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LINEAR SERIES WITH CUSPS

AND «FOLD POINTS

DAVID SCHUBERT

Abstract. A linear series ( V, if ) on a curve X has an «-fold point along a divisor

D of degree n if dim( V n H° (X, 77 (-D))) > dim(K) - 1. The linear series has a

cusp of order e at a point P if dim( V n H°(X, .£?(-(<; + 1)/'))) > dim(K) - 1.

Linear series with cusps and «-fold points are shown to exist if certain inequalities

are satisfied. The dimensions of the families of linear series with cusps are de-

termined for general curves.

Introduction. Throughout this paper we work over the complex numbers C.

Let A- be a smooth projective curve of genus g. A grd on X is a linear series of

degree d and dimension r on X, i.e., a pair (V, 777) consisting of a line bundle 7£ of

degree d on X and an {r + l)-dimensional subspace Kof H°{X, Si).

When p{g, r, d) = g - (r + l)(g + r - d) > 0, then X has grd's and the family

of g^'s on X forms a projective scheme Grd{X) of dimension > p(g,r,d). Further-

more, if X is general in moduli, then Gd(X) is smooth of dimension p(g,r,d)

[ACGH].
Definition. If D is an effective divisor of degree o 2 on I we say that a gd

(V, <£) has an n-fold point along D if dim(L n H°(X, 77(-D))) > r. We say that a

g'j has a cms/? o/ o/-¿/er e at a point P if it has an (e + l)-fold point along the divisor

(e+ l)P.

The aim of this paper is to prove the following:

(i) If g 7> n, p(g, r, d) — (n — Y)r + n > 0, and p(g, r - 1, d - n) > 0, then

there exists a gd on X with an «-fold point along some divisor D of degree n.

(ii) If p(g, r, d) - (n - l)r > 0, p(g, r - 1, d - n) ^ 0, and D is any divisor of

degree n on À\ then there exists a gd on X with an «-fold point along D.

(iii) If p(g, r, d) - er + I > 0 and p(g, r — 1, d — e — 1) > 0, then there exists a

g¿ on X with a cusp of order e at some point P.

(iv) If A" is general in moduli, then the family of gd's on X with a cusp of order e

has dimension p(g, r,d) — er + 1 if it is nonempty.

Assertion (iv) has been proved independently by Marc Coppens [C].

It is easy to see that the hypotheses p(g, r - 1, d - n) ^ 0 in assertions (i) and

(ii), and p(g, r - l,d - e - 1)^0 in assertion (iii) are necessary if X is general in

moduli.

Received by the editors January 20, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 14H10.

451987 American Mathematical Society

0002-9947/87 $1.00 + $.25 per page

689



690 DAVID SCHUBERT

Our method of proof uses the theory of limit linear series as developed in [EH3]

which generalizes the notion of linear series on smooth curves to curves of compact

type, i.e., curves which are a union of complete smooth curves which meet at

ordinary double points and are such that the dual graph is a tree.

We say that a sequence a = (a0, ...,ar)is of type (r, d) if 0 < aQ < ■ ■ ■ < a, <

d. We say that a grd (V, S7) has vanishing sequence a at P e X if {ordFi \s e V) =

{a,\i = 0.1.r} where ord^i denotes the order of vanishing of s as a section of

H°(X,Sf). We say that (V,S£) satisfies the vanishing condition b at P if it has

vanishing sequence a at P and b¡ < a¡ for ; = 0,1,..., r.

Definition. A limit gd (or limit linear series) on a curve X of compact type is a

collection of gd's (V„J7'j) on each of the components X, of X satisfying the

compactability conditions: If X¡ and Xf meet at P, then there are sequences a' and aJ

of type (r,d) such that a'k + aJr_k = d for k = 0,1,..., r, and (V„ S7,) and (Vp <?/)

have vanishing sequences a1 and a', respectively, at P.

A fundamental result of [EH3] is that if a family /: X -» B of curves of compact

type is sufficiently nice, then there is a quasi-projective 5-scheme Gd(X/B) whose

fiber over a point q e B is a scheme parametrizing limit gd's on X = f~l(q).

Furthermore, every component of Gd(X/B) must have dimension > p(g, r, d) +

dim B. We prove the existence of g^'s with a desired property (such as having a cusp

of order e) by considering the subscheme H c Gd(X/B) parametrizing such g^'s.

We find a lower bound N on the dimension of each component of H. We then show

that on some singular curve in the family there exists a limit gd with the desired

property which varies in a family of dimension N — dim B. The component of H

containing this limit gd must now extend over B.

In §1 we consider subschemes of Gd(X/B) for suitable X and B which parame-

trize gj's with cusps of order e and g¿'s with «-fold points, and we give lower

bounds for the dimensions of the components of these subschemes.

In §2 we show the existence of limit g(y's with cusps and «-fold points on a

singular curve which vary in a family of the "expected" dimension. The results of §1

are then used to show the existence of desired gdys on smooth curves.

In §3 we determine the dimension of the family of gd's with cusps on a general

smooth curve by finding an upper bound for the dimension of the family of limit

gd's with cusps on a singular curve.

We will use the following three notations. If /: X -> y is a morphism and q e Y,

then Xq will denote the fiber of / over q. If F is a vector space, then GrA:(F) will

denote the Grassmannian of /c-planes in V. If D and E are divisors on a smooth

curve, D - E will denote D is linearly equivalent to E.

I would like to thank Ziv Ran for his explanations of the theory of limit linear

series and their application to the topics in this paper.

1. Families of linear series. The following is Theorem 3.3 of [EH3].

Theorem 1.1. Let it: X —> B, px.ps: B —> X be an s-pointed (relative) genus g

curve such that: B is irreducible; tr is flat and proper; the fibers of tr are curves of

compact type; the images of the p¡ are disjoint and in the smooth locus of tt; there
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exists a relatively ample divisor D on X whose support is disjoint from all the sections

p¡(B); and the components of the singular locus of it map isomorphically onto their

images in B.

Let a1,_as be sequences of type (r, d). Then there exists a scheme

G = Gd{x/B,{px,al),...,{ps,as)),

quasi-projective over B, compatible with base extension, whose points over any q e B

correspond to limit gd's on X satisfying vanishing conditions a1,..., as at px,..., ps,

respectively.    Further,   every   component   of  G   has   dimension     > p(g, r, d) —

Remarks on the proof of Theorem 1.1. If the generic fiber of 77: X -* B is smooth,

we have the following situation around a point q e B if we replace B by a

sufficiently small neighborhood of q.

If Y is an irreducible component of X , let YicY(X/B) be the relative Picard

scheme of invertible sheaves whose degree on Y is d and whose degree on each of

the other components of X is 0. Let S7?y be the universal Poincaré line bundle. By

replacing D with a multiple of itself we may assume that it meets each component of

X with high degree. Let DY be the union of the components of D that meet Y. Let

itx and 7T2 be the projections of ^ X ?icY(X/B) to X and YicY{X/B), respectively.

Let G y denote the Grassmannian of (r + 1) planes in tr2^¿'y(ttx*Dy), and let VY be

the universal subbundle on G Y. There is a morphism a such that the following

diagram commutes, where ß and y are the natural morphisms,

Grd{X/B) ^ GY^ YicY(X/B) -* B.

ß

If z e Gd(X/B), then VYa(:) corresponds to an (r + l)-dimensional subspace of

H°(Xßi,),72?YiXj ), and 3?Y\x has degree d on one component Yß{:) of XßU)

and degree zero on each of the other components. Thus a(z) determines a gd on

Yß{z). This is the same gd on Yß{2) as the one in the limit gd corresponding to z. The

component Yß(:) specializes to a union of components containing Y in X

Let E be a relative divisor of degree « on X whose support is disjoint from the

singular locus of it and the support of D. Suppose all the components of E meet Y.

The subscheme He Gd(X/B) of limit g^'s with «-fold points along E is the

inverse image of the points in GY where the vector bundle map VY -* y*Ti2JeTtx6E

has rank < 1. Thus codim(H,Grd(X/B)) < r(n - 1) and H is closed in Grd(X/B).

Corollary 1.2. Let T be an irreducible curve containing a point 0, and let it:

X —> T be a flat family of genus g curves of compact type such that all fibers over

T\ {0} are nonsingular. Let B = X\ {singular points of X0). Then there exists a

closed subscheme H c Gd(X XTB/B) such that the fiber over any point q e B

corresponds to limit gd's on Xvf x with a cusp of order e at q. Furthermore, every

component of H has dimension > p(g, r, d) — er + 2.
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Proof. For any relatively ample divisor E on A" contained in B, let BE = B\E.

Let A be the divisor of the diagonal morphism B¡ -^ X XT BE. By Theorem 1.1 and

the remarks on its proof, there exists a closed subscheme HE c Gd(X X T BE/BE)

parametrizing limit linear series with cusps of order e along A, and

codim( HE, Gd ( X X T BE/BE)) ^ er.

The subschemes HE patch together to form the desired subscheme

H eG'd(XXTB/B).    D

We will call the subscheme H in Corollary 1.2 the subscheme of gr/s with cusps of

order e.

Corollary 1.3. Let T be an irreducible curve containing a point 0, and let tt:

X —» T be a flat family of genus g curves of compact type such that all fibers over

T\ {0} are nonsingular. Let Y be an open smooth connected subset of X0, and let

Z = X()\ Y. Let B = (X\Z)" where the product is fibered over T. Then there exists

a subscheme H c Gd( X X T B/B) such that the fiber over any point (Px.Pn) e B

corresponds to limit gd's on Xm{P ) with an n-fold point along Px + ■ ■ ■ +P„.

Furthermore, every component of H has dimension > p(g, r, d) — (n — Y)r + « +

1.

Proof. For any effective relative divisor E on X whose support does not include

the singular points of X0, let  BE = (X\(Z U E))".  For each i' = l,...,n, let

A, = {( P. ( Px./>„)) e X X T BE \P¡= P }, and let D = LA,, As in the proof of

the previous corollary, Theorem 1.1 and the remark on its proof imply the existence

of subschemes HE which patch together to form the desired subscheme H, and

codim(/L G;,( X X T B/B)) < (n - Y)r.    D

We will call the subscheme H of Corollary 1.3 the subscheme of gd's with n-fold

points.

2. Existence of linear series with cusps and «-fold points. The following is Theorem

4.5of[EH3].

Theorem 2.1. Let C be a curve of compact type, let /?,,..., ps be smooth points of

C,  and let a1,_as be sequences of type {r,d).  Every component of the family

Grd(C,(px,al),...,(pn,as)) has dimension > p(g, r, d) - !0</<r; i<y«.v(fl/ - ')>

and equality holds if each component of C is a general curve of its genus, and the

singular points of C and px,..., ps are general points on the components in which they

lie.

Definition. We say a curve C of compact type and smooth points px,...,ps are

general for d if for any closed connected subcurve X e C and points Qx, ...,Q,e

({ px.ps) n X) U (singular points of C which are smooth points of X) and any

sequences bl, . . . , b' of type (r, e) with e < d, then every component

G'e( X,(QX, bl).(Q,, b')) has dimension

p(8xA,e)-t   í(bf-i)
./ = !   f = l

where the gx is the genus of X.
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We have C general for d if each component of C is a general curve of its genus,

and the singular points of C and px,...,ps are general in the components in which

they lie. This is because there are only finitely many sequences b of type (r, e) with

e < d.

We also have that if C and px,..., ps are general for e and d < e, then a general

member of Gd(C, (px, al),...,(ps, as)) has vanishing sequences a' at each p,.

Lemma 2.2. Let E be an elliptic curve, and let P and Q be distinct points of E.

Suppose a = (a0,..., ar) and b = (b0,..., br) are sequences of type (r, d) such that

for some k wehaveak + br_k < danda, + br_¡ < d - 1 for i + k. Then

Gd(E,(P,a),(Q,b))* 0.

Proof. Note that if ak + br_k = d, then k = 0 or ak - ak_x > {d - br_k) - {d

-1 -br_k+x)>2.
Let /'0 < •■■ < is be the elements of {;' | a, - a,^x > 2 or i = 0). Let js = r + 1

- is, and let j„ = i„ + x - i„ for n < s. Let S?= 6{akP + {d - ak)Q), and for each

« = 0,..., s, let

V„ = H«(E,S7>{-a,P -{d - a,n- j„)Q)).

If « > m, then max{ordF(/) | / e Vm) < min{ordP{f ) \ f e Vn) and

min{orde(/)|/e Vm) > max{ordQ{f)\fe V„), because a,n > a,m + j„, + 1. Let

V = (Bs 0Vn. Then dimK = £dimF„ = T.jn = r+l. Each V„ satisfies the vanish-

ing condition (a,,..., a, _x) at P for n < s, and Vs satisfies (a,,...,ar) at P.

Thus V satisfies the vanishing condition a at P. If k = /„, then Vn has an element /

such that ordP{f) = ak and ordß(/) = d - ak. Thus each Vn satisfies the vanishing

condition {br_, +l,..., br_¡ ) at Q for « < s, and Vs satisfies {b0,..., br_¡ ) at Q.

So we have {v"S7) e Grd(E,(P, a), (Q, b)).   D

Lemma 2.3. Let X be a curve of compact type consisting of a chain of elliptic curves

£,,..., Eg. Let P be a point in Ex, and let Q be a point in Eg such that X, P, and Q

are general for d. Suppose a = (a0,..., ar) and b = (b0,..., br) are sequences of type

(r, d) such that ar — a0 < r + 1, br — b0 < r + 1, and p(g, r, d) — T,(a, — i) —

L(b, - i) ^ 0. Then Grd{ X,(P, a), (Q, b)) * 0.

Proof. We use induction on g.

Suppose g = 1. By replacing the b/s with larger values, if necessary, we may

assume that p(g, r, d) - E(a, - i) - L(b¡ - i) = 0. By replacing d with d - a0-

b0, a, with a, - a0, and b¡ with b, - b0 for i = 0,..., r, we may assume a0 = b0 = 0.

Now L{a, - i) + !(/>,. - /) < 2r, so p{g, r, d) = 1 - {r + 1)(1 + r - d) =

L{a, - i) + L{bi - i) implies that d - r - 1 = -1, 0 or 1. If d- r - 1 = -1, then

r = 0 and a() = b0 = 0, so (H°(C, 0), 0) is a suitable grd. If d - r - 1 = 0, then

d = r + 1, a¡ = b, = i for /' < r, and {ar, è,.} = {/•,/•+ 1}; so Lemma 2.2 applies.

If d — r — 1 = 1, then J = r + 2, and r - min{/'|a, - / > 0} = min{,'|6, - / > 0);

so again Lemma 2.2 applies.
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Now suppose g > 1. We construct (c0,...,cr) in the following manner. If

a,. — a0 = r, then let c0 = a0, and let c, = a, + 1 for i > 1. If ar — a0 = r + 1, let

k = min{/|a, - a0 = i + 1). In this case we set ck = ak and c, = a, + 1 for /' =£ k.

Note that cr < J, because ar = d, r ¿* 1, and ar-a0</-+l would imply that

£(a, - 0 > (/■ + 1)(¿ - r - 1) + 1 > p(g, /•, a") since g > 2.

There is a g'd Lx on £\ with vanishing sequences a at P and (¿/ - cr,...,d- c0)

at R = Ex n £2 by Lemma 2.2. We always have cr - c0 < r + 1 and Lc, - La, = r.

Thus

P(g-l,r,rf)-líe,-«)-E(¿,-0

= P(g, r,a-) + r - £(c,. - i) - £(*, - 0

-p(g.',«0-I(aí-0-E(6í-0>0,

so the induction hypothesis implies that there exists a limit gd L2 on E2 U • • • u£

with vanishing sequences cat Ä and b at (X Now Lx and L2 determine a point in

G'd(X,(P,a),(Q,b)).   D

Lemma 2.4. Lei Xand P be as in Lemma 2.3. Suppose a = (a0,..., ar) is such that

ar - ax < r,

p(g,r,d)~ tia,-,)>0,
( = 0

a«a"

r-l

pig.'-- i,¿/ - «,) - E (a,+i - ai - 0 > °.
1 = 0

ThenGrd(X,(P,a))± 0.

Proof. We use induction on g. If g = 1, then (//0(A, 0((r + 1)P)), 0(a7>)) e

G¿(A\ (7\ a)) provided that ar_: < a" - 2. This holds, because otherwise ar - a, ^ r

and p(g, r — 1, d — ax) — Z-I¿(a, + 1 — a1 — /) > 0 would imply

r-i

0 < r{d- ax -(r - 1)) -(r - 1) - I (a,+1 - i) + ra,
( = 0

< r(i/- r) + 1 ~(r(d- r) + 2) = -1.

Suppose g > 2. If ar — a0 < r + 1, then we are done by Lemma 2.3. Assume

a0 < ar — (r + 2), and note that this implies a0 < a, - 2. We construct a sequence

c = (c(),..., cr) of type (r, J) in the following manner. Let c0 = a0 + 1. If ar - a!

= r - \, then let c, = a, and let c, = a,■+ 1 for i > 1. If ar - ax = r, let £ =

min{/|a, - ax = /'}, and let cA = a¿ and c, = a, + 1 for i + k. The conditions

ar - a, < r - 1 and p(g, /• - l,a" - a^ - L-Z1(a,+1 - ax - i) > 0 imply cr < J

by an argument similar to one in the proof of Lemma 2.3.

We always have cr — c, ^ r,

r r r r

E f, - E a, =r and   E c,■ - E a,■ = »■ - i-
i=0 i=0 1=1 i=l
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Thus
r r

p(g-l,r,d)- Lic,-i) = p(g,r,d)- E (fl,-0>0,
i=0 i=0

and
r-l

p(g- l,r- l,d- cx) - E (c,+i - cx - i)
i=0

r-l

= p(g,r-l,d- ax) - E (ai+i - «i - 0 > °-
1 = 0

Hence, the induction hypothesis implies that there exists a limit gd on E2U ■ ■ ■ UEg

with vanishing sequence c at R = Ex n E2. The lemma now follows, because there

exists a gd on Ex with vanishing sequences a at P and (a" - cr,..., d - c0) at R by

Lemma 2.2.   D

Theorem 2.5. Let C be a smooth curve of genus g. Let e and r be integers ^ 1.

Suppose p{g, r, d) — er + 1 > 0 and p{g, r — 1, d — e — 1) > 0. L«e« there exists a

gd on C with a cusp of order e.

Proof. If g = 0 or 1, the existence of a cusp of order e follows from

p{g,r-l,d- e-l)>0   and    h°{S7'(2p)) > hQ(S7>)

itde%S?> 0.

Assume g > 2. Let C0 be a curve of compact type consisting of a chain of elliptic

curves L,,..., Eg, and let C0 be general for d. Since C0 is stable in the sense of

Mumford and Deligne, there exists a flat proper family of curves tt: X -» T such

that T is a smooth connected curve, the fibers of tt are nonsingular except over a

point 0 e T where X0 = C0, and there is a point a e T where Jf9 = C. Let

5 = A\ {singular points of X0), and let H c Gd(X X r B/B) be the subscheme of

g^'s with cusps of order e. Corollary 1.2 says that every component of H has

dimension > p(g, r, d) - er + 2. We have H\H0 is projective over T\ (0},

because it is a closed subset of Gd(X XT B/B)\Gd(X0 X B0/B0) which is projec-

tive over T\ {0}. Thus the theorem will follow when we show that there exists a

component of H0 with dimension p(g,r,d) — er + 1 because then this component

must extend over T.

Let P be a point in Ex such that P * Q = Ex D E2. If (Vx, Sfx) is a grd on Ex

with a cusp of order e at P and satisfying b = (d-e — r-l, ...,d—e— 3, d-e

- 1, a") at Q, then we must have S7X = &(dQ) and

Vx = H°{EX, S7'x(-dQ)) © H°{EU Sfx{-(e +l)P-{d-e-r- 1)0)).

This linear series {Vx,Sfx) will have vanishing sequence Z> and Q if and only if

(e + l)P ~ (e + 1)Q, and there are only finitely many of such points P.

Yet a = (d - br,..., d - b0) = (0, e + 1, e + 3,..., e + r + 1). Now
r

p(g- l,r,d)- Yi{ai-i) = p{g,r,d) + r-(e+ l)r + 1
f=0

= p(g,r,d) -er + l>0,
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and

p(g-l,r-l,d-(e+l))- E(«, + i-ai-0
/ = o

= p{g,r- l,d-{e+ 1)) + r - 1 -(r-l)

= p(g,r - l,d-(e + 1)) > 0.

Thus Lemma 2.4 implies that there exists a nonempty irreducible family F of limit

gj's on £2 U • • • UEg with vanishing sequence a at Q. Further, this family F has

dimension p(g - 1, r, d) - E(a, - ;') = p(g, r, d) — er + 1, because C0 is general

for d. Now F and (Vx, Sfx) as described above for some point P with P ~ (e + 1)Q

in Ex form a component of H0 with dimension p{g, r, d) - er + 1.    D

Lemma 2.6. Le/ (V,Sf) be a gd on a smooth curve satisfying conditions a =

(a0,..., ar) and b = (bix,... ,br) at points P and Q, respectively. Then there exists a

basis {s0_, sr) of V and a permutation a of {0,...,/-} such that ordP(s¡) ^ a, and

ordQ(Sj)> b„0) for i = 0,...,r.

Proof. We may assume that a and b are the vanishing sequences for (V, Sf) at P

and Q, respectively. We can choose t¡ e V successively so that ordP(r,) = ar_, and

ordg/, =* ordQtj for j < i. This is so, because if ordP(t) = ar_,, then ord^(r - at,)

= ar_, for any a e C and j < i. So, if ordg(r-) = orde(i), then there exists a e C

so that orde(? - atf) > orde(f •). Now let s¡ = t,_¡ for / = 0,..., r.    D

Lemma 2.7. Let E be an elliptic curve containing points P and Q such that E, P, and

Q are general for d. Then:

(i) mP ■*■ mQ for 0 < m < d; and

(ii) If a and b are sequences of type (r,d) such that

o(l,r,d)-L(a,-i)-L(b,-i) = 0,

then (V,S7) e Grd(E,(P, a), (Q,b)) implies that S?= 6(mP + (d - m)Q) with

0 < m < d.

Proof. Suppose assertion (i) is false. Let JS?= 6(mP). Then

{Hl)(S7(-mP)) ®H°(X(-mQ)),Se) e Glm{E,{P,{0,m)),{Q,{0,m)))

contradicts E, P, and Q are general for d, because

p(l,l,w) - 2{m - 1) = 2{m- 1) -1 - 2(w - 1) = -1.

Assertion (ii) will hold if there exists an s e V such that ord,>(s) + orde(i) = d.

By Lemma 2.6 we may choose a basis s0,...,sr such that ord^i,) = a, and

ord As,) = bnU) for some permutation a of {0,..., r}. Then

o = p(i,r,<0-E(fl/-i)-E(*,-0

= (r + l)(d -r)-r+(r+l)r- £(fl/ + b0(l))

= (r+l)(d-l) + l-Z{a, + ba{i)).

So ak + bn{k ) = d for some 0 < k < r.    D
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Lemma 2.8. Let n and r be > 2. Suppose a = (an,..., ar) is a sequence of type

(r, d) such that a,._x - a0 < r, a,. = d, and p(n, r — 1, d — n) — E-Z1(a, - i) = 0.

Then there exists a smooth curve C of genus n containing a point P with the following

property. Let B = (C\{P))", and let H c Gr(C X B/B) be the subscheme of gr/s

with n-fold points. Let p: B -* C X B be the morphism which sends Q to (P,Q). Then

A = H n Gd(C X B/B, (p,a)) contains an isolated point, and the gd on C corre-

sponding to this point has vanishing sequence a at P.

Proof. There is a smooth connected curve T containing a point 0, a flat proper

family of curves /: X -» T and a L-morphism g: T -» X such that: XQ is a curve of

compact type consisting of a chain of curves Yx,...,Yn_x where Yx is genus 2 and Y¡

is elliptic for / > 2;

g(0) = Pn is a smooth point of Y„_x such that X0 and P„ are general for d;

X  is nonsingular for q e T\ {0); and

G';r-l( Xr (8iq\ («o. • • • - «r-1») « finite for all a e T.

Let   a'= (a0, ...,ar_x),   and   let   ¿> = {b0,..., 6r_j) = (1,2,4,5,..., r + 1).

Let P,= Y,_x n Y¡ for ; = 2,...,«- 1. There exists a limit linear series L2 e

G'jZ),{Y2 U • • • uy„_,,(P„, a')(Px, b)) by Lemma 2.3. If AT is a canonical divisor on

Yx, then Lx = (H°(YX, 0(K + (r - 1)P2)), &(K + (d - n - 2)P2)) is a linear series

in Gdz),{Yx,{P2,{d - br_x,...,d- b0))). Thus Lx and L2 determine a limit linear

series L in G;i¿(X0,(.P„,a')). Let Z be a component of G'dz),{X/T,{g, a')) which

contains L. Since X0 and £„ are general for d, Z0 is finite. Hence, Theorem 1.1

implies that dimZ = 1, and Z extends over T. If we replace T by a suitable base

extension, we may assume that there exists a L-morphism <i>: L -> Z. Hence, for each

irreducible component Y¡ of -¥,,, we have morphisms T -» Z -» PicJi^AyL) where

for each a^O in T i¡>(<$>(q)) corresponds to the line bundle of the linear series

corresponding to </>(a), and i|/(<i>(0)) corresponds to a line bundle on X0 whose

restriction to Y¡ is the line bundle on Y, in the limit linear series L. Let 777 on X be

the line bundle associated to the map \p ° <j>. Let ^# = &x(dg(T)) ® Jf \ and let

^#   = J{\ x  for each q e T.

Claim. There is an open subset Ue L\{0} such that if q e U and se

H°( X , J(' ) is nonzero, then í does not vanish on g(q).

Proof of Claim. Let i\ denote the generic point of T. It is sufficient to show that

if * e H°(Xv,^n) is nonzero, then s does not vanish on g(r¡). The section s

extends to a section in H°(X, J7(E)) where the support of E maps to a finite set of

T, and all components of the support of the divisor D of relative degree « associated

to s map onto T. The claim will follow when we show that D induces a divisor of

degree > 2 on Yx \ {P2}, and that D meets each Y¡ \{Pi,Pj+x).

For each Y¡, we have line bundles Jf¡ and 077¡ on Y¡ induced by considering the

maps T\ {0} -* YicYLn(X/T) and T\ {0} - Pj'(X/T) that come from Of and

077(D), respectively. Since Of(D)\x = <P(dg(ij)), it is easy to see that Of/ =

&Y(dP, + x) for each i. The line bundles Ot~i are the same as the line bundles of the

limit linear series L on X0.
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We have Of( = 0YfdP2) and Ofx = Ofx{mP2 + Dx) where Dx is the intersection

of D with Yx \ (P2}'and m + degDx = d. Now 0fx = 0{K + {d - n - 2)P2), so

0{K + Dx) = 0((d - m + 2)P2). If Dx = 0, then K ~ 2P2. This is impossible,

because X0 is general for d implies that G\{YX,{P2, (0,2))) = 0. If degDx = 1 then

H°(0(K)) = H°(0(K + Dx)) = H°(0(3P2)) implies that Dx = P2 and K ~ 2P2

which is impossible. Thus deg Dx > 2.

For each / > 2 we have Of, = 0(mjPj + (d - m,)Q) with 0 < m, ^ d by Lemma

2.7. Also, Of,' = 0(dPl + x) = 077,(s,P, + t,P, + x + D,) where D, is the intersection of

D with Y,\ (P„ P, + x), si > 1 and t, > 0. Now deg Di ^ 1, because Lemma 2.7

implies s¡P¡ ~ (d - t¡)Pi + x. Hence the claim holds.

Let C = Xq for some q e U. Yet P = g(q), and let Sf= Of \c. Note that

h°(C,0(dP) ®if"') < 1, because \0(dP) ®ST"1] = \J7q\ contains a divisor with P

in its support if dim\0(dP) ® S7~l\ > 1 [FL]. Thus there is a unique divisor D on C

such that 77(D) = CV(dP), and £ is not in the support of D. We have a natural map

A=Hn Grd{C X B/B, (p,a))-*B^ Pic,_„(C)

where 8(PX.P„) corresponds to 0(dP - LP¡). The image of A in Yicd_„(C) is

finite, because it corresponds to line bundles of linear series in GdZl„(C,(P,a'))

which is finite. Let V c H°(C, S7) be the subspace with vanishing sequence a' at P,

and let s e H°(C, Sf(D)) be such that ordP(s) = d. Then (V + s, Sf(D)) lies in A,

and the fiber over Yicd_„(C) containing it is finite. Hence (V + S,Sf(D)) is an

isolated point of A.   D

Theorem 2.9. Let C be a nonsingular curve of genus g ^ « > 2, awrf /e/ r > 2. //

p(g, r, a") — (« — l)r + « > 0 and p(g, r — 1, d — n) > 0, Z«e« /«ere ex/s/s a g¿ on

C with an n-fold point.

Proof. If g = «, then p(g, r — 1, d — n) > 0 implies that there exists a

g^I^F, ^) on C Choose P e C so that <S?3é 67((a" - n)P). There exists a divisor D

of degree « such that Sf(D) = C(a"P). Choose s e H°(C,Sf(D)) such that ord^i

= d. Now (V + s, Sf(D)) is the desired linear series.

Suppose g > «. We can choose a curve of compact type C0 consisting of a chain

of curves Y0,..., Yg_n where y"0 and Q = Y0 O Yx are as C and P are in Lemma 2.8,

YX,...,Y are elliptic, and Tj U • • • U Yg^„ and Q are general for d. Let 50 =

T0\ {Q}, and let //0 c G^(C0 X B0/B0) be the subscheme of g^'s with «-fold

points. An argument similar to one found in the proof of Theorem 2.5 shows that

the theorem will hold if there exists a component of H0 of dimension p(g,r,d) -

n(r - 1) + n.

We can choose a sequence a = (a0,..., ar) so that ar = d, ar_x — a0 < r, and

p(n, r — 1, d — n) = E^Z¿(a, — /'). Now Lemma 2.8 applies to Y0, Q, and a, so

there exists an isolated L in the space of gr/s on Y0 with an «-fold point along a

divisor whose support does not contain Q and with vanishing sequence a at Q.
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Let b = (b0,_br) = (d - ar,...,d - a0). Then

t(bi-i)=  t(d-ar_¡-i)=  Í(d-a,-r + i)
i = 0 i = 0 i = 0

= r(d-r)-  E(a,-0
; = 0

= r{d - r) -[n - r{n +{r - 1) -{d - n))]

= -n + r(2n — 1),

and

E(*,+i-0=  Í(b,-i+l)-b0-l
i=0 /=0

r

= r +  E (bj - 0 = ~n + 2rn.
; = 0

So

p(g - n,r,d) -  E {bj~ 0
/ = o

= g — n —(r + l)(g —n + r — d) + n — r(2n — 1)

= g -(r + Y)(g — n + r — d) - 2rn + r

= g — (r + l)(g+ r — d) +(r + n)n — 2rn + r

= p{g, r, d) - r{n - 1) + n > 0,

and

r-l

p(g - n,r- l,d- bx)-  E (¿>,+i ~ bx - i)
i=0

= g — n — r(g — n + r — I — d + bx) + rbx + n — 2rn

= g - r(g + n + r - 1 - d) = p(g,r - \,d- n) > 0.

So Lemma 2.4 implies that there exists a family Lof limit g^'s on Yx U • • • U Yg_n

with vanishing sequence b at Q. This family has dimension p(g — «, r,d) —

T.(b¡ — i) = p(g, r, d) — r(« — 1) + «. Now L and F determine the desired compo-

nent of H0.    D

Theorem 2.10. Let C be a curve of genus g, and let D be a divisor of degree n > 2

on C. If r ^ 2, p(g, r, d) — r(n - 1) > 0, and p(g, r — 1, á — n) > 0, /«e« /«ere

eje/s/s a gd on C with an n-fold point along D.

Proof. If g = 0 and h°(C, Sf) > 1, then h°(C, S7(D)) > h°(C,Sf), so the theo-
rem holds in this case.

Suppose g > 1. As in the proof of Theorem 2.5, there exists a smooth connected

curve T containing a point 0 and a flat proper family of curves tt: X -> T such that

X  is nonsingular for q =7 0, X = C for some q e T, X0 is a curve of compact type
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consisting of a chain of g elliptic curves Yx,..., Y , and X0 and P are general for d

where P e Yx. Let B = X\(Y2 U ■ - - U Y„). Let H eGrd(XxT B/B) be the sub-

scheme of g'/s with «-fold points. The fiber of H over (P, P,..., P) e B is

G = Gd( Xo,(P,(0, n,n + 1,...,« + r — 1))), and has dimension p(g,r,d) —

(« - l)r, since it is nonempty by Lemma 2.4. The component of H containing G

has dimension ^ p(g, r, d) - (n - l)r + « 4- 1 by Corollary 1.3 so it must extend

over an open subset of B. The theorem now follows, because H is projective over

L\{0}.    D

Linear series with a cusp on a general curve. In this section we show that if X is a

smooth genus g curve which is general in moduli, then every component of the

subscheme H c Gd( X X X/X) of g^'s with cusps of order e has dimension

p(g, r,d) — er + 1.

The following combinatorial fact is Lemma 1.4 of [EH1].

Lemma 3.1. IfaQ< ■ ■ ■ < ar and b0 < ■ ■ ■ < br, and if for some permutation f of

(0,..., r} we have a, < ¿y(/) for i = 0,..., r, then in fact a, ^ b¡ for i = 0,..., r.

Further, if for some i we have a i = b¡, then f (i) = i so that a, = ¿y(/) as well.

Lemma 3.2. Let S£ be a line bundle of degree d on a smooth curve C which contains

points P and Q. Let a be a permutation of {0,_r}, and let n = # {/1 a(i ) > r — i}.

Let a = (a0,.,., ar) and b = {b0,..., br) be sequences of type {r,d). Then the

rational map

<D: Ó P(H°{c,Sf(-a¡P - bol¡)Q))) - Grr+X{H°(C, S7))
i=0

which sends (s{),... ,sr) to the (r + l)-dimensional subspace spanned by s0,..., sr has

all its fibers of dimension  > « wherever it is a morphism.

Proof. For ease of notation we will let X, denote P(H°(C,S7(-aiP - ba(j)Q)))

for i = 0,.... r and we will let Gk denote GrA(«°(C, £?)) for k = 1,..., r + 1.

We use induction on n. There is nothing to prove if « = 0.

Suppose n > 1. Yet k = max{/|a(/) >/•—/}. Note that k > 1. We have the

following factorization of 3>.

nx,-+Gkx nx,-Gk+Xx n x,.-»Gr+X.
/=0 /-A i=k+l

The rational maps a, ß, and y are defined in the obvious manner. Let S be the open

subset of n,r=0 Xj consisting of points (s0,...,sr) such that s0,...,sr span an

(r + l)-dimensional subspace of H°(C,Sf). Let T be a quasi-projective dense

subset of a(S). The lemma will follow when we show that a general fiber of a\ s has

dimension  > n — 1, and a general fiber of ß | T has dimension > 1.

Let (c0,...,cA_i) be the sequence of type (k - l,d) such that for each / =

0.k — 1 c,: = ba(J) for some j < k — 1. Note that if j > k, then a(j) ^ r - j <

r — k. It follows that ; < k implies a(i) > r — k. Thus

/*>,+(,-*, if/+ r-/c <a(/c),

C'~\ */+(,-*)+!     ifi + r-fc>o(fc).
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Let / be the permutation of (0,_k - 1} defined by cfU) = bg(i). If a(i) > r — i,

then /(/) > r - /' - (r - k) - 1 = k - 1 - /', because a(i) < /(/') + {r - k) + 1.

Hence #{/1 /(/) < k - 1 -/'}>«- 1, and the induction hypothesis implies that a

general fiber of a has dimension > m — 1.

Suppose (span(i0,...,sk_x), {sk,...,sr)) ~ T. There exists j < k so that 0(7) =

r — k < a(k). For each À e C, let FA = span(/0,...,tk_x) where

'      \Sj + Xsk     üi=j.

Since j < k and a(j) < a(/c), we have ordP(tj) > a, and ordQ(tj) > èo0). Hence

(Vx, (sk,...,sr)) e a(S) for all X e C. It is clear that LA * V^ for A # ¡u and

ß(Vx, (sk,..., sr)) = ß(yii, (sk, ■ ■■, sr)). Therefore a general fiber of ß has dimen-

sion   > 1.    D

Lemma 3.3. Le/ £ be an elliptic curve containing a point P, and a = (a0, ...,ar) be

a sequence of type (r,d). Let H c Gd(E X E/E) = Gd(E) X E be the subscheme of

g'd's on E with a cusp of order e. Let H = H D Grd(E,(P, a)) X(E\{P)) be the

subscheme of gd's on E satisfying vanishing condition a at P and having a cusp of order

e at a point distinct from P. Then dim H < p(l, r, d) — E(a, — /) — er + 1.

Proof. Let b = {0,e + l,...,e + r) and let Q =£ P be a point in £. Let HQje

denote the fiber of the morphism Gd(E,(P,a), (Q,b)) -> Picd(E) over the point

corresponding to the line bundle Sf. For each permutation a of {0,...,/}, let Sa

denote the open subset of Wi=0 P(H°(E, TeG-a^ - boU)Q))) of points (s0, ...,sr)

such that dim span(s0,..., sr) = r + 1. Lemma 2.6 implies that HQ ^ is covered by

the images of morphisms $e #.: Sa -> Grr+1(H °(£, Sf)), and Lemma 3.2 says that

the general fiber of 5>0 has dimension > #{i\a(i) > r — /}. If Sa # 0, Lemma

3.1 implies a, < a" - <br_, for / = 0,..., r and that èr_, = ba(i) if a, = d - br_¡. In

particular, we have a, + br_i = d implies Sf= 0(a¡P + br_¡Q). Note that ar_2 +

b2 = d implies that ar_, + bx = d, because ar_x > ar_2 and b2 — bx = 1. Thus

a,._2 + b2 < d, because otherwise we would have P~Q.lt follows that ar_¡ + b, <

d for / > 2, because ar_2 — ar_¡ > i — 2 and />,._, — b2 = i — 2 for / > 2. Note that

if ar + b0 = d and ar_x + bx = dx then (e + 1)P ~ (e + 1)Q.

Let TV = p(l, r, a") - er + 1. We have the following if Sa * 0 :

dimSa^   Y.{d-a,-ba(l)-l) + 2+ # {t\a(i) > r - i)
! = ()

r

=   Z{d-r-l -(a, - i) -{br_i + i - r)) + 2+ #{i\a(i) > r - i)
1 = 0

= {r + l){d- r)- r - £(a, - i) - er + I + #{/|<j(z) > r - i)

= N + #{i\a(i)> r- /}.

Thus dim HQ£,^ N. If (e + 1)Q ■*■ (e + l)P and Sa * 0, then dim 50< TV - 1 +

#{i\a{i) > r — /'}, so dim//p _^< N - 1. If i? is not isomorphic to 0(dP) or

0((a" - e - 1)P + (e + 1)0), then we must have dim HQM,< TV - 2.
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Let Z be a component of H, and let a: H -> Pic¿(£) and ß: H-*E\{P}be

the morphisms which are defined in the obvious manner. We have three cases to

consider.

Case 1. Suppose a\ 7 and ß \ 7 are constant. Then Z = //e ^ for some 0 and =S?,

so dim Z = dim Hq^,^ N.

Case 2. Suppose a | z is constant, but ß \ z is not constant. Then there is a

0 e ß(Z) such that (e + 1)0 * (e + 1)P. Hence for some L we have dim(Z) <

dim HQ j¿, + 1 < N.

Case 3. Suppose a\ z is not constant. Then there exists an Sf corresponding to a

point in a(Z) such that Sf£ 0(dP) and Sf£ 0((d - e - Y)P + (e + 1)0). Thus

for some 0 e ß(Z) we have dim(Z) < dim HQ ̂ + 2 < N.   O

Theorem 3.4. Let X be a smooth curve of genus g, and let Hx c Gd( X X X/X) be

the subscheme of gd's with cusps of order e. If X is general in moduli, then every

component of Hx has dimension p(g, r, d) — er + 1.

Proof. By Corollary 1.2, every component of Hx has dimension > p(g, r, d) -

er + 1, so it remains to show an upper bound for dim Hx if X is general in moduli.

Let T be a smooth affine curve containing a point 0, and let it: X -> T be a flat

proper family of genus g curves such that Xq is smooth for q =7 0 and X0 is a curve

of compact type which is general for d, consists only of rational and elliptic curves,

and is such that every elliptic subcurve meets the rest of X0 at most one point. Let

B = X\ (singular points of X0), and let A: B -» X X T B be the diagonal mor-

phism. Let

H = Gd'(XXTB/B,(à,(0,e + 1,.. .,e + r))).

Then for q =¿ 0, we have Hx = Hq. It follows from Proposition 2.5 and Theorem 2.6

of [EH3] that if we replace tt: X -» T by what we obtain after blowing up the nodes

of X0 sufficiently often, making finite base change of T, and resolving the resulting

singularities of X we may assume that every component of H which does not map to

a point in T meets X0. Since our new X0 is obtained by inserting chains of rational

curves at the nodes of the old X0, it will consist of only rational and elliptic curves

and each elliptic curve will meet the rest of X0 at most one point.

It is sufficient to show that dim H0 < p(g, r, d) — er + 1. Theorem 2.3 of [EH2]

shows that the codimension of Gd(X0, (0,(0, e + 1,..., e + r))) in Gd(X0) is ^ er

if 0 is a smooth point lying in one of the rational components of X0. Lemma 3.3

shows that any component of H0 which corresponds to limit gd's with a cusp of

order e on an elliptic subcurve has codimension > er in Gd(X0 X B0/B0). Thus

dim H0 < p(g, r, d) - er + 1 as desired.   □
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