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TOWERS AND INJECTIVE COHOMOLOGY ALGEBRAS

PAUL GOERSS AND LARRY SMITH

Abstract. Let Y be a space of finite type such that H* Y is injective as an unstable

algebra over the Steenrod algebra A and such that H*Y is /(-unbounded. Let X be

a simply connected ^-complete space. Then any map of /(-algebras /: H*QX ->

H*Y can be realized as a map of spaces.

Let Y be a space such that H*(Y,¥p) is injective in the category of unstable

modules over the modp Steenrod algebra A. The purpose of this paper is to

demonstrate that the functor [Y, ] of homotopy classes of maps out of Y is very

rigid.

Let AU be the category of unstable algebras over A and let U be the category of

unstable modules over A. If X is a space, then H*(X, F ) = H*X is an object of UA

and H*X is an object of U. MeUis called A-unbounded if, for every x e M,

there exists an element a ^ A of positive degree so that ax # 0. We will prove the

following result.

Theorem A. Let Y be space so that H*Y is A-unbounded and injective in U. Let X

be a simply connected space of finite type and Xp the Bousfield-Kan p-completion of X.

Then the Hurewicz map [Y,QXp] -* Homvx(H*toXp, H*Y) is onto.

If, in addition, H*(Y,Q) = 0, this may be strengthened: the Hurewicz map

[Y,QX] -> HomVA(H*tiX,H*Y) is also onto.

Since Carlsson's paper [5] and the work of Lannes and Zarati [9], topologists have

learned to recognize many spaces Y so H*Y is injective in U. For example, if G is a

finite group with p-Sylow subgroup (Z/p)k, the H*BG is injective. Further infinite

examples include 2Z?(Z/p)* and any of the many wedge summands of these spaces.

A complete classification of U-injectives is given in [18] and, from this, it can be seen

that the only such injectives which are not ^4-unbounded are the Brown-Gitler

modules. These have been adequately discussed elsewhere (see [6], among many).

An immediate consequence of Theorem A will be the following result. Suppose Y

satisfies the same hypotheses as in Theorem A.
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Theorem B. Let X be a space of finite type andf: H*X -* H*Y a map of unstable

algebras over A. Then there exists a map 0: 27 -> 2 A" so that

0* = 2/: /7*2A" -» #*2T.

The phenomenon of maps out of injectives being realized after suspension is a

familiar one (cf. [6]).

Our results are not limited to loop spaces. For example, we have the following

uniqueness result. Suppose HXY = 0 in the following.

Theorem C. Let Y and Z be two spaces so that H*Y = H*Z in UA, H*Y is

injective in U and such that H*Y is a free graded commutative algebra. Then there is a

homotopy equivalence Yp -* Z .

Examples of such spaces include B(G X (Z/p)k) where G is a subgroup of

G1A.(F ) generated by pseudo-reflections and such that p does not divide the order

of G.

This is an active field of research. For a paper of similar nature, but different

thrust, see [12]. And Jean Lannes has shown that the Hurewicz map [B(Z/p)k, X ]

-» HomUA(//*A* , H*B(Z/p)k) is a bijection for nilpotent spaces X with finite

fundamental group [19]. One would not expect a similar result for most other

examples of spaces with injective cohomology: in addition to being injective in U,

H*B(Z/p)k is injective in UA.

Here is the plan of the paper. In §1 we state some preliminaries. In §2, we prove a

more general theorem than Theorem A, showing essentially that the Hurewicz map

[Y, X] -> HomUA(//*A*, H*Y) is onto for spaces X we call Massey-Peterson spaces,

after the work of those authors in [10 and 11]. §3 applies the results of §2 to deduce

Theorems A and B. Some of the technicalities of this third section recapitulate work

done by Massey and Peterson in [11]. §§4 and 5 are devoted to applications: in §4

we demonstrate that Carlsson's seminal algebraic splitting is realized topologically

and, in §5, we discuss the existence of complex bundles over some of our spaces Y.

Theorem C is proved in §5.

1. Definitions and preliminaries. In this short section, we define our terms and

state some preliminary results. Fix a prime p. All homology and cohomology will be

with F coefficients.

We first define a category U of unstable modules over the Steenrod algebra A.

This is a full subcategory of all graded modules over A subject to the following

conditions. If MeU and x e M, then if p > 2

,     x Pix = 0     if2/>deg(jc),
(1.1)

BP'x = 0     if 2* + 1 > deg(x),

and if p = 2,

Sq'x = 0    if/>deg(jc).

Next let AU be the category of unstable algebras over A. Thus if H* e AU, the

H* is a graded, commutative F^ algebra, H* is an unstable A module, the

multiplication map H* ® H* -» H* is a map of A modules where H* ® H* is
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given the diagonal structure. Furthermore, if p > 2,

(1.2) Pix = xp   if2; = deg(jc),

or, if p = 2,

Sq' x = x2    if i = deg( x).

The cohomology of a space is in AU.

The augmentation ideal functor AU —> U has adjoint U: U —> AU.

Now, let V be a graded F^, vector space and K{V) an Eilenberg-Mac Lane space

with tr^KiV) = F. Then H*K(V) is a Hopf algebra and module of primitives

PH*K(V) is a projective in U. Furthermore, there is an isomorphism in UA:

U(PH*K(V))^ H*K(V).

Because we need it in the next section, we turn now to a definition of Massey and

Peterson [8].  Let  R e AU and UR the subcategory of U specified as follows.

M g UR if M g U and M is an R module; furthermore, the action map R ® M -*

M should be in U. A morphism in UR is a morphism in U preserving the module

structure.

Let UAR be the obvious subcategory of UA consisting of R algebras. The

forgetful functor UAR -* UR has a left adjoint UR( ). The existence of UR( ) is

discussed in [10].

The other tool we need is the algebraic loops functor. Let 2: U -> U be the

obvious degree shifting functor, it has adjoint fi: U -» U. 0, is right exact and has

left derived functors Qs, s > 0. However, Qs = 0 if 5 > 1; see, for instance, [13]. We

will repeatedly use the following observations.

Lemma 1.3. If P g U is projective and M C P is a submodule, then Q,XM = 0.

Proof. Since Q2 = 0, there is an injection fi,M -» QXP. However, QlP = 0,

because P is projective.   Q.E.D.

M g U is of finite type if M" is finite for each n.

Lemma 1.4. // M g U is a trivial A module of finite type, then £2,A/ is a trivial A

module.

Proof. S2x commutes with sums, so it is sufficient to show the result for

M = 2"Fp = H*S". Let P„ = PH*K(Z/p, n) and define Kn by the exact sequence

0 - tf. - Pn !+ 2T, - 0

where / is nonzero. Direct calculation shows that there is an exact sequence

0 -* S'F, -* K„ -* Q,P„ -» Q2"F;, -» 0

where j = np — 1 if n is even or j = np — p + 1 if n is odd.    Q.E.D.

2. Maps of spaces with injective cohomology into towers of principal filiations. In

this section, we describe and prove the principal technical lemma of this paper:

roughly, that if Y is a space whose cohomology is injective in the category U and X

is a space of a special sort, then the evaluation map [Y, X] -> HomAV(H*X, H*Y)

is onto.
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All spaces will be of finite type; that is, H*X will be of finite type.

The first task is to describe explicitly the properties the space X must have.

Definition 2.1. A space A" is a Massey-Peterson space if there is a tower of

principal fibrations.

p,
-*       Xs       -»      Xs_x      -*       ■■■       ->       X1       -»      X0 = KQ

T i, T h
ttKs UK1

and maps fs:   X -> Xs so that  p,fs*=f,-\, the induced map X ->  lim A^ is a

homotopy equivalence and

1. Ks, s > 0, is an Eilenberg-Mac Lane space with w*^ a graded F vector space,
',        p,

2. QKS -* Xs-> Xs_! is the principal fibration classified by a Ac-invariant ks:

Xs_1 -> ATS and /s*, induces an isomorphism H*Xs^1//k* = H*X,

3. for s > 1, there is a module M,eU and an isomorphism in UAR with

R = H*Xs_,//k*

<Ps:H*Xs_x//k*® U(MS)-*H*XS

so that 0 = fs*tys: Ms -> //♦A', and

4. the inclusion of the fiber is: Q,KS -> Xs induces an exact sequence

0 -» N, -> Ms -* PH*&KS

where Ns is a trivial module.

We call such spaces Massey-Peterson spaces because these authors delineated their

advantages in [10]; interesting examples appear there and in [11].

We elucidate the strength of the Definition 2.1. Let us examine the fibration

Because pjs is null-homotopic, H*SIKS is a trivial H*Xs_l//k* algebra. There-

fore, i* is completely determined by 2.1.3 and 2.1.4. Indeed, i* is the composition

H*XS = H*Xs_J/k* ® U(MS)'^ U(MS) -> U(PHJLK,) = H*QK,.

But there is more structure in this fibration. Because it is a principal fibration, H*XS

is an H*QKS comodule algebra. Furthermore, /* is a coalgebra map, where H*Q,KS

is given a coalgebra structure over itself by its Hopf algebra structure. Therefore,

there is a commutative diagram

H*XS       ->        H*SIKS® H*XS

i if J, 1 ® i*

H*QKS      -»      H*QKS® H*QKS.
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We let lp be our name for coactions of any sort. The map Ms -* PH*Q,KS also

determines ip: H*XS -» H*QKS ® H*XS. H*tiKs ® H*XS is given the structure of

an H*Xs_l//k* algebra by concentrating the action on the right-hand factor. Thus

H*ttKs ® H*XS is an object in UAR and the coaction of H*XS is completely

determined by the commutative diagram

M,       '^       PH*QKS ffi Ms

(2.2) I 1

H*XS      -*      PH*SIKS ® H*XS

With these remarks in hand, we come to our main result. We say that M g U is

A-unbounded if, for every x g M, there exists an element aeiof positive degree so

that ax # 0. All examples of U-injectives given in the introduction are /I-un-

bounded.

Theorem 2.3. Let X be a Massey-Peterson space and Y a space so that H*Y is

A-unbounded and an injective object in U. Then the evaluation map [Y, X] —>

HomAV(H*X, H*Y)is onto.

Proof. We identify A* with  lim Xs via the given homotopy equivalence. Let 8:

H *X -» H * Y be a map of unstable algebras over the Steenrod algebra. Our task is

to show that there exists a map g: Y -* X so that g* = 8. Define 8 : H*X, -» H*Y
9

to be the obvious composition H*XS -* H*X^> H*Y. Because of 2.1, it will be

sufficient to prove that there exist maps gs: Y -* Xs so that psgs = gs-i and

6S = g*. This will be accomplished by induction.

To begin, X0 is an Eilenberg-Mac Lane space; hence gQ exists.

Suppose g , q < s, exist and satisfy the specified properties. Because the composi-

tion X -» Xs_, -» Ks is null-homotopic, g*_iA:* = 6s_1k* = 0. So there exists a

lifting g of gs   ,:

Before continuing we note that because gf_xAc* = 0, gf_, gives H*Y the structure

of an H*Xs_l//k* module.

We seek now to suitably modify g. Define g to be the composition

Ms -> H*Xsg-* H*Y.

The first map is given by 3 of 2.1. Define 8S to be the composition

9.
Ms -* H*XS-* H*Y.

Since U is an abelian category, we may form the map

ds-8- Ms^ H*Y.
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Consider the following diagram where the top row is the sequence given by 2.1.4:

0     ->     Ns     -^ Ms -»    J>H*QKS

H*Y*

Because Ns is a trivial A module and H*Y is .4-unbounded (8S - g)j' = 0.

Because 77*7 is injective, a exists. And, because QKS is an Eilenberg-Mac Lane

space, there exists a map a: 7 -» S2A"V so that the following composition is a:

PH*&KS c 77*127^ ̂  77*7.

Define gv to be the composition

aXe

Y -> fi/c^ X A, -+ AT,

where the second map is the action of the fiber on the total space. Certainly

PsSi = Ss-v Furthermore, we have a commutative diagram where the bottom row is

/,*

/© i &+g
Ms        -»       PH*QKS®MS -*        H*Y

■* *■ *    —

//*AS      -^      H*QKS® H*XS     "->g       77*7.

The composition across the top is (0j — g) + g = 8S. Since the composition across

the bottom is a morphism in UAR, where H*Xs_l//kf, 3 of 2.1 implies that this

map must be 8S. Hence g* = 8S. This completes the inductive step.    Q.E.D.

The argument given to prove 2.4 is adapted from one given by the second author

in [15] and by Haynes Miller [12].

3. Fp-complete nice spaces are Massey-Peterson spaces. It is the purpose of this

section to demonstrate that we can apply the results of the previous section to a

whole class of interesting spaces, including the Bousfield-Kan F^-completions of loop

spaces, BU(n), BO(2n + 1), and the classifying spaces of some finite groups. These

spaces, among others, are Massey-Peterson spaces.

First we define the type of spaces we are interested in. Let S() be the left adjoint

of the augmentation ideal functor from graded supplemented F algebras to graded

F^ vector spaces. S(V) is a polynomial algebra if p = 2 and an exterior algebra

tensor a polynomial algebra if p > 2.

Definition 3.1. Let T* be a graded supplemented F^ algebra. Then T* is a

graded complete intersection (GCI) algebra if there exist graded vector spaces V0

and Vx and a coexact sequence of algebras

(3.1a) Fp^S(V1)±S(V0)^T*^Fp

such that S( V0) is a projective S( K,) module.
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The sequence (3.1a) is called a presentation for T*.

A space X will called nice if 77*A" is a GCI algebra. We adopt this terminology

because our notion of a GCI algebra is dual to Bousfield's notion of a nice

coalgebra.

Examples of nice spaces include any space whose cohomology algebra is the

algebra underlying a Hopf algebra, any space whose cohomology is free, or even

such examples as C7>" or RP", if p = 2. The spaces studied by Massey and Peterson

[11] are, of course, nice spaces.

The first point is that if 77 *X is nice, the algebra resolution guaranteed by 3.1 can

be extended to a resolution in UA.

Proposition 3.2. If 77*A" is a GCI algebra, then there exists a coexact sequence in

UA

H*K(Wl) ^ H*K(W0) ^ 77** -+ F,

so that

(1) the composition map of supplemented ¥p algebras

S(W,) -^ H*K(WX) -* H*K{W0)

is an injection,

(2) H*K(W0) is a projective S(WX) module, and

(3) H*K(W0)//d*i = H*K(WQ)//d* a 77*A".

Proof. Let

Fp^S(V1)^*S(V0)^H*X^Fp

be the presentation guaranteed by the hypothesis. If we set W0 = V0, then e can be

extended to a surjective map e*: H*K(W0) -* H*X.

To proceed further let I A be the augmentation ideal of the Steenrod algebra. Then

I A has an Fp basis of admissible Steenrod operations P' or Sq7 if p = 2, 7 =h 0.

Define the e(I) to be the usual excess function. Then we may define W0 c H*K(W0)

by

W0= Span{P'{w)\P' <e 1(A),e(l) < deg(w),w g Wq).

If {wa} is a basis for W0, {P'(wa)\e(I) < deg(wa)} is a basis for W0. Define an

isomorphism of algebras

qp: S(W0) ® S(W0) ^ H*K(W0)

by <p(w)=w if w g W0 and <p(P'(wa)) = P'(wa) - v where v G S(W0) c

H*K(WQ) is an element such that e*(v) = P'e*(wa). That <p is an isomorphism

follows from the usual calculations of the cohomology of Eilenberg-Mac Lane

spaces.
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There is an evident diagram of algebras, with the top row coexact

Fp     -*     S(W0)®S(VX)     X*8     S{W0)®S(W0)     -     77*A"     -     F,

if II

77*7v"(^0) -     77*A"     -»     F^

Vx is as in the presentation of H*X. Define Wx = W0 © K, and 3*: 77*7c"(I^1) ->

7/*7<"(W/0) to be the evident extension of <p(l ® 9). Then we may complete the

diagram to

F,     -        S(WX)        '*3     5(l?0)®5(^0)      -     #**     -      Fp

11 if II

77*7v'(fri)       * 77*A'(W/0) 5      77*A"     -»     F,.

Both rows are coexact. ^(H^) ® S(Wq) is a projective S(WX) module, by hypothe-

sis. Hence H*K(W0) is a projective S{WX) module.    Q.E.D.

Now we can begin to build an unstable Adams type tower for X and this will be

the tower needed for 2.1. Let 77*A" be a GCI algebra and let

H*K{WX) ^ H*K{W0) '-+ H*X -> Fp

be the presentation given by the previous proposition. Define Kx: K(W0) -» K(WX)

and f0: X -* K(WQ) such that Ac* = d* and /0* = e*. Define *, to be the

pull-back, via Ac,, of the trivial path fibration over K(WX). Then there is a diagram

p
Xx - pt

(3.3) /, /        iPl I

X      t       K(W0)      -      K(WX)

with pxfx =/0.
Define a module A/, g U be the short exact sequence

0 -» Mj -> P77*7v(W/1) -* Wj -> 0

where Jf, is given trivial A module structure.

The following two propositions demonstrate that A", is the first stage in a

Massey-Peterson type tower (2.1). Let R = H*K(W0)//kx*. R is isomorphic, via

fQ*,toH*X.

Proposition 3.4. There is an isomorphism in UAR \px: H*K(lV0)//k* ®

U(QMX) -* H*Xxsothatfx*°^x: QMX -* H*Xiszero.

Proof. Consider the Eilenberg-Moore spectral sequence

TorWWi)(F„, H*K(W0)) - H*XX.
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Using the conclusion of the previous proposition, we see that there is a split

sequence of algebras

F, - S(WX) - H*K{WX) - S{WX) -* F,

where Wx = Span{7>/(w)|P/ g IA, e(I) > deg(w),vt> g Wx). Therefore, there is a

spectral sequence

TorS{Wi)[Yp,ToxS{Wi){Fp,H*K(W2))) - TatH.K{Wl)(F,,H*K(W0))

By  3.2(2), (3),

Tariff,, H*K(W0)) a H*K(W0)//k*

and Tor^^fF,, H*K(W0)) is a trivial S(i?,) module. Hence

Torfl,K(VVi)(Fp,H*K(W0)) a H*K(W0)//k* ® TorS{jFi)(F,,F,).

The computation of Tor^^CF , F ) and the differentials in the spectral sequence

are handled in the usual way (see [14, §5], for example). Thus we may conclude that

there is a coexact sequence in UA

F, -> H*K(W0)//k* -i 77*X, '-* U(ttMx) -* Fp.

We now demonstrate that /,* splits this sequence. As in Theorem 6.4 of [14], we

may conclude the following. Let F"1 = F~lH*Xx c 77*A1 be the sub-UR-module

of 77 *A"j given by the first Eilenberg-Moore filtration. Then there is an isomorphism

UR(F~l)^H*Xx.

There is an obvious quotient map in UR q: F'1 -» BM,, where Q,MX is given the

trivial 7? module structure. Define <p: F~l -* H*XX ® U(UMX) by <p(x) = x ® 1 +

1 ® q(x). Then rjp induces a map

UR(<p): H*XX a I/^F"1) -> H*Xl ® U{9,MX).

Define 8 to be the composition

H*XX  ^H*XX ® U(QMX) '-*  77**® U(QMX).

8 is an isomorphism and the following diagram commutes:

77*XX      ^      H*X® U(ttMx)

iff 11 ® «

77*A-      ^ 77*A-

where e is the augmentation. Let \px - 8~l.   Q.E.D.

Proposition 3.5. There is an exact sequence of unstable A modules

0 -» TV, -» 8M, -» P7/*fi/C(iyi)

w/we Af is a trivial A module.

Proof. There is a short exact sequence with Wx a trivial A module

0 -» Af, -» PH*K(WX) -> H^ -> 0
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and hence, the exact sequence

0 -> QXWX -> QMX -* PH*VK(WX).

Now apply Lemma 1.4.    Q.E.D.

We now supply the proposition that will allow us to calculate the homology of

successive stages in the tower.

Suppose we have a finite tower of principal fibrations

u,

(3.5) Xs       *      Xs_x     -+      •••       -       Xx       -     X0 = KQ

T i, T
QKS Q,KX

and maps fq. X -> Xq so that pqfq = fq_x and

(3.6.1) There exists Ms g U and an isomorphism in UAR with R = H*Xs_x//k*

fv: H*Xs_x//k* ® U(MS) -* 77*A"V

so that 0 = /s*fv: M, -» 77**.

(3.6.2) There is an exact sequence in U, induced by i*

0 -» Ns -> Ms -» PH*tiKs

where Ns has trivial A module structure.

Then we may proceed as follows. Define e: Ps + X -* Ms to be a projective cover of

Ms and Ks+l to be an Eilenberg-Mac Lane space so that H*KS+X = U(PS+X). Let

ks+v Xs ~* Ks+, be the extension of e guaranteed by (3.6.1). Define Xs+1 and fs+1

by the following homotopy pull-back diagram:

*,+i       -* *

/v+l   / I/5,,! i

A"        - A, -      Ks + X

Notice that f* induces an isomorphism H*Xs//k*+x = H*X.

Define Ms + X to be the kernel of e. Then we have the following result.

Theorem 3.7. There is an isomorphism in UAR, 7? = H*Xs//k*+x,

*,+ 1: H*Xs//k:+x ® t/(QM1+1) - //*A-V+1,

so that 0 =/,*iV',+i: ^^v + i ~~* H*X. Furthermore, there is an exact sequence

0-+Ns+1^QMs+1^PH*QKs+1

such that A/v+ j « a trivial A module.

Proof. Consider the Eilenberg-Moore spectral sequence Tor,,,^ (F , H*XS) =>

77*A-V+1.

Because 77*A"V is a free module over the image of fc*+1, the usual change of rings

theorems (cf. 5.2 of [14]) imply that

Tor^jF,, H*X,) a H*Xs//k?+1 ® Tor^^F^F,).
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Then, again arguing as in §5 of [14], we get a coexact sequence in UA

Fp -* H*XJ/k*+x -+ H*XS+X -+ U(2MS + X) - Fp.

To produce ^v+1 we argue as at the end of the proof of 3.4 that f*+, splits this

sequence. Finally, the exact sequence

shows that there is an exact sequence

0 -* UXMS -» QMs + l -* QPH*KS + X a PH*ttKs + x.

On the other hand, (3.6.2) implies that there is a short exact sequence

0-*Ns->Ms-*K-+0

where K c PH*QKS. The latter is projective; hence, 1.3 implies fijTC = 0. Therefore

fl, Ms a ttxNs, which is a trivial A module by 1.4 and (3.6.2).   Q.E.D.

The following is now immediate using induction, 3.4, and 3.7.

Theorem 3.8. Let X be a space such that 77 *X is a GCI algebra. Then there exists a

tower of principal fibrations

Ks

ks t

-       K       *      X,-i     -      •••    -      Xx     -»     X0-K0

U T
QKS QKX

and maps f: X -* Xs so that psf — f_x and

(1) Ks, s > 0, is an Eilenberg-Mac Lane space and ir*Ks is a graded Fp vector

space,

(2) There exist A modules Ms G U and isomorphisms in UAR, R = H*Xs_x//kf

+,: H*Xs_x//k: ® U(MS) - 77*X,

so that 0 = f*i>;. Ms -> 77* A,

(3) i* induces a short exact sequence in U

0-»#,-> MS'^PH*QKS

where Ns is a trivial A module.

(4) f* induces an isomorphism H*XJ/k*+x -» 77*X.

In the next two corollaries let A" be a space such that 77*A" is a GCI algebra, let

Xs be as in 3.8 and Xx =  lim Xs. There is an induced map /: X -> Xx.

Corollary 3.9. Ar0O is the Bousfield-Kan F -completion of X.

Proof. Because Xs is ^-complete for each s, it follows from III.6.2 of [4] that we

need only check that lim 77 *A" a H*X,. But this follows from 3.8(4).    Q.E.D.
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Deciding when /*: H*XX -» 77*A" is an isomorphism is more problematical.

From VI.6.3 of [4] we have the following.

Corollary 3.10. If X is a nilpotent space then f*: H*Xrx -> 77*A" is an isomor-

phism.

The hypothesis of 3.10 is satisfied if A" is a loop space or if A" is simply connected.

It is possible to extend the results of 3.10 to any space with finite fundamental

group.

The following is the main technical result of this section.

Theorem 3.11. Let X be an Fp-complete nilpotent space such that H*X is a GCI

algebra. Then X is a Massey-Peterson space.

Proof. /: X -» Xx is a homotopy equivalence.   Q.E.D.

The following result subsumes Theorem A of the introduction, because (QX)p =

S2( Xp) if X is simply connected.

Theorem 3.12. If X is an Fp-complete nilpotent space such that H*X is a GCI

algebra and 7 is a space so that 77*7 is injective in U and A-unbounded, then the

evaluation map [7, A"] -> HomAU(77*A", 77*7) is surjective.

Proof. Combine 2.4 and 3.10.   Q.E.D.

Corollary 3.13. If X is a nilpotent space such that H*X is a GCI algebra and 7 is

a space so that H*Y is infective in U and A-unbounded, and 7 has the property that

77*(7, Q) = 0, then the evaluation map [7, A"] -* HomAU (H*X, 77*7) is surjective.

Proof. Under the hypotheses on 7, standard fracture lemmas (e.g. 1.5 of [13])

imply that [7, A"] -> [7, Xp] is a surjection.    Q.E.D.

To end this section, we supply a proof of Theorem B of the introduction.

Corollary 3.14. Let 7 be a space such that 77*7 is injective and A-unbounded.

Let X be a connected space and 8: 77*X -> 77*7 a map of unstable A algebras. Then

there exists a map f: 27 —> ~^Xp so that f* = 20.

Proof. Define 8 to be the composition

H*Q2Xp ^ 77*A; -^ 77*7

where tj is the unit of the adjunction. By 3.12, there exists a map g: Y -+ W2,Xp so

that g* = 6. Let / be the adjoint of g.   Q.E.D.

4. First application: A topological realization of an algebraic splitting of Carlsson.

In this section we provide an application of the results of the previous two sections.

We prove that an algebraic splitting given by G. Carlsson [5], is in fact given

topologically; this splitting was used to prove a weak form of the Segal conjecture

and showed that H*B(Z/2)k was an unstable injective.
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We must begin by defining the (much-studied) dual Brown-Gitler modules J(n).

We use the notation of [9], which draws on [13]. Define a functor ()* from U to Fp

vector spaces by

(M): = HomFp(M",Fp),        n > 0.

M" is the vector space of elements of degree n in M. This functor is corepresenta-

ble: there exists an unstable A module J(n) g U and a natural isomorphism

(4.1) Homv(M,J(n))^(M)*n.

Because ()* is an exact functor, J(n) is injective in U. Because of (4.1) they could

be considered to be "free" or "cofree" injectives; indeed, we have the following

result of Lannes and Zarati [9].

Proposition 4.2. If K e U is injective, there is a set C of integers and a split

monomorphism K -» YlneCJ(n).

We specialize, for the remainder of the section, to the prime 2.

Let us recall Carlsson's splitting.  If MeU, then Sq" defines a map Sq":

M" -* M2". By dualizing, we obtain a map which we call pn:

(4.4) p„=(Sq'T:(M)*„-(A/)*.

This is a natural transformation of functors and, thus, must be induced by a

morphism in U: pn: J(2n) -* J(n).

We record the following result from [13]. Let ck(ac) be the number of ones in the

binary expansion of the positive integer Ac.

Lemma 4.5. pn is an isomorphism in degrees less than a(2n — 1) + 1.

Carlsson's idea was to consider the following limits.

Definition 4.6. Let n > 0 be an integer. Define

*(«)=  hm{y(2^(2«-l)),p2t(2„_1)}.

Because this sort of inverse limit of a system of injectives is injective, K(n) is

injective in U. See [9].

By the formulas (4.1) and (4.4), we see that there are maps fk: H*BZ/2 -* J{2k)

so that the following diagram commutes:

H*BZ/2      ^      H*BZ/2

I fk: + 1 i fk

J(2k + 1)      "4       J(2k )

Therefore there is a map /: H*BZ/2 -> K{\); the following result is seminal.

Theorem 4.7 [5]. / is a split monomorphism in U.

As a consequence 77*5Z/2 is injective in U. Carlsson extends this result by

showing that there is an isomorphism in U7C(1) ® • • ■ ®7C(1) -> K(n), and, thus,

that there is a split monomorphism (g)  77*7?Z/2 -* K(n). In the same vein, our
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results below can be extended; we invite the reader familiar with, in the words of

Jean Lannes, "Brown-Gitler technology" to perform this extension.

We seek to realize the splitting 4.7 topologically. We first produce a spectrum

whose cohomology is 7C(1). In [2] Brown and Gitler produced 2-complete spectra

T( n) so that

(4.8a) H*T{n) = J(n)

and if 20CAr is the suspension spectrum of a space of finite type, then the evaluation

map

(4.8b) [T(n), 2°°A-] -> Homv(fi*X, J(n)) = H„X

is onto. In [3], Brown and Peterson, following Mahowald, produced maps

(4.9) *„: r(n)-* r(2«)

so that t/>* = pn; in particular, the following diagram commutes:

\T{2n),^X)      -*     Homu(77*A",y(2«))

1  4>T, i  Pn

[T{n),2xX]      -*      Homv(H*X,J(n))

Proposition 4.9. If X is a CW complex of finite type so that Sq*: HkX -* H2kX is

injective for every Ac, then for every even number n, \p*: [T(2n), 2GOA'] -* [T(n), 20CA']

is onto.

Proof. It has been known since Brown and Gitler's original work [2] that the

Adams spectral sequence

Exty(77*A\ H*T(n)) =» [2/-*r(n),S"Jf]

collapsed at E2 for n even and t — s < 0. That the induced map of E2 terms

ty:ExX'/(H*X,H*T(n)) -» Exts/(H*X, H*T(n))

is onto, under our hypotheses, follows from the calculations of Lannes and Zarati

[8], the first author [7], or from lambda algebra calculations using Brown and

Gitler's original techniques. There is an explicit calculation in [7], using ideas of W.

Singer.

The result follows.    Q.E.D.

Now, by (4.8b), there exists a map 82: 7(2) -> 2°°7i(Z/2) so that 82* =/2. Then

using (4.9) and induction, there exist maps 8k: T(2k) -> 2°°7iZ/2 so that 8^ = fk

and the following diagram commutes:

r(2*)       *-$      T(2k + l)

(4.10) igk iek+l

l^BZ/2     ^     2xBZ/2

Define T(l) = lim {T(2k), xP2k}. Then 4.5 implies that 77*T(1) a A"(l). Because

of (4.10) we have constructed a map 8: T(l) -» 2°°7iZ/2 so that

8* = f: H*BZ/2 -» 77*T(1) a K{\).
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Theorem 4.11. 8 is split: there exists a map y: 20CBZ/2 -» T(l) so that 6y is a

homotopy equivalence.

Before proving this result, we state some facts from [6]. For any spectrum 7, let a:

2°°fi0O7 -> 7 be the counit of the adjunction.

Lemma 4.12. (1) a: 20Ofioo27,(2Ac) -* lT(2k) has a section: there exists a map r.

2T(2ac) -» 200S2co27(2ac) so that ot a id.

(2) 7/*S20027,(2ac) is an exterior algebra.

Proof. In [6] it was shown that a: 20Ofi0or(2Ac) -» T(2k) has a section t0. (1)

follows by setting t to be the composition

2r(2Ac) * 2200i2oor(2Ac) -* i2002002r(2Ac).

Because of the existence of t0, the fibration

S2°°2002S200r(2Ac)a^aS2002r(2Ac)

has a section. 77*fio02o02fl0O7'(2Ac) is an exterior algebra, by Proposition 3.5 of [17].

(2) follows.    Q.E.D.

Proof of 4.11. 2°°BZ/2 and T(l) are 2-complete; therefore it is only necessary to

produce a map v: 2°°BZ/2 -* T(l) so that (By)* is the identity in cohomology. We

will produce the adjoint of the suspension of v; that is, a map y,:  27JZ/2 -*

a°°2T(i).
4.12(1) implies that a*: 77*27(2*) -* 77*fi002T(2A:) is an injection; because i//2»:

T(2k) -* T(2k + l) is an isomorphism in cohomology in degrees less than k, a*:

7/*2T(l) -» 77*fi°°2T(l) is an injection. Because the image of 0* lies in the

primitives of 77*fi°°2T(l), there is an injection a*: 77*2T(1) -» 7,77*fi0O2T(l).

Now 4.12(2) and the fact that \p2k ls a Ac-equivalence imply that 77*S2°°2T(1) is an

exterior algebra; hence the composition

7>77*flo02T(l) -^ 77*fi°°2T(l) ^ C2#*^°°2T(1)

is an injection. Therefore we have constructed an injection

j = 7770-*: 77*2T(1) -» £>77*fi°°2T(l).

From [13 or 9] we know that 27/*7?Z/2 is a U-injective; therefore if

g: 2A"(1) a 77*2T(l) -♦ 77*2BZ/2

is any map splitting / (from 4.7) there exists a map g0 making the following diagram

commute:

77*2T(1)        ^       CJ77*fi°°2T(l)

(4.13) . .
i g 1/ go

77*2fiZ/2

where Q denotes the indecomposable functor.
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Define g, to be the composition

77*Q°°2T(1) ̂  QH*tt°°2T(l) * 77*2fiZ/2.

gx is a map of cohomology algebras; hence 3.4 implies there exists a map yx:

25Z/200 -* S2°°2T(1) so that yx* = gx. Define y to be the desuspension of the

composition

2°°Yi a
2°°2fiZ/2 -> 20OQco2T(l) -+ 2T(1).

(4.13) and the definition of j imply that y* = g; the choice of g (from 4.7)

implies that (By)* is the identity.   Q.E.D.

5. Second application: Maps out of a space whose cohomology is a ring of

invariants. Suppose G is a group of order prime to p and r: G -* G1„(F ) a

representation of G. Let 7>n = H*B(Z/p)". Then there is a natural action of G on

P„; let 7*,° denote the ring of invariants. In this section we discuss two subjects. First,

if G is among those groups such that P„G is a free graded Fp algebra, then we show

that any space 7 such that 77*7 a T^0 is essentially unique. Second, for any such G,

we show that if 7 is a space so that 77 * 7 a Prf then the algebraic Chern classes of

Smith and Stong [16], which are invariants of the representation, can be realized as

Chern classes of a complex bundle.

To begin, we will completely clarify the notation. If r is a representation of G,

then r defines an action of G on H1B(Z/p)n a (F )"; we extend this action to all of

Pn by requiring that it commute with Steenrod operations and be an action through

algebra automorphisms.

We are interested in the ring of invariant P° because of the following lemma.

Lemma 5.1. If G is finite and of order prime to p, then Pnc is an injective in U.

Proof. We show that the inclusion Pf -» Pn is split over the Steenrod algebra.

Since Pn is injective, this suffices. Define a map a: Pn -* PnG by

o(x) =\G\     £  gx.

\G\ G Fp is a unit; a is a multiple of the usual transfer and is often called the

averaging map. a is an A module map and splits the inclusion.    Q.E.D.

Next we notice that there exists a space whose cohomology is 7>„c. The representa-

tion r determines an action of G on (Z/p)" and, hence, a semidirect product

G X (Z/p)". The Serre spectral sequence and the assumption that p + |G| im-

mediately imply that H*B(G X (Z/p)") a i>nc. In what follows, however, we may

choose any space with cohomology P„c.

For our first application, suppose that r: G -* G1„(F ) is faithful and reduced and

that the image of r is generated by pseudo-reflections; that is, elements g g Gl„(F/7)

such that 1 - g: (Fp)" -» (Fp)n has rank one.
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Then from [1] we have that

Pf = E(w1,...,wn)®Fp[z1,...,zn]

so that Bw, = z, and deg(z,) ^ 2.

Fix such a G with these stipulations. Let 70 be any space such that 77*70 a Pnc.

Let Z(G, n) be its Bousfield Fp localization. Then we have the following uniqueness

statement, which is Theorem C of the introduction.

Theorem 5.2. Let 7 be any space so that 77*7 a pf. Then there is a map g:

7 —> Z(G, n) so that g* is an isomorphism, g is unique up to homotopy equivalences of

Z(G, n) and is the Bousfield localization of 7.

Proof. The second claim follows from the first and properties of localization. For

the first, because Z(G, n) is local and HXZ(G, n) = 0, Z(G, n) is simply connected.

Thus, again because it is local, it is F -complete. 3.12 now implies the existence of g.

Q.E.D.
Let us return to general G.

We now define the Smith-Stong Chern classes of an orbit [16]. Let V c H2B(Z/p)n

be the kernel of the Bockstein. The action of G on Pn determines an action of G on

V. Let B c V be an orbit of this action. Adjoin to Pn a variable X and form the

polynomial

8b(X)=   U(X+b)^P„[X].
hsB

If k is the number of elements in B, define the <th Chern class c,(7?) to be the

coefficient of Xk~' in fB(X).

Notice that c,(£) g 7>g for all i.

To justify calling these elements Chern classes, we make the following argument.

Let F [yx,..., yk] be a polynomial algebra on generators of degree 2, given the

unique structure as an unstable algebra over A. Enumerate the elements of B; that

is, write B = {bx,...,bk}. Then there is a map of A algebras

(5.3) f:Fp[yi,...,yk]^P„

given by f(y,) = b}. The standard Chern class c, g F [_y,,..., yk\ is the coefficient of

Xk~' in the polynomial

g(x)= n^ + ̂ eF^,.^].
i

Clearly/(c;) = c,(5)-
For any space X, let /„: H*(X\ Z) -» H*(X,Z/p) be the reduction of coeffi-

cients. Recall that k is the number of elements in the orbit B.

Theorem 5.4. Suppose p does not divide the order of G. If 7 is a space so that

77*7 = 7>,G and H*(Y,Q) = 0, then there exists a complex bundle of dimension k,

$BIY, sothati*ci(SB) = c,(B).

Proof. We wish to combine 5.1 with 3.13 to produce a map fB: 7 -» BU(k). To

do this we need only supply an appropriate morphism of cohomology algebras. But

H*BU(k) a Fp[cx,...,ck] c Fp[yx,..., yk] as the subalgebra generated by the Chern

classes.
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Consider the composition

H*BU(k)^Fp[yx,...,yk]ipn

where / is as in (5.3). By the remarks following (5.3) it is clear that this composition

factors as map /: H*BU(k) -* P° followed by inclusion and that /(c,) = ct(B).

Q.E.D.
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