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TILING THE PROJECTIVE FOLIATION SPACE

OF A PUNCTURED SURFACE

LEE MOSHER

Abstract. There is a natural way to associate, to each ideal triangulation of a

punctured surface a cell decomposition of the projective foliation space of the

punctured surface.

A recent theme in the topology of surfaces has been the special role played by

punctured surfaces, both in the study of geometric structures, and in the study of

measured foliations. For example, one important result has been the construction of

an equivariant "ideal cell-decomposition" of the Teichmuller space of a punctured

surface, a result due to many people, including Harer, Strebel, Mumford, Epstein

and Bowditch, and Penner (see, for example, [Har], [EB], and [P]). In all of these

proofs an important construct has been an ideal cell-division of the punctured

surface: indeed, the cells of Teichmuller space are in 1-1 correspondence with isotopy

classes of ideal cell-divisions of the punctured surface.

In [Ml] and [M2], ideal cell-divisions were used in the study of measured

foliations on a punctured surface, in order to define conjugacy invariants of certain

elements of the mapping class group of a punctured surface, and to present an

algorithm for computing these invariants. It is the purpose of this work to provide a

deeper foundation for the algorithm described in [Ml]. In particular, we shall

develop the theory of measured foliations on a punctured surface from the ground

up, using the plan and several technical tools from [FLP], but utilizing ideal

triangulations in place of pairs of pants decompositions for actually constructing

measured foliations. Our main result here is that to each isotopy class of ideal

triangulations, there is a naturally associated cell-decomposition of ^J5", Thurston's

space of projective measured foliations. This result parallels the result of Harer and

Penner that on any surface (punctured or not), to each choice of a pair of pants

decomposition (plus an additional choice of data sufficient to determine a marking

of the surface), there is a naturally associated cell-decomposition of 0>!W. Many of

the techniques of proof used here are not new, being adaptations and reorganiza-

tions of the techniques of [FLP]; the notable exception occurs in the use of

"elementary moves" on ideal triangulations to understand the overlap maps of

different parameterizations of Jt&.
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The plan of the paper is as follows. §1 gives the basic definitions. §2 describes an

expanded category of measured foliations, the "partial measured foliations", which

are, perhaps, somewhat easier to use than the traditional category. §3 states the

Normal Form Theorem, which says that each class in MZF has a unique normal

form with respect to a given ideal triangulation, and that the process of constructing

normal forms defines a parameterization of Jt'!W which depends naturally on an

ideal triangulation. This statement is analogous to the Normal Form Theorem

proven in [FLP, expose 5], which is stated in terms of pairs of pants decompositions.

§4 proves the existence of normal forms, starting from the standard technical tools

proven in [FLP, expose 5]. §5 proves that the parameterization of J(!F described

above is, in fact, a homeomorphism; the tool used here is the "elementary move", a

simple combinatorial operation which generates all ideal triangulations. §6 contains

the statement and proof of the Cell-Decomposition Theorem, which is quite short

after all the work of the previous sections. §7 develops some additional structure of

our cell-decompositions, using some results about train tracks; in particular, we give

a proof using ideal triangulations and elementary moves of Thurston's theorem that

tyfF is a manifold.

Though our cell-decompositions are different from those of Harer and Penner,

one should wonder what the purpose is of reproving the existence of natural

cell-decompositions of &&, especially in the more restricted setting of punctured

surfaces. The primary reason, mentioned above, is to use the tools developed here to

present a complete classification of conjugacy classes in the mapping class group of

a punctured surface, and to describe a structured and efficient algorithm for

computing this classification. The results of [Ml] and [M2] are a first step in this

direction, although there are several shortcomings: the classification of pseudo-

Anosovs described in [Ml] and [M2] is not complete; and the algorithm described in

[Ml] is not efficient, suffering from the computational disadvantage of a built-in tree

search. The correction of these problems is the subject of the sequel [M3], which uses

the foundations laid down here.

In addition, using the cell-decompositions presented here, it is possible to under-

stand the structure at infinity of the decomposition of Teichmuller space: an ideal

triangulation S of a punctured surface has associated to it a cell complex structure

^(8) on 3P&, and a set a(S) c y, where ST is the Teichmuller space, and a(S) is

a top-dimensional simplex minus some subcomplex, embedded properly in ST.

Using the Thurston compactification, SP!F can be thought of as the sphere at

infinity of Teichmuller space; it turns out then that a(S) is bounded at infinity by a

subcomplex of ^(S). This shall hopefully appear in a future work.

1. Let S be a cS.td, orientable surface, of genus g > 0, and let P be a finite,

nonempty set of points of S. The pair (S, P) is called a punctured surface, and the

points of P are called punctures. The set S - P is often called the interior of (5, P).

The only cases we disallow are where (S, P) is a once, twice, or thrice punctured

sphere. Maps, homotopies, and isotopies of (S, P) will often be referred to as maps,

homotopies, and isotopies of S relP. In addition, continuous maps /: X -* S will
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often be altered by ambient isotopy rel P; this shall occasionally be shortened to

"isotopy rel P" or just "isotopy".

The mapping class group of (S, P), denoted Jt(S, P), is the group

7r0(Homeo+(5, P)) ~ Homeo+(5, P)/Homeo0(S, P), where Homeo+(5, P) de-

notes orientation preserving homeomorphisms of (S, P), and Homeo0(5, P) denotes

homeomorphisms of (S, P) isotopic rel P to the identity.

A measured foliation on (S, P) is a codimension 1 singular foliation equipped with

a transverse measure. The type of singularity which can occur at a pont x is an

n-pronged singularity: this means that, for some complex coordinate z near x, f is

foliated by the horizontal trajectories of the meromorphic quadratic differential

z"~2dz2 (holomorphic if n > 2). An allowable singularity at a puncture is an

w-pronged singularity with n > 1, and an allowable singularity in the interior is an

«-pronged singularity with n > 3. (By convention, a puncture is always considered

to be a singularity, even if it has 2 prongs.) A transverse measure on such a foliation

/ is an assignment of a Borel measure with positive total weight to every embedded

interval transverse to /; this measure is invariant under isotopy parallel to leaves of

/, and it is preserved under restriction to subintervals. If a is an interval embedded

transversely to /, we use fa f to denote the integral over a of the measure defined on

a by/.

A leaf segment £ of a measured foliation / is the image of an embedding of the

closed interval / into a leaf of /, such that int(7) maps to regular points of /. The

endpoints of £ may be either regular points, or singularities; if both endponts are

singularities, then £ is called a singular leaf segment. A leaf cycle of / is a

1-complex which is a union of leaf segments of /. We say that a leaf cycle c is closed

if the only degree one vertices of c occur at punctures. A measured foliation / is

arational if / has no closed leaf cycles.

There is an equivalence relation on measured foliations, called Whitehead equiva-

lence, generated by isotopy and Whitehead moves; a Whitehead move on a measured

foliation / is the operation of collapsing a singular leaf segment £ of / to a point,

resulting in a new measured foliation /'; the only restriction on £ is that at least one

of its endpoints be in the interior of (S,P) (a more precise formulation of

Whitehead moves is given below). The equivalence class of / is denoted {/}, and

the collection of equivalence classes, with the empty foliation included, is denoted

Jt'.^(S, P), or more briefly, just JOF (we shall denote the empty foliation as 0).

Note that for a measured foliation, the property of being arational is preserved

under Whitehead equivalence. Therefore we can properly speak of an arational class

in Jt&.

A measured foliation can also be multiplied by a positive scalar r, by defining

fa r ' / = r ' Sa /' f°r every measured foliation /, embedded interval a transverse to

/, and r > 0. This scalar multiplication respects Whitehead equivalence, and so

descends to a scalar multiplication on JOF— {0}. This gives a projectivization map

p: Jt&— {0} -» @&; the projective class of a measured foliation class J^ {/} is

denoted p(Jr), or p{f}. Note that the group Jt(S,P) acts on both J(!F and

&&>, via the action of Homeo + (S, P) on measured foliations; these actions com-

mute with p.
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We shall have need of the following more precise formulation of Whitehead

moves. Given a measured foliation / and a singular leaf segment £ of / such that at

least one endpoint of £ is in S - P, there is a map <p: (S, P) -» (S, P), homo topic

to the identity, which takes £ to a point and acts homeomorphically on the

complement of £. It follows that <p(/) is a measured foliation on (S, P), which we

say is obtained from / by a Whitehead move. The map <p is called the collapsing map

of the Whitehead move. If the endpoints of £ are m and w-pronged singularities of

/, then tp(/) is an (m + n — 2)-pronged singularity of <p(f).

Here are several technical results needed for the proof of the Normal Form

Theorem, which are proven in [FLP, expose 5]; they are restated here in the form

appropriate for punctured surfaces. The proofs are exactly the same as in the closed

surface case.

Euler - Poincare Index Formula. Let f be a singular foliation of a closed surface

M, where the singularities can be k-pronged singularities for k ^ 0 (a 0-pronged

singularity has a neighborhood foliated by concentric circles). Then x(M) —

L(index(i)), summed over the singularities s of f, where for an n-pronged singularity s,

index(^) = 1 - «/2.

Stability Lemma. Let f be a measured foliation on (S, P). Let £ be a leaf cycle off

which is homeomorphic to the closed interval, with d£= {x0, x^. Suppose that on one

side of £, the side, the foliation is regular (i.e. that side is foliated locally like

horizontal lines in the upper half-plane). Let a, /? be a pair of transverse arcs to f such

that: x0 g da and x1 e 9)6; int(a), int(/?) and inuY) are pairwise disjoint; and a, /?

each emanate from the nonsingular side of £. Then there exists a continuous mapping

H: I X I-> S such that: 77|int(7) X int(7) is an embedding; 77(7 X 0) = £;

77(0 X 7) c a; 77(1 X 7) c /J; 77(7 X /) is a nonsingular leaf segment of f for each

t eint(7); // 9a Pi 9/? = 0, 77(7 X 1) is a leaf cycle containing either an endpoint of

a or (1, or a singularity of f; if da n 9/J + 0, then 77(7 X 1) is the point 9a n 9/8.

Moreover, the image of 77 is uniquely determined by these conditions.

We shall also need a version of the Poincare Recurrence Theorem; the statement

is given at the end of the next section, after we have introduced some new notions.

2. For many purposes, it turns out that measured foliations are not so convenient

to work with. What usually happens is that a certain measured foliation class might

assign zero weight to all curves on a certain subsurface of S, and one might want to

be able to see this subsurface, or at least a portion of it. This inconvenience can be

remedied in several ways. The most common is to put a hyperbolic structure on

S — P, and to straighten the leaves of a measured foliation /, giving a "geodesic

lamination", which depends only on the class of /. In order to avoid the intricacies

of the hyperbolic category, we shall follow a different tack, using a variation on the

" partial measured foliations" defined in expose 9 of [FLP].

A partial measured foliation / on a closed surface S, as defined in [FLP], is

(roughly) a measured foliation supported on a subsurface S", such that each

component c of 95" is an essential simple closed curve on S, and c is a cycle of
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A pinch point

Figure l

leaves of /. On a punctured surface (S, P), the support 5' of a partial measured

foliation on (5, P) is allowed to have a slightly more general topology at a puncture

—specifically, near a puncture p, 5' can look like a union of sectors of a measured

foliation. (Note: All our definitions in this section apply equally well to the closed

surface case—just allow the puncture set 7* to be empty.)

Here is the precise definition. A pinched subsurface of (5, P) is a nonempty closed

subspace S'c5 such that 5" - P is a subsurface of 5 - P (with boundary, if 5' is

a proper subspace), and 5' contains no isolated punctures. Thus, if p e 95' O P,

then near p, 5' looks like a union of finitely many pie wedges. If there are > 2

wedges which are disjoint except at p, we will say that p is a pinch point of 5'. See

Figure 1.

A relative boundary component of a pinched subsurface 5' is defined to be the

closure c of a boundary component of 5 - 5'. Thus, c is either a simple closed

curve in 5 - P, or c is the image of a continuous map (7,97, int(7)) -* (5, P,S - P)

which is 1-1 on int(7). To say that c is essential means:

(1) If c ~ S1 and c Ci P = 0, then c does not bound a nonpunctured or a

once-punctured disc.

(2) If c = 51 and c D P = {p}, then c does not bound a disc with no interior

punctures (this is just the definition of an "essential arc" given in §3).

In particular, if c * 51, then c is essential.

If each relative boundary component of a pinched subsurface 5' is essential, we

will say that 5' is essential.

A partial measured foliation on (5, P) is a measured foliation / defined on some

essential pinched subsurface 5' of (5, P), such that each relative boundary compo-

nent of 5' is a cycle of leaves of /. Moreover, if x e 95' and x is not a pinch point,

then either / is regular at x, or / has a boundary singularity at x: that is, near x, f

looks like the foliation of the upper half-plane by the horizontal trajectories of

z2"~2dz2 (n > 1). Finally, if p e 95' n P is a pinch point of 5', then near p, f

looks like a union of sectors of an w-pronged singularity at p (« > 1); we shall call

this a pinch singularity. See Figure 2.

We call 5' the support of /, denoted supp(/); 5' may be empty, or all of 5, or

any arbitrary essential pinched subsurface. Unless the context suggests otherwise,

the term " measured foliation" shall be reserved to mean a partial measured foliation
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A pinch singularity

Figure 2

whose support is all of 5; to clarify certain situations, we shall occasionally refer to a

measured foliation as a total measured foliation.

In constructing partial measured foliations, we shall make use of the following

lemma (notational note: the closure operator is denoted "cl"):

Puncture Singularity Lemma. Let 5' be a pinched subsurface (not necessarily

essential); suppose D c cl(5 — 5') is a once-punctured disc such that D n 5' is a

union of finitely many closed arcs contained in dD n 95' (this includes the case where

D n 5' = 97)). Let <p: (S, P) -+ (S, P) be a continuous map which takes D top G D,

and is injective on S — D. Let f be a measured foliation on S' such that 95' is a leaf

cycle of f, and each pinch point on S' is a pinch singularity of f; moreover, if

D n 5' = 97), it is required that f has a singularity on 37). Then (j>(/) is a measured

foliation on cp(S') such that 3(<p(5')) is a leaf cycle of <p(f), and each pinch point of

<p(5') is a pinch singularity of <p(/).

The proof of this lemma is an elementary construction, and is omitted. The point

of this lemma is: if 7) n 5' = 37), then <p(/) has an w-pronged singularity at p,

where w > 1 is guaranteed by the condition that / has a singularity on 37); if

D n 5' is a single arc, then <p(/) has a boundary singularity at p; and if 7) n 5' is

two or more arcs, then <jp(/) has a pinch singularity at p (see Figure 3).

We now need a generalization of the concept of an "enlargement" (elargissement),

presented in [FLP, expose 5]. This a method of assigning, to each partial measured

foliation on (5, P), a total measured foliation whose class is well defined.

Let / be a partial measured foliation on (S, P), with support 5', and suppose 5'

is not all of 5. Let 2 be a spine of cl(5 - 5') relative to P' = P n cl(5 - 5'). This

means that 2 is a finite 1-complex contained in cl(5 — 5'), such that P' c 2, and

cl(5 - 5') has a strong deformation retraction to 2. We also impose the condition

that 2 has no degree 1 vertices, except possibly at some singularities of / on 35', or

possibly at some punctures in 7". Such a spine can always be found (see Figure 4).

Then there exists a continuous mapping <p: (5, P) -* (5, P), homotopic to the

identity, called an enlarging map (Figure 4) for /, such that:

(1) tp |cl(5 - 5') is a strong deformation retraction onto 2.

(2) <p | int(5') is a homeomorphism onto 5-2;
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The Puncture Singularity Lemma

Figure 3

An enlarging map of a partial measured foliation

Figure 4

(3) <p 135' from 35' onto 2 is a topological immersion, except at pinch points of

35' and degree one vertices of 2.

Thus, <p(/) is a foliation with singularities of (S, P), equipped with a transverse

measure. It is easy to see that the singularities are w-pronged singularities, with

w > 0. But the condition that 5' is essential guarantees that no component of 2 is a

point, therefore <p(/) has no 0-pronged singularities. Also, the condition on the

degree 1 vertices of 2 guarantees that <p(/) has no interior 1-pronged singularities.

It follows that <p(/) is a measured foliation on (S,P), called an enlargement of /.

Although <p(f) depends on the choice of 2 and op, the class of <p(/) is well

defined. The proof of this fact is a straightforward generalization of the arguments

found in [FLP, expose 5, §3]; the idea is to show by techniques of PL topology that



8 LEE MOSHER

any two spines of a punctured surface with boundary are equivalent up to isotopy

and "Whitehead moves"; one could also use the techniques of "elementary moves",

presented in §6.

Whitehead moves on partial measured foliations are defined almost exactly as for

total measured foliations, though we must be slightly more careful. Suppose / is a

partial measured foliation and £ is a singular leaf segment of /. As before, we

exclude the case where / connects two punctures. We also put the following

condition on £: if d£c 9(supp(/)) - P, then we require that £cz 9(supp(/)); this

excludes the case where £ <£ 9(supp(/)), but £ connects two boundary singularities

of / lying in S - P; without excluding that case, it would be possible to create

pinch singularities in 5 - P, which we do not want. A collapsing map on £ is now

defined just as for measured foliations, resulting in a partial measured foliation /'

which is said to be obtained from / by a Whitehead move.

Whitehead equivalence is now defined, as in the case of total measured foliations,

as the equivalence relation generated by isotopy and Whitehead moves. If /, g are

partial measured foliations which are Whitehead equivalent, then clearly there are

enlargements /', g' of /, g that are Whitehead equivalent. It follows that there is an

equivalence relation on partial measured foliations generated by isotopies, Whitehead

moves, and enlargements, and the collection of equivalences classes is in 1-1

correspondence with Jt'&', under the map induced by the inclusion of the set of

measured foliations into the set of partial measured foliations. Also, this bijection is

natural with respect to the action of J£(S, P). Therefore, we shall alter our notation

and use J(&■ to refer to equivalence classes of partial measured foliations, under the

above equivalence relation (note that this equivalence relation on partial measured

foliations is stronger than Whitehead equivalence). The associated projectivization

will similarly be denoted 3P!F.

One important reason for introducing partial measured foliations is that it clarifies

the connection between measured foliations and measured geodesic laminations. In

particular, given a partial measured foliation / whose components are all either

minimal partial foliations or (nonpairwise isotopic) annuli (we call / a "complete

dissection"), there is a 1-1 correspondence between the components of / and the

components of the measured geodesic lamination corresponding to /. This kind of

partial measured foliation is often the most convenient to work with in applications,

so we shall develop the general theory here before stating the Normal Form

Theorem.

Some notation: given a partial measured foliation / and a union K of compo-

nents of supp( /), we use /1K to denote the partial measured foliation with support

K which agrees with / on K.

Given J^e J(!F and / e &, we say that / is a complete dissection of J5" if, for

every component 5' of supp(/), 95' consists of simple closed curves in 5 - P

(which are necessarily closed leaf cycles of /), and either /15' is arational (meaning

that the boundary components are the only closed leaf cycles of /15'), or 5' is an

annulus embedded in 5 — P. In the first case, we say that /15' is partial arational;

in the second case, we say that /15' is annular. If /15' is annular, it follows from

the Stability Lemma that /15' is a foliation by leaves parallel to the boundary. We
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also impose the condition that two distinct annular components of supp(/) cannot

be isotopic; one can easily see that this condition is necessary in order for complete

dissections to be unique, as stated in the following lemma:

Complete Dissection Lemma. Every J*"e J(!F is represented by a complete

dissection, unique up to Whitehead equivalence.

This fact should be viewed in parallel with the obvious fact that each J^e J(3F is

represented by a total measured foliation, unique up to Whitehead equivalence.

Thus, complete dissections give us an alternate way of using Whitehead equivalence

to decide identity in Jt^.

Proof. First we prove existence of complete dissections. Given a measured

foliation fQ e &, let 2 be the union of all closed leaf cycles of /0 containing a

singularity. Note that 2 does not contain smooth closed leaves. It follows that 2 is

itself a closed leaf cycle of /0. Moreover, 2 is a maximal closed leaf cycle with

respect to the property that every component of 2 contains a singularity.

Let fl be the partial measured foliation obtained by cutting f0 along 2; fx is

characterized (up to isotopy rel P) by the property that there exists a closed regular

neighborhood N of 2, and a mapping <p: (5, P) -* (5, P) homotopic to the identity,

such that <p| N is a deformation retraction onto 2, <p takes int(5 — N) homeomor-

phically to 5 - 2, and <p(fx) = f0.

Supp(/j) is the closure of the complement of N. Thus, 9(supp(/1)) is a collection

of simple closed curves in 5 - P. Moreover, each of these curves is essential, for

otherwise, f0 has a closed leaf cycle bounding a nonpunctured or once-punctured

disc. It follows that fx is a partial measured foliation on (5, P).

Let 5' be a component of supp(/1). Suppose 5' is not an annulus, and /15' is not

arational. We shall arrive at a contradiction. Since /15' is not arational, it has a

closed leaf cycle £, which does not intersect 95'. We can assume that £ is connected.

If £ contains a singularity, then <p(£) is a closed leaf cycle of fx containing a

singularity, but then <p(£) n 2 = 0, contradicting maximality of 2.

If £ contains no singularity, then if is a smooth closed leaf of fv It follows from

the Stability Lemma that £ is a leaf of some maximal foliated annulus A, embedded

except at its boundary, where it is immersed. If dA is not contained in 35', then dA

has a component which is a closed leaf cycle of fx | 5'; by maximality of A, this cycle

must contain a singularity, but as above, this leads to a contradiction of the

maximality of 2. If dA is contained in 35', then A is embedded and A = 5'; this

contradicts the assumption that 5' is not an annulus.

We now prove that complete dissections are unique, up to Whitehead equivalence.

This is clear in the case that J5" is arational, for in that case, any two representatives

of J*" are measured foliations, and are Whitehead equivalent by virtue of being in

the same class in Jt&'. So for the remainder of the proof, we shall consider the case

where J5" is not arational.

Suppose /j and /2 are two complete dissections of ?F. Then there are enlarge-

ments /,' and f{ of fx and f2 which are Whitehead equivalent. So we can assume,

without loss of generality, that there is a map tp': (5, P) -» (5, T^), homotopic to the
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identity, such that y'(fl)=f{, and either 0/ is a homeomorphism, or <p' is the

collapsing map of a Whitehead move. We shall prove in this case that there is a map

(j>: (5, P) -» (5, P), homotopic to the identity, such that <p(fx) = f2, and either <p is

a homeomorphism, or rp is the collapsing map of a Whitehead move.

For i g {1,2}, let %: (5, P) -* (5, P) be a collapsing map taking /, to //, and let

2, be the spine onto which 5 - supp(/;) is collapsed by %. Thus, 2, is a leaf cycle

of //. Also, each component of 2, contains a singularity of //: for noncircular

components this is obvious; for circular components, this follows because of the

condition on complete dissections that each complementary non-punctured annulus

contain a singularity on at least one boundary component. Finally, note that 2, is

the largest leaf cycle of // such that each component contains a singularity: this is

because the only closed leaf cycles of /; are either smooth closed leaves in annular

components of supp(/,), or are components of 3(supp(/,)). This property of leaf

cycles in measured foliations is evidently preserved under Whitehead equivalence, so

JGi) = 22.
Now note that >I',|supp(/,) is a local homeomorphism onto 5 (except at the inverse

image of a degree one vertex of 2X; this is not a problem, however). Together with

the fact that <p'(2j) = 22, we see that there is a coherent way to define SFf1 on

<p' o ̂ (t/), for each U in some finite open cover of supp(/j)—coherent in the sense

that ^2~l is well defined by restriction for any open set dominated by this cover.

This allows us to define tp | supp(/t) by tp = \k2T1 ° tp' ° ^ it is now easy to see how

to extend rp to all of 5 so that tp is the required Whitehead equivalence.   Q.E.D.

We close this section with a version of the Poincare Recurrence Theorem which is

useful for what follows. The proof is exactly the same as the proof given in [FLP].

Poincare Recurrence Theorem. Let f be a measured foliation on (S,P), and let

5" be a pinched subsurface of S such that 95' is a union of leaf cycles of f and arcs

transverse to f. Then every leaf £ of f, contained in 5' and originating at 35',

eventually either runs into a singularity off in 5' or returns to 35'. Since there are only

finitely many singular leaves, it follows that almost every such leaf £ returns to 35'.

3. On a closed surface, essential simple closed curves are used to parameterize

Jt&. As presented in [FLP], there are two steps to this process. First one maps J£!F

into R^0, where y is the set of isotopy classes of simple closed curves; this

mapping is accomplished using intersection numbers. Then one picks out a finite set

of elements of ■$" which has some geometrical significance on the surface, and shows

that this set parameterizes Jt!F; for example, JOF can be parameterized by

intersection numbers with the curves of two pairs of pants decompositions which

together fill up the surface.

On a punctured surface one can also carry out this program using simple closed

curves; this is done in [HP]. But there is another construct which is not available on

a closed surface, namely, an "ideal arc", i.e. an essential simple arc with both ends in

the puncture set; and the entire program can be carried out with ideal arcs alone.

Thus, letting $C represent the set of isotopy classes of ideal arcs, we shall map Jt&

into R%0   using intersection numbers; then we shall use the arcs of an "ideal
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triangulation" of (5, P) to parameterize Jt!f'. We start with the definitions concern-

ing ideal arcs.

An ideal arc on (S,P) is the image w of a continuous mapping (7,37, int(7)) -*

(5, P,S - P), which is 1-1 on int(7), and satisfying the "essentiality" condition that

there does not exist an embedded disc D c 5 such that 37) = h and int(7)) D P = 0.

Two ideal arcs w, w' are isotopic if there exists <p g Homeo0(5. 7*) such that

(p(h) = W. 3tF shall denote the set of all isotopy classes of ideal arcs   n (5, 7>).

For a fixed partial measured foliation / and ideal arc w, let }hj denote the total

mass of h, measured with respect to /. For J^G J(!F, let (J^, w) = inf(/A, /), taken

over all /eF. Note that, if w, w' are isotopic, then (J^, w) = (J*\ w'>. Thus, given

/I g jf, we can unambiguously define (J^, /£) to be (J5", w), for any w g A. For

each J^g^J^, define jyG R"J0 by the formula v^(A) = (W,A). This gives a

mapping *>: JOF^> R^0. Note that the map v commutes with the actions of

J£(S, P) on Jt& and on R%0, i.e. for each $ g ^(5, 7*), J^g „#J^, and ^ g j?,

wehave<JF, A) = <$(JF ),$(/*)>.

We now topologize JOF by giving it the smallest topology with respect to which

v is continuous. As we shall see in the Normal Form Theorem, v is 1-1; thus, the

topology on Jt J^ is chosen so that v is a homeomorphism onto its image.

Let / be a partial measured foliation and w an ideal arc. We now wish to develop

a geometric condition on / and w which guarantees that jh f assumes its minimal

value, over the class of /. To get this condition, we need to know that 3(supp(/))

and w intersect nicely: given a pinched subsurface 5' of (5, P) and an ideal arc w,

we say that 95' and w intersect efficiently if there does not exist a closed disc D c 5

that satisfies the following conditions:

(1) 97) = a U /?, where a, ft are closed intervals.

(2) a n /? = 9a = 9/3.

(3) ac h.

(4) /? c 35'.

(5) D n 7> c a n /?.

(6) 7) is embedded, except possibly when 3a c T1, in which case 9a is allowed to

be a single point, arising from an identification of two points on the boundary of the

disc D.

Such a disc D, if it exists, is called a compressing disc for w and 35'. Thus, h and

35' intersect efficiently if and only if there is no compressing disc for w and 35'.

Note. Condition (5) is stated so that in Figure 5, w and 35' do intersect efficiently,

but in Figure 6, h and 35' do not intersect efficiently. In this latter case, w is

isotopic to a relative boundary component of 5'; thus, according to the definition

given, if h is isotopic rel P to a relative boundary component of 5', then w and 95'

intersect efficiently if and only if h actually is a relative boundary component of 5'.

Minimal Intersection Proposition. Given J^g JOF and f g &, and given an

ideal arc h, suppose that h is transverse to f and h intersects 3(supp(/)) efficiently.

Thenjhf=(^,h).

Proof. If fhf= 0, this is clearly true, so we will assume that fh f ¥= 0. First we

show that Jh f is minimal within the isotopy class of /.
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hn8S' is efficient

Figure 5

& * M^
hn3S' is not efficient

Figure 6

Lemma. Under the same hypotheses as above, iff is isotopic to f, then jhf < //,/'•

Proof. This is equivalent to the following: again under the same hypotheses as the

Minimal Intersection Proposition, if w' is an ideal arc isotopic to h, then }h f < fh.f.

The proof now follows very closely the proof of Proposition II.3 of expose 5 of

[FLP]
We can assume w and h' intersect transversely; thus, int(w) and int(w') intersect

in finitely many points. The proof is by induction on the number of intersection

points.

If int(w) n int(w') = 0, then w and h' together bound a pinched subsurface 5',

and P n 5' = 3w = 3w'. Note that 5' is either a disc or a disc with two boundary

points identified. We show that almost every leaf / of / entering 5' through w must

leave through w'; it follows that fhf < fh.f. By Poincare Recurrence almost every

such leaf £ returns to h U w'. Suppose there is a leaf / of / entering and leaving 5'

through w. Let a be the subarc of w cut off by £. Let 5" be the disc bounded by £

and a. By hypothesis, £<t 3(supp(/)); moreover, no leaf of / intersecting int(5")

can be in 3(supp(/)). Since a intersects / transversely, this implies that 5" c

int(supp(/)), so 5" is foliated by /, with £ as a leaf, and a transverse to the

foliation. Since 5" n P = 0, this foliation has no positive index singularities. But
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the double of 5" then gives a foliation of the sphere with two one-pronged

singularities and no other positive index singularities, in contradiction with the

Euler-Poincare Index Formula (see the Foliated Disc Lemma in §5).

If int(w) n int(w') + 0, there exists an embedded disc 7) c 5, int(7)) n P = 0,

37) = a U /?, where a,/? are closed intervals, 9a = 9)3 = a n /?, a c w, and /S c w'.

Again by the conditions on / and w, almost every leaf entering D through a must

leave through [i. Then we can isotope w' across D, resulting in an arc w" having at

least one fewer intersection with h, and such that //,-/< jh'f. Now apply the

induction hypothesis.    Q.E.D.

We shall use [/] to denote the isotopy class of /, and ([/],«) = inf fh f, where

the infimum is taken over /' G [/].

The remainder of the proof of Minimal Intersection is to show that if / and /' are

related by a Whitehead move or an enlargement, then ([/], w) = ([/'],«>.

First suppose that / is obtained from /' by a Whitehead move. Then / can be

chosen in its isotopy class so that /A/< ([/], w) + e, and so that h misses the

singularity resulting from collapsing a leaf of /'. /' can be chosen in its isotopy class

so that the collapsing map taking /' to / has support disjoint from w. Thus,

/* /' - /*/< <[/!. ») + «■ Since this is true for all e, <[/'], h) < <[/], w>.

To get the reverse inequality, choose /' in its isotopy class so that fhf <

([/'],«) + e/2. Let £ be the leaf segment of /' that is collapsed in producing /. If

w does not intersect /, leave /' alone. Otherwise, recall that at least one end of £ is

not at a puncture. Therefore, /' can be altered by isotopy rel P so that h and £ no

longer intersect; this isotopy can be chosen so that jh f is altered by no more than

e/2. Thus, we can assume that w does not intersect /, and jh/'<([/'],«) + e.

The collapsing map taking f to f can now be chosen to have support disjoint from

h, so /, /=/,/'< <[/'], w> + e; therefore, <[/], w> < <[/], w>.

Now suppose that / is obtained from /' by enlargement. Let 2 be a spine for

5 - supp(/'). Thus, under the collapsing map <p, 2 becomes a union of leaf

segments in /. Choose / and 2 so that w intersects 2 transversely, and jh f <

([/]' h) + e- The partial measured foliation /' can be chosen within its isotopy class

so that cl(5 — supp(/')) is contained in any neighborhood of 2; moreover, the

collapsing map <p taking f to f can be chosen to have support in any neighborhood

of cl(5 - supp(/')), and then to map w to itself, collapsing each component of

w n cl(5 - supp(/')) to the point where that component intersects 2. See Figure 7.

__—^-^—————— —— *
_.-—" #

<f collapses a component of hn(S-supp(f'))c to a point

Figure 7
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With these choices, /„/' = /„/, so <[/'],«> < <[/],«>.

To get the reverse inequality, choose /' so that w intersects 3(supp(/')) trans-

versely, and so that fhf < ([/'], w> + e/2.

If w does not intersect 3(supp(/)) efficiently, choose an innermost compressing

disc D for w and 3(supp(/')), and write 37) = a U /?, where a, /? are closed

intervals, a n ft = da =3/3, a c w, /? c 3(supp(/')). Note that no punctures lie

along int( fi). Thus we can isotope /' across 7), removing one compressible compo-

nent of h Pi cl(5 - supp(/')), and increasing jhf by an arbitrarily small amount.

After performing this operation finitely many times, we can assume w and

3(supp(/')) intersect efficiently, and jh /' < <[/'], w) + e.

The collapsing map tp taking f to f can now be chosen to take w to itself, and on

each component of w n cl(5 - supp(/')), tp restricts to a retraction map onto a

point. Thus, /„/= fh /', so <[/], w) < ([/'], «).

To prove the Minimal Intersection Proposition, note that we can get from f to f

within the same class in JtiF by a finite sequence of isotopies, Whitehead moves,

inverse Whitehead moves, enlargements, and inverse enlargements. As was shown

above, if / achieves the minimum of Jh f within its isotopy class, then Jh f < Jh /',

so jhf= ({/},w>. By the first lemma, if / and w satisfy the conditions of the

proposition, fh f achieves the minimum in the isotopy class of /, so jh f = ({/},«).

Q.E.D.
Now we describe ideal triangulations, and the way in which they are used to

parameterize Jt'&'. An ideal triangulation of (5, P) is a cell division 8 of 5 such

that:

(1) The set of 0-cells of 8 is P.

(2) Each 1-cell of 8 is an ideal arc.

(3) Each 2-cell T of 5 is a triangle, i.e. T is obtained by attaching a Euclidean

triangle t to the 1-skeleton of o, mapping each vertex of t to a puncture, and each

side of t to an arc of 5.

We remark that an Euler characteristic argument can be employed to show that:

given a 1-cell w of a cell division 8 satisfying (1) and (3) only, w necessarily satisfies

the essentiality condition for ideal arcs, and so h is an ideal arc; thus, 8 is an ideal

triangulation.

A triangle T of 8 may have its vertices identified in an arbitrary manner. In

addition, T may have a pair of sides identified (in an orientation preserving way, of

course), resulting in a single ideal arc w. If the latter happens, we say that T is a

puncture piece, and that w is the interior arc of the puncture piece T. Also, the

puncture p which is incident to h but not incident to the remaining side of T is

called the interior puncture of the puncture piece T. See Figure 8.

The existence of puncture pieces leads to certain pathologies in the theory. Of

course, in order for there to be any punctures pieces, there must be at least two

punctures. Thus, the once-punctured case is the nicest, being free of the pathologies.

Now let 8 be an ideal triangulation of (S, P), and let 77(8) denote the collection

of arcs of 8. Notice that if w # W g 77(5), then w and w' are not isotopic. To see

why, notice that 8 lifts to an equivariant ideal triangulation 8 of H2 = {universal
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A puncture piece

Figure 8

case 0 case 1 case 2 case 3

Local models for a foliation in normal form

Figure 9

cover of 5 - P}, in such a way that no arc of 8 has its ends at the same point of

S^ = 3H2; for otherwise, there would be an arc of 8 which violates the essentiality

property. It follows that if w + h' G 77(8), and if w, w' are any lifts of w, w' (resp.),

then h, h' do not have the same endpoints on 5^. From this it follows that w and w'

are not isotopic.

It now follows that there is a well-defined projection map qs: R^0 -» RH^S0\ The

main objective of the Normal Form Theorem is to show that qs ° v: J(!W-* R^*' is

injective, and to identify the image. To accomplish this, we shall give a construction

for partial measured foliations in "normal form" with respect to 8, and show that

these normal forms can be used to completely understand the map qs ° v.

Let 8 be an ideal triangulation of (5, P) and / a partial measured foliation on

(S, P). We say that / is in normal form with respect to 8 if, for each triangle T oi 8,

the underlying foliation of / restricted to T looks like one of the four pictures in

Figure 9.

Here is a formal description for each of the cases.

In case 0, we start with a regular Euclidean triangle t, and three "subdividing

segments" which connect the barycenter of t to the barycenters of the three sides of

t; these segments subdivide t into three quadrilaterals denoted Qx, Q2, Qv Now let

A be a regular Euclidean triangle with one horizontal side s, and choose homeo-

morhisms %: A -» Qt, i = 1,2,3, in such a way that ^ maps the vertex of A

opposite i toa vertex of t, and % maps 5 onto the union of the two subdividing

segments lying on dQ,. Now push forward the horizontal foliation on A, to give a

foliation of each Qt. Since s is a leaf of the horizontal foliation of A, then the

foliations of Qf match up to give a singular foliation of t, with a 3-pronged
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Transversely foliated case 1 case 2

Foliations of corners

Figure 10

singularity at the point where all the Qi intersect; this defines a case 0 foliation of t.

Notice that each corner of a case 0 foliation of t has a foliated neighborhood

modelled on the foliation by vertical lines of the sector -w/4 < arg(z) < w/4 of C;

we say that such a corner is transversely foliated (see Figure 10).

The remaining cases are easier to describe. A case 1 foliation of a triangle is the

foliation of C by vertical lines, restricted to a regular triangle with horizontal base.

Two corners of a case 1 triangle are transversely foliated; the remaining corner has a

foliated neighborhood modelled on the foliation by horizontal lines of the sector

-7t/4 < arg(z) < 7r/4 of C; we say that such a corner is a case 1 singular corner. A

case 2 foliation of a triangle is the foliation of C by horizontal lines, restricted to a

triangle with horizontal base. One corner of a case 2 triangle is transversely foliated;

each of the remaining corners has a foliated neighborhood modelled on the foliation

by horizontal lines of the sector 0 < arg(z) < tt/2 of C, we say that such a corner is

a case 2 singular corner. Finally, a case 3 foliation of a triangle is just the empty

foliation.

Thus, a partial measured foliation / on (5, P) is in normal form with respect to an

ideal triangulation 8 of (5, P) if and only if, for each triangle T of 8, the underlying

foliation of / restricted to T is a case 0,1,2, or 3 foliation of T.

Notice that, if / is in normal form with respect to 8, then for every arc h of o,

Jh f = ({/},«). This is obvious if fhf=0; and if fhf^0, one need only to
observe that / and w satisfy the hypotheses of the minimal intersection proposition.

Thus, for each w G 77(8), the w-coordinate of qs ° v({ f}) is precisely Jh f.

Let W(8)cz R^> be the collection of all jli g R^> such that ju. = qs ° *>({/}),

for some partial measured foliation / in normal form with respect to 8.

Lemma: Classification of Normal Forms. For each ju. g Rh^s0\ \i g Jf(8) if

and only if ju satisfies the following properties:

(a) If T is a triangle of 8 with sides hx, h2,h2 (ignoringpossible identification), then

jw(/i,), )J.(h2), fi(w3) satisfy the nonstrict triangle inequalities.

(b) For each p G P, if p(h) + 0 for each h G 77(8) incident top, then there exists

a triangle T of 8, incident to p, and an enumeration hx, h2, h3 of the three sides of T,

such that hx and h2 are incident top, and /x(w,) + /x(w2) = ft(w3).

Moreover, there is a natural map Ls: W(8) -» JO? with the property that qs°v°Ls

is the identity on W(8); it follows that Ls is 1-1.
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Proof. First we prove necessity of (a) and (b). Let / be a partial measured

foliation in normal form with respect to 8, and let p = qs° K{/ })•

The necessity of (a) is obvious. In fact, it is evident that for each w = 0,1,2,3, in a

case w triangle, exactly w of the three triangle inequalities are equalities, and 3 - w

are strict inequalities.

To see why (b) is necessary, suppose that p(h) i= 0 for each w G 77(8) incident to

a particular puncture p g P. This has several implications. First of all, it implies

that none of the triangles incident to p are case 0 triangles, since jti is zero on each

side of a case 0 triangle; thus, p g supp(/) - 9(supp(/)). Also, none of the corners

incident to p are case 2 singular corners, for p is zero on each side incident to such a

corner. Thus, each corner incident to p is either transversely foliated, or is a case 1

singular corner.

Now if every corner incident to p were transversely foliated, it would follow that

p has a neighborhood which is foliated either by concentric circles, or by leaves

spiraling around p, eventually limiting on p. Both of these violate the definition of a

partial measured foliation on (S,P).

It follows that at least one corner incident to p is a case 1 singular corner. Let this

be a corner of a triangle T; it follows that T is a case 1 triangle, and that if w1; h2, w3

are the sides of T enumerated in such a way that the corner between hx and h2 is

the given case 1 singular corner, then p(hx) + p(h2) = p(h3).

To prove sufficiency of (a) and (b), for each ju. g R^*' satisfying (a) and (b), we

shall construct a partial measured foliation / on (S,P), in normal form with respect

to 8, with the property that qs ° "({f^}) = p; in other words, for each w g 77(8),

Jh fix = !*■(")• fp. ^U De weii defined up to isotopy, and thus we will have a map Ls:

W(8) -» J(&', defined by Ls(p) = {/^}, which evidently satisfies the conditions of

the lemma.

The construction of / is simple: in each triangle T of 8, with sides w1; w2, w3

(ignoring identifications), consider the three triangle inequalities associated to

p(hx),p(h2), fi(«3); if exactly w of these are equalities, put an appropriately

oriented case w foliation in T, and define a transverse measure on the foliation in

such a way that the total mass of each side is as specified by p; it is easy to check

that this can always be done. Now put all these foliations together to form the

partial measured foliation /, gluing by isometries along each arc w G 77(8) with

p(h) =£ 0, and gluing arbitrarily along other arcs.

Before verifying that / actually satisfies the definition of a partial measured

foliation, let us check to make sure that / is well defined, at least up to isotopy.

There are several choices made in the definition of / , although it is already clear

that no matter how these choices are made, }h f = (p,h) for each h g 77(8). So to

show that / is well defined up to isotopy it suffices to prove the following:

Lemma: Uniqueness of Normal Forms. Given partial measured foliations f, f in

normal form with respect to 8, if fhf= jhf for each h g 7/(8), then there exists

9 G Homeo0(5, P) such that rp preserves each cell of 8, rp preserves the orientation of

each l-cell, and rp(/) = /'; in particular, {/} = {/'}■
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We refer to the property expressed in this lemma by saying that / and /' are

isotopic via an isotopy which strictly preserves 8.

Proof. We construct an isotopy from / to /', strictly preserving 8, in two steps,

first, for each arc w g 77(8), find an isotopy of h taking /'-measure on w to

/-measure on w; this can be done because both measures are a-finite Borel measures

which are positive on every open set, and having the same total mass. Do this

simultaneously for every h. Now for any triangle T of 8, / and /' make T into a

triangle of the same case; once / | T and /' | T agree on 97, then it is elementary to

construct an isotopy from f \T to f\T constant on dT. Therefore the isotopy

defined on the 1-skeleton of 8 can be extended to an isotopy of each individual

triangle. This gives an isotopy taking / to /', strictly preserving 8.    Q.E.D.

Now we check that / satisfies all the defining conditions for a partial measured

foliation.

Note that any union of triangles of 8 forms an essential pinched subsurface of

(5); thus, the condition that supp(/^) be an essential pinched subsurface is satisfied.

Clearly /   has the required singularity structure in 5 — P.

We check that / has the required singularity structure at each puncture. One

could set up an application of the puncture singularity lemma, but it seems less

clumsy to just make a direct argument. Notice that at a puncture p, we have

constructed / in a neighborhood of p by gluing together several corners in a circle,

and in each corner we have put one of the following kinds of foliations: a

transversely foliated corner; a case 1 singular corner; a case 2 singular corner; or an

empty foliation. Moreover, if all of the corners incident to p are transversely

foliated, then for each arc w incident to p, we would have jti(w) # 0, contradicting

condition (b). Thus, there is at least one corner which is not transversely foliated. If

there are no empty corners, then a direct geometric argument shows that near p, f

has the structure of an w-pronged singularity, with one prong for every case 1

singular corner and adjacent pair of case 2 singular corners; w > 1 is guaranteed by

the fact that there is at least one corner which is not transversely foliated. If there are

empty corners, then a similar argument shows that near p, f has the structure of a

pinch singularity, with one wedge of pie for each maximal circular interval of

nonempty corners; if all corners are empty, then p € supp(/).    Q.E.D.

Now we are ready to state our main technical result:

Normal Form Theorem. Let 8 be an ideal triangulation of (S, P). Every class

J^G Jt' & is represented by a partial measured foliation in normal form with respect to

8. This representation is unique up to an isotopy which strictly preserves 8. Thus, the

map Ls: W(8) -» J(& is a bijection. Moreover, Ls is a homeomorphism.

Proof. We have already proven uniqueness of normal forms. We have also

already proven that Ls is 1-1. The gist of the theorem is to prove that Ls is onto,

and then to prove that it is a homeomorphism.

The proof that Ls is onto, i.e. that every class J^g J(!F is represented by a

partial measured foliation in normal form with respect to 8, is basically adapted

from expose 5 of [FLP], where a normal form theorem is proven for closed surfaces
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in terms of a pair of pants decomposition of the surface. In particular, for several

pieces of this proof, we shall give references to similar proofs found in [FLP]. The

emphasis in our presentation will be on those elements of the proof that are peculiar

to punctured surfaces.

4. The proof of existence of normal forms has several parts. Given an ideal

triangulation 8 and a class J^g JH&', we first choose a complete dissection /eJ,

and then alter / by Whitehead equivalence so that each arc w of 8 intersects

9(supp(/)) efficiently, and is transverse to /. (Definition: If each arc w of 8

intersects 3(5') efficiently, where 5' is a pinched subsurface, then we shall say that 8

intersects 3(5') efficiently.) The / we have found will not be in normal form with

respect to 8: a triangle T of 8 whose interior intersects supp(/) will not have its

interior completely contained in supp(/)—there will be "strips" and other pieces

missing from T, as indicated by the pictures accompanying the Partial Enlargement

Lemma (Figures 16-18).

The next part of the proof will be to define a "partial enlargement" of /, by

collapsing all "strips", to get a partial measured foliation which fills up each triangle

whose interior it intersects. Finally, we show that the foliation so obtained is in

normal form.

Proposition A. Given J^g J(!F, a complete dissection /e J, and an ideal

triangulation 8, / can be altered by isotopies and Whitehead moves so that 8 and

3(supp(/)) intersect efficiently, and each arc h of 8 is transverse to f.

Proof. The proof is similar in parts to the proof of Proposition II.6, expose 5 of

[FLP]. The introduction of complete dissections circumvents the difficulties encoun-

tered there when an arc (in their setting, a simple closed curve) has zero minimal

intersection with the class of /. Beyond this, we shall rely on the proof of

Proposition II.6 in [FLP], indicating only the differences which arise because of

working with punctured surfaces instead of closed surfaces.

Efficient Intersection Lemma. Given J^g J(&', a complete dissection /ef,

and an ideal triangulation 8, f can be isotoped so that 3(supp(/)) and 8 intersect

efficiently.

Proof. Since 3(supp(/)) is a collection of essential simple closed curves in 5 - T\

we can isotope / so that 3(supp(/)) is transverse to each arc w of 8. There may be

compressing discs of 3(supp(/)) with respect to arcs of 8. / can be isotoped to

eliminate these compressing discs one at a time, starting with an innermost disc.

Q.E.D.

Annulus Transversality Lemma. Under the conditions of the Efficient Intersec-

tion Lemma, let C be an annular component of supp(/). Then f can be altered by

isotopy, constant outside of C, so that 8 intersects f \ C transversely.

Proof. By efficiency of 9C n 8, each component of C n 8 is an arc connecting

oposite components of 9C. Also, /1C foliates C by circles parallel to 9C. Give C a

Euclidean structure with geodesic boundary, where leaves of / are parallel geodesic
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circles. Straighten the arcs of C n 8 to geodesies by an ambient isotopy constant

outside of C. The inverse of this isotopy takes / to a partial measured foliation

satisfying the lemma.   Q.E.D.

Now let 5' be a partial arational component of supp(/). We can perform an

isotopy of /, supported near 95', so that 8 and 95' will intersect efficiently, and so

that near 35', 8 and / are transverse. Let 8' = 8 r\ 5'. Let (5", P") be the

punctured surface obtained from (S', P n 5') by collapsing all boundary compo-

nents of 5' to punctures. Let 8" be the resulting ideal cell-division of (5", P"),

induced from 8' under the collapsing. Note that 8" is not necessarily a triangula-

tion: a 2-cell of 8" can be a triangle or a bigon—this shall not cause any difficulties.

Let /" be the measured foliation of (5", P") induced by / 15'. /" is arational. If

we can alter /" by Whitehead equivalence on (5", P"), so that /" and 8" intersect

transversely, this will lift to an alteration of / by isotopies and Whitehead moves

supported on 5' so that 8 intersects /15' transversely. Therefore, we have reduced

the proof of Proposition A to the following proposition, which is stated so as to

allow us to make the arcs of 8" transverse to /" one at a time.

Proposition B. Let f be an arational measured foliation on (5, 7"), let 77 be a finite

collection of ideal arcs whose interiors are pairwise disjoint, and let h G 77 be given.

Suppose that, for every h' G 77 — {w}, h! is transverse to f. Then f can be altered by

Whitehead equivalence, constant on U(77 — {h}), so that h is transverse tof.

Proof. We follow the proof of Proposition II.6 of expose 5 of [FLP], which says

in part that if / is an arational measured foliation on a closed surface and w is an

essential simple closed curve, then / can be altered by isotopies and Whitehead

moves so that w is transverse to /. We shall provide enough details only to show how

the proof differs as a result of working on punctured surface surfaces rather than

closed surfaces. Also, note that there are some simplifications in their arguments,

since we have dealt with the case ({/},«> = Oina different way.

As in Proposition II.6, we begin by using isotopies and Whitehead moves to alter /

so that w is an alternating concatenation of a subarcs which are transverse to /, and

ft subarcs which are leaf cycles of /. The proof consists of performing further

alterations of / so that the number of a's and jS 's is reduced, w cannot consist of a

single ft subarc, for that would make w a closed leaf cycle of /, contradicting

arationality of /. So by induction, we are reduced to the case where / consists of a

single a subarc, finishing the proof.

First note that by performing isotopies and Whitehead moves, we can eliminate

any ft subarc occurring at an end of h. Thus, each ft subarc occurring in w is nested

by two a's. So we can assume w has the form a0 * ft0 * ax * • • • * /?„_, * a„.

Following the proof of Proposition II.6, we can assume that no ftj contains a

singularity of /, by performing isotopies and Whitehead moves on /, without

increasing the number of /?.. Then by performing an isotopy of /, we can remove any

ftj such that a ■ and a.+ 1 leave ftj from opposite sides of ftj.

This reduces to the case where each ftj is a nonsingular leaf segment, such that ay

and a/+1 leave ftj from the same side of ftj. So by the Stability Lemma there exists a
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"maximal foliated rectangle" R containing ftj as a horizontal side, whose verticle

sides are contained in ay and aJ+l, respectively. More precisely, there exists a

mapping R: 7 X 7 -> 5 satisfying the following properties:

(a) R is an embedding on 7x7-7x1, with image in 5 - P, taking interior

horizontal segments to leaves of /.

(b) R(I x 0) = ftj.
(c) R(0 X 7) and R(l X 7) are contained (respectively) in a and aj+l.

(d) on 7 X 1, R is an immersion into a cycle of leaves of /, except that there may

be folds at 1-pronged singularities of /. Moreover, either R(I X 1) contains a

singularity of /, or one of ay and a +1 is entirely contained in a vertical side of R.

Any given «'G//-{w}is transverse to /, so w' does not intersect R. The

isotopies and Whitehead moves to be performed will all be supported near R, so

transversality with w' will not be affected. Moreover, ftj can be chosen so that R is

an innermost rectangle. This implies that h does not intersect 7? in the interior.

If R is an embedding, first remove any puncture singularities on R(I X 1), by

performing inverse Whitehead moves (see Figure 11). The proof of Proposition II.6

then shows that by isotopies and Whitehead moves, the number of a's and ft's in h

can be reduced; we include the diagrams from [FLP, expose 5] (Figure 12) which

illustrate this.

The remainder of the proof consists of reducing to the case where 7? is an

embedding. This is where our proof diverges from the proof of Proposition II.6; to

reduce to the case where R is an embedding, we must deal with 1-pronged

singularities, which do not arise on closed surfaces.

* ; — «—T\1 I {C i ■■

Removing punctures from R(Ixl)

Figure n

r? - ff
Removing an embedded rectangle

Figure 12
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Let A: [0,1] -> 5 be the composition [0,1] = 7 -» 7 X 1 c 7 X 7 -> 5, the last

map being R. If X is an embedding, then so is 7?, and we are done. If A is not an

embedding, then (0,1) must contain singularity preimages. If (0,1) does not contain

any 1-pronged singularity preimages, then by arationality of /, A is an embedding,

and we are done. If (0,1) contains at least two 1-pronged singularity preimages, then

im( A) contains a closed leaf cycle of /, contradicting arationality.

So we can assume (0,1) contains exactly one 1-pronged singularity preimage t0. In

addition, A|[0, /0] and A|[/0,1] must both be embeddings, or else arationality of / is

contradicted.

If (0, t0) and (t0,1) both contain singularity preimages (Figure 13), then there is a

Whitehead move which removes the 1-pronged singularity, and we are done.

If one or both of (0, t0) and (t0,1) do not contain singularity preimages, it follows

that one of [0, t0] and [t0,1] is mapped into the image of the other, say A[0, t0] c

A[r0,1]. There are two cases:

(I) If A[0, f0] = A[/0,1] (Figure 14), this leads to the contradiction that h - P

contains a copy of 51.

(II) If A[0, t0] c; A[r0,1] (Figure 15), consider the subarc ay. In order to avoid

contradicting the fact that w does not intersect the interior of 7?, aj must equal

R(0 X 7), /?_j must run along K[t0,1] away from the 1-pronged singularity, and

aj_j must turn out of R. Using the rectangle between a.x, ftj_x and ay, we can

isotop w slightly so that ftj_x no longer intersects 7?. Then we can isotop w so that

Pj-i* aj * ftj * aj+\ is replaced by a ft subarc followed by an a subarc (see Figure

15). Combining these two isotopies and taking the inverse, we have an isotopy of /

which reduces the total number of a and ft subarcs of w.

(O.tJ and (t0.l) both contain singularity preimages

Figure 13

nt
A[0,r0] = A[rg,l]

Figure 14
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A[0,r0]cA[?0,l]

Figure 15

This finishes the proof of Proposition B, and therefore also of Proposition A.

Consider now an ideal triangulation 8 of (5, P) and a partial measured foliation /

on (5, 7*) such that 8 and 3(supp(/)) intersect efficiently, and 8 is transverse to /.

Consider a triangle Tof 8. If int(T) n supp(/) = 0, we shall say that / is empty in

T; if int(7) c supp(/), we shall say that / is full or strictly full in T; otherwise, we

say that / is partially full in T.

Partial Enlargement Lemma. For any ideal triangulation 8 of (5, P), and any

J^g Ji^, there exists f g & such that:

(a) 8 and 3(supp(/)) intersect efficiently.

(b) Each arc of 8 whose interior intersects supp(/) is either transverse to f, or is a

leaf cycle off.
(c) For each triangle T of 8, either f is full in Torfis empty in T.

Proof. Let /'£# be a partial measured foliation as given by Proposition A.

Thus /' satisfies (a) and each arc w of 8 is transverse to /'. However, there may be

triangles in which /' is partially full. We shall define a new partial measured

foliation / by taking a " partial enlargement" of /. That is, instead of collapsing all

of (5 - supp(/'))' to a spine, we shall only collapse the subsurface L of

(5 - supp(/'))' consisting of the union of (T - supp(/'))c, taken over all triangles

T of 8 in which /' is partially full.

To describe how L is collapsed, we look one at a time at the components of

(T — supp(/'))f, for each T in which /' is partially full.

Let T be a triangle of 8. It is convenient to think of T without the identifications

on its boundary (more formally, consider T as being a euclidean triangle which is the

domain for the characteristic map of a 2-cell of 8; we shall be considering the

pulled-back foliation on T). Since /' is a complete dissection of J^, 3(supp(/')) is a

collection of simple closed curves in S - P. Since 8 and 3(supp(/')) intersect

efficiently, it follows that every component of 3(supp(/')) n T is a segment with

endpoints on the interiors of two distinct sides of T. Therefore, these components

fall into three distinct types, depending on which pair of sides the segment connects.

Any number of these types may be empty, though all three are empty if and only if

/' is empty in T or full in T.

We now classify a component C of T - supp(/') by the nature of 3C.

If 3C contains a single segment of 9(supp(/')) and a single corner of T, we call C

a corner piece. If 3C contains a single segment of 3(supp(/')) and two corners of T,
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A     /^\ <^k ̂k x\
a corner piece      a side piece       a strip       a house       a hexagon

components of T-supp(f')

Figure 16

vp^Yv Vl >       X; v .'-X

2(C)

collapsing a side piece

Figure 17

we call C a side piece. If 3C contains two segments of 3(supp(/')) of the same type,

we call C a strip. If 3C contains two segments of 3(supp(/')) of different types, we

call C a house. If 3C contains three segments of 9(supp(/')) of three different types,

we call C a hexagon (see Figure 16). It is easy to see that this exhausts all

possibilities for C.

We shall define a mapping rp:(5, P) -* (S, P) which will collapse L to a spine,

will be the identity on any triangle in which /' is empty or full, and will take /' to /

satisfying the lemma. <p will be defined as a composition <p = <p2 ° fi where tpj

collapses all "1-handles" and "interior zero handles" of L, and rp2 collapses all

punctured zero handles of L.

For each C, the definition of rpj on C depends on the type of C.

If C is a strip, let 2(C) be a closed interval in C with one end on each component

of 9C - 9(supp(/')). Similarly, if C is a hexagon, let 2(C) be a T-shaped 1-com-

plex in C with one end on each component of 3C - 3(supp(/')). In either case,

define <px \C to be a deformation retract from C to 2(C), taking a component of

3C — 3(supp(/')) to the associated endpoint of 2(C).

If C is a side piece or a house, cpx\C will not collapse all of C—the corners will

remain intact. If C is a side piece, let 2(C) be a closed interval embedded in the

interior of the side of T contained in C. Let 7? be a rectangle embedded in C, with

one horizontal side of 7? equal to 2(C), the other horizontal side of R contained in

int(3C n 3(supp(/'))), and the vertical sides of R having their interiors contained in

int(C). Define <p, |7\ to be the map which takes each vertical segment of R to the

endpont where that segment intersects 2(C). Extend q>x to all of C so that <px is the

identity outside a small neighborhood of T, and also on (3C n 3T) - 2(C) (see

Figure 17).

If C is a house, define R to be the "first story" of C: that is, R ~ I X 7 is a

rectangle embedded in C, with the bottom 7x0 equal to the nonpunctured

component of 3C Pi 37; with sides 0x7 and 1x7 contained in either component

of 3C n 3(supp(/')); and with top 7x1 contained in int(T). Let 2(C) be a vertical
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7? 2(C)

collapsing the first story of a house

Figure 18

segment in 7? connecting the top and bottom of R. Define <p, 17? to be the map

which takes each horizontal segment of 7? to the point where that segment intersects

2(C). Extend tpx to all of C so that <px is the identity outside a neighborhood of R

(see Figure 18).

Finally, if C is a corner piece, define cpx \ C to be the identity.

Note that cpx can be made well defined along all arcs of 8: just make sure that

when two pieces C and C meet along an arc of 8, then 2(C) n 2(C) is a point on

that arc. This defines <px | L. Now extend <px to all of 5 so that tp, takes each cell of 8

to itself, so that <px is the identity on each triangle in which /' is empty or full, and

so that rpL is the identity outside a neighborhood of L.

Note that <px(f) satisfies all the conditions to be a partial measured foliation,

except that a component of 3(supp(tp1(/'))) might be a simple closed curve in

S — P which bounds a once-punctured disc made up of corner pieces in 5 -

supp(<p,(/')). The remaining corner pieces of 5 - supp(<p1(/')) will form "pie

wedges" around punctures p such that p is incident to both empty and partially full

triangles with respect to /'.

Now define <p2(5, P) -* (5, P) so that: tp2 maps each corner piece of 5 -

supp(<p,(/')) to the puncture contained in the corner piece; <p2 maps each cell of 8

to itself; <p2 is constant on triangles in which q>i(f) is full; <p2 is constant outside a

small neighborhood of the union of all corner pieces of 5 - supp((pt(/')). Note that

rp2 will not necessarily be constant on a triangle T in which <p,(/') is empty, because

for every side piece of 5 - supp(/') adjacent to T, there are two corner pieces of

5 — supp((pj(/')) adjacent to T.

Let / = <p2 ° <p,(/'). There are several things to check: that / is a partial measured

foliation; that / satisfies (a), (b), and (c); and that / is in the same class as /'.

To show that / is a partial measured foliation, first note that supp(/) is the union

of all triangles of 8 in which /' is full or partially full, therefore supp(/) is an

essential pinched subsurface of (S, P). Second, note that for an interior singularity 5

of /: either s is an interior singularity of /' and rp is constant near s; or 5 arises

when <p1 collapses a hexagon, identifying three points of 3(supp(/')); or 5 arises

when rp, identifies two points of 3(supp(/')), at least one of which is a boundary

singularity of /'. In the latter two cases, <p2 is constant near s. In any case, it is easy

to see that s is an w-pronged singularity of /, with n ^ 3.

Finally, at a puncture p, we apply the Puncture Singularity Lemma to <p,(/'). The

only thing that needs checking is the following: if c is a component of 3 (supp(<p,(/')))

which bounds a once-punctured disc, then c contains a singularity of <p,(/'). For
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suppose not: Then c is a smooth closed leaf of <fi(f) on the boundary. By the

Stability Lemma this implies the existence of a smooth closed leaf of <pi(/') in the

interior which bounds a once-punctured disc. This implies in turn that /', and any

enlargement of /', contains a smooth closed leaf bounding a once-puncture disc; a

standard argument using the Euler-Poincare Index Formula implies a singularity

structure which violates the definition of a measured foliation.

/ satisfies (a) and (c), since supp(/) is a union of triangles of 8. To verify (b), let w

be an arc of 8. If w bounds empty triangles of /' on both sides, then h bounds

empty triangles of / on both sides. If h bounds an empty triangle of /' and a side

piece of 5 - supp(/'), then w is a boundary leaf cycle of /. If w bounds side pieces

of 5 - supp(/') on both sides, then w is an interior leaf cycle of /. Otherwise, h is

transverse to /', implying that w is transverse to /.

Finally, we show that /' and / are in the same class in J£&'. To do this, let <p' be

a collapsing map taking / to a total measured foliation g on (5, P). It would be nice

if rp' o (p were a collapsing map taking /' to g, but unfortunately for our definitions,

rp'° <p does not act as a topological immersion on 3(supp(/')): <p = <p2 ° <Pi collapses

whole segments of /' to a point, namely those segments whose image under <p,

bound corner pieces of 5 - supp(<p,(/')). However, it is easy to see that <p'° rp =

^'° ^, where ^ is an enlarging map taking /' to some total measured foliation g',

and y is a composition of Whitehead moves taking g' to g.   Q.E.D.

Here is an other way to look at the construction of the partial enlarging map <p,

which emphasizes the analogy with enlarging maps as originally defined. Let

2 = U<p(2(C)), taken over all components C of (T - supp(/'))c, for each T in

which /' is partially full. Then 2 is a spine of the subsurface L, relative to the

punctures in P and the collection of boundary arcs 3L n (union of arcs of 8).

Moreover, 2 is the largest closed leaf cycle of / which contains no smooth closed

leaves. The map rp can then be viewed as a map which collapses L to its spine 2,

and acts homeomorphically on the complement of L. Of course, tp also preserves

cells of 8.

To finish the proof of existence of normal forms, we show that the partial

measured foliation / constructed in the partial enlargement lemma is in normal form

with respect to 8.

We shall use repeatedly the following corollary to the Euler-Poincare Index

Formula.

Foliated Disc Lemma. Given a singular foliation F of the closed ball B such that

the maximal subset of 37? which is transverse to F is either empty or an open arc, then

F has a positive index singularity in int(7?).

Proof. Consider the doubled foliation F' on the double 52 of B; we think of B as

the northern hemisphere of 52. The hypotheses on F imply that the index sum of

singularities of F over 51 = dB c 52 is at most +1. Since x(52) = +2, F must

have positive index singularities in 52 - 51, by the Euler-Poincare Index Formula.

By symmetry, these must be evenly distributed between the open northern and

southern hemispheres. Therefore, F has a positive index singularity in int(Ti).

Q.E.D.
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Singularities of the doubled foliation

Figure 19

Let T be a triangle in which / is full. Again, we think of T without boundary

identifications. Let a, ft, y denote the sides of T. Let pa, pp, py denote the vertices

of T, each one opposite the indicated side. Recall that each side of T is either a leaf

cycle of / or is transverse to /.

First we note that at most one side of T can be a leaf cycle. For otherwise (by the

Foliated Disc Lemma), / has a positive index singularity in int(T), a contradiction.

Next, if one side of T, say a, is a leaf cycle of /, we shall analyze the structure of /

near a. Note that there does not exist a leaf cycle / in T, distinct from a, which is

homeomorphic to the closed interval, with one end on a and the other end on 3T, for

this implies again the contradiction that / has a positive index singularity in int(J)

(we can assume inuY) n int(a) = 0; then / divides T into two discs, at least one of

which satisfies the hypotheses of the Foliated Disc Lemma). It follows that / has no

singularities on a, and also that the corners of T adjacent to a are foliated by / as

case 2 singular corners.

Now we analyze / near a vertex of T whose adjacent sides are transverse to /:

say, ft, y are transverse to /; we shall analyze / near pa. Recall that / is a partial

measured foliation on (S, P); thus, we can analyze f\T near pa in terms of the

number of singular leaves of / at pa that he in T in the angle between ft and y. If

there are no singular leaves between ft and y, the corner of T at pa is transversely

foliated by /. If there is one singular leaf between ft and y, then the corner at pa is

foliated as a case 1 singular corner. If there are two or more singular leaves between

ft and y, then by an argument similar to the one in the previous paragraph, we can

find a positive index singularity of / in int(T), a contradiction.

We now have a complete picture of how / behaves on dT; in particular, every

corner is foliated as a transversely foliated corner, a case 1 singular corner, or a case

2 singular corner.

To analyze / on int(T), we introduce the double D of T, together with the

doubled foliation /' on D. The possibilities for the foliation /' are analyzed using

the Euler-Poincare Index Formula. Notice that 7) is a sphere, with the three arcs a,

ft, and y (a slight abuse of notation) decomposing D into two triangles. Each of

these arcs is either transverse to /', or is a leaf segment of /', but at most one can be

a leaf segment. Each vertex pa, p^, py of D is a singularity of index either +1,

+1/2, or 0, corresponding (respectively) to a transversely foliated corner of T, a

case 2 singular corner of T, or a case 1 singular corner. See Figure 19.
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Consider the case where one arc of D, say, a, is a leaf segment; then ft and y are

transverse. Moreover, pp and py are both index +1/2 singularities of /'. /' has no

positive index singularities away from the vertices, so by Euler-Poincare, /' has an

index +1 singularity at pa, and /' has no other singularities on D. Therefore the

foliation / has no singularities in int(T). By the Stability Lemma T is foliated by /

as a case 2 triangle.

Now consider the case where all three arcs of D are transverse to /', and one

vertex, say, pa, has index 0. Then pp and py must both have index +1, and there

can be no other singularities of /' in D. Therefore in T, the foliation / has the

corner structure of a case 1 triangle. In particular, there is a leaf £ emerging into

int(T) from the vertex pa. There is no other singularity in T for £ to run into, so by

Poincare recurrence, £ must leave through some side of T. But if this side is ft or y,

then there is a positive index singularity of / in int(T); thus, / leaves through a.

Then by the Stability Lemma / must foliate T as a case 1 triangle.

Finally, consider the case where a, ft, and y are all transverse to /', and /' has

index +1 singularities at each of pa, pp, and p . Thus, /1T has the corner structure

of a case 0 triangle. By Euler-Poincare, the additional singularities of /' must have

an index sum of -1. There can be no other positive index singularities, and the total

amount 1 must be distributed evenly between the front and back of D. It follows

that /' has two 3-pronged (index -1/2) singularities on D, and therefore / has one

3-pronged singularity in int(T). The three singular leaves of this singularity must

leave T through different sides, to avoid creating positive index singularities. Then

by the Stability Lemma / foliates T as a case 0 triangle.

This finishes the proof of existence of normal forms.

As a footnote to the proof of existence and uniqueness of normal forms, it is nice

to see that the theorem can be reformulated entirely in terms of complete dissec-

tions; we shall need this reformulation in the proof of continuity of Ls.

Normal Form Theorem (Complete Dissection Version). For each ideal tri-

angulation 8 of (S, P), and each class .Fg J(&', there is a complete dissection /Ef

which 8 intersects efficiently; moreover, f is unique up to an isotopy which strictly

preserves 8.

Proof. The existence of / is proved using Proposition A, plus the fact that any

partial measured foliation which is Whitehead equivalent to a complete dissection is

itself a complete dissection. The proof of uniqueness parallels the proof of the

uniqueness half of the Complete Dissection Lemma; in place of the fact used there

that two total measured foliations in the same class are Whitehead equivalent, we

use here the uniqueness part of the Normal Form Theorem.

Let fx and f2 be complete dissections of &, each of which 8 intersects efficiently.

By the proof of the Partial Enlargement Lemma for ;' G {1,2}, there are maps

ty,(S, P) -> (5, 7*) preserving cells of 8, such that // = %(fj) is in normal form

with respect to 8. By uniqueness of normal forms, there is a map rp' <= Homeo0(5, 7^

preserving cells of 8 such that <p'(/1') = f2.
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Let 2, be the largest closed leaf cycle of // containing no closed leaves; clearly

<p'(2,) = 22. Moreover, if we let L, be the union of (T - supp(/,))', taken over all

triangles T in which / is partially full, then ¥,- is a map which collapses L, onto 2,,

and acts homeomorphically on 5 - L,. Unfortunately, % is not a local homeomor-

phism on (5 - LjY, for as we saw in the Partial Enlargement Lemma, ^, collapses

whole arcs of 3L, to points, when such an arc lies on the boundary of a corner piece

of L. However, this is only a perceptual disadvantage: there is still a coherent way to

define a local homeomorphism y\U on each U in some finite open cover of

supp(/,), so that rp' ° tyj = ^2 ° <p on U. Pasting all these maps together defines rp on

supp(/,); this is easily extended first over L and then over the remainder of 5, in

such a way that (p preserves cells of 8 and takes /, to f2.   Q.E.D.

5. We now turn to the proof that Ls: W(8) -* J(& is a homeomorphism. Since

we already know that Lgl = v ° qs is 1-1, onto, and continuous, it remains to prove

that Ls is continuous. Since the topology on J(^ is defined by the embedding v:

JttF-* R^0, and since R^0 is given the product topology, it suffices to show that:

for each ^EJf, the function i/. W(8) -» R, given by iA(n) = (Ls(ii),A), is

continuous. In fact, we shall show how to explicitly derive homogeneous piecewise

linear formulas for the map iA.

First we recouch the problem in different terms. Suppose it is true that, for any

two ideal triangulations 8 and 8', the bijective "coordinate change" map Lg.1 ° Ls:

W(8) -» W(8') is continuous, given by homogeneous piecewise linear formulas. If

we are given an ideal triangulation 8 and A G Jf, it is a simple exercise, which we

leave to the reader, to show that there exists an ideal triangulation 8' and w g 77(8')

such that {«} = A. Thus, it is one of the coordinates of the map L~sl ° Ls, and the

desired properties of i4 follow.

So to verify continuity of each of the maps Ls, it suffices to show that all

coordinate change maps are continuous.

Now for an arbitrary pair of ideal triangulations 8, 8', one would expect the

formulas for the coordinate change map to be quite complicated. Therefore, we shall

start with the case where the relationship between 8 and 8 is as simple as possible:

where 8 and 8' are related by an "elementary move". This is a combinatorial

construction which has become quite familiar recently, in the context of studying

geometric structures on punctured surfaces. Briefly, given an ideal triangulation 8

and w g 77(8), if w bounds two distinct triangles of 8, then these two triangles are

joined along w to form a quadrilateral; removing w and inserting the opposite

diagonal of this quadrilateral, we obtain a new ideal triangulation 8' which we say is

obtained from 8 by an "elementary move".

Once we have made the definitions, we shall prove the Coordinate Change

Theorem for Elementary Moves, which implies that the coordinate change map

Lg} o Ls is continuous, when 8' is obtained from 8 by an elementary move. Then to

complete the proof of the Normal Form Theorem, we shall show that for any two

ideal triangulations 8, 8', there exists a finite sequence of elementary moves

connecting 8 and 8', implying that L^1 ° Ls is continuous. Here are the formal

definitions.
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vs
An Elementary Move

Figure 20

Given an ideal triangulation 8, an arc w0 g 77(8) is removable if w0 bounds two

distinct triangles of 8, i.e. if w0 is not the interior arc of a puncture piece. Let these

two triangles be denoted Tw and TE (for the compass points), and let us choose

characteristic maps for Tw and TE, defined an Euclidean triangles tw and te, in

such a way that tw and te share a single common edge e, and so that the two

characteristic maps agree along e, producing a characteristic map for w0. We denote

the quadrilateral tw U te by Q; we shall systematically confuse Q with its image in

5, under the union of the two characteristic maps tw -» Tw and te -» TE. Note that

this map may identify certain vertices of Q to the same puncture, and certain sides

of Q may be identified to the same ideal arc of 8; we shall usually ignore these

identifications. With this understanding, we shall also cease to refer to tw and te,

confusing them systematically with Tw and TE. Let us denote the vertices of Q as

vN, vs, uw, vE, in such a way that w0 connects vN and vs, and so that vw (resp. vE)

is a vertex of Tw (resp. TE) (see Figure 20). Then we define an opposite diagonal to

w0 to be any ideal arc of (5, P) which is contained in Q and which connects t;w to

vE; clearly an opposite diagonal to w0 is well defined up to isotopy. It is also clear

that there is an ideal triangulation 8', well defined up to isotopy, characterized by

the property that 77(8') = {w'0} U [77(8) - {w0}], where w'0 is any opposite diago-

nal to w0. We say that 8' is obtained from 8 by an elementary move performed on w0,

and we write 8 -* 8'; and we say that Q is the support of the elementary move. It is

an exercise to show that elementary moves performed on distinct arcs of 8 result in

nonisotopic ideal triangulations; thus, the notation 8 -> 8' completely determines

the arc that the elementary move is performed on, as well as the opposite diagonal.

To state the coordinate change theorem for elementary moves, label the four sides

of Q as wNE, wSE, hs^, wNW, as indicated in Figure 20.

Coordinate Change Theorem for Elementary Moves. Given an ideal triangu-

lation 8 and a removable arc w0 G 77(8), let w'0, 8', and Q be as above, with the

vertices and sides of Q as labelled above. Choose |ie W(8) and p' g W(8) so that

ju,' = L~s} o Ls(p). Then for each h G 77(8) n 77(8'), we have p'(h) = p(h); and

furthermore,

,/., v = |>("nw) +/*(nSE) -M(«o) </>(«nw) + /*(«se) > m(«ne) + m("sw)>

\m(«ne) + /*(«sw) -f*(«o) (7>(>nw) + m(«se) < m(«ne) +m(«sw)-

Thus, Lg}» Ls is a continuous map.
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Note the nice symmetry in these formulas: the formula for n(h0) in terms of

n'(h'0) is identical to the formula for p'(h'Q) in terms of p(h0). This, of course,

reflects the combinatorial symmetry of an elementary move, which holds in the

following sense: 8 -> 8' is an elementary move performed on w0 supported in Q,

and 8' -» 8 is an elementary move performed on w'0 supported in Q.

Proof. Let Jr= Ls(p). The idea of the proof is as follows: let / be a normal

form with respect to 8. We shall give an explicit method for altering /, staying in the

equivalence class J5", so as to produce a normal form /' with respect to 8'. This

shall be done in such a way that we will be able to read off the value of

p'(h'0) = (&, w'0> from the intersection number of /' and w'0, and verify the above

formula.

However, instead of using normal forms, we shall use complete dissections, which

are technically easier to work with. Thus, if / g & is a complete dissection which

intersects 8 efficiently, we shall give an explicit method for altering / by isotopies

and Whitehead moves, supported entirely in int(Q), and for choosing an opposite

diagonal w'0 to h0, so that /' and w'0 intersect efficiently. Since /' and / are

identical outside of int(Q), it will follow that /' intersects all the arcs in 77(8) n

77(8') = 77(8') - {w'0} = 77(8) - {w0} efficiently, and thus /' intersects 8' effi-

ciently. It follows immediately that / and /' give the same measure to each arc of

77(8) n 77(8'). As mentioned above, once we have done the work of constructing /',

we will be able to read off the value of ju'(w'0) = fh, /'.

We shall adopt the notation juNW = jw(wNW), u.NE = ju(wNE), etc.

So let / g Ls(p) be a complete dissection which intersects 8 efficiently. We shall

begin by stating some numerical properties of /.

Let jttw = (l/2)[juNW + jLtsw - p(h0)]. Note that juw is the total transverse

weight of all leaf segments of / which cross Q from wNW to wsw.

Similarly, if pE = (l/2)[juNE + pSE - p(h0)], then pE is the total transverse

weight of all leaf segments of / crossing Q from wNE to «SE.

Now let pd = (l/2)[/tNE + jusw - /xNW - juSE] (d stands for "diagonal"). Notice

that, if jxd > 0, then there are leaf segments of / crossing Q from wNE to wsw, and

the total weight of such leaf segments is pd; we shall say that these leaf segments

have "positive slope". And if pd < 0, then there are leaf segments of / crossing Q

from «NW to wSE, and their total weight is -p.d; we say that these leaf segments have

"negative slope". Finally, if \Ld = 0, there are no leaf segments of either positive or

negative slope. Clearly there cannot be leaf segments of both positive and negative

slope, for that would violate the foliation properties of /.

Now we shall show, by separating into several cases, how to choose an opposite

diagonal w'0 to w0, and a partial measured foliation /' Whitehead equivalent to /,

so that /' and / are identical outside of int(Q); in each case, it will be evident by

construction that w'0 intersects each leaf segment of /' contained in Q at most once;

later we shall give the proof, which does not depend on the case, that /' and w'0

intersect efficiently.

Case I. Suppose ixd > 0. Then there exist smooth leaf segments of / having

positive slope. Thus, there exists a horizontally foliated rectange R c Q such that:
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7? c supp(/); the two vertical sides of 7? are contained in wNE and wsw, respec-

tively; and each horizontal leaf of 7? is a leaf of /.

In this case, we choose /' = /. It remains only to choose the opposite diagonal w'0

so that w'0 intersects each leaf segment of / in Q at most once. Construct h'0 as

follows: starting from uw, run along nearly parallel to wsw until you enter R, then

proceed diagonally across R until nearly encountering w NE, then run nearly parallel

to hNE to vE. Clearly w'0 satisfies the required conditions. Also, it is clear that w'0

intersects precisely the following leaf segments of / in Q (and intersects each exactly

once): segments connecting wNW and wsw; positive slope segments; and segments

connecting wNE and wSE. Thus, fh,J' = Mw + Me + ImJ = Mw + Me + M<* = Mne

+ Msw - M("o)-
Case II. Suppose pd < 0. Then there exist smooth leaf segments of / having

negative slope. We argue analogously to case I, setting /' =/, and finding an

opposite diagonal w'0 to w0 which intersects precisely the following leaf segments of

/ in Q; segments connecting wNW and wsw; negative slope segments; and segments

connecting wNE and wSE. Thus,

/  /' = Mw + Me + ImJ = Mw + Me ~ Pd = Mnw + Mse ~ m(«o)-
Jfi'0

Case III. Suppose nd — 0. There are several subcases to consider.

Case III.A. Suppose there exists an embedded interval a c (9 such that a

connects opposite sides of (2> and a c 5 - supp(/); suppose that a connects wNE

and wsw (a similar argument covers the case where a connects wNW and wSE).

Again we choose /' to be /. Construct w'0 by starting from uw, running along nearly

parallel to wsw until encountering a, running along a until nearly encountering

wNE, then running along nearly parallel to wNE until encountering uE. Clearly h'0

intersects precisely: leaf segments of / connecting wsw and wNW, as well as leaf

segments connecting wSE and wNE. Thus,

f f = Mw + Me = (l/2)[Msw + Mnw + Mse + Mne] ~ m(«o)

= Mne + Msw ~ m("o) = Mnw + Mse - m(^o).

using the fact that pNE + jusw = juNW + juSE, which follows from the fact that

^ = 0.
Case III.B. Suppose that the hypothesis of Case III.A is false. We need some

definitions to describe the structure of / in Tw and TE.

Define a tine in a triangle T to be a 1-complex embedded in T, homeomorphic to

the letter y, such that the three order 1 vertices lie on distinct sides of T, and the

remainder lies in int(T). We say that it is an f-tine if each edge is a leaf segment of

/•
Define a bisector of T to be an embedded interval in T with one end on a vertex

of T and the other end on the opposite side of T. We say that it is an f-bisector it it

is a leaf segment of /.
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Lemma. Suppose that the hypothesis of Case III.A is false; i.e. there does not exist

an embedded interval in Q connecting opposite sides of Q. Then there does not exist a

tine in either Tw or TE contained in 5 - supp(/).

Proof. Suppose otherwise. Let Y be a tine in, say, Tw, with Y c 5 - supp(/),

and let x be the vertex of Y lying on w0. Since / intersects w0 efficiently, there

exists an embedded interval ft in TE, ft c 5 - supp(/), connecting x to another

side of TE. Then clearly we can find an embedded interval ac Y U ft a S -

supp(/) connecting opposite sides of Q, a contradiction.   Q.E.D.

Lemma. Let T be any triangle of 8, and suppose that there does not exist a tine in T

contained in 5 - supp(/). Then either there exists an f-tine in T or there exists an

f-bisector in T.

Proof. Let the sides of T be h, h', h". The hypothesis of the lemma implies that

there exists a point x g w n int(supp(/)) with the following property: any leaf

segment of / entering T through w, closer to w' than the point x, must leave T

through w'; and a similar statement holds for w".

It could happen that x lies at an end of w, where, say, w meets the side w' of T. It

follows that every leaf segment of / entering T through h leaves through h". Since

x g int(supp(/)), and since / intersects 8 efficiently, it follows that there is a

neighborhood of x in T which is foliated as either a case 1 singular corner or a case

2 singular corner. In the latter case, it follows that w' is a leaf segment of /; but w'

connects two punctures, contradicting the fact that / is a complete dissection; thus,

x must have a neighborhood foliated as a case 1 singular corner. If £ is the leaf

segment of / in T ending at x, then since / intersects 8 efficiently, it follows that £

leaves T through the opposite side w"; so / is an /-bisector of T. Notice that /

actually lies in int(supp(/)); in fact, since / is a complete dissection, no /-bisector of

a triangle can lie in 3(supp(/)).

Now suppose that x g int(w). Since 5 g int(supp(/)), there is a leaf segment / of

/ entering T at the point x. Now two leaf segments entering T arbitrarily close to x

on opposite sides of x leave T through different sides. It follows that £ must end at

a singularity of / in T. This can occur in one of two ways: either £ ends at a

3-pronged singularity of / in int(T); or / ends at the opposite vertex of T from w.

In the former case, £ is part of an /-tine in T; in the latter case, £ is an /-bisector of

T.    Q.E.D.

Therefore, in Case III.B it follows that in both Tw and TE, there is either an /-tine

or an /-bisector. We now consider several subcases, depending on the possible

combinatorial combinations of /-tines and /-bisectors.

Case III.B.l. Suppose there exists an /-bisector of Tw connecting uw to w0 and

an /-bisector of TE connecting vE to w0. If these bisectors do not end at the same

point of w0, then we arrive at the contradiction that either pd i= 0 or there is a leaf

segment a c Q n (S - supp(/)) connecting opposite sides of Q. But if the bisec-

tors end at the same point of w0, we arrive at the conclusion that there is a leaf

segment of / connecting two punctures, contradicting the hypothesis that / is a

complete dissection. So this case cannot occur.
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Case III.B.4

Figure 21

Case III.B.2. Suppose there is an /-bisector £ in Tw connecting uw to w0, and an

/-bisector in TE connecting v N to w SE (there are three other similar cases, which the

reader may enumerate). Extending £ into TE, we see that it must leave TE through

w SE. But this implies that there is either a leaf segment of / in Q or an embedded

interval a c Q n (5 - supp(/)) connecting wNW to wSE, a contradiction. So this

case cannot occur.

Case III.B.3. There exists an /-bisector of Tw connecting vN to wsw and an

/-bisector of TE connecting vs to wNE (there is one other similar case). Then we

arrive at the same contradiction as in Case III.B.2, so this case cannot occur.

Case III.B.4. There exists an /-bisector of Tw connecting vN to wsw and an

/-bisector of TE connecting uN to wSE (there is one other similar case). This case caw

occur, and we must now show how to choose /' and h'Q. Notice that vN has

neighborhoods in both Tw and TE which are foliated like case 1 singular corners.

Thus, v N has a neighborhood in Q whose foliation by / is locally modelled on the

foliation of the sector 77/6 «S arg(z) < 5w/6 of C by the horizontal leaves of the

quadratic differential z4 dz2. Clearly we can alter / near vN by Whitehead

equivalence, resulting in a partial measured foliation /', so that vN has a neighbor-

hood in Q foliated by /' as a case 1 singular corner, and there a leaf segment £ of f

in Q connecting cN to a 3-pronged singularity of /'. Whitehead equivalence

preserves the property of being a complete dissection, so /' is a complete dissection.

Also, the Whitehead equivalence can clearly be done in such a way that / and /'

coincide outside of int(Q). See Figure 21.

Now we define w'0: starting from fw, run along nearly parallel to wNW until

encountering /, and then run along nearly parallel to wNE until encountering vE.

Clearly w'0 satisfies the required conditions, and fh. f = jnw + pE; now compute as

in Case III.A.

Case III.B.5. Suppose that there is an /-bisector of rw connecting uw to w0, and

there is an /-tine in TE (there is one other similar case). The /-bisector in Tw and the

/-tine in TE must end at the same point in w0, or else there will be either a leaf

segment of /, or an embedded interval a c Q-supp(f), connecting opposite sides of

Q. Thus, there exists a leaf segment £ of f in Q connecting uw to a 3-pronged

singularity s in TE. Since / is a complete dissection, we must have s G int(supp(/)).

Thus, there is a Whitehead move which collapses / to a point, resulting in a

complete dissection /'; this can be done so that /' coincides with / outside of
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int(Q). To define w'0, first take a transversal in TE which goes straight from vE to s,

intersecting / efficiently; let w'0 be the image of this transversal under the collapsing

map of the Whitehead move. Clearly w'0 satisfies the required conditions. Also, we

see that

f f = Me = 0/2)[Mne + Mse " m(«o)] = (V2)[Mnw + Msw ~ m(«o)]>

using the fact that pd = 0 and jttw = 0. The diagram for this case can be obtained

from the diagram for Case III.B.4, reading that diagram backwards.

Case III.B.6. Suppose that there is an /-bisector of Tw connecting vN to wsw, and

there is an /-tine in TE (there are three other similar cases). It follows that there exist

leaf segments of / in Q connecting wNE to wsw, a contradiction; so this case cannot

occur.

Case III.B.7. Suppose that there are /-tines in both Tw and TE. These tines must

end at the same point of h0, or else there will be either leaf segments of / or intervals

a <z Q - supp(/) connecting opposite sides of Q. Thus, there is a leaf segment £ of

/ connecting two 3-pronged singularities of /, sw in Tw and sE in TE. Define leaf

segments /w and £E of /, /w connecting wNW and wsw and £E connecting wNE

and wSE, so that 5W g /w and sE g £e. Since / is a complete dissection, *fw and

£E cannot both be in 3(supp(/)), for the leaf segment £ connects sw to sE. It

follows that there is a Whitehead move which collapses £ to a point, resulting in a

partial measured foliation /" with a 4-pronged singularity; we can pull apart this

4-pronged singularity in the opposite direction, resulting in a partial measured

foliation /' with a singular leaf segment £' connecting two 3-pronged singularities

5N and is, in such a way that jn c £N and ss c £s, where £N, £s are leaf segments

of /', £N connecting wNE to wNW, and £s connecting wSE to wsw. Clearly this can

be done so that /' and / agree outside of int(<2). Now we define w'0: start by

choosing transversals aw and aE so that aw connects uw to sw, intersecting /

efficiently, and similarly for aE; let a" be the image of aw U aE under the

collapsing map of the first Whitehead move. Let w'0 be any arc intersecting £'

transversely such that its image under the second Whitehead move is a". Clearly w'0

satisfies the required conditions. Also, it is clear that jh, f = juw + juE; now

compute as in Case III.A. See Figure 22.

Case III.B.7.

Figure 22
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f and h'Q intersect efficiently

Figure 23

We have now exhausted all the possible cases; this finishes the definition of /'

and w'0, as well as the verification that \h, f satisfies the required equation.

It remains to show that w'0 and /' intersect efficiently; the same proof works for

all cases. Suppose this is false: suppose that there exists a compressing disc D for w'0

and /'. We shall show that, of the two possibilities 7) c int(Q) and D <t int(Q),

both lead to contradictions. It is obvious by construction in each case of w'0 and /'

that 7) c int(<2) is contradictory, for any leaf segment of /' completely contained in

Q intersects w'0 at most once. So suppose that D <t int(Q). Let c, d be the intervals

in 37) such that 3c n dd = {two points}, c c w'0, and d is a leaf segment of /'.

Since /' intersects all arcs of 8' transversely, it follows that 37) intersects the arcs of

8' transversely. In particular, we can choose points x, y g 37) and intervals a, b c 37)

such that a C\ b = da n db = {x, y} a dQ, c c a and b c d; moreover, we can

assume that x and y lie on the same side h of Q; this follows from the fact that D is

a nonpunctured disc in 5, and so 37) must intersect each arc of 8' in an even

number of points.

Let e be the interval on h cut off by x and y. It now follows that the subdisc of D

bounded by e U b is a compressing disc for /' and h; thus, /' and h do not

intersect efficiently. But this implies that / and h do not intersect efficiently; and

since h G 77(8), this contradicts the fact that / and 8 intersect efficiently. See

Figure 23.    Q.E.D.

The coordinate change theorem for elementary moves shows that if two ideal

triangulations 8, 8' are related by a finite sequence of elementary moves, say

8 = 8(0) ->  8(1) -+    •••   -» 8(n - 1) -* 8(n) = 8',   then    L~s} ° Ls =
(/--«(„) ° LS{n_X))° ■ ■ ■ "(T.g1) ° LS(0)) is continuous. Thus, as noted earlier, to show

that Ls: W(8) -* JOF is continuous it suffices to prove:

Connectivity Theorem for Elementary Moves. Any two ideal triangulations of

(S,P) are related by a finite sequence of elementary moves.

This is a theorem which, by this point in time, is very well known. Indeed, several

different proofs have already appeared. In fact, there is a much stronger theorem

which has been proven and which we now proceed to describe.
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A generalization of an ideal triangulation of (S, P) is an ideal cell-division of

(5,7*), which is a cell division satisfying all the same properties as an ideal

triangulation except that a 2-cell is allowed to be an n-gon for any w > 3; that is,

each 2-cell has a characteristic map defined on an w-sided Euclidean polygon, so

that each vertex of the polygon goes to a puncture, and each edge of the polygon

goes to an ideal arc. Given an ideal cell-division y, the deficiency of 7 is defined to

be the number of extra ideal arcs that need to be added in order to make y an ideal

triangulation; more precisely, the deficiency is equal to Hkn(n — 3), where k„ is the

number of w-gons of <p. A refinement of y is an ideal cell-division y' of (5, P) such

that H(y') c H(y) (H(-) denotes the set of arcs). As with ideal triangulations, we

are primarily interested in ideal cell-divisions up to isotopy.

Contractibility Theorem. There exists a contractible cell-complex X that has one

cell c(y) of dimension dfor every (isotopy class of an) ideal cell-division y of (S, P) of

deficiency d; the subcomplex Uc(y') taken over all (isotopy classes of) refinements y'

of y is a sphere of dimension d — 1 along which c(y) is attached.

The Connectivity Theorem follows from the Contractibility Theorem by noting

that the 1-skeleton A"1 of X is connected, and consists of a 0-cell c(8) for each

isotopy class of an ideal triangulation 8, with a 1-cell connecting c(8) to c(8') if and

only if there is an elementary move 8 -> 8'.

The Contractibility Theorem has been proven from many different points of view.

Each proof constructs an "ideal triangulation" of some high-dimensional open ball,

and proceeds by showing that X is isomorphic to the dual cell-division of this ideal

triangulation. Harer constructed an ideal triangulation of the space of noncompactly

supported geodesic laminations on S - P; Mumford [Har] noticed that Strebel

differentials could be used to triangulate the Teichmuller space of complex analytic

structures on (5, P); most recently, Epstein and Bowditch [EB], and also Penner [P]

used hyperbolic structures on 5 - P to triangulate the Teichmuller space. There is

also a completely combinatorial proof of the Connectivity Property, given under

another guise in the appendix of expose 5 of [FLP] by Poenaru. It would be very

interesting to extend Poenaru's techniques to give a combinatorial proof of the

Contractibility Theorem.1

There has been much work done to exploit the cell-complex X—in particular,

using the fact that ^(5, P) acts by cellular homeomorphisms on X with finite

order cell stabilizers, one can conceivably compute the rational cohomology of

Jt(S,P) from X/J((S, P), and with more care, even the integral cohomology.

Although specific calculations of Betti numbers are still forthcoming, Harer [Har]

has used this idea to compute the rational cohomological dimension of ^#(5, P),

and Harer and Zagier [HZ] have computed the Euler characteristic of J£(S, P).

Despite this plethora of proofs of the Connectivity Theorem, we wish to give a

new proof, completely combinatorial in spirit, and quite elementary. Our proof has

' Hatcher now has an elementary combinatorial proof of the Contractibility Theorem [Hat].
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the advantage that it implicitly gives an algorithm for constructing a sequence of

elementary moves connecting 8 and 8', when 8' is given in terms of certain

intersection numbers with the arcs of 8. We shall not explicitly describe this

algorithm; we leave that to the interested reader. It should be a straightforward

matter to construct the algorithm from the information provided in the proof.

We begin by defining, for any two isotopy classes of ideal arcs A, A' in (5, P), an

intersection number i(A, A') to be the minimum cardinality of int(w) n int(w'), taken

over all h g A and w' g A. We also say that w and «' intersect efficiently if there

does not exist a compressing disc for w and w', where a compressing disc is defined

in exactly the same manner as it was defined for an ideal arc w and the boundary of

a pinched subsurface of (5, P).

The following is an elementary exercise in the standard techniques of intersection

numbers:

Efficient Intersection Lemma for Ideal Arcs. Given two ideal arcs h, h' which

are not isotopic, if h andh' intersect efficiently, then i({h},{h'}) = |int(w) n int(w')|.

Now suppose that 8 is an ideal triangulation, and w is an ideal arc on (S, P).

Choose an orientation of w arbitrarily (we shall use the orientation of w to define the

"first" point of any compact subset of int(w)). We wish to define an intersection

number i(8, {«}); one might try taking the sum of /({«}, (w'}), taken over all

w' g 77(8); but for technical reasons, the following definition is easier to work with.

If w is isotopic to an arc of 8, we define i(8, {w}) = 0. If w is not isotopic to an arc

of 8, then it is easy to see that we can isotop w until it simultaneously intersects each

arc of 8 efficiently (we say that w and 8 intersect efficiently); once this is done, the

Efficient Intersection Lemma for Ideal Arcs shows that w assumes its minimum

intersection with all arcs of 8 simultaneously. Let x G w be the first point of int( w)

lying on an arc of 8, and let h° be the unique arc in 77(8) satisfying x g w° (note

that there must exist such a point x, since w is not isotopic to an arc of 8). We

define i(8, {«}) to be Efc'eW(8)_nO)/(/i, w'). In other words, add up all intersection

numbers of w with arcs of 8, except with w°.

To see that i(8, {w}) is well defined: since w intersects all the arc. of 8 efficiently,

the vector of intersection numbers v G Z J(0S) is well defined. Then by mimicking the

proof of uniqueness of normal forms, it is easy to see that w is determined by v, up

to an isotopy which strictly preserves 8. Thus, the arc w° g 77(8) is well defined,

implying that i(8, {w}) is well defined.

Here is an elementary property of i(8, {w}):

Lemma. Given an ideal triangulation 8 and an ideal arc h, i(8, {h }) = 0 if and only

if either h is isotopic to an arc of 8, or h is isotopic to an opposite diagonal of a

removable arc of 8.

Proof. If h can be isotoped so that i(h, W) = 0 for all w' g 77(8), then int(w) lies

in int(7) for some triangle T of 8, from which it follows that w is isotopic to a side

of T, and thus to an arc of 8.
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I [//♦/// \^Y^

— h
Suppose h^ is the interior arc of a puncture piece T

Figure 24

So suppose w is not isotopic to an arc of 8, and suppose without loss of generality

that w intersects 8 efficiently. It follows from the previous paragraph that w

intersects some arc of 8. But since i(8, {w}) = 0, it follows that w° is the only arc of

8 that w intersects. We shall show that w° is removable, and that w is a diagonal to

h°.

If w° were nonremovable, being the interior arc of some puncture piece T of 8,

then int(w) would have to lie entirely in the set int(T) U int(w°), since int(w) does

not intersect the boundary arc of T. This implies that w is isotopic to either the

interior arc of T (namely, w°), or to the boundary arc of T, contradicting the

hypothesis that w is not isotopic to an arc of 8.

We have proven that w° is removable. Let Q be the qauadrilateral of 8 that w°

bisects. Since int(w) does not intersect 9<2, then int(w) c int(Q). Since w is not

isotopic to an arc of 8, this implies that w is an opposite diagonal to h°.    Q.E.D.

Here is the critical property of i(8, {h}):

Lemma. Let 8 be an ideal triangulation, let h be an oriented ideal arc which is not

isotopic to any arc of 8, or to the opposite diagonal of any removable arc of 8. Suppose

furthermore that h and 8 intersect efficiently. Let x be the first point of int(h) lying on

an arc of 8, and suppose x g w° g 77(8). Then h° is removable; and if 8 -* 8' is the

elementary move performed on h°, then i(8', {h}) < i(8, {h}).

Proof. First we must verify that h° is a removable arc of 8. Suppose otherwise:

suppose w° is the interior arc of a puncture piece Tof 8; let h be the boundary arc

of T, and let p be the interior puncture of T. Since w° is the first arc of 8 that w

crosses, and since w and w° intersect efficiently, then there must be embedded closed

intervals a c h, ft c w°, satisfying the following properties (see Figure 24):

(i) 9a = dft = {x, y), where y is the puncture at which h has both ends; note

that x g int(w) n int(w°);

(ii) a U ft bounds an embedded disc D with p g int(7)).
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It is evident, now, that after first crossing h°, h enters int(D). There are now two

possibilities. The first possibility is that w never leaves D; this implies that w ends at

p and is isotopic to w°, contradicting the hypothesis that w is not isotopic to an arc

of 8. The second possibility is that h leaves D, it is easy to show that this implies the

existence of a compressing disc for w and «°, contradicting the hypothesis that w

intersects 8 efficiently.

We have shown that h° is removable. Let 8 ^> 8' be the elementary move

performed on w°. We need some notation for the proof that i(8', { h}) < i(8, {h}).

Let Q be the quadrilateral of 8 bisected by w°; thus, Q is the support of 8 -» 8'.

We label the boundary arcs, triangles, and vertices of Q just as in the proof of the

Coordinate Change Theorem for Elementary Moves, and we assume that w° bisects

Q horizontally. Moreover, we assume that w starts from vN and traverses TN before

its first intersection with w°. Since w intersects w° efficiently, and since w is not

isotopic to an opposite diagonal of w°, then it follows that after first intersecting w°,

w intersects one of wsw or wSE; by symmetry, we can suppose that it is wsw.

It is easy, now, to construct an opposite diagonal w' to w° such that there is no

compressing disc for h and w' completely contained in Q: construct w' by starting

from vs, following along nearly parallel to wsw until nearly encountering w, then

follow along nearly parallel to w until encountering vN. Mimicking the argument

from the coordinate change theorem for elementary moves, it follows that h and h'

intersect efficiently. For the remainder of the proof, we shall drop the braces in all

our intersection number expressions, since all arcs concerned intersect efficiently.

Note that wsw is the first arc of 8' whose interior intersects int(w). Thus; we have

the equation

(*) i(«, h) - i(8', h) = z'(wsw, h) - i(h',h).

Let Tw be the triangle of 8' bounded by wNW, wsw, and w'. The lemma follows

from equation (*), together with

(**) /(wsw,w) = z(w',w)+/(/,', wNW)+ K,    where K = 1 or 2.

To prove equation (**), first note that there is an initial segment of w in rw

connecting vN to wsw; thus, every segment of w in 7W with one end on wNW or w'

must have its opposite end on wsw. This accounts for all possible intersections of h

with int(wsw) with the following exceptions: there exists an initial segment of h in

rw connecting <;N to wsw; and there is also, possibly, a final segment of w in Tw

connecting uN to wsw. Thus, the points of [int(w) n int(wNW)] U [int(w) n int(w')]

can be put in 1-1 correspondence with the points of int(w) n int(wsw), with the

exception of one or two points of int(w) n int(wsw).   Q.E.D.

Corollary. If 8 is an ideal triangulation and h is any ideal arc, there exists a finite

sequence of elementary moves 8 -*  ■ ■ ■  —> 8' such that h is isotopic to an arc of 8'.

Proof. Applying induction and the above lemma, we find that there exists a finite

sequence of elementary moves 8 = 8Q -* ■ ■ ■ -> 8m such that i(8m, {h}) = 0. If h is

not already isotopic to an arc of 8m, then w is isotopic to the opposite diagonal of
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some removable arc of 8m, and it follows that there is an elementary move

8m -» Sm+1 such that w is isotopic to an arc of 8m+v   Q.E.D.

Remark. Given an ideal triangulation 80 and an ideal arc w, w determines an

"intersection vector" vh g Zj(rfo), whose coordinates are intersection numbers. vh

does not satisfy all of the (nonstrict) triangle inequalities; in fact, if we compute the

"triangle inequality excess" by summing max{0, i(hx, h) — i(h2, h) — z'(w3, «)} over

all triples (hx,h2,h3) forming the oriented boundary of a triangle of 80, then we get

exactly 2; and for any triple (hx, h2, w3) such that i(hx, h) - i(h2, h) - i(h3, h) > 0,

we can choose w° to be w,. Thus, a necessary condition for an element of Z J(oo) to

arise as the intersection vector of an arc is that the triangle inequality excess equals

2; but this is not a sufficient condition. In fact, we can apply the proof of the

corollary to construct an algorithm which takes an element of Z^°\ decides if it is

the intersection vector of some arc h, and if so, computes a sequence of elementary

moves 80 -> ■ • • -> 8„ such that w g H(8n); the only missing ingredient is to have a

formula for the "coordinate change map" Z"^ ~* Z^'rf ' f°r intersection vectors of

arcs, when 8 -» 8' is an elementary move; this formula can be easily worked out.

Then at each stage, one computes the new vector, checks that the triangle inequality

excess equals two, and if so, chooses the next w° and continues. If v G Z"(<f * is not

an intersection vector for some arc, eventually one arrives at a stage where the

triangle inequality excess is not 2; if v is an intersection vector, eventually one

arrives at a stage where the transformed v has a single nonzero coordinate equal to

1; if this is the h coordinate of Z^o8"' for some h g H(8n), it follows that the

original v g Z"(0S) represents the intersection vector of an opposite diagonal of h

with respect to 77(8n).

At this point, we already have enough to prove that Ls: W(8) -»J(!F is

continuous, for if 8, 8' are as in the above corollary, then Lg} ° Ls: W(8) -* W(8')

is continuous, and since w g 77(8') (up to isotopy), it follows that the composition of

Ls with ( • , { w} > is continuous. Nonetheless, here is a

Proof of Connectivity Theorem. Note from the proof of the above corollary

that, if h' is any arc of 5 such that i(h',h) = 0, then the sequence of elementary

moves 8 -* - • • -> 8' can be chosen so that w' is an arc of each ideal triangulation

along the way: essentially one needs only observe that the elementary moves are

always performed on arcs having nonzero intersection number with w.

Now let 8, 8' be any two ideal triangulations, and let hx,...,hk be an enumera-

tion of 77(8'); notice that /'(«,, wy) = 0 when i ¥= j. Thus, there exists a sequence of

elementary moves 8 = 80 ^> • • • -» 8„(1) -»•••-» 8„(2) -» • ■ • -» • • • -* 8n(k)

such that for each i = l,...,k, w, g f|,^„(;)77(8y). In particular, ht G H(8n(k)) for

each i = l,...,k. Since the w, are isotopically distinct, and since |77(8„(A))| =

|77(8')|, it follows that H(8„(k)) = 77(8'), and so 8n(k) = 8'.   Q.E.D.

6. For each ideal triangulation 8 of (5, P) we define a decomposition #(S) of iPy

by saying that two projective classes are in the same decomposition element if their

respective normal forms have the same shape in each triangle of 8. To make this

precise, we need a few definitions.
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First recall the definition of a circular ordering on a set X: this is a partition of

the collection of distinct ordered triples {(xx,x2,x3)\xi + x when i #/} into two

subsets, the positively ordered triples and the negatively ordered triples such that the

following axioms are satisfied:

(i) if 77 is a permutation of {1,2,3}, then (xx,x2,x3) and (xff(1), xv(2., xff(3)) are

identically oriented if and only if ir is even;

(ii) if (xx,x2,x3) and (x3,x4,xx) are positively ordered, then (x2,x3,x4) is

positively ordered.

For example, 51 has a circular ordering, as well as any subset of 51. Note that a

2-point set and a 1-point set each have a unique circular ordering; they happen to be

vacuous, since there do not exist distinct ordered triples.

Given a circularly ordered set X, we say that x' is the successor of x if there does

not exist x" G X such that (x, x", x') is positively ordered; we also say that x is the

predecessor of x. In a 1-point set {x}, x is its own successor and predecessor; in a

2-point set {x, x'}, x and x' are each other's successors and predecessors. In

general, successors and predecessors always exist in a finite circularly ordered set.

Now consider an ideal triangulation 8. Each arc w of 8 has two ends, defined as

the ends, in the usual topological sense, of int(w). Each end is located at a particular

puncture p, defined as the unique limit point of the end. The set of all arc ends of 8

located at a particular p g P is denoted E(8, p). E(8, p) has a natural circular

ordering which is defined as follows. Choose a closed coordinate disc D around p

such that the arcs of 8 intersect D in radii. Each such radius defines a unique

element of 7f (8, p). The endpoints of the radii inherit a circular ordering from the

counterclockwise circular ordering on 37) (this depends on the orientation of 5).

Clearly this induces a well-defined circular ordering on E(8, p), which is natural

with respect to the action of Homeo+(5, P). Note that since E(8,P) is finite,

successors and predecessors exist in E(8, p).

A prong of 8 located at p is defined to be an ordered pair (e, e') in E(8, tt) such

that e' is the successor of e. The set of all prongs located at p is denoted n(S, p).

Note that, for each e g E(8, p) there is a unique e' g E(8,p) and e" G E(8, p)

such that (e', e) G 11(8, p) and (e, e") G 11(8, p). Note the following special cases,

where E(8, p) consists of two ends and one end, respectively: if E(8, p) = [e, e'},

then U(8,p)= {(e,e'),(e',e)}; and if E(8, p) = {<?}, then 11(8, p) = {(e,e)};

the latter case occurs precisely when p is the interior puncture of a puncture piece.

Note that U(8, p) has its own natural circular ordering, where (e0,ex), (e2,e3),

(e4, e5) is positively ordered in 11(8, p) if and only if e0, e2, eA is positively ordered

in E(8, p).

The set U{I1(8, p)}peP of all groups of 8 will be denoted n(8), and an

individual prong will usually be denoted with the variable it.

11(8) is in 1-1 correspondence with the set of corners of triangles of 8 in the

following sense: given a triangle Tof 8, choose an orientation preserving characteris-

tic map y: t —> 5 for T, where t is a Euclidean triangle; we define the corners and

sides of T to be the corners and sides of r; this gets around the problem of

identifications under the characteristic map y. Given a corner v of t, let p = y(v);

clearly there exists a unique prong (e, e') g 11(8, p) such that  e  and  e'  are
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hL, hR, and h°PP

Figure 25

represented (respectively) by y(e) and y(e'), where e and e' represent the ends

located at v of the two sides of t incident to u. We shall use U(T) to denote the

three prongs of 8 corresponding in this manner to corners of T. Suppose that a is a

closed interval embedded t such that 3a = a n [3t - {corners}], and a separates v

from the other two corners of t; suppose furthermore that y does not identify the

two boundary points of a (which is certainly the case if T is not a puncture piece);

then y(a) is an embedded closed interval in T, and we say that y(a) is a traversal of

the prong tt g I1(T) corresponding to v, or that y(a) traverses it.

Given J^g Jt^, / e Jf in normal form with respect to 8, and a prong tt g 11(8),

we ask: does / have a leaf segment £ traversing 77? The prong set 11(8, J5") of &

relative to 8 is defined to be the set consisting of those 77 g 11(8) for which there is

no transversal of 77 by a leaf segment £ of /. This is well defined, for the uniqueness

part of the Normal Form Theorem guarantees that the existence of such an £ is

independent of the choice of a normal form representing &. Also, we shall use

U(T,^) to denote the set n(S, &) n U(T), for each triangle Tof 8.

Here is an equivalent formulation of prong sets. Given 77 = (eL, eR) g 11(8), let

wL, wR be the ideal arcs of 8 having eL, eR (respectively) as ends. Let T be the

triangle of 8 (with characteristic map y: t -> 5) having a vertex v corresponding to

77. Let w°pp be the image under y of the side of t opposite v; w°pp is an ideal arc of

8. Thus, wL U wR U w°pp = dT; these arcs are referred to as the arcs to the left,

right, and opposite from 77 (see Figure 25); as usual, two of these arcs may be

identified, when T is a puncture piece.

Given J^g J{& and an ideal triangulation 8, let ju = Lrs\3F) g W(8); let

77 G n(8) be given, and let wL, wR, w°pp be as above. By definition of W(8), we

have ju(wL) + ju(wR)>jtt(w0pp); we abbreviate this by saying that /x satisfies the

tt-inequality. Similarly, we say that p satisfies the ir-equality if p(hL) + p(hR) =

iu(w0pp) and that p satisfies the tr-strict inequality if p(hL) + /x(wR) > /i(w°pp).

Given fi g W(8), a normal form / for L(\l) with respect to 8, and 77 g 11(8), it

is clear from the definition of normal forms that ju satisfies the 77-strict inequality if

and only if there is a traversal of 77 by a leaf segment of f . Thus:

Prong Set Lemma. For each ideal triangulation 8 and each J^G J£!F,

n(8,J^)= (77Gn(8)|Lg1(J^) satisfies the m-strict inequality}.
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We now define a decomposition %>(8) on @& by saying that p(^), p(&) G SPS?

are in the same decomposition element if and only if 11(8, &)= 11(8, J5") in n(8)

(note that this definition is independent of the choice of !W and 'S in their projective

classes). Clearly #(8) depends only on the isotopy class of 8. Also, the correspon-

dence 8 -» #(8) is natural with respect to the action of Homeo+(5, P), for if / is in

normal form with respect to 8 and <p G Homeo+(5, P), then rp(/) is in normal form

with respect to <p(8), and cp takes the prong set of / in 11(8) to the prong set of

<p(/) in n(tp(8)). Thus, the correspondence [8] -> ^(8) is well defined and natural

with respect to the action of J£(S, P) ([8] denotes isotopy class).

It is not true that every subset of n(8) occurs as the prong set of some ^"g J(&'.

If n = n(8, &) for some J^g Jt'&', then we will say that II is realizable. Later we

shall give necessary and sufficient conditions for II to be realizable. In either case,

given an arbitrary subset II c 11(8), define c(8, II) = {p(&) g 0>&\W(8, 3?) d

n}, and define r°(fi,II)= {p(&) e &&\W(8, &) = n} (Note: "3" denotes

nonproper containment). Thus, either «°(8, II) is a decomposition element of ^(8),

or it is empty.

Now we examine the topological nature of the decomposition elements c°(8, II).

Proposition: Decomposition Elements are Cells. If U is realizable, then

c(8, n) is a topological closed cell, whose interior is c°(8, II), and whose boundary is

the union of those decomposition elements c°(8, II') for which IT is properly contained

in II.

As a corollary, we have our main theorem:

Cell-Decomposition Theorem. #(8) is a cell-decomposition of SP& which is

natural with respect to the action of Jt(S,P).

To prove the proposition, we work in JOF, projecting our results down to ^^

via the projection map p: JtSF^ 0>&'. By the Normal Form Theorem, utilizing the

homeomorphism L: W(8) -»Jt'&', we can actually work entirely in W(8). The sets

L~\p-\c(8, W))) and L~\p-\cQ(8, W))) will be denoted W(8, II) and W°(8, U).
Thus, we shall show that W(8, U) c W(8) is a convex, closed cone in R^'*', whose

manifold interior is W°(8, U). From this it follows that c(8, H) is a closed cell, with

interior c°(8, II).

We shall assume for the remainder of the proof that II c 11(8) is a realizable

prong set.

First we restate the definition of W(8):

Lemma. W(8) equals the set of all p g R^<*' such that:

(1) For each tt g 11(8), p satisfies the ir-inequality.

(2) For each p G P, there exists tt g 11(8, p) such that n satisfies the tr-equality.

Proof. By definition, W(8) is the set of p e R^(^ such that: (1) holds; and for

each puncture p G P, either there is an arc w incident to p such that p(h) = 0, or p

satisfies the 77-equality for some 77 g 11(8) located at p. But if p(h) = 0 for some w

incident to p, let 77 be any prong located at p adjacent to w; say, h is the arc wL to
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the left of 77. Since ju(wL) = 0, and since the two inequalities p(hL) + p(hR) >

(w°pp), Ju.(wL) + /i(w°pp)>(wR) hold, it follows that p(hR) = p(h°pp), and so

H (h L) + ju (h R) = (w °pp), which is the 7r-equality.    Q.E.D.

Now consider the set W°(8, U) c W(8). By the Prong Set Lemma, W°(8, II) is

the set of all ju. g R^q' satisfying the conditions:

(a) jti g W(8);

(b) for all 77 g n, ft satisfies the 77-equality;

(c) for all 77 g n(8) - II, p satisfies the 77-strict inequality.

Since n is realizable, meaning that W°(8, II) ¥= 0, we can drop condition (a). To

see why, notice that since W°(8,If) ¥= 0, then by the above lemma, II contains at

least one prong at each puncture. Thus, (a) follows from (b) and (c). Therefore,

Wa(8, U) = {p g R^*? I (b) and (c) are satisfied}.

Consider also the condition:

(c') For all77Gll(8)-n,ju satisfies the 77-inequality.

Let W' = {ju, g R^(g>|(b) and (c') are satisfied}; we want to show that W' =

W(8, U). Note that W c W(8): this is so because if ft g W', then the subset

{77 g n(S)|ft satisfies the 77-equality} includes II, and so includes at least one

prong at each puncture. Thus, W' c W(8) n W(8, II) = W(8,If); the opposite

inclusion is trivial. Also, it is clear that W' is the closure in R^f,' of W°(8, U) = {ft

g RH^Q]\(b) and (c) are satisfied}; since these sets are both contained in W(8), it

follows that W = W(8,U) is the closure in If(8) of W°(8, II).

Thus, W(8,H) is an intersection in RH<*' of closed linear half-spaces, hnear

subspaces, and R^ff,1; therefore 1^(8,11) is a convex, closed cone in a Euclidean

space, and it follows that c(8, II) = p(L(W(8, II))) is a closed topological cell.

To see that W°(8,Yl) is an open cone in a Euclidean space, suppose that

ju(w) = 0 for some ft G W°(8, II) and w g 77(8). Then each prong in 11(8) incident

to w is in n. From this it follows that p(h) = 0 for all ft G W(8, II). Set

77' = {« g 77(8)| some prong of n(8) incident to w is in n(S) - II}; under the

standard inclusion RH c RH(-S\ where the remaining coordinates are set to zero, it

follows that W°(8, II) c RH is the intersection of open linear half-spaces, linear

subspaces, and Rf (not R^0)- Thus, W°(8, II) is an open cone in some Euclidean

space. Since RH is closed in R"iS), then W(8, U) is the closure of W°(8, U) in RH,

and it follows that W°(8, U) is the manifold interior of W(8, II); so c\8, II) is the

manifold interior of c(8, If).

Clearly dW(8, If) is the union of all W°(8, W) such that IT d II and II' * II;

this follows from conditions (b) and (c') for II, and conditions (b) and (c) for n'.

Thus,3^(8,n) = U{c(S,ir)in'd n, it* nj. q.e.d.

7. In this section we shall apply the techniques of triangulations and elementary

moves to the proof of Thurston's theorem that ^J^ is a compact manifold of

dimension 6 ■ g - 1 + 2 ■ \P\, where g is the genus of 5. Compactness follows from

the finiteness of #(8). To prove that &3F is a manifold of the appropriate

dimension takes several steps. First we shall compute the dimensions of cells of

^(8), for any ideal triangulation 8; from this it will follow that the top-dimensional
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cells have dimension 6 ■ g - 7 + 2 ■ \P\. Then we will show that each point in ^J5"

lies in the top dimensional cell of ^(8), for some 8.

It is beyond the scope of this work to prove the additional fact, due again to

Thurston, that 2P& is a sphere. The reason for this difficulty is that neither the

cell-decomposition ^(8) nor the coordinate space W(8) lend themselves to a direct

combinatorial attack; this is in contrast to the "pairs of pants" coordinates on a

surface, for which it is immediately clear that the coordinate space is homeomorphic

to Euclidean space. It should be possible to revert to Thurston's original proof, given

in [T], where he shows that 3P!F is covered by just two open sets, and then uses the

Alexander trick; for instance, one could try to find two ideal triangulations 8, 8' and

a top dimensional cell in each of ^(8), ^(8') which together cover @&.

Another purpose of this section is to relate the techniques of ideal triangulations

to the more "classical" setting of train track theory; in fact, we shall apply train

track theory to get results about dimensions of cells of ^(8). So we commence with

a short exposition of train tracks, consisting mostly of well-known "folk" theorems

that have previously managed to escape print (or, at least, the none too careful eyes

of this writer); in particular, we shall need a computation of the dimension of the

space of invariant measures on an arbitrary train track.

The definition of a train track that we use is very general and abstract to start

with; we shall soon show how to relate this to the standard theory of train tracks on

a surface.

An abstract train track t is a finite 1-complex with no isolated 0-cells, whose

1 -cells are called branches and whose 0-cells are called switches, and for each switch

5, there is a partition of the set of branch ends located at s into two subsets, called

sides of s. We do allow the possibility that one of the sides of s is empty; when this

happens, we shall call .? a terminus of t.

Given an orientation for a branch b of r, a branch end e of b induces an

orientation of the switch s at which e is located: a " + " orientation on 5 if b points

toward e, and a "-" orientation on .y if b points away from e. An orientation of r is

a choice of orientation for each branch of t with the property that, for each switch s

of t and any two branch ends e, e' located at s, e and e' induce the same

orientation on s if and only if e and e' are in the same side of s. t is orientable if

there exists an orientation for t; otherwise t is nonorientable.

If t is an abstract train track with branch set B and switch set 5, consider the

vector space RB and its dual space Rs*. Let {vh}b&B be the standard basis for RB,

where (vh,b') = 8hh: Let {f*}/>es De me dual basis of RB*. For each switch

s g 5, we define a covector as g Rb* called a switch condition as follows: let

e(l),...,e(m) and e'(l),...,e'(n) be enumerations of the two sides of s, and let

b(l),..., b(m) and b'(l),..., b'(m) denote the corresponding branches; as is de-

fined to be uj(1) + • • • +u*(m) - vpm - ■ ■ ■ -vh.(n). This definition depends on an

ordering of the two sides of s; but clearly as is well defined up to a factor of -1.

When t is an orientable train track, we shall adopt the following convention: once

an orientation of t is fixed, the ordering of sides of s is chosen so that the side

e(l),...,e(m) consists of ends inducing the " + " orientation on s, and the side

e'(l),...,e'(n) consists of ends inducing the "-" orientation.
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•-o *—• o
Abstract train tracks with one branch

Figure 26

We now define an invariant measure on t to be an element of RB which is in the

null-space of {as }ses; and let W(t) denote the space of all invariant measures on t.

Thus, ft g RB is in W(t) if and only if, for each switch s, p(b(l)) + ■ ■ ■ +p(b(m))

= ft(//(l))+ ••• +p(b'(n)).

Proposition. If t is a connected abstract train track, then dim(W(T)) is computed

as follows:

If t is nonorientable, dim(W(T)) = \B\ - \S\,

If t is orientable, dim(W(r)) = \B\ - \S\ + 1.

Proof. The proof is to show that the switch conditions are linearly independent,

with the exception of a single dependency relation when t is orientable. First we

describe that relation: if t is orientable, notice that for each b g B the term v%

occurs once with a positive sign and once with a negative sign among the list of

switch conditions {as}; this follows from our convention for the choice of as when t

is orientable. It follows that La^ = 0.

Claim. Given an abstract train track t, if t is nonorientable then the switch

conditions are linearly independent; and if t is orientable then the only dependency

relations on the switch conditions have constant coefficients. From this the proposi-

tion clearly follows. We shall prove the claim by induction on the number of

branches.

To start the induction, consider the abstract train tracks having exactly one

branch. There are three of these, one nonorientable and two orientable; they are

pictured in Figure 26.

In the nonorientable example, the only switch condition is as = 2 ■ v*, which is

nonzero and so forms an independent set. In the first orientable example, the line

segment, the two switch conditions are as = v% and as, = -v%, and the claim clearly

follows. In the second orientable example, the circular track, the only switch

condition is as = v* — v* = 0, and the claim also follows.

Now suppose t is an arbitrary connected train track with > 2 branches. We shall

consider several cases, depending on the combinatorial structure of t.

Case 1. t has a single switch s. Thus, every branch has both ends at s, and t is

orientable if and only if each branch has its ends in opposite sides of s.

If t is orientable, then the unique switch condition is just as = 0, and the claim

follows.

It t is nonorientable, then there exists at least one branch having both ends in the

same side of s. Let b(\),..., b(m) denote those branches with both ends on one side

of s and b'(\),..., b'(n) denote those branches with both ends on the other side of

s; these two sets are disjoint and at least one is nonempty, so as = 2 ■ v*(X) + ■ ■ ■ +2

' vt(m) ~ 2 " v*(i) ~ ''" — 2 • f*,,,) is nonzero, and the claim follows.
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Case 2. Now suppose t is connected and has at least two switches. Thus, there

exists a branch b connecting two distinct switches s, s' of t. In the analysis which

follows, we shall write the collection of switch conditions of t as an integer matrix,

with rows indexed by 5 and columns indexed by B. There are again several subcases,

depending on the combinatorial properties of t.

Case 2a. Suppose that one of the two switches s, s', say s, has a unique branch

end located there, necessarily one of the ends of b. Since t has > 2 branches and is

connected, s' has other branch ends located there. Note that t is orientable if and

only if t - b is orientable. Applying induction, the claim is true for t - b; we shall

compare the matrix of switch conditions of t to that of t - b.

The matrix of switch conditions of t can be written in the following form:

B
lb ■      ■'

s    J_0

Ms A

■V I
Case 2a. The matrix of switch conditions of t

It is clear, then, that the matrix of switch conditions of t - b is just A; also, row

s'of M must have other nonzero entries (since s' has other branch ends located

there), so row s' of A has nonzero entries. Clearly any dependency relation on the

rows of M has equal coefficients on row s and row s'.

If t is nonorientable, then t - b is nonorientable, so by induction, the rows of A

are linearly independent; thus, any dependency relation on the rows of M must have

zero coefficients on all rows except possibly row s; it follows that all coefficients are

zero.

If t is orientable, then t - b if orientable, so by induction, the only dependency

relations on rows of A have constant coefficients. Thus, any dependency relation on

rows of M must have constant coefficients on all rows except possibly row s; it

follows that all coefficients are equal.

Case 2b. Now suppose that s and s' both have > 2 ends located there. Again,

r — b has one fewer branch, but now it may happen that t - b is disconnected.

Nonetheless, each component has fewer total branches, so the induction hypothesis

applies to each component of t - b. Again we have several subcases:

Case 2bi, t - ft is connected. Thus, the matrix of switch conditions of t can be

written as follows:

B
b ■      ■     ..

5   _x_

S'    J_

Ms- A
• o
• \ I

Case 2bi. The matrix of switch conditions of t
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In this diagram, x, y = ±1. Notice that the matrix of switch conditions of t - b

is A. Notice also that rows s and s' of A have nonzero entries, since s and s' both

have ends other than ends of b located there.

If t is nonorientable and t — ft is nonorientable, then by induction, the rows of A

are linearly independent, so the rows of M are linearly independent.

If t is nonorientable and t - ft is orientable, pick an orientation for t - ft. Let e

denote the end of ft located at s, and let E denote the side of s in t containing e; let

E' be similarly defined. Since t is nonorientable, it follows that the ends E — {e}

and E' — {e'} induce the same orientation on s and s'; our convention for as and

as, now implies that x and y are equal. Now any dependency relation on the rows

of M is also a dependency relation on the rows of A, and by induction, it follows

that all coefficients of the relation are equal. However, since x = y = +1, it follows

that the coefficients on rows 5 and s' are zero. Thus, all coefficients are zero, and the

rows of M are linearly independent.

If t is orientable, then t — ft is orientable; any dependence relation on rows of M

is also a dependency relation on rows of A, so by induction, the relation has

constant coefficients.

Case 2bii. t — ft is disconnected, consisting of two components tx and t2. Thus,

the matrix of switch conditions for t can be written as

B

s   I jj •        ■       ■ \

M   s   ■   ~      A1 0

s'     -1

•    o 0 A2

Case 2bii. The matrix of switch conditions of t

It is clear that Ax and A2 are the matrices of switch conditions for tx, t2,

respectively.

If t is oriented, then tx and t2 are oriented, and any dependency relation on the

rows of M gives rise to a dependency relation on the rows of Ax and on the rows of

A2. By induction, the coefficients on the rows of Ax are equal, and the coefficients

on the rows of A2 are equal. But the coefficients on row s and row s' must also be

equal, so the dependency relation has constant coefficients.

If t is nonorientable, then at least one of t,, t2 must also be nonorientable.

If Tj, t2 are both nonorientable, then any dependency relation on rows of M

must, by induction, be zero on rows of Ax and on rows of A2, so the rows of M are

linearly independent.

If, say, Tj is orientable and t2 is nonorientable, then given a dependency relation

on rows of M, the rows of Ax must have constant coefficients, and the rows of A2

must have zero coefficients. Since row s and row s' must have equal coefficients, it

follows that all rows have zero coefficients.   Q.E.D.
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No smooth simple closed curve contains the middle branch of c

Figure 27

Recall now the definition of "recurrence": a smooth closed curve in a train track t

is a map /: 51 -* t which is a local injection, and which always crosses a switch

from one side to the opposite side; t is called recurrent if, for each branch ft of t,

there exists a smooth closed curve in t whose image contains ft. Note that if t has

any terminus, then t is not recurrent.

The definition that we have given for recurrence is not an effective definition, as it

requires checking through infinitely many homotopy classes of smooth closed curves.

However, it is easy to parlay this into an effective condition: given a train track t,

the oriented double cover f of t is defined just as in manifold theory: the branches of

f are in 1-1 correspondence with oriented branches of t. Just as in manifold theory,

if t is connected, then t is orientable if and only if f is disconnected.

Recurrence Lemma, t is recurrent if and only if, for each branch ft of the oriented

double cover f of r, ft is contained in the image of some smooth simple closed curve in

f. Consequently, r is recurrent if and only if, for each branch ft of t, ft is in the image

of a smooth oriented closed curve f such that, for each branch ft' of t, f passes over ft'

at most once in each direction.

Note. The necessity of taking oriented double covers is shown by the accompany-

ing example of a recurrent train track t, which has the property that the middle

branch of t is not contained in the image of any smooth simple closed curve in t.

Figure 27 also shows the oriented double cover of t.

Proof. The proof is very easy. First one observes that t is recurrent if and only if

f is recurrent. This follows from the fact that: any smooth closed curve in t lifts to a

smooth closed curve in f, since 51 is orientable; and any smooth closed curve in f

projects down to a smooth closed curve in t.

Now we show that an orientable train track t is recurrent if and only if, for each

branch ft of t, there exists a smooth simple closed curve passing through ft. One

direction is trivial. For the other direction, suppose t is recurrent; let ft be a branch

of t, and let / be a smooth closed curve in t passing through ft, which has the

minimum possible number of "branch traversals", where a branch transversal of /:
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51 —> t is a segment in 51 whose interior maps bijectively to the interior of a branch

of t. We shall show that s simple. Suppose not, then there is a branch ft' of t that /

passes over at least twice; moreover, by orientability of 51 and of t, each time /

passes over ft' it passes over in the same direction. Therefore, if we choose two points

xx, x2 g 51 which map to the same point of ft', then we can cut and paste / at xx

and x2 to form two smooth closed curves /,,/2 in t. At least one of these passes

through ft, and each has fewer branch traversals than /.   Q.E.D.

Now we relate recurrence to the existence of transverse measures with positive

weights. Let W>0(t) denote the subspace of W(t) consisting of elements with

nonnegative coordinates, and let W+(t) denote those elements with all positive

coordinates.

Proposition, t is recurrent if and only if W+(t) # 0.

Proof. This is a familiar proof to anyone acquainted with train tracks; we include

it here for completeness.

Each smooth closed curve c in t gives rise to an element ftc. g W>0(t) by

counting, for each branch ft of t, the number of times that c passes over ft. If t is

recurrent, let c(ft) denote a smooth closed curve passing through ft. It follows that

M<(/,)(*) > 0; setting ft = Lbpc(h), then ft G W+(t).

Conversely, suppose W+(t) =£ 0. Note that each switch condition has rational

coefficients. Thus, the points of W+(t) are all the points in RB which are solutions

to a certain collection of strict inequalities and rational equations. Since W+(t) + 0,

it follows that there exists a real solution, and therefore a rational solution. Clearing

the denominators of all the coefficients gives an integer solution. Thus, there exists

ft g W+(t) with all integer coefficients.

Now we construct a finite collection of smooth closed curves c(i) in t such that

E/Mf(i) = M- Choose a collection of LheBp(b) disjoint intervals, and for each ft g B,

choose maps of ft(ft) of these intervals onto ft each of which is a homeomorphism on

the interior. For each switch 5 of t, since fi satisfies the switch condition a,, the set

of ends of intervals mapped to one side of 5 is equal in size to the set of ends of

intervals mapped to the other side of s; so choose an arbitrary bijection between

these two sets, and identify corresponding boundary points. This gives a pairwise

identification of the set of all ends of intervals, giving rise to finitely many disjoint

circles. Each of these circles is mapped smoothly into t, giving rise to closed curves

c, which evidently satisfy the property that L,ftc(0 = ft. Since ft(ft) > 0 for each

ft g B, then there exists some c(i) with fic.(0(ft) > 0.    Q.E.D.

Now we turn to train tracks on surfaces. Consider a punctured surface (S,P) and

a finite 1-complex t c 5 - P. For each 0-cell v of t, there exists a well-defined

natural circular ordering on the set of ends of 1-cells located at v: this ordering is

defined by choosing a closed coordinate disc D around v such that v corresponds to

the origin, and D n C corresponds to a collection of radial segments; the circular

ordering is then induced by the natural circular ordering on 97). Suppose t is given

the structure of an abstract train track, still denoted by t (i.e. choose sides, for each

switch of t); we say that t is-embedded in 5 if, for each switch s of t, each side of s
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is a circular interval, in the natural circular ordering on the set branch ends located

at s.

Let t be an abstract train track embedded in (5, P), and suppose that t has no

terminus. Consider a complementary component C of t in 5. C is an open

topological surface, and there is a natural way to complete C to a surface with

boundary C having the following property: there is a map rp: C -* 5 which is the

identity on C and which immerses 9C into t. We denote rp 13C by 3rp. Note that 3<p

is not necessarily smooth, for as you travel around 3C, there will be isolated points,

called boundary cusps, where you double back on the same side of a switch of r. We

say that the complementary component C is hyperbolic if the surface-with-boundary

C-{boundary cusps}-{punctures} is hyperbolic, i.e. if the double of this surface

across its boundary has negative Euler characteristic. The kinds of complementary

components that are eliminated by this condition are as follows: discs with m

boundary cusps and w punctures, where (m,n) = (0,0), (0,1), (1,0) or (2,0); and

annuli with no cusps and no punctures. Finally, we say that t is a train track on

(5, P) if t has no terminus, and each complementary component of t is hyperbolic.

In order to motivate our use of train tracks, here is a short expository account of

the theory of train tracks and their relation to measured foliations; this account has

no role in the logical flow of this paper, other than to clarify scattered comments in

what follows. A more complete study of train tracks is made in [T].

Given a train track t on (5, P) and an element ft G W>0(t), there is a construc-

tion due to Thurston for a partial measured foliation / whose class L(/i)={/}is

well defined in Jt&: this is the famous highways construction. One replaces each

branch ft of t with a " highway" or rectangle foliated by leaves parallel to ft, having

a transverse measure of total weight ft(ft); then for each switch s of t, one glues

ends of highways together in a measure-preserving manner; that this can be done is

guaranteed by the switch condition (as,p) = 0. In order to obtain a true partial

measured foliation, one must then collapse complementary components of the

support which are nonpunctured or once-punctured discs. The primary property of

this map L: W>0(t) -^Jt^ is that if t is recurrent and "transversely recurrent"

(see [T] for a definition), then L is injective. The image of L can be characterized as

follows: we say that a partial measured foliation / is carried by an abstract train

track t embedded in (5, P) if, after replacing each singularity of / by a disc, there is

a homotopy from the identity of supp(/) to a map <p: supp(/) -» t such that for

each smooth leaf segment a of /, rp(a) maps smoothly into t. If t is a train track on

(5, P), then image(L: W>0(r) -* JtlF) consists of the classes of all partial mea-

sured foliations carried by t. In fact, if / and rp are as above, then for each point x

on a branch ft of t, (p'x(x) is a transversal to / whose /-measure depends only on ft;

this defines a transverse measure on t depending only on the class of /, and it is easy

to see that this is the inverse of the highways construction, up to equivalence. Thus,

t is recurrent if and only if there exists a partial measured foliation / carried on t

with positive weights on every branch.

For our purposes, we shall not need all of these concepts, since we have already

done the hard work using ideal triangulations; we shall refer to these concepts only

to show how certain of our results can be couched in the "classical" terminology.



TILING THE PROJECTIVE FOLIATION SPACE 53

A/hM ha)

«
A piece of train track in a triangle

Figure 28

However, we shall use train tracks to decide when a subset II c 11(8) is realizable,

and to compute dimensions of cells in the cell-decomposition <<£(8).

First we give two necessary conditions for II c 11(8) to be realizable. The first

condition is that If n If(8, p) =t 0, for p G P. We refer to this as the puncture

condition with respect to p. We have already seen that for II to be realizable, it is

necessary that II satisfy all puncture conditions.

Consider now an arc w g 77(8). Suppose first that w is a removable arc, bounding

distinct triangles T, 7"; then there are four prongs adjacent to w, which come in two

pairs, one pair {ttx,tt2} c n(r), the other pair {77/,772'} c 11(7'). Given II c 11(8),

we say that II satisfies the arc condition with respect to w if: assuming that II

contains both prongs in one pair, then II contains both prongs in the other pair. To

see that this is necessary, suppose ft G W°(8, If) and, say, {irx,v2} c II; then ft

satisfies Wj-equality and 772-equality, therefore ft(w) = 0, implying that ft satisfies

771'-equality and 7r2'-equality, so {77/, 7r2'} c II.

There is also an arc condition for a nonremovable arc h G 77(8). h is the interior

arc of some puncture piece T, whose interior puncture is p. There is a unique prong

irx g U(T) n 11(8, p) and If(T) has two other prongs 772, 773 located at the

boundary puncture of T. The puncture condition on n implies that ^ e II. We say

that II satisfies the arc condition with respect to w if: ttx g II; and either {772, tt3 } c

If or {w2,tt3} P\ If = 0. To see that this is necessary, if ft g W°(8, n) and if, say,

772 g n, then ft satisfies 772-equality; from the fact that ft satisfies ttx equality it

follows that p(h) = 0, and so ft also satisfies 773-equality; thus 773 g n.

Now we shall show how to associate, to each n c 11(8) satisfying all puncture

and arc conditions, a train track t(8, II) on (5, P); this will be done in such a way

that n is realizable if and only if t(8, n) is recurrent.

First of all, given an ideal triangulation 8, embed an abstract train track t(8) in

(5, P) by putting a piece of train track in each triangle of 8, as indicated in Figure

28; the diagrams are drawn as if there were a smooth structure on 5, so that all

branch ends at a given switch s are tangent, with two branch ends tangent from the

same direction if and only if they are in the same side of s; this, of course, is the

classical definition of a train track on a smooth surface. For each arc w g 77(8),

there is a branch ft(w) intersecting h once transversely; and for each prong

77 G n(8),  there is a branch  b(-Tr) with the property that any traversal of 77
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embedded smoothly in t must contain ft(w). Notice that the only thing that keeps

t(8) from being a train track on (S, P) is that each puncture p is contained in a

nonhyperbolic complementary component, which is a disc with no boundary cusps

and one puncture (namely, p).

Incidently, the Normal Form Theorem can be couched in terms of the abstract

embedded train track t(8): that theorem says simply that each class in !F& is

represented by some partial measured foliation carried on t(8).

Consider now an ideal triangulation 8 and a set of prongs II c n(8) satisfying all

puncture and arc conditions. Define t(8, II) to be the train track obtained by

erasing all branches of the form ft(77) where 77 g II, and all branches of the form

ft(w) where each prong adjacent to w is in n. Notice that the arc conditions on n

guarantee that t(8, n) has no terminus; and the puncture conditions on II guaran-

tee that t(S, n) has all hyperbolic complementary components.

Proposition. Given II c 11(8) satisfying all puncture and arc conditions, II is

realizable if and only if t(8, II) is recurrent. When this happens, then dim(W°(8, II))

= dim(W+(r(8, U))), and dim(/(S, II)) = dim(W+(r(8, II))) - 1.

Proof. Recall that t(8, II) is recurrent if and only if W+(t(8,U)) ^ 0. Recall

also that W°(8, II) = Lr\p-\e\lt, II))) = {ft e R^> |for each 77 g n, ft satisfies

the 77-equality, and for each 77 g 11(8) — II, ft satisfies the 77-strict inequality}; also,

II is realizable if and only if W°(8, II) ¥= 0. We shall construct a homeomorphism

X: W+(t(8, If)) -» W(8, II); the proposition follows directly from the existence of

X-
In fact, first we define x: W>q(t(8)) "* RH£V' an<l tnen show that the restriction

to W+(t(8, n)) is a homeomorphism onto W(8, n). The definition is simple: given

ft g W>0(t(8)), define x(m) e R'^ by x(m)(«) = M(M«))- First note that x(m)
automatically satisfies the triangle inequalities, for if 77 G n(S) and wL, wR, w°pp

are the arcs to the left, right and opposite 77, then

(*)

X(ft)(wL) + x(m)(«r) - x(m)(«°pp) = m(M*l)) + m(H"r)) - m(M«°pp))

=  2-ft(ft(77))>  0.

Evidently x is 1-1. Moreover, the image of x is [v g Rh^\v satisfies 77-inequality,

for all 77 g 11(8)}: for if v satisfies all 77-inequalities, then we can define xH'O G

W>0(r{B))by

x\v)(b(TT)) = (1/2) • [K«L) + v(hR) - Kw°pp)],

where hL, hR and w°pp are the arcs to the left, right and opposite 77. Evidently x

and x1 are continuous.

Now suppose that II c 11(8) satisfies all puncture and arc conditions; thus,

t(8, n) is defined and is a train track on (S, P). Note that W>0(t(8,U)) is

naturally embedded in W>0(r(8)), by defining ft G W>0(t(8, II)) to be zero on all

branches in t(8) - t(8, II). We shall henceforth identify W>q(t(8,U)) with its

image in W>0(t(8)). It remains to show that x takes W+(r(8, n)) onto W°(8, n).
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Equation (*) above show that, for ft G W>0(r(8)), x(m) satisfies the 77-strict

inequality if and only if p(b(Tr)) > 0. Thus, x(m) G W°(8,If) if and only if

ft g W+(t(8,U)). Since W°(8,If) c {ft g R"(S) I all prong inequalities are satis-

fied} = image( x), it follows that x | W + ( t( 8, II)) is a homeomorphism onto W(8, If).

Q.E.D.

Corollary. II c 11(8) is realizable if and only if the following conditions are

satisfied:

(i) II satisfies all puncture and arc conditions.

(ii) For each prong tt g 11(8) — II, there exists an essential simple closed curve

c c 5 — P, intersecting 8 efficiently, such that: c traverses tt; c traverses no prong in

n; c traverses each prong in 11(8) — II at most once in each direction; and c crosses

each arc of 8 at most once in each direction.

Proof. First suppose II satisfies (i) and (ii). (i) implies that t(8, II) is defined and

is a train track on (S, P). Now for any branch of the form ft(77) where 77 G 11(8) -

II, take a curve c as in condition (ii); clearly c can be homo toped to a smooth closed

curve y in t(8, II) traversing ft(w). And for any branch of the form ft(w), where

w g 77(8) and some 77 g 11(8) - II is adjacent to w, let c be a curve satisfying

condition (ii) with respect to 77; clearly c intersects w, and so c is recurrent, and it

follows from the previous proposition that II is realizable. What we have done, in

the language of train tracks, is to construct, for each branch ft of t(8, II), an

essential simple closed curve in (5, P) carried on t(8, II) with positive weight on ft.

Now suppose II is realizable. The previous proposition shows that t(8, n) is

defined and is recurrent. Consider 77 g 11(8) - II. Choose ft g W+(r(8,If)) with

integral weights and having the smallest total weight, so that ft (ft (77)) ¥* 0. Using the

homeomorphism x: W+(t(8, II)) -» W°(8, If) from the previous proposition, let

ft' = x(m) e W°(8, II). Since ft' has integral weights, there exists c c 5 - P which

is a disjoint union of essential simple closed curves such that c transverses each

77' g 11(8) exactly p'(tt') times. Homotop c to a union c' of smooth closed curves on

t(8, n). Clearly ft is the set of transverse measures of c'. Moreover, using the

minimality of ft, the argument of the Recurrence Lemma shows that c' consists of

just one closed curve, which traverses each branch of t at most once in each

direction. It follows that c is a simple closed curve which traverses each prong of 8

at most once in each direction, and crosses each arc of 8 at most once in each

direction. The remaining properties of (ii) are easily verified.    Q.E.D.

Finally, if II c 11(8) is realizable, then dim(^°(8, n)) is computed as follows: say

that n is orientable if t(8,II) is orientable. Define 77(8, II) = {w g 77(8) |any

prong of 8 adjacent to h is in II}; clearly |77(8) - 77(8, n)| is the number of

branches of 77(8, n) of the form ft(w). Also, |I1(8) - Il| is the number of branches

of t(8, n) of the form b(ir). Let w,(8, II) be the number of triangles of 8 having i

prongs in n, i.e. the number of case i triangles with respect to n. It is easy to see

that the number of switches of t(8, H.) is 2 • w2(8, n) + 3 • [nx(8, U) + n0(8, n)]

(note that our definition of train track allows a switch to have only one branch end

on either side). Then from the formula for dim(W+(r(8, II))) and the above
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Gluing Triangles To Make a Once-Punctured Torus

Figure 29

A 1-cell m^J^of a punctured torus

Figure 30

proposition, we have

(**)      dim(*°(5,n)) = 177(8) - 77(8, n) | + |n(S) -II|-2- w2(8,IT)

-3-[w1(8,n) + w0(8,n)] -d

where d = 0 if n is orientable, and d = 1 if n is nonorientable.

Now we shall pause to give a complete description of #(8) in the case that (5, P)

is a once-punctured torus, (T2,p). First note that any two ideal triangulations of

(T2, p) are "combinatorially equivalent", which means that they are obtained from

the same pattern of triangle gluings (this does not mean that they are all isotopic; far

from it). In fact, Euler-characteristic considerations show that there are exactly three

ideal arcs, two triangles, six arc ends, and six prongs. Moreover, in order that the

two triangles be glued together to form an oriented surface with all vertices

identified, the gluing pattern must be exactly as diagrammed in Figure 29, up to

symmetries of the triangles.

In the diagram, the six prongs of n(8) come in three pairs, {77,, 77/}, i G (1,2,3}.

Each pair has the following property: the arcs to the left of 77, and 77/ are identical;

similarly for the arcs to the right and the opposite arcs. Denote these arcs by h\, wR,

w°p. Then for any realizable n c n(S), 77, G n if and only if 77/ G II, for both of

these conditions are equivalent to the condition that p(h\) + fi(wR) = ft(w°pp), for

any ft g W(8, If). Thus, there are three possible realizable prong sets consisting of
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A 0-cell in^J^of a punctured torus

Figure 31

exactly one pair {77;, 77/}, and it is easily verified that each of these three is actually

realizable; in fact, by symmetry, it suffices to verify this for only one of the three,

say, {77l7 77{}. In Figure 30 we show how to visualize the resulting train track by first

gluing together the two triangles along the side h[°pp opposite ttx and 77/; and then

gluing all three sides together and picturing the result on a punctured torus

embedded in R3. It is evident that the resulting train track t is recurrent, and that

dim( W+(t)) = 2, so the corresponding cell in 3P& is of dimension 1.

Also, there are three possible realizable prong sets consisting of two pairs

{7r/5 77/, iTj, tt-}, and each possibility does actually result in a realizable prong set; in

fact, the corresponding train track is a circle, so the corresponding cell in ^J5" has

dimension 0. We illustrate this in Figure 31 for the prong set {t72, 772, w3, 773'}.

It is evident from the rules for gluing cells together, given in the proposition

Decomposition Elements Are Cells, that these cells fit together into a circle, with

three 1-cells and three 0-cells.

Now we turn to considerations of an ideal triangulation 8 on a general punctured

surface (5, P). Our goal, while not to give a complete combinatorial description of

^(8), is to at least describe the top-dimensional cells of ^(8), and to use this

description to prove that ^"J5" is a manifold of dimension 6-g-7 + 2-|P|. We

shall need the fact that for each triangulation 8 of (5, P), 8 has 6 • g - 6 + 3 • |7>|

arcs, 4 • g - 4 + 2 • |P| triangles and 12 • g - 12 + 6 • |P| prongs, where g =

genus(5); this is easily verified by an Euler-characteristic calculation.

Lemma: Top - Dimensional Cells of #(8). Suppose II c 11(8) is realizable,

and has exactly one prong located at each puncture. Then divn(c(8, II)) = 6 • g + 2 ■

\P\ — 7. Moreover, c°(8, II) is an open subset of &&■.

Proof. Note first that |II| = |P|; thus, |I1(8) - IT| = 12 • g - 12 + 5 • \P\.
Note next that every arc w e 77(8) is adjacent to at least one prong of 11(8) - II:

for h has an end adjacent to two distinct prongs located at the same puncture, one

of which is not in II, by hypothesis. Thus, |77(8) - 77(8, Il)| = 6 ■ g - 6 + 3 • |P|.
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Also, every triangle T contains at most one prong of IT: for otherwise, T would

have a side w such that both prongs on one side of w are in II; the arc condition on

II implies then that each prong adjacent to w is in IT, and as in the previous

paragraph, it follows that two prongs located at the same puncture are in II, a

contradiction. Thus, w3(8, II) = w2(S, n) = 0, nx(8, U) = \P\, and w0(S, U) = 4 ■ g

-4 + \P\.
Finally, we show that II is nonorientable. Given p g P, since |I1 n 11(8, p)\ = 1,

then the complementary component C of t(8, II) containing p is a once punctured

disc with one cusp on the boundary. Since there are an odd number of cusps on 3C,

there is no way to assign compatible orientations to the branches composing 3C, and

so t(S, II) is nonorientable.

So by formula (**)

dim(/(8, II)) = {6 • g - 6 + 3 • |P|} + {12 • g - 12 + 5 • \P\)

-3-{|P| + 4-g-4 + |P|}-l

= 6-g-7 + 2-|P|.

It remains to show that c°(8, n) is open in 0>!W, when II has exactly one prong

located at each puncture (if II is not realizable, then c°(8, II) = 0, so it is certainly

open). Note that for any 77 G n(8),

{/>(Jf)|77G fl{8,&)} = {/?(L(ft))|ftG W(8) satisfies 77 equality}

is a closed subset of &&. So if n is an arbitrary subset of n(8), then the set

^ = Uw6lI(S)_n{/'(^r)|77 g n(8, J^)} is closed, being a finite union of closed

sets; the complement Ac = 3P&- A of this set is therefore open. When n has

exactly one prong at each puncture, we shall identify Ac with c°(8, II), which is

therefore open in ^J^. Note that

a<=     fl     {M^)|77*n(s,^)}
7ren(S)-II

= {/?(JO I for each 77 G 11(8) - n, 77 <£ 11(8, &)}.

Note, however, that each n(8, J*") must contain at least one prong in 11(8, p), for

each p g P; but if p(&) g Ac, then all prongs in n(8, p) but one are excluded,

and that one is the unique prong of 11(8,p) n II. Thus, Ac - {p(!F)\fox each

77 g n(8) - n, 77 e n(8, &); and for each 77 G IT, 77 G 11(8, J*")} = r°(fi, n).

Q.E.D.
It is not hard to use (**) to show that the only way that dim(«°(8, II)) can be

6-g-7 + 2-|P|isin one of the two following situations:

(i) II is realizable and |n n 11(8, p)\ = 1 for each peP; or,

(ii) n is realizable and orientable, |II n 11(8, p)\ = 2 for some />£?, and

|n O n(S, p')\ = 1 for all p' * p<aP.

In other words, although adding additional prongs might decrease the number of

switches in the associated train track, it would in addition decrease the number of

branches by at least the same amount, resulting in a net decrease in dimension. As
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we have seen, case (ii) is in fact what happens on a once punctured torus: the top-

dimensional cells have two prongs at the puncture (in fact, for the once-punctured

torus, the hypotheses of the above lemma are vacuous). However, if (5, P) is not a

once-punctured torus, no II c 11(8) can satisfy (ii) above. To see why, suppose that

n satisfies everything except possibly the orientability requirement. If |P| > 2, then

there will exist some p' g P for which |n n 11(8, p')\ = 1, and t(8, II) will have a

complementary region with one boundary cusp, containing p. And if \P\ = 1, then

g > 2, and there will be at least one triangle T of 8 such that 11(7) n P = 0; then

t(8, II) will contain a complementary region, located in T, which has three boundary

cusps. In either case, t(8, II) is nonorientable. Thus, if (5, P) is not a once-punc-

tured torus, and 8 is an ideal triangulation of (S, P), then any realizable II c 11(8)

which does not satisfy the hypotheses of Top-Dimensional Cells of ^(8) represents

a cell of dimension strictly less than 6-g-7 + 2-|P|.

As the title of the above lemma suggests, it is, in fact, true that every top-dimen-

sional cell of ^(8) (i.e. one which is not a face of a higher-dimensional cell) has

dimension 6 • g — 7 + 2 • |P|, though to show this directly would require verifying

realizability for lots of subsets II c 11(8) having exactly one prong at each p g P, a

difficult task to perform in general. However, we can actually prove a lot more:

Theorem. ^3^ is a compact manifold of dimension 6 • g + 2 • |P| — 7.

Proof. The proof given here is by no means as slick as the "classical" proof using

arbitrary train tracks. In the classical proof, one "pinches" complementary compo-

nents of a nonmaximal train track so as to make it maximal (see [T] or [HP]). The

same idea underlies the proof we give, but the category of ideal triangulations and

elementary moves is somewhat more "rigid" than the category of train tracks and

splittings, and we have to do some rather complicated combinatorial analysis. This

combinatorial analysis is not without interest in its own right, however: there is an

interesting counting argument which is closely analogous to the counting argument

used to prove the Connectivity Property for Elementary Moves.

We shall assume that (5, P) is not a once-punctured torus. To prove the theorem,

for each p( 3?) G 0>3?, we shall show that there exists an ideal triangulation 8 such

that n(8, J*") has exactly one prong at each puncture. It follows from the lemma

Top-Dimensional Cells of ^(8) that p(3^) is contained in the open set

c°(8. If (8, 3*)) of @3*, which has the correct dimension, proving the theorem.

The idea is as follows: start from an arbitrary ideal triangulation 8. In general,

If (8, 3^) will have more than one prong at each puncture; what is worse, there may

even be case 2 or (horrors!) case 3 triangles of 8, with respect to &■. To get rid of

these, we will perform elementary moves on 8, resulting in new ideal triangulations

which have fewer and fewer bad triangles, and fewer and fewer prongs in the prong

set of 3*. In order to find the correct sequence of elementary moves, we will have to

make a precise combinatorial analysis of how the prong set can change under an

elementary move.

To begin with, note the following fact, which is a trivial consequence of the

Coordinate Change Theorem for Elementary Moves.
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Removing Case 3 Triangles

Figure 32

Lemma. Let 8 -> 8' be an elementary move supported on a quadrilateral Q of 8.

Then for each it g 11(8) n II(S') = 11(8) - If(Q) and each p(3?) g 0>3*, tt g
If(8, 3?) if and only if <rre If(8',3?).

We shall use this fact repeatedly without mention in what follows.

Now we show how to get rid of all case 3 triangles:

Lemma: Removing case 3 Triangles. Suppose 8 -> 8' is an elementary move

performed on h G 77(8), supported on the quadrilateral Q of 8. Let Tw, TE be the

triangles of 8 in Q, and TN, Ts be the triangles of 8' in Q, as in the proof of the

Coordinate Change Theorem for Elementary Moves. Given p(3?) G <?3?, suppose TE

is a case 2 triangle and Tw is a case 3 triangle with respect to 3?. Then TN and Ts are

case 2 triangles with respect to 3?.

The proof is an elementary consequence of the Coordinate Change Theorem for

Elementary Moves. The reader may fill in the details, consulting Figure 32. In the

diagram, we also show how the train tracks t(8, 11(8, &)) and t(8', 11(8', 3^)) are

related; in fact, they are isotopic.

As a consequence of this lemma: if 8 has any case 3 triangles with respect to 3*,

then by connectivity there must be at least one such triangle T adjacent to a triangle

7" that is not case 3, and the arc condition on 11(8, 3?) guarantees that 7" is a case

2 triangle; if 8 -> 8' is performed on the common arc of T and T', the above lemma

guarantees that 8' has one fewer case 3 triangle that 8. Iterating this process, we see

that for any J^g &&, there exists a 8 having no case 3 triangles with respect to 3?.

For our next trick:

Lemma: Removing case 2 Triangles. Assume the same notation as in the previous

lemma. Given p(3*) G &&, if 7W and TE are case 2 triangles with respect to 3?, and

if the prongs of 11(8, 3?) n n(Tw) and of 11(8, &) n n(TE) are all adjacent to h,

then TN, Ts are case 1 triangles.



TILING THE PROJECTIVE FOLIATION SPACE 61

Removing Case 2 triangles

Figure 33

Again we only indicate the proof with Figure 33. Note that in this case,

t(8', n(8', &)) is obtained by "pinching" t(8, 11(8, &)); classically, these "pinch-

ing" operations were what Thurston used to prove that &3* was a manifold. In

most cases, this operation will increase the dimension of the corresponding cell in

^J^; the only exception is when t(8, 11(8, 3?)) is orientable and t(8', 11(8', J5")) is

nonorientable.

To apply this lemma: suppose 8 has no case 3 triangles with respect to 3?, but

there is a case 2 triangle T0 with respect to 8. Let w be the unique arc adjacent to T0

such that both prongs of n(8, 3F) n Il(70) are adjacent to h. By the arc condition,

all prongs adjacent to w are in If (8, 3^). This shows that h is removable, bounding

another triangle Tx of 8, and that the two prongs of 11(7!) adjacent to w are in

If(8,3?). By hypothesis, Tx cannot be case 3, so it is case 2. The above lemma now

applies to the elementary move 8 ^> 8' performed on h, and it follows that 8' has

two fewer case 2 triangles than 8 (note that in general, if there are no case 3 triangle,

there are an even number of case 2 triangles). Iterating this process, we arrive at an

ideal triangulation having only case 0 and 1 triangles with respect to J*\

To reduce the number of case 1 triangles, we use another combinatorial fact about

elementary moves, similar in form to those above. To state it, we set up some

notation. Let 8 -» 8' be an elementary move performed on h G 77(8) supported on

Q, and let 7W, 7E be the triangles of 8 in Q as above, and 7N, 7S the triangles of 8'

in Q as above. We need some notation for the prongs of 8 and of 8' in Q. This

notation follows the "compass points" conventions established in the Coordinate

Change Theorem; it is given in Figure 34. In general, if A denotes a compass point,

then 77^ is the unique prong of 8 in Q located at vA (when this makes sense); and if

A, B denote nonantipodal, distinct compass points, then ttab is the unique prong

located at vA which is in n(7B) (again, when this makes sense). Similar conventions

hold for the prongs 77^ and tt'ab of 8'.
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Labellings of prongs in an elementary move

Figure 34

Removing Case 1 triangles

Figure 35

Lemma: Removing case 1 Triangles. Given p(3*)& 0>3*, suppose 7W and 7E

are both case 1 triangles with respect to 3^, and assume that 77NW, 77NE g 11(8, 3*).

Then 7N is a case 1 triangle with tt'^ g 11(8', 3^), and 7S is a case O-triangle.

The proof is indicated in Figure 35. Note once again that tt(8',H(8',3^)) is

obtained by pinching t(8, n(8, 3?)).

Unfortunately, it is not at all clear how to apply this to remove all but one case 1

triangle for each puncture, for it may well happen that If (8, 3?) n If (8, p) consists

of several, nonsuccessive prongs. Thus, we must do an intermediate sequence of

elementary moves to force nonsuccessive prongs closer together. This will be

accomplished with the aid of a further result on elementary moves, paralleling the

results above. Again, we assume that 8 ^> 8' is an elementary move, with all

triangles and prongs involved in the action labelled as above.

Lemma: Altering case 1 Triangles. Given p(3^) g 0>3*, suppose that 7W is a

case 1 triangle with respect to 3?, with 77NW g II(7W, 3?); suppose also that 7E is
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Altering Case 1 Triangles

Figure 36

either case 0 or 1 with respect to 3?, but that ttne £ II(7E, J5"). Then the following

properties hold:

(i) 7N is a case 1 triangle, with 77 ̂ e II(7N; J5");

(ii) 7S is case 0 or 1, according to whether TE is case Oorf (resp.);

(hi) 77ES G n(7s, 3*) if and only if tte g II(7e, 3F);

(iv) 77^ G n(7s, <F) if and only if ttse G n(7E, JT).

Again, this is a direct consequence of the Coordinate Change Theorem for

Elementary Moves. We indicate in Figure 36 the three possible cases that can arise:

7E is case 0; 7E is case 1 with tte g If(TE,3?); and 7E is case 1 with 77SE g

I1(7E, &).

It is still not apparent how to apply this to reduce the number of case 1 triangles.

We need a dynamic picture of how prongs can "move" under a sequence of

elementary moves.

First we introduce some new terminology. Let 8 -* 8' be an elementary move

performed on an arc w g 77(8), let e g E(8, p) be an end of w, let e_ be the

predecessor of e in 11(8, p), and let e+ be the successor of e in E(8, p). Note that

77_= (e_,e) and 77 + = (e,e + ) are both in the set If(8, p), and 77' = (e_,e+) is in

the set If(8', p). We shall say that 77_ and 77 + coalesce into 77' under the elementary
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move 8 -* 8', and that 77' is a coalescence of 77_ and of 77+. We shall also say that

77' splits into 77_ and 77 + under the elementary move 8' ^> 8.

Utilizing the same notation as above, note that 77ES g 11(8') is uniquely char-

acterized by the property that it is not in II (7N), and that it coalesces into

77E g 11(8) - I1(7W) under the inverse elementary move 8' ^> 8. Similarly, 77s g

11(8') is uniquely characterized by the property that it is not in II(7N), and that

77SE Gn(8) — n(7N) coalesces into 77s under the elementary move 8 -> 8'. These

remarks motivate the following definitions:

Given an ideal triangulation 8 and 77* g 11(8), let 7* be the triangle of 8 such

that 77* g n(7*), and let II*(S,77*) = [11(8) - 11(7*)] U {77*}; thus, we throw

away the other two prongs of 7* to obtain n*(S, 77*) from 11(8). Now suppose

8 -» 8' is an elementary move performed on an arc w g 77(8) incident to 77*; let Q

be the support of 8 -> 8', let 77'* g 11(8') be the coalescence of 77* under 8 -» 8',

and let 7'* be the triangle of 8' such that 77'* g 11(7'*). We define a map pf:

n*(S,77*) -> n*(S',77'*), called the prong flow, as follows: given 77 g Il*(3,77*),

pf(TT) g n*(8', 77'*) is uniquely defined by one of the following cases:

(i) if 77 g 11(7) where int(T) n Q = 0, then 77 = pf(ir);

(ii) Pf(TT*) = 77'*;

(iii) if 77 g n(7) where 7 + 7* and 7 c Q, then:

(a) if 77 and 77* are incident to the same end of w, then pf(tT) = pf(ir*) = 77'*;

(b) otherwise, pf(ir) e 11(7') where 7' # 7'* and 7' c Q, and either: pf(m) is

a coalescence to 77 under 8 -» 8'; or 77 is a coalescence of pf(Tr) under 8' ^> 8.

In case (hi)(b), notice that pf(ir) is a coalescence of 77 if and only if 77 and 77* are

incident to opposite ends of w (77* = 77NW and 77 = 77SE in Figure 36); and 77 is a

coalescence of pf(Tr) if and only if 77 corresponds to a corner opposite the arc h

(tt* = 77NW and 77 = 77E in Figure 36). Thus, pf is 1-1, with the single exception that

it maps two prongs to 77'* (i.e. 7>/(77NW) = pf(TTNE) = tt^ in Figure 36). Also, only

one prong of n*(8', 77'*) is left out of the image of pf (corresponding to 77^,5 in

Figure 36).

The critical property of the prong flow is expressed in the following lemma, which

is a direct consequence of the two lemmas Removing Case 1 Triangles and Altering

Case 1 Triangles.

Lemma: Naturality of the Prong Flow. Let 8 be an ideal triangulation,

tt* G n(S), 7* the triangle of 8 such that tt* g 11(7*). Given p(&)^@&,

suppose that 11(8, J^) n 11(7*) = {77*}. Let 8 -» 8' be an elementary move per-

formed on an arc adjacent to tt*. Then for each tt g Il*(8,77*): // 77 g 11(8, J5"),

then /?/(t7)g 11(8',^);   and when pf(ir) * pf(ti*),  if pf(ir) e 11(8', &),  then
TT G If(8,3?).

This says that the prong flow is natural with respect to prong sets of measured

foliations. This lemma is true as well if the hypothesis is weakened to say merely that

77* g n(8, 3?), as can easily be checked by a closer examination of the proof of the

two lemmas Removing Case 3 Triangles and Removing Case 2 Triangles.

We can now state a proposition which, together with Naturality of the Prong

Flow, implies that <P3* is a manifold.
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Proposition: Coalescing Nonsuccessive Prongs. Let 8 be an ideal triangula-

tion, tt* g 11(8, p), 7* the triangle of 8 such that tt* g 11(7*). Then for any

tt G n*(3, 77*) n If(8, p), there exists a sequence of elementary moves 8 = 80 -* 8X

-* • • • -» 8„ such that 8, -» 8, + 1 is performed on an arc adjacent to pf'(Tr*), and

pf"(TT*) = pf"(TT), inthe setll(8n, p).

Before proving this proposition, let us use it to prove that 3P37 is a manifold.

Given p(3*)£ 93^, we can choose an ideal triangulation 8 such that 8 has only

case 0 and 1 triangles with respect to 3P. Choose p g P, and if \If(8,p)C\

11(8, 3F)\ > 1, choose tt*, tt <= 11(8, p) n 11(8, 3*) with 77* * 77. Now apply the

above proposition, and let 8 = 80 -* • • • -» 8n be the resulting sequence of elemen-

tary moves. From Naturality of the Prong Flow it follows that \If(8n,p)C\

If(8„, 3?)\ < \fI(8Q, p) n n(80, &)\, and that |II(8„, p') n If(8„, <F)| = |II(80, /)

n II(S0, 3?)\ for any p' + p g P. Iterating this process, eventually we arrive at an

ideal triangulation 8' such that \U(8',3^) n If(8',p)\ = 1 for any p G P, and we

are done.

Now we turn to the proof of Coalescing Nonsuccessive Prongs. Suppose that 77*,

77 G n(8, p), tt* =£ 77. We define the positive circular interval between 77* and 77 to

be

7 + (t7*,77)= {77'g fl(8, p)r\ If* (8, tt*)\

(77 *, 77', 77) is positively oriented in n (8, p)),

and we define the positive circular distance from 77* to 77 to be d+(ir*, it) = 1 +

|7+(t7*, 77)|. Similarly, we define the negative circular interval between 77* and 77 to

be

7_(77*,77) = {77'G If(8, p)C\ If* (8, tt*)\

(77*, 77', 77) is negatively oriented in 11(8, p)},

and we define the negative circular distance from 77* to 77 to be d_(ir*, 77) = 1 +

|7_(77*,77)|. Thus, d+(TT*, tt) is computed by going around If(8, p) in the positive

direction from 77* to 77, skipping over any prong of 7*; similarly for d_(Tr*,Tr).

The reason for skipping over the prongs of 7 * in this peculiar manner is made clear

in the counting arguments that follow.

Note that for 77* ¥= tt g n(8, p), d+(ir*,TT) = 1 if and only if 77 is the successor

of 77* in If(8,p). For the only other possibility is that the successor of 77* is a

prong in 7*, implying that 7* is a puncture piece with interior puncture p; but that

means that |TT(S, />)| = 1, contradicting the hypothesis that 77* # 77 g If(8, p).

Thus, if we can perform a sequence of elementary moves so that, under the iterated

prong flow, two prongs located at p come within circular distance 1, then we are in

a position to coalesce the prongs with a single additional elementary move. For this

purpose, we now prove:

Lemma: Reducing Circular Distances. Given an ideal triangulation 8 and

tt* g n(8, p) n n(7*), let w*L, w*R g 77(8) be the arcs to the left and right of it*

(resp.), let tt*l be the prong in 11(7*) adjacent to w*L, and let tt*r be the prong in



66 LEE MOSHER

s^x  \^       /       x

xj/    \/
Reducing Circular Distances

Figure 37

n(7„) adjacent to h*R. Let tt g f\(8,p)C\fI*(8,m*) - {tt*} be given. If 8 ^ 8' is

performed on h*R, then:

(i) d+(Tr'*, pf(Tr)) = d+(TT*,Tr) - 1 if and only if (tt*,tt*l,tt) is not positively

oriented in 11(8, p); and

(ii) d+(Tr'*, pf(Tr)) = d+(~TT*, tt) if and only if (tt*, tt*l, tt) is positively oriented in

11(8, p).

Also, if 8 -> 8* is performed on h*h, then a similar conclusion holds replacing each

" + " with " —", replacing 77 *L with tt*r and replacing "positively oriented" with

"negatively oriented ".

Proof. We shall prove only the case where 8 -> 8' is performed on w*R. Figure

37 accompanies the proof. Thus, we are identifying 77* with 77NW and 77* with 77^,

in the earlier notation.

The proof goes as follows. First observe that the prong flow preserves circular

ordering, as long as it does not coalesce any two prongs in the ordered triple under

consideration.

Thus, 77E G I + (tt*,tt) if and only if pf(TTE) = ttes g 7+(7r'*, pf(tr)) (note that

pf(TT*) = 77'*).   Similarly,   77SE g 7+(77*, 77)   if   and   only   if   pf(irSE) = 77^ G

7 + (t7'*, pf(TT)). Also, for any prong t? g 11(8) - II(TW) - II(7E), 77 g 7+(t7*,77)

if and only if pf(Tf) = 77 G f(ir'*, pf(Tr)).

This accounts for all prongs in 7 + (77*, 77) with the exception of 77NE. This also

accounts for all prongs in 7+(77'*, pf("rr)), with one possible exception: if (77*, 77*L, 77)

is positively ordered in 11(8, p), then tt^s & I+(tt'*, pf(Ti)), showing that

d+(Tr'*, pf(Tr)) = d+(TT*,Tr). If (77*, 77*L, 77) is not positively ordered in If(8, p),

then there is no exception, because 77^,s £ I + (tt'*, 77/(77)); thus, d+(Tr'*, pf(Tr)) =

d+(TT*,TT)-f.     Q.E.D.

Thus, in order to reduce circular distances with a single elementary move, we wish

to be in a situation where the triple of prongs (77*, 77*L, 77) is not positively ordered

in If(8, p). There are several ways that this condition can occur. We shall consider

them case by case.

Case 0. If 7r*L <£ 11(8, p), then it is certainly true that (77*, 77*L, 77) is not

positively ordered in 11(8, p). Moreover, after performing an elementary move

8 -* 8' on w*R, it remains true that />/(t7*)l £ 11(8', p), since 77*L is a coalescence

of pf(TT*)L. Continuing inductively, we see that for any 77 G Il*(8,77*), setting
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w = d + (ir*, tt), there is a sequence of elementary moves 8 = 80 -* 8X -* • • • -* 8„_!

such that d+(pf'(TT*), pf'(Tr)) = n - i, for each /' = 1,...,«- 1. In fact, as long as

|n(S,, p)\ > 1, we can perform an elementary move on the arc to the right of

pf'(tr*), which reduces all positive circular distances in 11(8,,/)); since there is an

upper bound on the positive circular distances, this upper bound must decrease as i

increases. This cannot continue forever, which shows that for some i, \If(8t, p)\ = 1.

The case where 77*R <£ 11(8, p) is handled similarly. This proves Coalescing Non-

successive Prongs in the case where the three prongs 77*, 77*L, 77*R are not all

located at the same puncture.

Now suppose that 77*, 77*L, 77*R are all located at the same puncture p g P.

There are two cases to consider, depending on the ordering of the triple 77*, 77*L,

77*R.

Case 1. (77*, 77*R, 77*L) is positively ordered in If(8, p). It follows from the

properties of circularly ordered sets that for any 77 G II*(8,77*) n 11(8, p), either

(77*,77,77*L) is positively ordered, or(77*,77,77*R)is negatively ordered; we assume

the former. Thus, (77*, 77*L, 77) is not positively ordered in 11(8, p), and we can

apply Reducing Circular Distances to find an elementary move 8 -> 8' which

reduces the positive distance from 77* to 77. Moreover, it is easy to check that

(pf(ir*), pf(tT*)L, pf(Tr)) is still not positively ordered in U(8',p), using the fact

that 77*L is the coalescence of pf(ir*)L under the inverse elementary move 8' ^> 8.

Proceeding inductively, we can construct a sequence of elementary moves which

eventually coalesces 77* and 77, proving the proposition Coalescing Nonsuccessive

Prongs in this case.

Case 2. (tt*,tt*r,tt*l) is negatively ordered in 11(8, p). In this case, it happens

that there are prongs 77 g 11(8, p) n n*(8,77*) such that (77*, 77,77*L) is negatively

ordered, and (77*, 77,77*R) is positively ordered. In fact, such "inaccessible" prongs

are all contained in the positive circular interval from 77*L to 77*R, 7+(77*L, 77*R).

It is useful here to have a diagram of the triangulation. In such a diagram, we

represent E(8, p) as points on a circle, with counterclockwise ordering. An arc on

the circle between two successive points then represents a prong, and the circular

ordering of such arcs corresponds to the circular ordering on If(8,p). Furthermore,

we connect two points by a chord of the circle if the corresponding ends are the two

ends of an ideal arc of 8 (in the diagrams that follow, in order to be sufficiently

general, we shall not show all possible chords). It is possible that an end located at p

has its opposite end located at a different puncture, so not all points are connected

up to other points by chords.

In Figure 38 we show the chords representing the arcs of 8 adjacent to 7*, when

(77*, 77*L, 77*R) is positively ordered in 11(8, p); for evident reasons, we say that 7*

is a "twisted" triangle. A similar diagram shows that when (77*,77*L,77*R) is

negatively ordered, 7 * can be thought of as an " untwisted" triangle.

Now we define certain circular intervals of prongs in 11(8, p), when 7* is

twisted. Let 7+= 7+(t7*,t7*l), 7_= 7_(t7*,t7*r), 70 = 7+(t7*l,t7*r). These are

indicated in the diagram of a twisted triangle. Since (77*, 77*L, 77*R) is positively

ordered, it follows that 70 + 0, and that's our whole problem.
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A Twisted Triangle and an Untwisted Triangle

Figure 38

The diagram of an ideal triangulation of a punctured torus

Figure 39

Now we use the fact that (5, 7*) is not a punctured torus: we claim that 7+U I_

consists of at least three prongs. Suppose otherwise: since 77*, 77*L are not adjacent

and 77*, 77*R are not adjacent, it would follow that 7+ and I each consist of a

single prong, say 77 + and 77_. Now 77+, 77*L are successive prongs in If(8, p), and

77*R, 77_ are successive prongs. Since 77*L, 77*R are in a single triangle, namely 7*,

it follows that 77 + , 77_ are in a single triangle, say 7'. Where is the third prong 77' of

7'? Since 77*, 77+ are successive prongs, it follows that 77', 77*R are successive

prongs. And since 77_, 77* are successive, then 77*L, 77' are successive. Thus, 70

consists of the single prong 77'. But then it follows that the three sides of 7* are

identified in pairs with the three sides of 7', so 7 U 7' = 5 by connectivity, and a

simple Euler-characteristic argument shows that 5 is a torus, whose unique puncture

is p, again by connectivity. The complete diagram for this ideal triangulation of a

punctured torus is given in Figure 39 with all prongs labelled as in this argument.

We shall now suppose, without loss of generality, that 7+ consists of at least two

successive prongs. Let 77* = (eQ, ex), and 77*L = (e2, e3). Let E+ denote the positive

circular interval in E(8, p) from ex to e2, noninclusive; thus, e g 7s+ if and only if

there are successive prongs in 7+ each adjacent to e. Since 7+ contains successive

prongs, it follows that E+=?= 0. Let E   and E0 be similarly defined.

Case 2a. Suppose there is an arc w G 77(8) connecting two ends in E+. Figure 40

is the triangulation diagram for this situation.
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h connects two ends in E +

Figure 40

Xo
/—«-o

Iq consists of a single prong

Figure 41

From the proposition Reducing Circular Distances, it follows that there is a

sequence of elementary moves 8 = 80 ^> ■ ■ ■ -» 8n such that 8, -* 8,+1 is performed

on the arc to the right of pf'(TT*), h*L is the arc to the left of pf"(tr*), and w is the

arc to the right of pf(ir*). Thus, the triangle containing pf"(ir*) is untwisted, and

we are reduced to case 1.

Case 2b. Suppose there is an arc w connecting an end of E+ to some end not in

£+U E . If the opposite end of h is not located at p, then using the same argument

as above, the sequence of elementary moves 8 = 80 ^> • • ■ -» 8n terminates in an

ideal triangulation 8„ such that pf(ir*) is adjacent to the arc w, which has its

opposite end at a different puncture. Thus, pf "(tt*)l £ If (8, p), and we are

reduced to case 0.

If the opposite end of w is located in E0, then the sequence of elementary moves

8 = 80 -» • • • -» 8„ terminates in an ideal triangulation 8n such that pf "(it*) is still

located in a twisted triangle, but the number of inaccessible prongs has been

reduced. By induction, we are reduced to the following case:

Case 2c. Suppose that 70 consists of a single prong, say 70 = {t70}. Let 70 be the

triangle with prong 770. Since 770 is adjacent to n*L and to w*R, it follows that 70 has

its two other prongs in 7+ and I_, both adjacent to 77*. Figure 41 is the

triangulation diagram.
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As we saw above, since (S, P) is not a punctured torus, there exists at least one

other prong in 7+U /_, say, 77. Let 7 be the triangle with 77 g 11(7). Since 7^7*

and 7 # 70, then the three prongs of 7 are distributed among the three sets I+, I_,

and n(8) — 11(8, p). By the pigeonhole principle, one of the following must

happen: 7 has a prong in 11(8) - 11(8, p); 7 has two prongs in 7+; or 7 has two

prongs in I_. The first possibility reduces to case 0; the latter two reduce to case 2a.

Q.E.D.
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