n î w uniformly

and that w is a stationary solution of (P). Moreover w > 0 in Df for any fc E N,

hence w = W by the uniqueness assumption. Hence wn î W and from Theorem

3.1 w(-, t; wo) —> [w_n, W] as t —* oo, for any n E N. Hence the proof is complete.
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