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COMPLEMENTATION IN KREIN SPACES

LOUIS DE BRANGES

ABSTRACT. A generalization of the concept of orthogonal complement is in-

troduced in complete and decomposable complex vector spaces with scalar

product.

Complementation is a construction in the geometry of Hubert space which was

applied to the invariant subspace theory of contractive transformations in Hubert

space by James Rovnyak and the author [6]. The concept was later formalized

by the author [3]. Continuous and contractive transformations in Krein spaces

appear in the estimation theory of Riemann mapping functions [4]. It is therefore

of interest to know whether a generalization of complementation theory applies in

Krein spaces. Such a generalization is now obtained. The results are also of interest

in the invariant subspace theory of continuous and contractive transformations in

Krein spaces [5].

The vector spaces considered are taken over the complex numbers. A scalar

product for a vector space M is a complex-valued function (a, b) of a and b in X

which is linear, symmetric, and nondegenerate. Linearity means that the identity

(aa + ßb, c) = a(a, c) + ß(b, c)

holds for all elements a, b, and cofH when a and ß are complex numbers. Symmetry

means that the identity

(b, a) = (a,b)~

holds for all elements a and b of )/. Nondegeneracy means that an element a of M

is zero if the scalar product (a, b) is zero for every element b of )/.

Every element b of M determines a linear functional b~ on M which is defined

by b~a = (a,b) for every element a of )/. The weak topology of M is the weakest

topology with respect to which b~ is a continuous linear functional on M for every

element b of rl. The weak topology of M is a locally convex topology having the

property that every continuous linear functional on M is of the form b~ for an

element b of )l. The element b is then unique.

The antispace of a vector space with scalar product is the same vector space

considered with the negative of the given scalar product.

A fundamental example of a vector space with scalar product is a Hubert space.

A Krein space is a vector space with scalar product which is the orthogonal sum of

a Hubert space and the antispace of a Hubert space.
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If a vector space with scalar product has infinite dimension, then locally convex

topologies exist, other than the weak topology, which have the same continuous

linear functional as the weak topology. The Mackey topology is the strongest such

topology [2]. The Mackey topology of a Hubert space is its norm topology. The

topological properties of Krein spaces are the same as those of Hilbert spaces. A

transformation of a Krein space into a Krein space is continuous for the Mackey

topologies if, and only if, it is continuous for the weak topologies. Continuity is

equivalent to the existence of an adjoint.

A transformation F of a Krein space M into itself is said to be nonnegative if

{Pc, c) is nonnegative for every element c of )/. This condition implies that P is

selfadjoint.

Such transformations appear in a construction of Hilbert spaces which are con-

tained continuously in a Krein space.

THEOREM l. If P is a nonnegative transformation of a Krein space )j into

itself, then a unique Hilbert space P exists, which is contained continuously in U,

such that P coincides with the adjoint of the inclusion of P in M.

PROOF OF THEOREM l. The theorem is already known in the case that M

is a Hilbert space and that P is a nonnegative and contractive transformation.

An elementary proof of the existence and uniqueness of P is then given by the

Hilbert space theory of complementation [3]. The space P can also be constructed

without any use of complementation theory if some knowledge of spectral theory

for nonnegative transformations in Hilbert space is assumed. Write P = Q2 for a

nonnegative transformation Q. The desired space P is the range of Q considered

with the unique scalar product such that Q acts as a partial isometry of )i onto

P. It is easily seen that P is a Hilbert space, which is contained continuously in -V,

such that P coincides with the adjoint of the inclusion of P in X. Uniqueness of P

follows because the range of P is dense in P by the spectral theory of nonnegative

transformations.

The theorem is also easily verified when H is a Hilbert space and P is not con-

tractive. This result is immediately given by the spectral theory approach to the

construction of P. If complementation theory is used, an additional observation

needs to be made. A positive number t exists such that the nonnegative trans-

formation Q = tP is contractive. It has been seen that a unique Hilbert space Q

exists, which is contained continuously in X, such that Q coincides with the adjoint

of the inclusion of Q in M. The desired space P is the space Q with the scalar

product

(a,b)P =t{a,b)Q.

If M is not a Hilbert space, then a Hilbert space )l+ exists, which is contained

continuously and isometrically in M, such that the orthogonal complement of M+

in M is the antispace M- of a Hilbert space. Let J be the transformation of )i into

itself which is the identity on M+ and which is minus the identity on M-. Then J is

selfadjoint and unitary. The space M is a Hilbert space with the new scalar product

(Ja,b). Since the transformation JP is nonnegative with respect to the new scalar

product, a unique Hilbert space Po exists, which is contained continuously in M with

respect to the new scalar product, such that JP is the adjoint of the inclusion of

P in X with respect to the new scalar product. Let P be the unique Hilbert space
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such that J acts as an isometry of Pq onto P. Then P is the unique Krein space,

which is contained continuously in M with respect to the given scalar product, such

that P is the adjoint of the inclusion of P in M with respect to the given scalar

product.

This completes the proof of the theorem.

A Krein space P is said to be contained contractively in a Krein space M if P is

a vector subspace of M and if the inequality

(a, a) h < (a,a)p

holds for every element a of P. If the inclusion of P in -V is continuous, then a

selfadjoint transformation P of rl into itself exists which coincides with the adjoint

of the inclusion of P in U. If c belongs to X, then

(Pc,c)y = (Pc,Pc)p > (PC,PC))1 = (P2C,c)M.

It follows that the inequality P2 < P is satisfied. A converse result holds.

THEOREM 2. If P is a selfadjoint transformation of a Krein space M into itself

which satisfies the inequality P2 < P, then a unique Krein space P exists, which

is contained continuously and contractively in rl, such that P coincides with the

adjoint of the inclusion of P in M.

PROOF OF THEOREM 2. Note that Q - 1 - P is a selfadjoint transformation

such that Q2 < Q. A construction will also be made of a unique Krein space

Q, which is contained continuously and contractively in M, such that Q coincides

with the adjoint of the inclusion of Q in M. Also it will be shown that Q is the

complementary space to P in rl; that is, the inequality

(c,c)u < (a,a)p + (b,b)Q

holds whenever c = a + b with a in P and bin Q, and every element c of M admits

some decomposition for which equality holds.

Note also that if the space P is given, the space Q is the set of elements a of M

such that

(a, o)q — sup[(a + b,a + b)x — (b, b)p]

is finite, where the least upper bound is taken over all elements b of P. Conversely,

the space P is determined by a knowledge of the space Q.

Neither space is known at the start of the proof, but some elements of the space

P are known. These elements are in the range of P. The proposed scalar product

in P of two such elements

(Pa,Pb)p = (Pa,b))t

is well defined. It does not depend on the choice of representatives a and b. So a

dense vector subspace of the desired space P is known, as well as scalar products

of elements of the space. These should be sufficient to construct the desired space

Q. The space P is then obtained from a knowledge of Q.

If a is an element of rl, define

(a,a)Q =sup[{a + Pb,a + Pb)x - (Pb,b))t],

where the least upper bound is taken over all elements b of M. Note that the

inequality

(a,a)x < (a,d)Q
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is satisfied because it is permissible to choose b = 0 in the least upper bound. Let

Q be the set of elements a of M for which (a,a)r¿ is finite. The identity

(wa,wa)Q = \w\2{a,a)Q

holds for every element a of M when w is a nonzero number. The identity also holds

when w = 0 if a belongs to Q.

Assume that o and b are elements of M and that t is a given number, 0 < t < 1.

If u and v are elements of rl, then the inequality

{l-t){a + Pu,a + Pu)u - (1 -t)(Pu,u)x +t(b + Pv,b + Pv)u -t(Pv,v)u

< ((l-t)a + tb,(l-t)a + tb)o. +t(l-t)(b-a,b-a)Q

holds by the convexity identity and the definition of self-products in Q. The in-

equality

(1 -t)(a,a)o. +t{b,b)Q < ((1 -t)a + tb,(l -t)a + tb)Q

+ t(l - t)(b - a,b - a)q

follows by the arbitrariness of u and v. Equality holds since the reverse inequality

is obtained by a similar argument.

This verifies that Q is a vector space. It will be shown that a scalar product is

defined on the space by

i(a, b)r¿ = {a + b,a + b)Q - (a — b,a — b)o_

+ i(a + ib, a + ib) q — i(a — ib, a — ib) q .

The symmetry of a scalar product is immediate. A proof of linearity will be given.

It will first be shown that the identity

(wa, b) q = w(a,b)o.

holds for all elements a and b of Q when w is a positive multiple of a power of i.

The result is immediate from the definition of the product when w is a power of

i. It is therefore sufficient to consider the case w positive. By the definition of the

product, it is sufficient to verify the identity

(wa + b,wa + b)c¿ — (wa — b,wa — b)o. = w(a + b,a + b)c¿ — w(a — b,a — b)r¿

and a similar identity with b replaced by ib. When t = 1/(1+w), the identity reads

((l-í)a + í6,(l -t)a + tb)Q +t(l -t)(a-b,a-b)Q

= ((l-t)a-tb, (1 -t)a-tb)Q +t(l-t)(a + b,a + b)Q

which is a consequence of the convexity identity.

The proof of linearity is completed by verifying the identity

(a + b, c) q_ - (a, c)Q + (b, c) q

for all elements a, b, and c of Q. By the definition of the product, the problem is

to verify the identity

(a + b + c,a + b + c)q — (a + b - c,a + b - c)q

= (a + c, a + c) q — (a - c, a — c) q. + (b + c, b + c) q — (b — c, b - c) q
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and a similar identity with c replaced by ic. Because of the known identity

(a + b + 2c,a + b + 2c)q + (a - b,a - b)q = 2(a + c,a + c)q + 2(b + c,b + c)q

and a similar identity with c replaced by -c, it remains to verify the identity

2(a + 6 + c,a + 6 + 0)2 -2(a + b - c,a + b- c)q

= (a + b + 2c,a + b + 2c)Q - (a + b - 2c,a + b - 2c)q

which is true because

(a + b,2c)Q =2(a + b,c)Q.

Note that the inequality

(Pa + Qb,Pa + Qb)H < (Pa,a)u + (Qb,b)»

holds for all elements a and b of M because the inequality can be written

(P(l - P)(a-6), a-6>„>0.

Equality holds when a = b. It follows that Qb belongs to Q for every element b of

rl and that the identity

(Qb,Qb)Q = (Qb,b)u

is satisfied.

It has not yet been shown that Q has a well-defined scalar product because

nondegeneracy has not yet been verified. It is convenient to proceed first with the

construction of the desired space P.

If a is an element of M, define

(a,a)p -suo[(a + b,a + b)v - (6,6)2],

where the least upper bound is taken over all elements b of Q. The set of elements

a of rl such that (a,a)p is finite is a vector space by the convexity identity

((1 -t)a + tb,(l-t)a + tb)p +t(l - t)(a - b,a - b)p

= (l-t)(a,a)P+t(b,b)p.

The definition

4(a,b)p = (a + b,a + b)p — (a — b,a — b)p

+ i (a + ib, a + ib)p — i(a — ib, a — ib)p

has the linearity and symmetry properties of a scalar product on P. If a belongs

to U, then Pa is an element of P which satisfies the identity

(Pa,Pa)P = (Pa, a)».

If a belongs to P and if b belongs to Q, then c = a + b is an element of )l which

satisfies the inequality

(c,c)x < (a,a)P + (6,6)2-

Every element c of M admits some such decomposition for which equality holds. It

is obtained with a = Pc and 6 = (1 - P)c.

The intersection £ of P and Q is considered with the product

(u,u)¿ = (u,u) p + (u,u) g-
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Assume that a is an element of P and that 6 is an element of Q such that c = a+b

and

(c,c))t = (a,a)p +(6,6)2-

If u is an element of £, then the inequality

(c,c)x < (a + Xu, a + Xu) p + (6 - Au, 6 - Xu) q

holds for every complex number A. By the arbitrariness of A, the inequality implies

the identity

(a,u)p = (b,u)Q

and the inequality

0 < (u,u)¿.

But every element c of P is also an element of )/, and it admits a representation

c = c + 0 with c in P and 0 in Q. It follows that c — Pc is an element of £. If a is

any element of rl, then the resulting identity

(Pa,c-Pc)p = ((1 -P)a,c-Pc)a

implies the identity

(Pa,c)p = (a,c)x.

A similar argument shows that (Qo,c)q = (a,c)x for every element c of Q if a

belongs to M.

The nondegeneracy of a scalar product can now be verified in P and Q. If a is

an element of P which is orthogonal to every element of P, then the identity

(a,Pb)p = {a,b))t

holds for every element 6 of M. Since a is orthogonal in M to every element of M,

it is zero by the nondegeneracy of a scalar product in )/. The nondegeneracy of a

scalar product is verified in Q by a similar argument.

If c is in M, then P(l — P)c = (1 — P)Pc belongs to P because it is in the range

of P and it belongs to Q because it is in the range of Q — 1 — P. So P(l — P)c

belongs to £. If a belongs to £, then

(a,P(l - P)c)c = (a, P(l - P)c)p + {a, (1 - P)Pc)Q

= {a,(l-P)c)x+{a,Pc))l ={a,c))t.

The properties of a scalar product in P and Q now imply the properties of a scalar

product in £. It has been shown that self-products are nonnegative in £.. It follows

by the Schwarz inequality that

(c,c)c >0

whenever c is a nonzero element of £.

Since P(l - P) is nonnegative, it has been shown in Theorem 1 that a unique

Hilbert space R. exists, which is contained continuously in M, such that P(l — P)

coincides with the adjoint of the inclusion of P. in U. A dense set of elements of Z

are of the form P(l — P)c with c in U. Each such element of R belongs to £. The

identity

(P(l - P)a,P(l - P)b)z = (P(l - P)a,b)» = (P(l - P)a,P(l - P)b)¿

holds for all elements a and 6 of )/.
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Assume that c is an element of R which is the limit of a sequence of elements cn

of R in the range of P(l - P). Convergence is taken in the norm topology of R,

which coincides with the Mackey topology of R. Since the inclusion of R in rl is

continuous, cn converges to c in the Mackey topology of )i. It will be shown that c

belongs to £. If a is an element of P and if 6 is an element of Q, then

(c + a, c + a)x - (a,a)p = lim[(c„ + a,cn+ a)y - (a,a)p\

and

(c + b,c + b)u - (6,6)2 =lim[(c„ + b,cn +b)x - (6,6)2].

It follows that

(c + a,c + a)y - (a,a)p + (c + b,c + b)x - (6,6)2

<lim(cn,cn)p = (c,c)r.

The inequality

(c,c)p + (c,c)q < (c,c)z

is obtained by the arbitrariness of a and 6. Thus the space R is contained contrac-

tively in the space £.

Since the inclusion of R in £ is isometric on a dense vector subspace of R,

and since self-products of nonzero elements of £ are positive, it follows that R

is contained isometrically in £. Since P(l — P) coincides with the adjoint of the

inclusion of £ in ■W, no nonzero element of £ is orthogonal to R. Since R is a Hilbert

space, it contains every element of £.

It can now be shown that P and Q are Krein spaces. Consider the Cartesian

product P x Q with the Euclidean scalar product,

((a,6),(c,d))pX2 = (a,c)p + {b,d)Q.

Then a transformation of P x Q into rl is defined by taking (a, 6) into a + b. The

kernel of the transformation is the set of pairs (c, —c) with c in £. Since the

transformation which takes c into (c, —c) is an isometry of £ into P x Q, the kernel

of the transformation which takes (a, b) into a + b is a Hilbert space. Since the

transformation is isometric on the orthogonal complement of its kernel and since M

is a Krein space by hypothesis, the Cartesian product P x Q is a Krein space.

Nondegenerate closed subspaces of P x Q are formed by the elements which have

first coordinate equal to zero and by the elements which have second coordinate

equal to zero. Since these subspaces are orthogonal to each other and since they

span the full space, it follows [1] that they are Krein spaces. This completes the

proof that P and Q are Krein spaces.

The desired Krein space P has now been shown to exist. For the proof of

uniqueness, consider Krein spaces P+ and P-, which are contained continuously

and contractively in rl, such that the adjoints of the inclusions of P+ and P- in rl

coincide with P. If c is any element of rl, then Pc belongs both to P+ and to P-.

The identity

(Pa,Pb)P+ = (Pa, b)u = (Pa,Pb)p_

holds for all elements a and 6 of rl.

Let Q+ be the complementary space to P+ in M and let 2- be the complementary

space to P- in )i. Then Q+ is the set of elements a of )/ such that

(a,a)Q+ = sup[(a + b,a + b))t - (b,b)p+\ < 00,



284 LOUIS DE BRANGES

where the least upper bound is taken over all elements 6 of P+, and Q- is the set

of elements a of M such that

(a,a)o._ = sup[(a + 6,a + b)x - (6,b)p_] < oo,

where the least upper bound is taken over all elements 6 of P-.   Since P has a

dense range in P, the least upper bounds are unchanged if they are taken over all

elements 6 of the range of P. Since these elements have the same self-products in

P+ as in P-, the spaces Q+ and Q- are isometrically equal.

But P+ is the set of elements u of )i such that

(a,a)p+ - sup[(a + 6,a + 6)-y - (6,6)2+] < °°,

where the least upper bound is taken over all elements 6 of Q+, and P- is the set

of elements a of M such that

(a,a)p_ = sup[(a + 6,a + 6) y - (6,6)2.] < °°,

where the least upper bound is taken over all elements 6 of <2_. Since j2+ and fi-

are isometrically equal, P+ and P- are isometrically equal.

This completes the proof of the theorem.

A Krein space P is said to be contained boundedly in a Krein space rl if it is a

vector subspace of rl and if a positive number t exists such that the inequality

(a,a)x < t{a,a)p

holds for every element o of P. If the inclusion of P in rl is continuous and if P is

the adjoint of the inclusion of P in rl, then the inequality P2 < tP is satisfied. A

converse result is an immediate consequence of Theorem 2.

THEOREM 3. If P is a selfadjoint transformation of a Krein space rl into itself

which satisfies the inequality P2 < tP for a positive number t, then a unique Krein

space P exists, which is contained continuously and boundedly in rl, such that P

coincides with the adjoint of the inclusion of P in M.

PROOF OF THEOREM 3. Since the transformation Q = t~lP is selfadjoint and

satisfies the inequality Q2 < Q, a unique Krein space Q exists, which is contained

continuously (and contractively) in M, such that Q coincides with the adjoint of the

inclusion of Q in U. The desired space P is the space Q considered with the new

scalar product

(a,b)p = t~1(a,b)Q.

The desired properties of the space are easily verified. Uniqueness follows from

uniqueness in Theorem 2.

This completes the proof of the theorem.

If P is an arbitrary selfadjoint transformation of a Krein space H into itself, then

it is still true that a Krein space P exists, which is contained continuously in U,

such that P coincides with the adjoint of the inclusion of P in )i, but the space

need not be unique.

For the construction of such a space P, it is sufficient by the proof of Theorem

1 to consider the case in which rl is a Hilbert space. By the spectral theorem, P =

P+ + P- where P+ and P- are selfadjoint transformations with orthogonal ranges

such that P+ and — P_ are nonnegative. The desired space P is the orthogonal

sum of the spaces P+ and P- associated with P+ and F_.
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Assume that a Krein space P is contained contractively in a Krein space rl. A

complementary space Q to P in H is a Krein space, which is contained contractively

in U, such that the inequality

(c,c)u < (a,a)p + (6,6)2

holds whenever c — a + b with a in P and bin Q., and such that every element c of

M admits some decomposition for which equality holds.

If P is contained continuously in M and if P is the adjoint of the inclusion of P in

rl, then Q is contained continuously in M and 1 - P is the adjoint of the inclusion of

Q in H. The minimal decomposition of an element c of M is unique. It is obtained

with a — Pc and 6 = (1 — P)c.

The overlapping space £ of P and Q is the intersection of P and Q considered

with the product

(a,b)c = (a,b)p + (0,6)2-

If P and Q are contained continuously in M, the product is nondegenerate and the

space £ is a Hilbert space which is contained continuously in )i. The adjoint of the

inclusion of £ in M is P(l — P). It is easily seen that the inclusion of P in rl is

isometric if, and only if, £ contains no nonzero element.

A condition is noted for the continuity of contractive inclusions of Krein spaces.

THEOREM 4. Assume that Krein spaces P and Q are contained continuously

and contractively in a Krein space M. Let P be the adjoint of the inclusion of P

in rl and let Q be the adjoint of the inclusion of Q in rl. Then P is contained

contractively in Q if, and only if, the inequality

\P-QP       Q-Q2)-

is satisfied. The inclusion of P in Q is then continuous.

PROOF OF THEOREM 4. Assume that P is contained contractively in Q. Let

S be the complementary space to Q in M. Then the inequality

(c,c)x < (a,a)p + (b,b)s

holds whenever c — a + b with a in P and bin S.

If u is an element of rl, then Pu is an element of P such that

(Pu,Pu)p =(Pu,u)u.

If v is an element of rl, then (1 — Q)v is an element of S such that

{(1 - Q)v,(l - Q)v)s = ((1 - Q)v,v)».

In this notation the previous inequality reads

(Pu + (l-Q)v,Pu+(l-Q)v)x <(Pu,u)» + ((l-Q)v,v)u.

The desired matrix inequality follows.

If on the other hand the matrix inequality is assumed, then the last inequality

holds for all elements u and v of rl. The inequality

(c,c)x < (a,a)P + (b,b)s
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follows when a = Pu is in the range of P, 6 = (1 — Q)v is in the range of 1 — Q,

and c = a + b. But every element a of P is the limit of a sequence of elements

an of the range of P. Convergence is in the Mackey topologies of P and rl, and

every element 6 of S is the limit of a sequence of elements bn in the range of 1 — Q.

Convergence is in the Mackey topologies of S and rl. Then c = a + bis the limit of

the sequence of elements cn = an + bn. Convergence is in the Mackey topology of

rl. Since

(a,a)p =Y\m(an,an)p,    (b,b)s = lim(6n,6n)s,    (c,c)x = lim(cn,c„)j/,

the inequality

(cn,cn)« < (a.n,an)p + (6n,6n)s

implies the inequality

(c,c)u < (a,a)p + (b,b)s.

The inequality implies that P is contained contractively in Q.

It will be shown that the inclusion of P in Q is continuous. If c is an element of

M, then Qc is an element of Q in the domain of the adjoint of the inclusion of P in

Q. The action of the adjoint on Qc is Pc. It has been shown that the adjoint of

the inclusion of P in Q has a dense domain in Q. It follows that the inclusion of

P in Q has a closed graph. Continuity of the inclusion follows by the closed graph

theorem.

This completes the proof of the theorem.

A factorization of continuous and contractive transformations is given as an

application of complementation theory.

THEOREM 5. The kernel of a continuous and contractive transformation T of

a Krein space A into a Krein space B is a Hubert space XI which is contained

continuously and isometrically in A, and T acts as an isometric transformation

of the orthogonal complement of M in A onto a Krein space M which is contained

continuously and contractively in B.

PROOF OF THEOREM 5. Since T is continuous, an adjoint transformation T*

of S into A exists. Since T is contractive, T*T is a selfadjoint transformation of A

into itself which satisfies the inequality T*T < 1. It follows that TT* is a selfadjoint

transformation of B into itself which satisfies the inequality

{TT*)2 < TT*.

By Theorem 2, a unique Krein space M exists, which is contained continuously

and contractively in B, such that TT* coincides with the adjoint of the inclusion

of M in B.
Consider the Cartesian product A x B as a Krein space with the Cartesian

product of the scalar products of A and B. The elements of the space are to be

realized as column vectors with upper entry in A and lower entry in B. There is a

corresponding representation of transformations of A x B into itself as two-by-two

matrices of transformations. The inequality T*T < 1 implies that the selfadjoint

matrix
il      T*  \

\T   TT* )
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satisfies the inequality

(1     T*\\    fl     T*\

\T   TT* )   -    \T   TT*)'

By Theorem 3, a unique Krein space £ exists, which is contained continuously

and boundedly in Ax B, such that the selfadjoint matrix coincides with the adjoint

of the inclusion of Q in A x B. An isometric transformation of A onto Q is defined

by taking an element a of A into the pair (^J.

If 6 is any element of B, then

(T*b\

\TT*b)

is an element of Q and TT*6 is an element of M such that the identity

((;a).(^))s=(ro>rr'i,w

holds for every element a of A such that Ta belongs to M.

It will now be shown that every element a of A has this property and that the

inequality

(Ta,Ta)M <(a,a)A

is satisfied. It is easily seen that every element a of A in the range of T* has

the desired property. Also ever element a of A in the kernel of T has the desired

property because T is assumed to be contractive. Since the kernel of T and the

range of T* are orthogonal subspaces of A, every element of A which belongs to the

span of the kernel of T and the range of T* has the desired property. This verifies

that a dense set of element of A has the desired property.

If a is an element of A which is a limit in the Mackey topology of A of a sequence

of elements an of A which have the desired property, then Ta is the limit of Tan in

the Mackey topology of B. If 6 is any element of B, the identity

(Ta + (1 - TT*)b,Ta + (1 - TT*)6)S

= lim(Tan + (1 - TT*)b,Tan + (1 - TT*)b)B

implies that

(To + (1 - TT*)b,Ta + (1 - TT*)b)B

< (6,(1 - TT*)6)b +limsup(Ta„,Tan)M.

Since the inequality

(Tan,Tan)M < {an,an)A

holds for every index n and since

(a,a)A =lim(a„,on)^,

it follows that the inequality

(Ta + (1 - TT*)b,Ta + (1 - TT*)b)s

<(a,a)A + (b,(l-TT*)b)B

is satisfied. By the arbitrariness of 6, Ta belongs to M and the inequality (Ta, Ta)x

< (a, a) a is satisfied.
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It has now been shown that a contractive transformation of Q into M is defined

by taking (3?Q) into Ta. Since the adjoint transformation takes TT*6 into

(T*b\

\TT*bJ

for every element 6 of S, it has a dense domain in B. The transformation of Q into

M is continuous by the closed graph theorem. Since the adjoint transformation is

isometric on a dense subset of M, it is an isometric transformation of M into Q.

The range of this adjoint transformation is a Krein subspace of Ç whose orthogonal

complement is the set of elements of Q of the form {^a) for an element a of A in

the kernel of T.

This completes the proof that the kernel of T is a Krein space. The set of such

pairs is a Krein subspace of Q. The remaining assertions of the theorem are easily

verified.

A continuous transformation of a Krein space A into a Krein space B is said to

be a partial isometry if its kernel is a Krein space which is contained continuously

and isometrically in A and if the transformation is an isometry on the orthogonal

complement of its kernel. Theorem 5 states that a continuous and contractive trans-

formation of a Krein space into a Krein space is the composition of a contractive

partial isometry and a continuous and contractive inclusion.

A transformation T of a Krein space A into a Krein space B is said to be bounded

if a positive number t exists such that the inequality

(Ta,Ta)s <t(a,a)A

holds for every element a of A.

A factorization theorem for transformations which are continuous and bounded

is a corollary of Theorem 5.

THEOREM 6. The kernel of a continuous and bounded transformation T of

a Krein space A into a Krein space B is a Hubert space XI which is contained

continuously and isometrically in A, and T acts as an isometric transformation of

the orthogonal complement of XI in A onto a Krein space M which is contained

continuously and boundedly in B.

PROOF OF THEOREM 6. By hypothesis a positive number t exists such that

the continuous transformation To = t'1T of A into B is contractive. Since the

kernel of T is equal to the kernel of To, it is a Hubert space by Theorem 5. By

Theorem 5, To acts as an isometry of the orthogonal complement of XI in A onto

a Krein space Mo which is contained continuously and contractively in B. Let M

be the unique Krein space, which is contained continuously and boundedly in S,

such that multiplication by t acts as an isometry of M0 onto M. Then T acts as an

isometry of the orthogonal complement of XJ in A onto M.

This completes the proof of the theorem.

An analogous factorization does not hold for every continuous transformation of

a Krein space into a Krein space. The kernel of the transformation need not be a

Krein space.

A useful property of complementation is its preservation under contractive par-

tially isometric transformations.
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THEOREM 7. Let n be a contractive partially isometric transformation of a

Krein space rl onto a Krein space M'. Assume that P is a Krein space which is con-

tained continuously and contractively in U and that it acts as a contractive partial

isometry of P onto a Krein space P' which is contained continuously and contrac-

tively in M'. Then it acts as a contractive partial isometry of the complementary

space Q to P in rl onto the complementary space Qf to P' in M'.

PROOF OF THEOREM 7. Let T be the adjoint of 7T as a transformation of rl

into #'. Since tt is a partial isometry of M onto W, T is an isometry of rl' into rl

which satisfies the identity 7tT — 1.

Let P be the adjoint of 7r as a transformation of P into P'. Since 7r acts as a

partial isometry of P onto P', F is an isometry of P' into P which satisfies the

identity irP — 1.

If c is a given element of W, consider the minimal decomposition c = a + b of c

as an element of W' with a as the element of P' and 6 as the element of Q!. Let

Tc — u + v be the minimal decomposition of Tc as an element of rl with u as the

element of P and with v as the element of Q.

If s is any element of P, then

(u,s)p = {Tc,s)x

by the theory of minimal decompositions. By the definition of T,

{Tc,s)u = (c,irs)x<.

Since 7TS belongs to P',

(c,irs)xi = (a,irs)p>

by the theory of minimal decompositions. Since the identity (u,s)p = (a,irs)pi

then holds for every element s of P, u = Pa. It follows that ttu = a and irv = 6.

Since the identities (c,c)x' = (Tc,Tc)x and (a,a)pi = (u,u)p are satisfied, the

identity (6,6)2- — (v,v)q 1S satisfied.

Assume that s is an element of Q which is orthogonal in Q. to elements which

are obtained from the range of T under the adjoint of the inclusion of Q in )/.

Since s is then orthogonal in M to the range of T, it is in the kernel of it. Since 7r is

contractive as a transformation of M into M', the self-product (s, s)x is nonnegative.

Since the inclusion of Q in rl is contractive, the self-product (3,5)2 is nonnegative.

A dense vector subspace of elements s of Q have the property that 7rs belongs

to Q' and that the inequality

(7TS,7rs)2' < (s,s)¡¿

is satisfied. These elements are those which are sums of the two kinds of elements

previously considered. One kind are the elements which are obtained from the

range of T under the adjoint of the inclusion of Q in M, and the other kind are the

elements which are orthogonal to the elements obtained from the range of T under

the adjoint of the inclusion of Q in U.

An arbitrary element s of Q is the limit in the Mackey topology of Q of a sequence

of elements s„ of Q such that irsn belongs to Q' and such that the inequality

(7Tsn,7rsn)2' < (s„,a„)2
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is satisfied. Since the inclusion of Q in X is continuous, s is the limit of sn in the

Mackey topology of )/. Since n is continuous as a transformation of M in to rl', ns

is the limit of -rrsn in the Mackey topology of X". Since the identity

(ns + a, ns + a)x> = lim(7rsn + a, irsn + a)x>

holds for every element a of P', where

(7ts„ +a,irsn + a)x' < (a,a)pi + (irsn,Trsn)Qi,

and since

(s,s)Q =lim(s„,5n)2,

(ns + a, Trs + a)x> < (a, a) pi + (s,s)q.

Since a is an arbitrary element of P', it follows that 7rs belongs to Q' and that the

inequality (7rs, 7ts)2' < (s, s)q is satisfied.

Assume that c is any element of rl, that v is the element of Q obtained from

Tc under the adjoint of the inclusion of Q in M, and that 6 is the element of Q'

obtained from c under the adjoint of the inclusion of Q' in W. If s belongs to Q,

then

(s,v)q = (s,Tc)x = (Trs,c)x> = (irs,b)Qi.

This verifies that the adjoint of 7r as a transformation of Q into Q' takes 6 into

v. Since the transformation of Q into Q' given by the action of it has a densely

defined adjoint, it is continuous by the closed graph theorem. Since the adjoint has

been shown to be isometric on a dense subset of Q', it is an isometry. The range

of the isometry is a Krein space which is contained continuously and isometrically

in Q, and which has Qir as the adjoint of its inclusion in Q. Since the kernel of the

restriction of tx to Q is the orthogonal complement of the range of Q, it is a Krein

space which is contained continuously and isometrically in Q. The restriction of 7r

to the range of Q is an isometry of the range of Q onto Q'.

This completes the proof of the theorem.

This paper was written during the author's sabbatical leave from Purdue Uni-

versity at the University of Heidelberg as an Alexander von Humboldt fellow in the

spring semester of 1986. He thanks his hosts, Professors A. Dold and E. Freitag.

The author thanks Professors Larry Brown and James Rovnyak for observing

that Theorems 3 and 6 are in a sense best possible. Their comments are based on

a standard example in the theory of Krein spaces: A vector subspace of a Krein

space can be equal to the orthogonal complement of its orthogonal complement

without being a Krein space [1]. A selfadjoint transformation exists which has

the subspace as its kernel. An interesting problem is to determine every Krein

space which is contained continuously in a given Krein space and which has given

selfadjoint transformation as the adjoint of its inclusion in the space. Larry Brown

has shown that such a space, which is easily seen to exist, need not be unique.
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