LINEAR SERIES WITH CUSPS AND n-FOLD POINTS

DAVID SCHUBERT

Abstract

A linear series (V, \mathscr{L}) on a curve X has an n-fold point along a divisor D of degree n if $\operatorname{dim}\left(V \cap H^{0}(X, \mathscr{L}(-D))\right) \geqslant \operatorname{dim}(V)-1$. The linear series has a cusp of order e at a point P if $\operatorname{dim}\left(V \cap H^{0}(X, \mathscr{L}(-(e+1) P))\right) \geqslant \operatorname{dim}(V)-1$. Linear series with cusps and n-fold points are shown to exist if certain inequalities are satisfied. The dimensions of the families of linear series with cusps are determined for general curves.

Introduction. Throughout this paper we work over the complex numbers \mathbf{C}.
Let X be a smooth projective curve of genus g. A g_{d}^{r} on X is a linear series of degree d and dimension r on X, i.e., a pair (V, \mathscr{L}) consisting of a line bundle \mathscr{L} of degree d on X and an $(r+1)$-dimensional subspace V of $H^{0}(X, \mathscr{L})$.

When $\rho(g, r, d)=g-(r+1)(g+r-d) \geqslant 0$, then X has g_{d}^{r} 's and the family of g_{d}^{r} 's on X forms a projective scheme $G_{d}^{r}(X)$ of dimension $\geqslant \rho(g, r, d)$. Furthermore, if X is general in moduli, then $G_{d}^{r}(X)$ is smooth of dimension $\rho(g, r, d)$ [ACGH].

Definition. If D is an effective divisor of degree $n \geqslant 2$ on X, we say that a g_{d}^{r} (V, \mathscr{L}) has an n-fold point along D if $\operatorname{dim}\left(V \cap H^{0}(X, \mathscr{L}(-D))\right) \geqslant r$. We say that a g_{d}^{\prime} has a cusp of order e at a point P if it has an $(e+1)$-fold point along the divisor $(e+1) P$.

The aim of this paper is to prove the following:
(i) If $g \geqslant n, \rho(g, r, d)-(n-1) r+n \geqslant 0$, and $\rho(g, r-1, d-n) \geqslant 0$, then there exists a g_{d}^{r} on X with an n-fold point along some divisor D of degree n.
(ii) If $\rho(g, r, d)-(n-1) r \geqslant 0, \rho(g, r-1, d-n) \geqslant 0$, and D is any divisor of degree n on X, then there exists a g_{d}^{r} on X with an n-fold point along D.
(iii) If $\rho(g, r, d)-e r+1 \geqslant 0$ and $\rho(g, r-1, d-e-1) \geqslant 0$, then there exists a g_{d}^{r} on X with a cusp of order e at some point P.
(iv) If X is general in moduli, then the family of g_{d}^{r} 's on X with a cusp of order e has dimension $\rho(g, r, d)-e r+1$ if it is nonempty.

Assertion (iv) has been proved independently by Marc Coppens [C].
It is easy to see that the hypotheses $\rho(g, r-1, d-n) \geqslant 0$ in assertions (i) and (ii), and $\rho(g, r-1, d-e-1) \geqslant 0$ in assertion (iii) are necessary if X is general in moduli.

Our method of proof uses the theory of limit linear series as developed in [EH3] which generalizes the notion of linear series on smooth curves to curves of compact type, i.e., curves which are a union of complete smooth curves which meet at ordinary double points and are such that the dual graph is a tree.

We say that a sequence $a=\left(a_{0}, \ldots, a_{r}\right)$ is of type (r, d) if $0 \leqslant a_{0}<\cdots<a_{r} \leqslant$ d. We say that a $g_{d}^{r}(V, \mathscr{L})$ has vanishing sequence a at $P \in X$ if $\left\{\operatorname{ord}_{P} s \mid s \in V\right\}=$ $\left\{a_{i} \mid i=0,1, \ldots, r\right\}$ where ord ${ }_{P} s$ denotes the order of vanishing of s as a section of $H^{0}(X, \mathscr{L})$. We say that (V, \mathscr{L}) satisfies the vanishing condition b at P if it has vanishing sequence a at P and $b_{i} \leqslant a_{i}$ for $i=0,1, \ldots, r$.

Definition. A limit g_{d}^{r} (or limit linear series) on a curve X of compact type is a collection of g_{d}^{\prime} 's $\left(V_{i}, \mathscr{L}_{i}\right)$ on each of the components X_{i} of X satisfying the compactability conditions: If X_{i} and X_{j} meet at P, then there are sequences a^{i} and a^{j} of type (r, d) such that $a_{k}^{i}+a_{r-k}^{j}=d$ for $k=0,1, \ldots, r$, and $\left(V_{i}, \mathscr{L}_{i}\right)$ and $\left(V_{j}, \mathscr{L}_{j}\right)$ have vanishing sequences a^{i} and a^{j}, respectively, at P.

A fundamental result of [EH3] is that if a family $f: X \rightarrow B$ of curves of compact type is sufficiently nice, then there is a quasi-projective B-scheme $G_{d}^{r}(X / B)$ whose fiber over a point $q \in B$ is a scheme parametrizing limit g_{d}^{r} 's on $X_{q}=f^{-1}(q)$. Furthermore, every component of $G_{d}^{r}(X / B)$ must have dimension $\geqslant \rho(g, r, d)+$ $\operatorname{dim} B$. We prove the existence of g_{d}^{r} 's with a desired property (such as having a cusp of order e) by considering the subscheme $H \subset G_{d}^{r}(X / B)$ parametrizing such g_{d}^{r} 's. We find a lower bound N on the dimension of each component of H. We then show that on some singular curve in the family there exists a limit g_{d}^{r} with the desired property which varies in a family of dimension $N-\operatorname{dim} B$. The component of H containing this limit g_{d}^{r} must now extend over B.

In $\S 1$ we consider subschemes of $G_{d}^{r}(X / B)$ for suitable X and B which parametrize g_{d}^{r} 's with cusps of order e and g_{d}^{r} 's with n-fold points, and we give lower bounds for the dimensions of the components of these subschemes.

In $\S 2$ we show the existence of limit g_{d}^{r} 's with cusps and n-fold points on a singular curve which vary in a family of the "expected" dimension. The results of $\S 1$ are then used to show the existence of desired g_{d}^{r} 's on smooth curves.

In $\S 3$ we determine the dimension of the family of g_{d}^{r} 's with cusps on a general smooth curve by finding an upper bound for the dimension of the family of limit g_{d}^{\prime} 's with cusps on a singular curve.

We will use the following three notations. If $f: X \rightarrow Y$ is a morphism and $q \in Y$, then X_{q} will denote the fiber of f over q. If V is a vector space, then $\operatorname{Gr}_{k}(V)$ will denote the Grassmannian of k-planes in V. If D and E are divisors on a smooth curve, $D \sim E$ will denote D is linearly equivalent to E.

I would like to thank Ziv Ran for his explanations of the theory of limit linear series and their application to the topics in this paper.

1. Families of linear series. The following is Theorem 3.3 of [EH3].

Theorem 1.1. Let $\pi: X \rightarrow B, p_{1}, \ldots, p_{s}: B \rightarrow X$ be an s-pointed (relative) genus g curve such that: B is irreducible; π is flat and proper; the fibers of π are curves of compact type; the images of the p_{i} are disjoint and in the smooth locus of π; there
exists a relatively ample divisor D on X whose support is disjoint from all the sections $p_{i}(B)$; and the components of the singular locus of π map isomorphically onto their images in B.

Let a^{1}, \ldots, a^{s} be sequences of type (r, d). Then there exists a scheme

$$
G=G_{d}^{r}\left(X / B,\left(p_{1}, a^{1}\right), \ldots,\left(p_{s}, a^{s}\right)\right)
$$

quasi-projective over B, compatible with base extension, whose points over any $q \in B$ correspond to limit g_{d}^{r} 's on X_{q} satisfying vanishing conditions a^{1}, \ldots, a^{s} at p_{1}, \ldots, p_{s}, respectively. Further, every component of G has dimension $\geqslant \rho(g, r, d)-$ $\sum_{0 \leqslant i \leqslant r: 1 \leqslant j \leqslant s}\left(a_{i}^{j}-i\right)+\operatorname{dim} B$.

Remarks on the proof of Theorem 1.1. If the generic fiber of $\pi: X \rightarrow B$ is smooth, we have the following situation around a point $q \in B$ if we replace B by a sufficiently small neighborhood of q.

If Y is an irreducible component of X_{q}, let $\operatorname{Pic}^{Y}(X / B)$ be the relative Picard scheme of invertible sheaves whose degree on Y is d and whose degree on each of the other components of X_{q} is 0 . Let $\tilde{\mathscr{L}}_{Y}$ be the universal Poincaré line bundle. By replacing D with a multiple of itself we may assume that it meets each component of X_{q} with high degree. Let D_{Y} be the union of the components of D that meet Y. Let π_{1} and π_{2} be the projections of $X \times \operatorname{Pic}^{Y}(X / B)$ to X and $\operatorname{Pic}^{Y}(X / B)$, respectively. Let G_{Y} denote the Grassmannian of $(r+1)$ planes in $\pi_{2 *} \tilde{\mathscr{L}}_{Y}\left(\pi_{1}^{*} D_{Y}\right)$, and let V_{Y} be the universal subbundle on G_{Y}. There is a morphism α such that the following diagram commutes, where β and γ are the natural morphisms,

$$
G_{d}^{r}(X / B) \xrightarrow{\alpha} G_{Y} \stackrel{\gamma}{\rightarrow} \operatorname{Pic}^{\gamma}(X / B) \rightarrow \quad B .
$$

If $z \in G_{d}^{r}(X / B)$, then $V_{Y \alpha(z)}$ corresponds to an $(r+1)$-dimensional subspace of $H^{0}\left(X_{\beta(z)}, \tilde{\mathscr{L}}_{Y \mid X_{\beta(z)}}\right)$, and $\tilde{\mathscr{L}}_{Y \mid X_{\beta(z)}}$ has degree d on one component $Y_{\beta(z)}$ of $X_{\beta(z)}$ and degree zero on each of the other components. Thus $\alpha(z)$ determines a g_{d}^{r} on $Y_{\beta(z)}$. This is the same g_{d}^{r} on $Y_{\beta(z)}$ as the one in the limit g_{d}^{r} corresponding to z. The component $Y_{\beta(z)}$ specializes to a union of components containing Y in X_{q}.

Let E be a relative divisor of degree n on X whose support is disjoint from the singular locus of π and the support of D. Suppose all the components of E meet Y. The subscheme $H \subset G_{d}^{r}(X / B)$ of limit g_{d}^{r} 's with n-fold points along E is the inverse image of the points in G_{Y} where the vector bundle map $V_{Y} \rightarrow \gamma^{*} \pi_{2 *} \pi_{1}^{*} \mathcal{O}_{E}$ has rank $\leqslant 1$. Thus $\operatorname{codim}\left(H, G_{d}^{r}(X / B)\right) \leqslant r(n-1)$ and H is closed in $G_{d}^{r}(X / B)$.

Corollary 1.2. Let T be an irreducible curve containing a point 0 , and let π : $X \rightarrow T$ be a flat family of genus g curves of compact type such that all fibers over $T \backslash\{0\}$ are nonsingular. Let $B=X \backslash\left\{\right.$ singular points of $\left.X_{0}\right\}$. Then there exists a closed subscheme $H \subset G_{d}^{r}\left(X \times_{T} B / B\right)$ such that the fiber over any point $q \in B$ corresponds to limit g_{d}^{r} 's on $X_{\pi(q)}$ with a cusp of order e at q. Furthermore, every component of H has dimension $\geqslant \rho(g, r, d)-e r+2$.

Proof. For any relatively ample divisor E on X contained in B, let $B_{E}=B \backslash E$. Let Δ be the divisor of the diagonal morphism $B_{E} \rightarrow X \times{ }_{T} B_{E}$. By Theorem 1.1 and the remarks on its proof, there exists a closed subscheme $H_{E} \subset G_{d}^{r}\left(X \times{ }_{T} B_{E} / B_{E}\right)$ parametrizing limit linear series with cusps of order e along Δ, and

$$
\operatorname{codim}\left(H_{E}, G_{d}^{r}\left(X \times{ }_{T} B_{E} / B_{E}\right)\right) \leqslant e r
$$

The subschemes H_{E} patch together to form the desired subscheme

$$
H \subset G_{d}^{r}\left(X \times{ }_{T} B / B\right)
$$

We will call the subscheme H in Corollary 1.2 the subscheme of g_{d}^{r} 's with cusps of order e.

Corollary 1.3. Let T be an irreducible curve containing a point 0 , and let π : $X \rightarrow T$ be a flat family of genus g curves of compact type such that all fibers over $T \backslash\{0\}$ are nonsingular. Let Y be an open smooth connected subset of X_{0}, and let $Z=X_{0} \backslash Y$. Let $B=(X \backslash Z)^{n}$ where the product is fibered over T. Then there exists a subscheme $H \subset G_{d}^{r}\left(X \times_{T} B / B\right)$ such that the fiber over any point $\left(P_{1}, \ldots, P_{n}\right) \in B$ corresponds to limit g_{d}^{r} 's on $X_{\pi\left(P_{1}\right)}$ with an n-fold point along $P_{1}+\cdots+P_{n}$.

Furthermore, every component of H has dimension $\geqslant \rho(g, r, d)-(n-1) r+n+$ 1.

Proof. For any effective relative divisor E on X whose support does not include the singular points of X_{0}, let $B_{E}=(X \backslash(Z \cup E))^{n}$. For each $i=1, \ldots, n$, let $\Delta_{i}=\left\{\left(P,\left(P_{1}, \ldots, P_{n}\right)\right) \in X \times_{T} B_{E} \mid P_{i}=P\right\}$, and let $D=\sum \Delta_{i}$. As in the proof of the previous corollary, Theorem 1.1 and the remark on its proof imply the existence of subschemes H_{E} which patch together to form the desired subscheme H, and $\operatorname{codim}\left(H, G_{d}^{r}\left(X \times{ }_{T} B / B\right)\right) \leqslant(n-1) r$.

We will call the subscheme H of Corollary 1.3 the subscheme of g_{d}^{r} 's with n-fold points.
2. Existence of linear series with cusps and n-fold points. The following is Theorem 4.5 of [EH3].

Theorem 2.1. Let C be a curve of compact type, let p_{1}, \ldots, p_{s} be smooth points of C, and let $a^{1} \ldots, a^{s}$ be sequences of type (r, d). Every component of the family $G_{d}^{r}\left(C,\left(p_{1}, a^{1}\right), \ldots,\left(p_{n}, a^{s}\right)\right)$ has dimension $\geqslant \rho(g, r, d)-\sum_{0 \leqslant i \leqslant r: 1 \leqslant j \leqslant s}\left(a_{i}^{j}-i\right)$, and equality holds if each component of C is a general curve of its genus, and the singular points of C and p_{1}, \ldots, p_{s} are general points on the components in which they lie.

Definition. We say a curve C of compact type and smooth points p_{1}, \ldots, p_{s} are general for d if for any closed connected subcurve $X \subset C$ and points $Q_{1}, \ldots, Q_{t} \in$ $\left(\left\{p_{1}, \ldots, p_{s}\right\} \cap X\right) \cup\{$ singular points of C which are smooth points of $X\}$ and any sequences b^{1}, \ldots, b^{t} of type (r, e) with $e \leqslant d$, then every component $G_{e}^{r}\left(X,\left(Q_{1}, b^{1}\right) \ldots,\left(Q_{t}, b^{t}\right)\right)$ has dimension

$$
\rho\left(g_{X}, r, e\right)-\sum_{j=1}^{t} \sum_{i=1}^{r}\left(b_{i}^{j}-i\right)
$$

where the g_{X} is the genus of X.

We have C general for d if each component of C is a general curve of its genus, and the singular points of C and p_{1}, \ldots, p_{s} are general in the components in which they lie. This is because there are only finitely many sequences b of type (r, e) with $e \leqslant d$.

We also have that if C and p_{1}, \ldots, p_{s} are general for e and $d \leqslant e$, then a general member of $G_{d}^{r}\left(C,\left(p_{1}, a^{1}\right), \ldots,\left(p_{s}, a^{s}\right)\right)$ has vanishing sequences a^{i} at each p_{i}.

Lemma 2.2. Let E be an elliptic curve, and let P and Q be distinct points of E. Suppose $a=\left(a_{0}, \ldots, a_{r}\right)$ and $b=\left(b_{0}, \ldots, b_{r}\right)$ are sequences of type (r, d) such that for some k we have $a_{k}+b_{r-k} \leqslant d$ and $a_{i}+b_{r-i} \leqslant d-1$ for $i \neq k$. Then

$$
G_{d}^{r}(E,(P, a),(Q, b)) \neq \varnothing
$$

Proof. Note that if $a_{k}+b_{r-k}=d$, then $k=0$ or $a_{k}-a_{k-1} \geqslant\left(d-b_{r-k}\right)-(d$ $\left.-1-b_{r-k+1}\right) \geqslant 2$.

Let $i_{0}<\cdots<i_{s}$ be the elements of $\left\{i \mid a_{i}-a_{i-1} \geqslant 2\right.$ or $\left.i=0\right\}$. Let $j_{s}=r+1$ $-i_{s}$, and let $j_{n}=i_{n+1}-i_{n}$ for $n<s$. Let $\mathscr{L}=\mathcal{O}\left(a_{k} P+\left(d-a_{k}\right) Q\right)$, and for each $n=0, \ldots, s$, let

$$
V_{n}=H^{0}\left(E, \mathscr{L}\left(-a_{i_{n}} P-\left(d-a_{i_{n}}-j_{n}\right) Q\right)\right)
$$

If $n>m$, then $\max \left\{\operatorname{ord}_{p}(f) \mid f \in V_{m}\right\}<\min \left\{\operatorname{ord}_{p}(f) \mid f \in V_{n}\right\}$ and $\min \left\{\operatorname{ord}_{Q}(f) \mid f \in V_{m}\right\}>\max \left\{\operatorname{ord}_{Q}(f) \mid f \in V_{n}\right\}$, because $a_{i_{n}} \geqslant a_{i_{m}}+j_{m}+1$. Let $V=\oplus_{n=0}^{s} V_{n}$. Then $\operatorname{dim} V=\sum \operatorname{dim} V_{n}=\sum j_{n}=r+1$. Each V_{n} satisfies the vanishing condition $\left(a_{i_{n}}, \ldots, a_{i_{n+1}-1}\right)$ at P for $n<s$, and V_{s} satisfies $\left(a_{i_{s}}, \ldots, a_{r}\right)$ at P. Thus V satisfies the vanishing condition a at P. If $k=i_{n}$, then V_{n} has an element f such that $\operatorname{ord}_{P}(f)=a_{k}$ and ord ${ }_{Q}(f)=d-a_{k}$. Thus each V_{n} satisfies the vanishing condition $\left(b_{r-i_{n+1}+1}, \ldots, b_{r-i_{n}}\right)$ at Q for $n<s$, and V_{s} satisfies $\left(b_{0}, \ldots, b_{r-i_{s}}\right)$ at Q. So we have $(V, \mathscr{L}) \in G_{d}^{r}(E,(P, a),(Q, b))$.

Lemma 2.3. Let X be a curve of compact type consisting of a chain of elliptic curves E_{1}, \ldots, E_{g}. Let P be a point in E_{1}, and let Q be a point in E_{g} such that X, P, and Q are general for d. Suppose $a=\left(a_{0}, \ldots, a_{r}\right)$ and $b=\left(b_{0}, \ldots, b_{r}\right)$ are sequences of type (r, d) such that $a_{r}-a_{0} \leqslant r+1, b_{r}-b_{0} \leqslant r+1$, and $\rho(g, r, d)-\sum\left(a_{i}-i\right)-$ $\Sigma\left(b_{i}-i\right) \geqslant 0$. Then $G_{d}^{r}(X,(P, a),(Q, b)) \neq \varnothing$.

Proof. We use induction on g.
Suppose $g=1$. By replacing the b_{i} 's with larger values, if necessary, we may assume that $\rho(g, r, d)-\Sigma\left(a_{i}-i\right)-\Sigma\left(b_{i}-i\right)=0$. By replacing d with $d-a_{0}-$ b_{0}, a_{i} with $a_{i}-a_{0}$, and b_{i} with $b_{i}-b_{0}$ for $i=0, \ldots, r$, we may assume $a_{0}=b_{0}=0$. Now $\sum\left(a_{i}-i\right)+\sum\left(b_{i}-i\right) \leqslant 2 r$, so $\rho(g, r, d)=1-(r+1)(1+r-d)=$ $\sum\left(a_{i}-i\right)+\sum\left(b_{i}-i\right)$ implies that $d-r-1=-1,0$ or 1 . If $d-r-1=-1$, then $r=0$ and $a_{0}=b_{0}=0$, so $\left(H^{0}(C, \mathcal{O}), \mathcal{O}\right)$ is a suitable g_{d}^{r}. If $d-r-1=0$, then $d=r+1, a_{i}=b_{i}=i$ for $i<r$, and $\left\{a_{r}, b_{r}\right\}=\{r, r+1\}$; so Lemma 2.2 applies. If $d-r-1=1$, then $d=r+2$, and $r-\min \left\{i \mid a_{i}-i>0\right\}=\min \left\{i \mid b_{i}-i>0\right\}$; so again Lemma 2.2 applies.

Now suppose $g>1$. We construct $\left(c_{0}, \ldots, c_{r}\right)$ in the following manner. If $a_{r}-a_{0}=r$, then let $c_{0}=a_{0}$, and let $c_{i}=a_{i}+1$ for $i \geqslant 1$. If $a_{r}-a_{0}=r+1$, let $k=\min \left\{i \mid a_{i}-a_{0}=i+1\right\}$. In this case we set $c_{k}=a_{k}$ and $c_{i}=a_{i}+1$ for $i \neq k$. Note that $c_{r} \leqslant d$, because $a_{r}=d, r \geqslant 1$, and $a_{r}-a_{0} \leqslant r+1$ would imply that $\sum\left(a_{i}-i\right) \geqslant(r+1)(d-r-1)+1>\rho(g, r, d)$ since $g \geqslant 2$.

There is a $g_{d}^{r} L_{1}$ on E_{1} with vanishing sequences a at P and $\left(d-c_{r}, \ldots, d-c_{0}\right)$ at $R=E_{1} \cap E_{2}$ by Lemma 2.2. We always have $c_{r}-c_{0} \leqslant r+1$ and $\sum c_{i}-\sum a_{i}=r$. Thus

$$
\begin{aligned}
\rho(g-1, r, d)- & \sum\left(c_{i}-i\right)-\sum\left(b_{i}-i\right) \\
& =\rho(g, r, d)+r-\sum\left(c_{i}-i\right)-\sum\left(b_{i}-i\right) \\
& =\rho(g, r, d)-\sum\left(a_{i}-i\right)-\sum\left(b_{i}-i\right) \geqslant 0
\end{aligned}
$$

so the induction hypothesis implies that there exists a limit $g_{d}^{r} L_{2}$ on $E_{2} \cup \cdots \cup E_{g}$ with vanishing sequences c at R and b at Q. Now L_{1} and L_{2} determine a point in $G_{d}^{r}(X,(P, a),(Q, b))$.

Lemma 2.4. Let X and P be as in Lemma 2.3. Suppose $a=\left(a_{0}, \ldots, a_{r}\right)$ is such that $a_{r}-a_{1} \leqslant r$,

$$
\rho(g, r, d)-\sum_{i=0}^{r}\left(a_{i}-i\right) \geqslant 0
$$

and

$$
\rho\left(g, r-1, d-a_{1}\right)-\sum_{i=0}^{r-1}\left(a_{i+1}-a_{1}-i\right) \geqslant 0 .
$$

Then $G_{d}^{r}(X,(P, a)) \neq \varnothing$.
Proof. We use induction on g. If $g=1$, then $\left(H^{0}(X, \mathcal{O}((r+1) P)), \mathcal{O}(d P)\right) \in$ $G_{d}^{r}(X,(P, a))$ provided that $a_{r-1} \leqslant d-2$. This holds, because otherwise $a_{r}-a_{1} \leqslant r$ and $\rho\left(g, r-1, d-a_{1}\right)-\sum_{i=0}^{r-1}\left(a_{i+1}-a_{1}-i\right) \geqslant 0$ would imply

$$
\begin{aligned}
0 & \leqslant r\left(d-a_{1}-(r-1)\right)-(r-1)-\sum_{i=0}^{r-1}\left(a_{i+1}-i\right)+r a_{1} \\
& \leqslant r(d-r)+1-(r(d-r)+2)=-1
\end{aligned}
$$

Suppose $g \geqslant 2$. If $a_{r}-a_{0} \leqslant r+1$, then we are done by Lemma 2.3. Assume $a_{0} \leqslant a_{r}-(r+2)$, and note that this implies $a_{0} \leqslant a_{1}-2$. We construct a sequence $c=\left(c_{0}, \ldots, c_{r}\right)$ of type (r, d) in the following manner. Let $c_{0}=a_{0}+1$. If $a_{r}-a_{1}$ $=r-1$, then let $c_{1}=a_{1}$ and let $c_{i}=a_{i}+1$ for $i \geqslant 1$. If $a_{r}-a_{1}=r$, let $k=$ $\min \left\{i \mid a_{i}-a_{1}=i\right\}$, and let $c_{k}=a_{k}$ and $c_{i}=a_{i}+1$ for $i \neq k$. The conditions $a_{r}-a_{1} \leqslant r-1$ and $\rho\left(g, r-1, d-a_{1}\right)-\sum_{i=0}^{r-1}\left(a_{i+1}-a_{1}-i\right) \geqslant 0$ imply $c_{r} \leqslant d$ by an argument similar to one in the proof of Lemma 2.3.

We always have $c_{r}-c_{1} \leqslant r$,

$$
\sum_{i=0}^{r} c_{i}-\sum_{i=0}^{r} a_{i}=r \quad \text { and } \quad \sum_{i=1}^{r} c_{i}-\sum_{i=1}^{r} a_{i}=r-1
$$

Thus

$$
\rho(g-1, r, d)-\sum_{i=0}^{r}\left(c_{i}-i\right)=\rho(g, r, d)-\sum_{i=0}^{r}\left(a_{i}-i\right) \geqslant 0
$$

and

$$
\begin{aligned}
& \rho\left(g-1, r-1, d-c_{1}\right)-\sum_{i=0}^{r-1}\left(c_{i+1}-c_{1}-i\right) \\
& \quad=\rho\left(g, r-1, d-a_{1}\right)-\sum_{i=0}^{r-1}\left(a_{i+1}-a_{1}-i\right) \geqslant 0 .
\end{aligned}
$$

Hence, the induction hypothesis implies that there exists a limit g_{d}^{r} on $E_{2} \cup \cdots \cup E_{g}$ with vanishing sequence c at $R=E_{1} \cap E_{2}$. The lemma now follows, because there exists a g_{d}^{r} on E_{1} with vanishing sequences a at P and $\left(d-c_{r}, \ldots, d-c_{0}\right)$ at R by Lemma 2.2.

Theorem 2.5. Let C be a smooth curve of genus g. Let e and r be integers $\geqslant 1$. Suppose $\rho(g, r, d)-e r+1 \geqslant 0$ and $\rho(g, r-1, d-e-1) \geqslant 0$. Then there exists a g_{d}^{r} on C with a cusp of order e.

Proof. If $g=0$ or 1 , the existence of a cusp of order e follows from

$$
\rho(g, r-1, d-e-1) \geqslant 0 \quad \text { and } \quad h^{0}(\mathscr{L}(2 p))>h^{0}(\mathscr{L})
$$

if $\operatorname{deg} \mathscr{L} \geqslant 0$.
Assume $g \geqslant 2$. Let C_{0} be a curve of compact type consisting of a chain of elliptic curves E_{1}, \ldots, E_{g}, and let C_{0} be general for d. Since C_{0} is stable in the sense of Mumford and Deligne, there exists a flat proper family of curves $\pi: X \rightarrow T$ such that T is a smooth connected curve, the fibers of π are nonsingular except over a point $0 \in T$ where $X_{0} \cong C_{0}$, and there is a point $q \in T$ where $X_{q} \cong C$. Let $B=X \backslash\left\{\right.$ singular points of $\left.X_{0}\right\}$, and let $H \subset G_{d}^{r}\left(X \times_{T} B / B\right)$ be the subscheme of g_{d}^{r} 's with cusps of order e. Corollary 1.2 says that every component of H has dimension $\geqslant \rho(g, r, d)-e r+2$. We have $H \backslash H_{0}$ is projective over $T \backslash\{0\}$, because it is a closed subset of $G_{d}^{r}\left(X \times_{T} B / B\right) \backslash G_{d}^{r}\left(X_{0} \times B_{0} / B_{0}\right)$ which is projective over $T \backslash\{0\}$. Thus the theorem will follow when we show that there exists a component of H_{0} with dimension $\rho(g, r, d)-e r+1$ because then this component must extend over T.

Let P be a point in E_{1} such that $P \neq Q=E_{1} \cap E_{2}$. If $\left(V_{1}, \mathscr{L}_{1}\right)$ is a g_{d}^{r} on E_{1} with a cusp of order e at P and satisfying $b=(d-e-r-1, \ldots, d-e-3, d-e$ $-1, d)$ at Q, then we must have $\mathscr{L}_{1} \cong \mathcal{O}(d Q)$ and

$$
V_{1}=H^{0}\left(E_{1}, \mathscr{L}_{1}(-d Q)\right) \oplus H^{0}\left(E_{1}, \mathscr{L}_{1}(-(e+1) P-(d-e-r-1) Q)\right)
$$

This linear series $\left(V_{1}, \mathscr{L}_{1}\right)$ will have vanishing sequence b and Q if and only if $(e+1) P \sim(e+1) Q$, and there are only finitely many of such points P.

Let $a=\left(d-b_{r}, \ldots, d-b_{0}\right)=(0, e+1, e+3, \ldots, e+r+1)$. Now

$$
\begin{aligned}
\rho(g-1, r, d)-\sum_{i=0}^{r}\left(a_{i}-i\right) & =\rho(g, r, d)+r-(e+1) r+1 \\
& =\rho(g, r, d)-e r+1 \geqslant 0
\end{aligned}
$$

and

$$
\begin{aligned}
\rho(g-1, r-1, & d-(e+1))-\sum_{i=0}^{r-1}\left(a_{i+1}-a_{1}-i\right) \\
& =\rho(g, r-1, d-(e+1))+r-1-(r-1) \\
& =\rho(g, r-1, d-(e+1)) \geqslant 0
\end{aligned}
$$

Thus Lemma 2.4 implies that there exists a nonempty irreducible family F of limit g_{d}^{\prime} 's on $E_{2} \cup \cdots \cup E_{g}$ with vanishing sequence a at Q. Further, this family F has dimension $\rho(g-1, r, d)-\sum\left(a_{i}-i\right)=\rho(g, r, d)-e r+1$, because C_{0} is general for d. Now F and $\left(V_{1}, \mathscr{L}_{1}\right)$ as described above for some point P with $P \sim(e+1) Q$ in E_{1} form a component of H_{0} with dimension $\rho(g, r, d)-e r+1$.

Lemma 2.6. Let (V, \mathscr{L}) be $a g_{d}^{r}$ on a smooth curve satisfying conditions $a=$ $\left(a_{0}, \ldots, a_{r}\right)$ and $b=\left(b_{0}, \ldots, b_{r}\right)$ at points P and Q, respectively. Then there exists a basis $\left\{s_{0}, \ldots, s_{r}\right\}$ of V and a permutation σ of $\{0, \ldots, r\}$ such that $\operatorname{ord}_{p}\left(s_{i}\right) \geqslant a_{i}$ and $\operatorname{ord}_{Q}\left(s_{i}\right) \geqslant b_{\sigma(i)}$ for $i=0, \ldots, r$.

Proof. We may assume that a and b are the vanishing sequences for (V, \mathscr{L}) at P and Q, respectively. We can choose $t_{i} \in V$ successively so that $\operatorname{ord}_{p}\left(t_{i}\right)=a_{r-i}$ and $\operatorname{ord}_{Q} t_{i} \neq \operatorname{ord}_{Q} t_{j}$ for $j<i$. This is so, because if $\operatorname{ord}_{P}(t)=a_{r-i}$, then $\operatorname{ord}_{p}\left(t-\alpha t_{j}\right)$ $=a_{r-i}$ for any $\alpha \in \mathbf{C}$ and $j<i$. So, if ord ${ }_{Q}\left(t_{j}\right)=\operatorname{ord}_{Q}(t)$, then there exists $\alpha \in \mathbf{C}$ so that ord $Q_{Q}\left(t-\alpha t_{j}\right)>\operatorname{ord}_{Q}\left(t_{j}\right)$. Now let $s_{i}=t_{r-i}$ for $i=0, \ldots, r$.

Lemma 2.7. Let E be an elliptic curve containing points P and Q such that E, P, and Q are general for d. Then:
(i) $m P+m Q$ for $0<m \leqslant d$; and
(ii) If a and b are sequences of type (r, d) such that

$$
\rho(1, r, d)-\sum\left(a_{i}-i\right)-\sum\left(b_{i}-i\right)=0,
$$

then $(V, \mathscr{L}) \in G_{d}^{r}(E,(P, a),(Q, b))$ implies that $\mathscr{L} \cong \mathcal{O}(m P+(d-m) Q)$ with $0 \leqslant m \leqslant d$.

Proof. Suppose assertion (i) is false. Let $\mathscr{L}=\mathcal{O}(m P)$. Then

$$
\left(H^{0}(\mathscr{L}(-m P)) \oplus H^{0}(\mathscr{L}(-m Q)), \mathscr{L}\right) \in G_{m}^{1}(E,(P,(0, m)),(Q,(0, m)))
$$

contradicts E, P, and Q are general for d, because

$$
\rho(1,1, m)-2(m-1)=2(m-1)-1-2(m-1)=-1 .
$$

Assertion (ii) will hold if there exists an $s \in V$ such that $\operatorname{ord}_{p}(s)+\operatorname{ord}_{Q}(s)=d$. By Lemma 2.6 we may choose a basis s_{0}, \ldots, s_{r} such that $\operatorname{ord}_{p}\left(s_{i}\right)=a_{i}$ and $\operatorname{ord}_{Q}\left(s_{i}\right)=b_{\sigma(i)}$ for some permutation σ of $\{0, \ldots, r\}$. Then

$$
\begin{aligned}
0 & =\rho(1, r, d)-\sum\left(a_{i}-i\right)-\sum\left(b_{i}-i\right) \\
& =(r+1)(d-r)-r+(r+1) r-\sum\left(a_{i}+b_{\sigma(i)}\right) \\
& =(r+1)(d-1)+1-\sum\left(a_{i}+b_{\sigma(i)}\right)
\end{aligned}
$$

So $a_{h}+b_{o(h)}=d$ for some $0 \leqslant k \leqslant r$.

Lemma 2.8. Let n and r be $\geqslant 2$. Suppose $a=\left(a_{0}, \ldots, a_{r}\right)$ is a sequence of type (r, d) such that $a_{r-1}-a_{0} \leqslant r, a_{r}=d$, and $\rho(n, r-1, d-n)-\sum_{i=0}^{r-1}\left(a_{i}-i\right)=0$. Then there exists a smooth curve C of genus n containing a point P with the following property. Let $B=(C \backslash\{P\})^{n}$, and let $H \subset G^{r}(C \times B / B)$ be the subscheme of g_{d}^{r} 's with n-fold points. Let $\bar{p}: B \rightarrow C \times B$ be the morphism which sends Q to (P, Q). Then $A=H \cap G_{d}^{r}(C \times B / B,(\bar{p}, a))$ contains an isolated point, and the g_{d}^{r} on C corresponding to this point has vanishing sequence a at P.

Proof. There is a smooth connected curve T containing a point 0 , a flat proper family of curves $f: X \rightarrow T$ and a T-morphism $g: T \rightarrow X$ such that: X_{0} is a curve of compact type consisting of a chain of curves Y_{1}, \ldots, Y_{n-1} where Y_{1} is genus 2 and Y_{i} is elliptic for $i \geqslant 2$;
$g(0)=P_{n}$ is a smooth point of Y_{n-1} such that X_{0} and P_{n} are general for d;
X_{q} is nonsingular for $q \in T \backslash\{0\}$; and
$G_{d-n}^{r-1}\left(X_{q},\left(g(q),\left(a_{0}, \ldots, a_{r-1}\right)\right)\right)$ is finite for all $q \in T$.
Let $a^{\prime}=\left(a_{0}, \ldots, a_{r-1}\right)$, and let $b=\left(b_{0}, \ldots, b_{r-1}\right)=(1,2,4,5, \ldots, r+1)$. Let $P_{i}=Y_{i-1} \cap Y_{i}$ for $i=2, \ldots, n-1$. There exists a limit linear series $L_{2} \in$ $G_{d-n}^{r-1}\left(Y_{2} \cup \cdots \cup Y_{n-1},\left(P_{n}, a^{\prime}\right)\left(P_{1}, b\right)\right)$ by Lemma 2.3. If K is a canonical divisor on Y_{1}, then $L_{1}=\left(H^{0}\left(Y_{1}, \mathcal{O}\left(K+(r-1) P_{2}\right)\right), \mathcal{O}\left(K+(d-n-2) P_{2}\right)\right)$ is a linear series in $G_{d-n}^{r-1}\left(Y_{1},\left(P_{2},\left(d-b_{r-1}, \ldots, d-b_{0}\right)\right)\right)$. Thus L_{1} and L_{2} determine a limit linear series L in $G_{d-n}^{r-1}\left(X_{0},\left(P_{n}, a^{\prime}\right)\right)$. Let Z be a component of $G_{d-n}^{r-1}\left(X / T,\left(g, a^{\prime}\right)\right)$ which contains L. Since X_{0} and P_{n} are general for d, Z_{0} is finite. Hence, Theorem 1.1 implies that $\operatorname{dim} Z=1$, and Z extends over T. If we replace T by a suitable base extension, we may assume that there exists a T-morphism $\phi: T \rightarrow Z$. Hence, for each irreducible component Y_{i} of X_{0}, we have morphisms $T \xrightarrow{\phi} Z \xrightarrow{\psi} \operatorname{Pic}_{d-n}^{Y_{i}}(X / T)$ where for each $q \neq 0$ in $T \psi(\phi(q))$ corresponds to the line bundle of the linear series corresponding to $\phi(q)$, and $\psi(\phi(0))$ corresponds to a line bundle on X_{0} whose restriction to Y_{i} is the line bundle on Y_{i} in the limit linear series L. Let \mathscr{K} on X be the line bundle associated to the map $\psi \circ \phi$. Let $\mathscr{M}=\mathcal{O}_{x}(d g(T)) \otimes \mathscr{K}^{-1}$, and let $\mathscr{M}_{q}=\left.\mathscr{M}\right|_{X_{q}}$ for each $q \in T$.

Claim. There is an open subset $U \subset T \backslash\{0\}$ such that if $q \in U$ and $s \in$ $H^{0}\left(X_{q}, \mathscr{M}_{q}\right)$ is nonzero, then s does not vanish on $g(q)$.

Proof of Claim. Let η denote the generic point of T. It is sufficient to show that if $s \in H^{0}\left(X_{\eta}, \mathscr{M}_{\eta}\right)$ is nonzero, then s does not vanish on $g(\eta)$. The section s extends to a section in $H^{0}(X, \mathscr{M}(E))$ where the support of E maps to a finite set of T, and all components of the support of the divisor D of relative degree n associated to s map onto T. The claim will follow when we show that D induces a divisor of degree $\geqslant 2$ on $Y_{1} \backslash\left\{P_{2}\right\}$, and that D meets each $Y_{i} \backslash\left\{P_{i}, P_{i+1}\right\}$.

For each Y_{i}, we have line bundles \mathscr{K}_{i} and \mathscr{K}_{i}^{\prime} on Y_{i} induced by considering the maps $T \backslash\{0\} \rightarrow \operatorname{Pic}_{d^{-}-n}^{Y_{i}}(X / T)$ and $T \backslash\{0\} \rightarrow P_{d}^{Y_{i}}(X / T)$ that come from \mathscr{K} and $\mathscr{K}(D)$, respectively. Since $\left.\mathscr{K}(D)\right|_{x_{\eta}}=\mathcal{O}(d g(\eta))$, it is easy to see that $\mathscr{K}_{i}^{\prime} \cong$ $\mathcal{O}_{Y_{t}}\left(d P_{i+1}\right)$ for each i. The line bundles \mathscr{K}_{i} are the same as the line bundles of the limit linear series L on X_{0}.

We have $\mathscr{K}_{1}^{\prime} \cong \mathcal{O}_{Y_{1}}\left(d P_{2}\right)$ and $\mathscr{K}_{1}^{\prime} \cong \mathscr{K}_{1}\left(m P_{2}+D_{1}\right)$ where D_{1} is the intersection of D with $Y_{1} \backslash\left\{P_{2}\right\}$ and $m+\operatorname{deg} D_{1}=d$. Now $\mathscr{K}_{1} \cong \mathcal{O}\left(K+(d-n-2) P_{2}\right)$, so $\mathcal{O}\left(K+D_{1}\right) \cong \mathcal{O}\left((d-m+2) P_{2}\right)$. If $D_{1}=0$, then $K \sim 2 P_{2}$. This is impossible, because X_{0} is general for d implies that $G_{2}^{1}\left(Y_{1},\left(P_{2},(0,2)\right)\right)=\varnothing$. If $\operatorname{deg} D_{1}=1$ then $H^{0}(\mathcal{O}(K))=H^{0}\left(\mathcal{O}\left(K+D_{1}\right)\right)=H^{0}\left(\mathcal{O}\left(3 P_{2}\right)\right)$ implies that $D_{1}=P_{2}$ and $K \sim 2 P_{2}$ which is impossible. Thus $\operatorname{deg} D_{1} \geqslant 2$.

For each $i \geqslant 2$ we have $\mathscr{K}_{i} \cong \mathcal{O}\left(m_{i} P_{i}+\left(d-m_{i}\right) Q\right)$ with $0 \leqslant m_{i} \leqslant d$ by Lemma 2.7. Also, $\mathscr{K}_{i}^{\prime} \cong \mathcal{O}\left(d P_{i+1}\right) \cong \mathscr{K}_{i}\left(s_{i} P_{i}+t_{i} P_{i+1}+D_{i}\right)$ where D_{i} is the intersection of D with $Y_{i} \backslash\left\{P_{i}, P_{i+1}\right\}, s_{i} \geqslant 1$ and $t_{i} \geqslant 0$. Now deg $D_{i} \geqslant 1$, because Lemma 2.7 implies $s_{i} P_{i} \sim\left(d-t_{i}\right) P_{i+1}$. Hence the claim holds.

Let $C=X_{q}$ for some $q \in U$. Let $P=g(q)$, and let $\mathscr{L}=\left.\mathscr{K}\right|_{C}$. Note that $h^{0}\left(C, \mathcal{O}(d P) \otimes \mathscr{L}^{-1}\right) \leqslant 1$, because $\left|\mathcal{O}(d P) \otimes \mathscr{L}^{-1}\right|=\left|\mathscr{M}_{q}\right|$ contains a divisor with P in its support if $\operatorname{dim}\left|\mathcal{O}(d P) \otimes \mathscr{L}^{-1}\right| \geqslant 1[\mathrm{FL}]$. Thus there is a unique divisor D on C such that $\mathscr{L}(D) \cong \mathcal{O}(d P)$, and P is not in the support of D. We have a natural map

$$
A=H \cap G_{d}^{r}(C \times B / B,(\bar{p}, a)) \rightarrow B \xrightarrow{\delta} \operatorname{Pic}_{d-n}(C)
$$

where $\delta\left(P_{1}, \ldots, P_{n}\right)$ corresponds to $\mathcal{O}\left(d P-\sum P_{i}\right)$. The image of A in $\operatorname{Pic}_{d-n}(C)$ is finite, because it corresponds to line bundles of linear series in $G_{d-n}^{r-1}\left(C,\left(P, a^{\prime}\right)\right)$ which is finite. Let $V \subset H^{0}(C, \mathscr{L})$ be the subspace with vanishing sequence a^{\prime} at P, and let $s \in H^{0}(C, \mathscr{L}(D))$ be such that $\operatorname{ord}_{p}(s)=d$. Then $(V+s, \mathscr{L}(D))$ lies in A, and the fiber over $\operatorname{Pic}_{d-n}(C)$ containing it is finite. Hence $(V+S, \mathscr{L}(D))$ is an isolated point of A.

Theorem 2.9. Let C be a nonsingular curve of genus $g \geqslant n \geqslant 2$, and let $r \geqslant 2$. If $\rho(g, r, d)-(n-1) r+n \geqslant 0$ and $\rho(g, r-1, d-n) \geqslant 0$, then there exists a g_{d}^{r} on C with an n-fold point.

Proof. If $g=n$, then $\rho(g, r-1, d-n) \geqslant 0$ implies that there exists a $g_{d-n}^{r-1}(V, \mathscr{L})$ on C. Choose $P \in C$ so that $\mathscr{L} \not \equiv \mathcal{O}((d-n) P)$. There exists a divisor D of degree n such that $\mathscr{L}(D) \cong \mathscr{O}(d P)$. Choose $s \in H^{0}(C, \mathscr{L}(D))$ such that ord ${ }_{p} s$ $=d$. Now $(V+s, \mathscr{L}(D))$ is the desired linear series.

Suppose $g>n$. We can choose a curve of compact type C_{0} consisting of a chain of curves Y_{0}, \ldots, Y_{g-n} where Y_{0} and $Q=Y_{0} \cap Y_{1}$ are as C and P are in Lemma 2.8, Y_{1}, \ldots, Y_{g-n} are elliptic, and $Y_{1} \cup \cdots \cup Y_{g-n}$ and Q are general for d. Let $B_{0}=$ $Y_{0} \backslash\{Q\}$, and let $H_{0} \subset G_{d}^{r}\left(C_{0} \times B_{0} / B_{0}\right)$ be the subscheme of g_{d}^{r} 's with n-fold points. An argument similar to one found in the proof of Theorem 2.5 shows that the theorem will hold if there exists a component of H_{0} of dimension $\rho(g, r, d)-$ $n(r-1)+n$.

We can choose a sequence $a=\left(a_{0}, \ldots, a_{r}\right)$ so that $a_{r}=d, a_{r-1}-a_{0} \leqslant r$, and $\rho(n, r-1, d-n)=\sum_{i=0}^{r-1}\left(a_{i}-i\right)$. Now Lemma 2.8 applies to Y_{0}, Q, and a, so there exists an isolated L in the space of g_{d}^{r} 's on Y_{0} with an n-fold point along a divisor whose support does not contain Q and with vanishing sequence a at Q.

Let $b=\left(b_{0}, \ldots, b_{r}\right)=\left(d-a_{r}, \ldots, d-a_{0}\right)$. Then

$$
\begin{aligned}
\sum_{i=0}^{r}\left(b_{i}-i\right) & =\sum_{i=0}^{r}\left(d-a_{r-i}-i\right)=\sum_{i=0}^{r}\left(d-a_{i}-r+i\right) \\
& =r(d-r)-\sum_{i=0}^{r-1}\left(a_{i}-i\right) \\
& =r(d-r)-[n-r(n+(r-1)-(d-n))] \\
& =-n+r(2 n-1)
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{i=0}^{r-1}\left(b_{i+1}-i\right) & =\sum_{i=0}^{r}\left(b_{i}-i+1\right)-b_{0}-1 \\
& =r+\sum_{i=0}^{r}\left(b_{i}-i\right)=-n+2 r n .
\end{aligned}
$$

So

$$
\begin{aligned}
\rho(g-n, r, d) & -\sum_{i=0}^{r}\left(b_{i}-i\right) \\
& =g-n-(r+1)(g-n+r-d)+n-r(2 n-1) \\
& =g-(r+1)(g-n+r-d)-2 r n+r \\
& =g-(r+1)(g+r-d)+(r+n) n-2 r n+r \\
& =\rho(g, r, d)-r(n-1)+n \geqslant 0
\end{aligned}
$$

and

$$
\begin{aligned}
\rho(g-n, r & \left.-1, d-b_{1}\right)-\sum_{i=0}^{r-1}\left(b_{i+1}-b_{1}-i\right) \\
& =g-n-r\left(g-n+r-1-d+b_{1}\right)+r b_{1}+n-2 r n \\
& =g-r(g+n+r-1-d)=\rho(g, r-1, d-n) \geqslant 0 .
\end{aligned}
$$

So Lemma 2.4 implies that there exists a family F of limit g_{d}^{r} 's on $Y_{1} \cup \cdots \cup Y_{g-n}$ with vanishing sequence b at Q. This family has dimension $\rho(g-n, r, d)-$ $\Sigma\left(b_{i}-i\right)=\rho(g, r, d)-r(n-1)+n$. Now L and F determine the desired component of H_{0}.

Theorem 2.10. Let C be a curve of genus g, and let D be a divisor of degree $n \geqslant 2$ on C. If $r \geqslant 2, \rho(g, r, d)-r(n-1) \geqslant 0$, and $\rho(g, r-1, d-n) \geqslant 0$, then there exists a g_{d}^{r} on C with an n-fold point along D.

Proof. If $g=0$ and $h^{0}(C, \mathscr{L}) \geqslant 1$, then $h^{0}(C, \mathscr{L}(D))>h^{0}(C, \mathscr{L})$, so the theorem holds in this case.

Suppose $g \geqslant 1$. As in the proof of Theorem 2.5, there exists a smooth connected curve T containing a point 0 and a flat proper family of curves $\pi: X \rightarrow T$ such that X_{q} is nonsingular for $q \neq 0, X_{q} \cong C$ for some $q \in T, X_{0}$ is a curve of compact type
consisting of a chain of g elliptic curves Y_{1}, \ldots, Y_{g}, and X_{0} and P are general for d where $P \in Y_{1}$. Let $B=X \backslash\left(Y_{2} \cup \cdots \cup Y_{n}\right)$. Let $H \subset G_{d}^{r}\left(X \times_{T} B / B\right)$ be the subscheme of g_{d}^{r} 's with n-fold points. The fiber of H over $(P, P, \ldots, P) \in B$ is $G=G_{d}^{r}\left(X_{0},(P,(0, n, n+1, \ldots, n+r-1))\right)$, and has dimension $\rho(g, r, d)-$ $(n-1) r$, since it is nonempty by Lemma 2.4. The component of H containing G has dimension $\geqslant \rho(g, r, d)-(n-1) r+n+1$ by Corollary 1.3 so it must extend over an open subset of B. The theorem now follows, because H is projective over $T \backslash\{0\}$.

Linear series with a cusp on a general curve. In this section we show that if X is a smooth genus g curve which is general in moduli, then every component of the subscheme $H \subset G_{d}^{r}(X \times X / X)$ of g_{d}^{r} 's with cusps of order e has dimension $\rho(g, r, d)-e r+1$.

The following combinatorial fact is Lemma 1.4 of [EH1].
Lemma 3.1. If $a_{0}<\cdots<a_{r}$ and $b_{0}<\cdots<b_{r}$, and if for some permutation f of $\{0, \ldots, r\}$ we have $a_{i} \leqslant b_{f(i)}$ for $i=0, \ldots, r$, then in fact $a_{i} \leqslant b_{i}$ for $i=0, \ldots, r$. Further, if for some i we have $a_{i}=b_{i}$, then $f(i)=i$ so that $a_{i}=b_{f(i)}$ as well.

Lemma 3.2. Let \mathscr{L} be a line bundle of degree d on a smooth curve C which contains points P and Q. Let σ be a permutation of $\{0, \ldots, r\}$, and let $n=\#\{i \mid \sigma(i)>r-i\}$. Let $a=\left(a_{0}, \ldots, a_{r}\right)$ and $b=\left(b_{0}, \ldots, b_{r}\right)$ be sequences of type (r, d). Then the rational map

$$
\Phi: \prod_{i=0}^{r} \mathbf{P}\left(H^{0}\left(C, \mathscr{L}\left(-a_{i} P-b_{\sigma(i)} Q\right)\right)\right) \rightarrow \operatorname{Gr}_{r+1}\left(H^{0}(C, \mathscr{L})\right)
$$

which sends $\left(s_{0}, \ldots, s_{r}\right)$ to the $(r+1)$-dimensional subspace spanned by s_{0}, \ldots, s_{r} has all its fibers of dimension $\geqslant n$ wherever it is a morphism.

Proof. For ease of notation we will let X_{i} denote $\mathbf{P}\left(H^{0}\left(C, \mathscr{L}\left(-a_{i} P-b_{\sigma(i)} Q\right)\right)\right)$ for $i=0, \ldots, r$ and we will let G_{k} denote $\operatorname{Gr}_{k}\left(h^{0}(C, \mathscr{L})\right)$ for $k=1, \ldots, r+1$.

We use induction on n. There is nothing to prove if $n=0$.
Suppose $n \geqslant 1$. Let $k=\max \{i \mid \sigma(i)>r-i\}$. Note that $k \geqslant 1$. We have the following factorization of Φ.

$$
\prod_{i=0}^{r} X_{i} \xrightarrow{\alpha} G_{k} \times \prod_{i=k}^{r} X_{i} \xrightarrow{\beta} G_{k+1} \times \prod_{i=k+1}^{r} X_{i} \xrightarrow{\gamma} G_{r+1}
$$

The rational maps α, β, and γ are defined in the obvious manner. Let S be the open subset of $\prod_{i=0}^{r} X_{i}$ consisting of points $\left(s_{0}, \ldots, s_{r}\right)$ such that s_{0}, \ldots, s_{r} span an $(r+1)$-dimensional subspace of $H^{0}(C, \mathscr{L})$. Let T be a quasi-projective dense subset of $\alpha(S)$. The lemma will follow when we show that a general fiber of $\left.\alpha\right|_{S}$ has dimension $\geqslant n-1$, and a general fiber of $\left.\beta\right|_{T}$ has dimension $\geqslant 1$.

Let $\left(c_{0}, \ldots, c_{k-1}\right)$ be the sequence of type $(k-1, d)$ such that for each $i=$ $0, \ldots, k-1 c_{i}=b_{\sigma(j)}$ for some $j \leqslant k-1$. Note that if $j>k$, then $\sigma(j) \leqslant r-j<$ $r-k$. It follows that $i \leqslant k$ implies $\sigma(i) \geqslant r-k$. Thus

$$
c_{i}= \begin{cases}b_{i+(r-k)} & \text { if } i+r-k<\sigma(k), \\ b_{i+(r-k)+1} & \text { if } i+r-k \geqslant \sigma(k) .\end{cases}
$$

Let f be the permutation of $\{0, \ldots, k-1\}$ defined by $c_{f(i)}=b_{\sigma(i)}$. If $\sigma(i)>r-i$, then $f(i)>r-i-(r-k)-1=k-1-i$, because $\sigma(i) \leqslant f(i)+(r-k)+1$. Hence $\#\{i \mid f(i) \leqslant k-1-i\} \geqslant n-1$, and the induction hypothesis implies that a general fiber of α has dimension $\geqslant n-1$.

Suppose $\left(\operatorname{span}\left(s_{0}, \ldots, s_{k-1}\right),\left(s_{k}, \ldots, s_{r}\right)\right) \in T$. There exists $j<k$ so that $\sigma(j)=$ $r-k<\sigma(k)$. For each $\lambda \in \mathbf{C}$, let $V_{\lambda}=\operatorname{span}\left\{t_{0}, \ldots, t_{k-1}\right\}$ where

$$
t_{i}= \begin{cases}s_{i} & \text { if } i \neq j \\ s_{j}+\lambda s_{k} & \text { if } i=j\end{cases}
$$

Since $j<k$ and $\sigma(j)<\sigma(k)$, we have $\operatorname{ord}_{P}\left(t_{j}\right) \geqslant a_{j}$ and $\operatorname{ord}_{Q}\left(t_{j}\right) \geqslant b_{\sigma(j)}$. Hence $\left(V_{\lambda},\left(s_{k}, \ldots, s_{r}\right)\right) \in \alpha(S)$ for all $\lambda \in \mathbf{C}$. It is clear that $V_{\lambda} \neq V_{\mu}$ for $\lambda \neq \mu$ and $\beta\left(V_{\lambda},\left(s_{k}, \ldots, s_{r}\right)\right)=\beta\left(V_{\mu},\left(s_{k}, \ldots, s_{r}\right)\right)$. Therefore a general fiber of β has dimension $\geqslant 1$.

Lemma 3.3. Let E be an elliptic curve containing a point P, and $a=\left(a_{0}, \ldots, a_{r}\right)$ be a sequence of type (r, d). Let $H \subset G_{d}^{r}(E \times E / E)=G_{d}^{r}(E) \times E$ be the subscheme of g_{d}^{r} 's on E with a cusp of order e. Let $\hat{H}=H \cap G_{d}^{r}(E,(P, a)) \times(E \backslash\{P\})$ be the subscheme of g_{d}^{r} 's on E satisfying vanishing condition a at P and having a cusp of order e at a point distinct from P. Then $\operatorname{dim} \hat{H} \leqslant \rho(1, r, d)-\Sigma\left(a_{i}-i\right)-e r+1$.

Proof. Let $b=(0, e+1, \ldots, e+r)$ and let $Q \neq P$ be a point in E. Let $H_{Q, \mathscr{L}}$ denote the fiber of the morphism $G_{d}^{r}(E,(P, a),(Q, b)) \rightarrow \operatorname{Pic}_{d}(E)$ over the point corresponding to the line bundle \mathscr{L}. For each permutation σ of $\{0, \ldots, r\}$, let S_{σ} denote the open subset of $\prod_{i=0}^{r} \mathbf{P}\left(H^{0}\left(E, \mathscr{L}\left(-a_{i} P-b_{\sigma(i)} Q\right)\right)\right)$ of points $\left(s_{0}, \ldots, s_{r}\right)$ such that $\operatorname{dim} \operatorname{span}\left(s_{0}, \ldots, s_{r}\right)=r+1$. Lemma 2.6 implies that $H_{Q, \mathscr{L}}$ is covered by the images of morphisms $\Phi_{Q, \mathscr{L}}: S_{\sigma} \rightarrow \operatorname{Gr}_{r+1}\left(H^{0}(E, \mathscr{L})\right)$, and Lemma 3.2 says that the general fiber of Φ_{σ} has dimension $\geqslant \#\{i \mid \sigma(i)>r-i\}$. If $S_{\sigma} \neq \varnothing$, Lemma 3.1 implies $a_{i} \leqslant d-b_{r-i}$ for $i=0, \ldots, r$ and that $b_{r-i}=b_{\sigma(i)}$ if $a_{i}=d-b_{r-i}$. In particular, we have $a_{i}+b_{r-i}=d$ implies $\mathscr{L} \cong \mathcal{O}\left(a_{i} P+b_{r-i} Q\right)$. Note that $a_{r-2}+$ $b_{2}=d$ implies that $a_{r-1}+b_{1}=d$, because $a_{r-1}>a_{r-2}$ and $b_{2}-b_{1}=1$. Thus $a_{r-2}+b_{2}<d$, because otherwise we would have $P \sim Q$. It follows that $a_{r-i}+b_{i}<$ d for $i \geqslant 2$, because $a_{r-2}-a_{r-i} \geqslant i-2$ and $b_{r-i}-b_{2}=i-2$ for $i \geqslant 2$. Note that if $a_{r}+b_{0}=d$ and $a_{r-1}+b_{1}=d_{1}$ then $(e+1) P \sim(e+1) Q$.

Let $N=\rho(1, r, d)-e r+1$. We have the following if $S_{\sigma} \neq \varnothing$:

$$
\begin{aligned}
\operatorname{dim} S_{\sigma} & \leqslant \sum_{i=0}^{r}\left(d-a_{i}-b_{\sigma(i)}-1\right)+2+\#\{i \mid \sigma(i)>r-i\} \\
& =\sum_{i=0}^{r}\left(d-r-1-\left(a_{i}-i\right)-\left(b_{r-i}+i-r\right)\right)+2+\#\{i \mid \sigma(i)>r-i\} \\
& =(r+1)(d-r)-r-\Sigma\left(a_{i}-i\right)-e r+1+\#\{i \mid \sigma(i)>r-i\} \\
& =N+\#\{i \mid \sigma(i)>r-i\}
\end{aligned}
$$

Thus $\operatorname{dim} H_{Q . \mathscr{L}} \leqslant N$. If $(e+1) Q \nsim(e+1) P$ and $S_{\sigma} \neq \varnothing$, then $\operatorname{dim} S_{\sigma} \leqslant N-1+$ $\#\{i \mid \sigma(i)>r-i\}$, so $\operatorname{dim} H_{Q, \mathscr{L}} \leqslant N-1$. If \mathscr{L} is not isomorphic to $\mathcal{O}(d P)$ or $\mathcal{O}((d-e-1) P+(e+1) Q)$, then we must have $\operatorname{dim} H_{Q, \mathscr{L}} \leqslant N-2$.

Let Z be a component of \hat{H}, and let $\alpha: \hat{H} \rightarrow \operatorname{Pic}_{d}(E)$ and $\beta: \hat{H} \rightarrow E \backslash\{P\}$ be the morphisms which are defined in the obvious manner. We have three cases to consider.

Case 1. Suppose $\left.\alpha\right|_{Z}$ and $\left.\beta\right|_{Z}$ are constant. Then $Z=H_{Q, \mathscr{L}}$ for some Q and \mathscr{L}, so $\operatorname{dim} Z=\operatorname{dim} H_{Q . \mathscr{L}} \leqslant N$.

Case 2. Suppose $\left.\alpha\right|_{Z}$ is constant, but $\left.\beta\right|_{Z}$ is not constant. Then there is a $Q \in \beta(Z)$ such that $(e+1) Q+(e+1) P$. Hence for some L we have $\operatorname{dim}(Z) \leqslant$ $\operatorname{dim} H_{Q . \mathscr{L}}+1 \leqslant N$.

Case 3. Suppose $\left.\alpha\right|_{Z}$ is not constant. Then there exists an \mathscr{L} corresponding to a point in $\alpha(Z)$ such that $\mathscr{L} \not \equiv \mathcal{O}(d P)$ and $\mathscr{L} \not \equiv \mathcal{O}((d-e-1) P+(e+1) Q)$. Thus for some $Q \in \beta(Z)$ we have $\operatorname{dim}(Z) \leqslant \operatorname{dim} H_{Q . \mathscr{L}}+2 \leqslant N$.

Theorem 3.4. Let X be a smooth curve of genus g, and let $H_{X} \subset G_{d}^{r}(X \times X / X)$ be the subscheme of g_{d}^{r} 's with cusps of order e. If X is general in moduli, then every component of H_{X} has dimension $\rho(g, r, d)-e r+1$.

Proof. By Corollary 1.2, every component of H_{X} has dimension $\geqslant \rho(g, r, d)-$ er +1 , so it remains to show an upper bound for $\operatorname{dim} H_{X}$ if X is general in moduli.

Let T be a smooth affine curve containing a point 0 , and let $\pi: X \rightarrow T$ be a flat proper family of genus g curves such that X_{q} is smooth for $q \neq 0$ and X_{0} is a curve of compact type which is general for d, consists only of rational and elliptic curves, and is such that every elliptic subcurve meets the rest of X_{0} at most one point. Let $B=X \backslash\left\{\right.$ singular points of $\left.X_{0}\right\}$, and let $\Delta: B \rightarrow X \times_{T} B$ be the diagonal morphism. Let

$$
H=G_{d}^{r}\left(X \times_{T} B / B,(\Delta,(0, e+1, \ldots, e+r))\right)
$$

Then for $q \neq 0$, we have $H_{X_{q}}=H_{q}$. It follows from Proposition 2.5 and Theorem 2.6 of [EH3] that if we replace $\pi: X \rightarrow T$ by what we obtain after blowing up the nodes of X_{0} sufficiently often, making finite base change of T, and resolving the resulting singularities of X we may assume that every component of H which does not map to a point in T meets X_{0}. Since our new X_{0} is obtained by inserting chains of rational curves at the nodes of the old X_{0}, it will consist of only rational and elliptic curves and each elliptic curve will meet the rest of X_{0} at most one point.

It is sufficient to show that $\operatorname{dim} H_{0} \leqslant \rho(g, r, d)-e r+1$. Theorem 2.3 of [EH2] shows that the codimension of $G_{d}^{r}\left(X_{0},(Q,(0, e+1, \ldots, e+r))\right)$ in $G_{d}^{r}\left(X_{0}\right)$ is $\geqslant e r$ if Q is a smooth point lying in one of the rational components of X_{0}. Lemma 3.3 shows that any component of H_{0} which corresponds to limit g_{d}^{r} 's with a cusp of order e on an elliptic subcurve has codimension $\geqslant e r$ in $G_{d}^{r}\left(X_{0} \times B_{0} / B_{0}\right)$. Thus $\operatorname{dim} H_{0} \leqslant \rho(g, r, d)-e r+1$ as desired.

References

[ACGH] E. Arbarello, M. Cornalba, P. Griffiths and J. Harris, Geometry of algebraic curves, SpringerVerlag, 1984.
[C] M. Coppens, A remark on the embedding theorem for general smooth curves, Preprint \#405, Univ. of Utrecht, 1986.
[EH1] D. Eisenbud and J. Harris, A simpler proof of the Gieseker-Petri Theorem on special divisors, Invent. Math. 74 (1983), 269-280.
[EH2] \qquad , Divisors on general curves and cuspital rational curves, Invent. Math. 74 (1983), 371-418.
[EH3] , Limit linear series: basic theory, Invent. Math. 85 (1986), 337-371.
[F-L] W. Fulton and R. Lazarsfeld, On the connectedness of degeneracy loci and special divisors, Acta Math. 146 (1981), 271-283.

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
Current address: Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104

