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INFINITESIMALLY RIGID POLYHEDRA. II:
MODIFIED SPHERICAL FRAMEWORKS

WALTER WHITELEY

ABSTRACT. In the first paper, Alexandrov's Theorem was studied, and ex-

tended, to show that convex polyhedra form statically rigid frameworks in

space, when built with plane-rigid faces. This second paper studies two modifi-

cations of these polyhedral frameworks: (i) block polyhedral frameworks, with

some discs as open holes, other discs as space-rigid blocks, and the remaining

faces plane-rigid; and (ii) extended polyhedral frameworks, with individually

added bars (shafts) and selected edges removed. Inductive methods are de-

veloped to show the static rigidity of particular patterns of holes and blocks

and of extensions, in general realizations of the polyhedron. The methods are

based on proof techniques for Steinitz's Theorem, and a related coordinatiza-

tion of the proper realizations of a 3-connected spherical polyhedron. Sample

results show that: (a) a single fc-gonal block and a fc-gonal hole yield static

rigidity if and only if the block and hole are fc-connected in a vertex sense; and

(b) a 4-connected triangulated sphere, with one added bar, is a statically rigid

circuit (removing any one bar leaves a minimal statically rigid framework).

The results are also interpreted as a description of which dihedral angles in a

triangulated sphere will flex when one bar is removed.

1. Introduction. In our first paper [25] (hereafter referred to as I), we ex-

tended Cauchy's original theorem on the rigidity of triangulated convex polyhedra

into an analysis of the infinitesimal (or equivalently, the static rigidity) of general

convex polyhedra built with joints at the vertices, bars along the edges, and bars

triangulating the faces. This analysis showed that plane-rigid faces fit together to

give space-rigid structures, and was extended to cover tensegrity frameworks, and

even d-dimensional polytopes. The results applied to built structures such as the

standard geodesic domes, as well as less standard space frames such as polyhedra

with cabled faces [12].

In this second paper, we build on Steinitz's Theorem (the realizability of 3-

connected planar graphs as convex polyhedra), to analyze modified polyhedral

frameworks, in which certain discs become open holes (no bars), other discs are

blocked (a space-rigid framework) and the remaining faces are triangulated (a plane-

rigid framework). As a basic theorem, illustrating the methods developed, we show
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that a 3-connected spherical polyhedron, with one fc-gonal hole and one fc-gonal

block, is statically rigid in general realizations if and only if the hole and the block

are ¿-connected in a vertex sense. In this simple form the result applies to trian-

gulated cylinders, with two holes, which are to be rigidified by fastening one end

to the ground [20]. The methods developed for block polyhedral frameworks also

apply to general geodesic domes which have been grounded (a block) and then had

bars removed for windows and doors.

The same theorem answers a question of Kuiper [14 Remark 9]: when a single

bar is omitted from a triangulated sphere—which dihedral angles begin to flex? The

theorem translates to say: the removed bar makes a dihedral angle flex, in general

realizations, if and only if the quadrilateral hole is 4-connected to the quadrilateral

of the angle. In particular, as suggested by Kuiper, in a 4-connected sphere the

omission of one bar makes all dihedral angles flex.

In §5, we switch perspective away from the discs of faces, and add extra bars

to a spherical polyhedron built with triangulated faces—the extended polyhedral

frameworks. In particular we show that any 4-connected triangulated sphere, with

one added edge between nonadjacent vertices, forms a statically rigid circuit in

general realizations. A statically rigid circuit is a framework for which the omission

of any one bar leaves a minimal statically rigid spatial framework. In practical

terms it is optimally over-braced, since the failure of any one member will not

cause a collapse. Such circuits also play a central role as minimal statically rigid

tensegrity frameworks [17]. Thus a 4-connected sphere, with an added shaft, can

be built with each member replaced by either a cable (a pure tension member) or

a strut (a pure compression member).

To obtain these rigidity results, we must explore some basic facts about 3-

connected spherical polyhedra. In particular, we build on several inductive tech-

niques based on the proof of Steinitz's Theorem:

(i) Given an abstract 3-connected spherical polyhedron, and a proper subnet (a

smaller polyhedron with some of the vertices, with paths as edges, and the induced

faces), there is a construction sequence PX,P2,..., Pn = P in which P¿+i comes

from Pi by a single step of edge splitting, face splitting, or inserting a 3-valent

vertex over a triangle [Theorem 2.1].

(ii) Given an abstract 3-connected spherical polyhedron, the faces and vertices

form a Steinitz list, in which each vertex (face) appears at a point where it is

incident with 3 or less faces (vertices) in the list [4, 16].

The construction sequence is first used to show that the polyhedron P has a

proper realization (no extra collinearity of vertices and faces) near any proper re-

alization of the proper subnet (a variant of Steinitz's Theorem). The Steinitz list

is used in this induction to realize face splits. This list is also used to generate a

coordinate system for the proper realizations, in which the statically rigid block

polyhedral frameworks form an open dense subset. These two results are combined

with inductive techniques for spatial frameworks to show:

THEOREM 3.14. If an abstract block and hole polyhedron contains a proper sub-

net (containing all the blocks and holes) which has a statically rigid block polyhedral

framework in some realization, then almost all realizations of the final polyhedron

as block polyhedral frameworks are statically rigid.
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The analysis of block polyhedral frameworks now reduces to finding appropriate

proper subnets which can easily be built as statically rigid frameworks, and can be

shown to exist from simple connectivity assumptions about the polyhedron. For

this we use Dirac's extension of Menger's Theorem [8, 18], which translates vertex

connectivity into the existence of specified vertex-disjoint paths. The increasing

complexity of such arguments is the only limit to the structures which we can

analyze.

We need these special techniques for frameworks built around spherical poly-

hedra because the general problem of characterizing the graphs of statically rigid

frameworks in space is unsolved [10, 21, 22]. The modified polyhedral frameworks

studied here represent an initial effort to fill the gap between the well-understood

triangulated spheres and the difficult general frameworks.

ACKNOWLEDGEMENTS. This work grows on the ground prepared by joint work

in the Structural Topology Research Group at the University of Montréal, involv-

ing, in particular, Janos Baracs and Henry Crapo. Many of the seed questions

about polyhedral frameworks were planted by Branko Grünbaum [12] and Robert

Connelly [5, 6], and Robert Connelly has provided stimulation throughout the years

during which these results have matured.

2. Polyhedral inductions. As we mentioned in the Introduction, we will

inductively build up the final polyhedron, with designated discs, from a selected

initial polyhedron. The steps we choose are restricted by the requirement that (i)

each intermediate polyhedron must be realized nearby as a proper spatial polyhe-

dron, and (ii) each intermediate structure must be statically rigid in this realization.

On the other hand, the steps must be sufficient to reach the desired class of final

polyhedra.

A number of the methods are refinements of Steinitz's Theorem, and of some

inductive methods developed for its proof.

THEOREM (STEINITZ [4, 11, 16, 19]). A graph can be realized as the edge

skeleton of a convex spherical polyhedron if and only if it is a 3-connected planar

graph.

2.1. Abstract polyhedra and subnets. We begin with a precise description of the

graphs involved. Our attention will be focussed on spherical polyhedra which can

be statically rigid. Accordingly we begin with planar graphs.

DEFINITION 2.1. A 3-connected planar graph G = (V, E) is a finite set of vertices

V and edges E (unordered pairs of distinct vertices) such that

(i) the graph can be drawn with points in the plane, simple smooth curves for

edges, and no edges crossing (i.e. it is planar);

(ii) if any two vertices (and their adjacent edges) are deleted, the graph remains

connected: for any other two vertices there is a path of edges (ux,vx), (vx,v2),...,

(vn,u2) in the remaining graph (i.e. it is 3-connected in a vertex sense).

Any planar drawing of a planar graph defines a set of faces: deleting the points

and curves leaves topological discs (faces) each bounded by a cycle of vertices and

edges (the face polygon) vxv2- ■ -vnvx as well as the exterior unbounded region

which also forms a face. If the graph is 3-connected, this face structure is unique

[30, 31]. (In fact a face is then any simple cycle of vertices and edges whose removal

does not disconnect the edges of the graph.)
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Figure 2.1

DEFINITION 2.2. An abstract 3-connected spherical polyhedron (V, F; I) (or poly-

hedron for short) is the set of vertices and faces of a 3-connected planar graph, such

that (vi,fj) G I if and only if vertex <j¿ is in the cycle of face fj.

REMARK. This is equivalent to other standard definitions of a 3-connected

spherical polyhedron. In particular it includes the usual properties of an abstract

polyhedron [26]:

(i) The faces /, in F incident with a vertex j in V form a cycle of distinct faces

f},f2,...,r3(s>3).
(ii) The vertices Vj in V incident with a face i in F form a cycle of distinct

vertices v\, v2,..., v\ (t > 3).

(iii) An edge is an adjacent pair of vertices in some face cycle. Each pair of

vertices Vj, Vk adjacent in a cycle for fh are adjacent in exactly one other face /',

and this pair of faces is adjacent in the two cycles of these vertices.

The fact that an abstract polyhedron is spherical can also be given by means of

the Euler characteristic: X = v — e + f (where v, e, and f represent the size of V, E,

and F respectively). For a general connected abstract polyhedron (a set of vertices

and faces with the required cycle structure), X = 2 is equivalent to the topological

fact that the polyhedron is spherical.

In Chapter 3 we will select certain special pieces of this polyhedron to be open

holes, others to be space-rigid blocks, and the remaining faces will be triangulated

plane polygons. We need some additional vocabulary for these special regions.

Each simple polygon (cycle of distinct vertices and edges) separates the spherical

polyhedron into two components which are discs. A simple disc is such a component

containing no vertices, and the edges of this polygon are boundary edges. Two simple

discs are disjoint if they share at most one edge (a boundary edge) and no faces.

DEFINITION 2.3. A bounded 3-connected spherical polyhedron (or bounded poly-

hedron for short) is a 3-connected spherical polyhedron with a set D of simple,

pairwise-disjoint discs.
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The disc set is the set of vertices, edges and faces in the discs, and the boundary

edges of the polyhedron are the boundary edges of the discs. The vertices, edges

and faces not in the disc set are regular.

In Figure 2.1 A, we show some bounded polyhedra, with the discs shown blank,

and the regular faces shaded. In each case the enclosing polygon is a disc of D,

the boundary edges are heavy, and edges interior to any disc are shown as dotted

lines. In the inductions we will use substructures of the polyhedron, whose edges

are paths of edges in P (Figure 2.1 B).

DEFINITION 2.4. A simple polygonal path in a polyhedron P is a sequence of

distinct vertices vxv2 ■ ■■ v„ such that t>¿, V{+x is an edge of P for all i. This is called

a path for short and v2,... ,vn-X are interior vertices of the path, while vx,vn are

the terminal vertices.

Two paths are disjoint if any common vertices are terminal in each path.

DEFINITION 2.5. A subnet P' of a polyhedron P is a set E' of pairwise disjoint

paths in P, a set V of all terminal vertices of these paths, making the graph (V, E')

at least 2-connected with no multiple edges, and a set F' of faces cut from P by

the paths E'.
A path vertex of P' is an interior vertex of a path e' in E'.

A skeletal vertex is a 2-valent vertex of P7

A natural vertex is a vertex of P' which is 3 or more valent.

A natura/ edge is a pair of natural vertices s,t joined by a path in P': s =

»1,«a,..., vn = t, where Vi are skeletal vertices, 1 < i < n.

DEFINITION 2.6. A proper subnet P' of a bounded polyhedron (P, D) is a subnet

P1 such that:

(i) P1 contains all vertices, edges, and faces of the disc set D;

(ii) the natural vertices and edges of P' form a 3-connected planar graph.

THEOREM 2.1. Given any bounded polyhedron (P,D) and proper subnet P',

there is a sequence of proper subnets P' = Pj = Px, P2,..., Pn = P such that Pi+X

comes from Pi by
Step (a) replacing a path in Pi of one regular edge in P by a longer path in

G joining the same terminal vertices, pairwise disjoint from the paths in Pi (edge

stretching);

Step (b) dividing a path in Pi into two paths at a path vertex, which becomes a

new skeletal vertex of P¿+i (edge splitting);

Step (c) inserting a new path across a regular face, disjoint from the paths in Pi,

such that the terminal vertices of the path are skeletal or natural vertices of Pi, and

they are separated by the remaining natural vertices of Pi (face splitting);

Step (d) inserting a 3-valent vertex attached to three vertices s, t, u, such that all

3 edges among s, t, u are boundary edges (pointing a boundary triangle).

PROOF. Each step of the construction increases the sum of the number of vertices

in Pi plus the number of edges of P in paths of Pt. If we have such a P, ^ P, we

will show how to find the next subnet P¿+i. Since the number of vertices and edges

in P is finite, the construction will then terminate with P.

If Pi has a path vertex v, we break the corresponding path at v and create Pt+1

with an additional skeletal vertex using Step (a). Since P¿+i has the same natural

vertices and edges, it clearly is a proper subnet containing the disc set.
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Figure 2.2

Assume that P, has no path vertices, but has a skeletal vertex r on the natural

edge u, v. Since P is 3-connected, there is a path in P joining r to some other

natural vertex w, which avoids u and v. Let s be the last vertex of this path which

is on uv, and let t be the next vertex of this path which is a vertex of P¿. The

path st is disjoint from the paths of P¿, so we can add this path as a face split

(Step (c)). Clearly this Pt+i contains all the disc set. The new graph of natural

vertices and natural edges is still 3-connected: any two vertices which disconnect

the graph would either create two components in P¿, which is impossible, or create

a component with only s, t, or both. A simple inspection shows that these sets have

sufficient connections to prevent this.

Assume that there are no path or skeletal vertices in P¿, but there is a vertex r

of P not in Pi. Since P is 3-connected, there are 3 vertex-disjoint paths from r to

Pi, ending in vertices s, t, u. If s, t, u, is a triangle of boundary edges, then we point

this boundary triangle, using Step (d). Otherwise some pair s, t is not a boundary

edge, and we add s, r, t as a path (new edge) splitting a face by Step (c) to create

Pj+i. In either case, Pl+X contains the disc set, and has the same natural vertices,

as well as more natural edges. Therefore it is the required proper subnet.

Finally, if all vertices of P are present in P¿, and an edge is missing, we add this

edge as a face split, to create an appropriate Pî+i.    D

REMARK 1. If we insist that all paths chosen, including those in P' which are

not in the disc set, are maximal in terms of the number of path vertices, then the

edge stretching of Step (a) would be unnecessary, following the pattern of Barnette

and Grünbaum [4]. However, it will be convenient to choose P, without this extra

concern.

REMARK 2. While Steps (a) and (b) do not change the faces of P,, Step (c)

clearly splits a regular face into 2 regular faces, and Step (d) breaks a regular

triangle into three regular triangles. In the entire construction, the disc set of

vertices, edges and faces is never changed.

For later reference we call the sequence created in this theorem a construction

sequence for P from P'. Figure 2.2 gives the construction sequence for a polyhe-

dron (D) from the proper subnet (A), illustrating Steps (b), (c), and (d) in the

corresponding parts of the figure. The natural vertices and edges of any Pt form a

bounded polyhedron. When we add the skeletal vertices of P¿ this gives an abstract

refined spherical polyhedron. These differ from the original polyhedra because we

allow skeletal vertices which have a cycle of only 2 faces. As a shorthand notation

we will also call this refined polyhedron P,.
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2.2. Proper realizations. Having constructed a sequence of abstract refined poly-

hedra, we want to construct a sequence of spatial polyhedra with all faces plane,

and no unnecessary collinearity of faces or vertices.

DEFINITION 2.5. A proper realization of an abstract spherical polyhedron is an

assignment of planes to the faces and points to the vertices such that

(i) if fi is incident to the vertex ut, then the plane contains the corresponding

point;

(ii) no three vertices of a face are collinear;

(iii) no three faces at a vertex are collinear.

Note that this implies no adjacent faces are coplanar.

A proper realization of a refined abstract spherical polyhedron is a proper real-

ization of the natural polyhedron, with skeletal vertices on the lines of their natural

edges, chosen so that three vertices of a face are collinear only if they share a natural

edge.

The inductive construction of the proper realizations is based on a second tech-

nique of Steinitz. We give the classical result without proof [4, 16, 19].

THEOREM 2.2 (STEINITZ). All vertices and faces of an abstract 3-connected

spherical polyhedron can be arranged in a sequence, beginning with any chosen edge,

fo, fi,vo,vi, ■ ■ ■, fi, ■ ■ ■ ,vj, ■ ■ ■ such that each vertex and face is incident with at

most 3 previous elements in the list.

It is a simple matter to extend this list to include the skeletal vertices of a refined

polyhedron by adding them to the end of the list.

COROLLARY 2.3. All vertices and faces of an abstract refined 3-connected

spherical polyhedron can be arranged in a sequence, beginning with any chosen nat-

ural edge fo, /i, fo, vx,..., /¿,..., v3,... such that each vertex and face is incident

with at most 3 previous elements in the list, and all skeletal vertices are placed at

the high end.

We call this list a Steinitz list for the polyhedron. We now have a variant of

Steinitz's Theorem.

THEOREM 2.4. Given a construction sequence P' = Pi,...,Pn = P ¡or an

abstract spherical polyhedron P, such that P' has a proper realization then each

refined abstract spherical polyhedron Pi has a proper realization.

PROOF. We will construct the desired realizations by induction. We assume

that Pi has a proper realization, and construct P¿+1 for each of the possible steps.

Step (a). This causes no change in the vertices or faces of P¿, so we have the

required realization.

Step (b). For the new skeletal vertex we choose a general point on the line

segment of the original edge. This clearly gives a proper realization of Pt+i.

Step (c). Since Pt+i is an abstract refined 3-connected spherical polyhedron, we

arrange the faces and vertices in a sequence beginning with the new natural edge

to be added. This edge will split a face of P, into 2 faces. We place one of the new

faces as the same plane as the original in P,, and turn the second plane slightly

through the points of the common vertices in the realization P,. We now move

up the sequence, choosing planes and points as permitted by the maximum of 3
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incidences. When there are fewer than 3 incidences, we keep the choice close to the

assignment in P,. In the end we obtain a realization of P¿+i which is as close as we

want to that for P¿. Since the points and planes were distinct in the realization of

Pi, they are still distinct in the new realization, and it is proper.

Step (d). The polyhedron P¿ is realized with a noncollinear triangle s, t, u. If we

place r off all face planes, we obtain a proper realization of Pi+i.    D

REMARK. For our later work on statics we note that in the face splitting of

Step (c) the points in the new realization of P¿+i (i.e. a point in R3v) can be made

arbitrarily close to the points chosen for P¿.

2.3 Connectivity and paths. We also need a basic correspondence between con-

nectivity of a graph, expressed in terms of separation by removing vertices (cut

sets) and connectivity expressed in terms of vertex disjoint paths (flows). The fol-

lowing result is a variant of the Ford-Fulkerson max. flow = min. cut theorem, but

it was first given, independently, by Dirac.

THEOREM 2.5 (DIRAC [8, 18]). Given a graph G and two sets of vertices

A = {ax,..., ajt} and B = {bi,...,bm} such that no vertex of A can be separated

from a vertex of B by a set of fewer than n vertices, then there exist n paths in G

such that

(i) Ci of the paths start at ai,

(ii) di of the paths end at bj,

(iii) the paths are disjoint except at terminal vertices,

provided cx H-h Ck = dx H-\-dm =n.

We illustrate the use of this theorem with the simplest result on proper subnets.

THEOREM 2.6 (STEINITZ [4]). Every abstract 3-connected spherical polyhe-

dron contains a tetrahedral subnet (a subnet of 4 vertices and 6 paths joining all

pairs).

PROOF. Take any face cycle rx ■ ■ ■ r„ and any vertex s not on this face. By

the 3-connectivity, and Dirac's Theorem, there are 3 vertex-disjoint paths from a

to this polygon. If tx,t2, and Í3 are the first polygon-points on these paths, then

the polygon, as a triangle ii,... ,Í2,... ,t3)... ,ti and the three paths s,...,tx,

s,...,¿2, and 3,..., Í3 form a tetrahedral subnet with vertices s, tx, t2, ¿3-    D

The tetrahedron has proper, convex realizations. If we apply Theorem 2.4 to

an arbitrary abstract 3-connected spherical polyhedron, starting with such a real-

ization of the tetrahedral subnet, we have one of the standard proofs of Steinitz's

Theorem [4]. We simply take care to bend the faces of Step (c) to preserve the

convexity.

3. Statics of polyhedral frameworks.

3.1 Statics of general frameworks. We are primarily interested in spatial frame-

works, but we will need certain properties of plane frameworks, since they will form

the faces. The basic definitions and results were presented in the first paper, and

we briefly summarize them here.

DEFINITION 3.1. A bar and joint framework in 3-space is a graph G = (V,E),

with v vertices and e edges, and a mapping Q : V —» R3 such that Q(a) ^ Q(b) if

(a,b)GE.
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As a convention, we write the framework as F = (G, Q) and the joints Q(i) as

qi, and sometimes as i, when the framework is clear. In a framework we also speak

of the bar (i,j) or qiq3 and abuse notation to write edges and bars as ij.

DEFINITION 3.2. An equilibrium load on a framework F = (G,Q) is an assign-

ment L of 3-vectors to the vertices (Lx,..., Lv) such that

(i) ^2 Li = 0 (sum over all vertices) and (ii) for each pair of indices 1 < h < k < 3,

^2[(Li)h(çi)k — (Li)k(qi)h] = 0 (sum over all vertices) where (x)k denotes the fcth

component of the vector x.

For an edge (i,j), i < j, the edge load is L¿¿ = (0, ...,<?, - qj,0,... ,0,qj -
qi,0,...,0) with the 3-vector q, — qj in the 3 columns for vertex t, q3 — ft in the

columns for j and zero elsewhere.

A resolution of the load L by a framework is an assignment of scalars A<y to the

edges ij E such that ^2 XíjLíj + L = 0 (sum over all edges).

A bar and joint framework in 3-space is statically rigid if and only if every

equilibrium load in 3-space has a resolution.

A bar and joint framework in a plane is plane-statically rigid if and only if every

equilibrium load in the plane has a resolution.

To show that a framework is statically rigid we must generate the vector space

of all equilibrium loads. Following the usual patterns in linear algebra, we will

count the dimension, and then produce an independent set of this size—a basis.

For bar and joint frameworks, such a basis—a minimal statically rigid framework

on a set of joints—is called isostatic. A dependence among the edge loads is called

a nontrivial stress. Thus a stress is a set of scalars Ay such that J^AyLy = 0,

and it is nontrivial if some Ay ^ 0. If a framework has only the trivial stress it is

independent.

We recall the following basic facts (Corollaries 1.2.2 and 1.2.3).

THEOREM 3.1.   Given a bar and joint framework F = (G,Q) in 3-space with

v > 3, the following are equivalent:

(!) F is isostatic;

(ii) e = 3v — 6 and the framework is independent;

(iii) e = 3v — 6 and the framework is statically rigid.

THEOREM 3.2. If a bar and joint framework is isostatic in 3-space then adding

or removing a 3-valent joint, with the bars not coplanar, creates a new isostatic

framework.

If a bar and joint framework is plane-isostatic then adding or removing a 2-valent

joint, with the bars not collinear, creates a new plane-isostatic framework.

An isostatic framework is a basis for the subspace of equilibrium loads on the

vertices. From linear algebra, we know that one such basis can be replaced by

another, even within a larger set, without changing the space which is generated,

or alternating properties such as independence. We will use the following broad

substitution principle based on this observation (Theorem 1.2.6).

THEOREM 3.3. (a) If a framework is isostatic (statically rigid) in 3-space, with

the subframework on k joints statically rigid in the affine plane of its joints, and

this subframework is replaced by another subframework on the same joints isostatic

in the same plane, then the modified framework is isostatic (statically rigid) in

3-space.
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Figure 3.1

Figure 3.2

(b) If a framework is isostatic (statically rigid) in 3-space, with the subframework

on k joints statically rigid in space, and this subframework is replaced by another

subframework isostatic on the same joints, then the modified framework is isostatic

(statically rigid) in 3-space.

We will need to have some appropriate plane-rigid bar and joint frameworks

for the regular faces of the polyhedron. These will be triangulated proper plane

polygons—a cycle of joints and bars in a plane with no 3 points collinear, which

are triangulated with additional bars. These plane frameworks satisfy e = 2v — 3,

and can be built up from a single bar by a sequence of adding 2-valent noncollinear

joints. In addition, we will want to add skeletal vertices, and refine the proper

plane polygon. If we use any triangulation with no triangle formed from vertices of

a natural edge, and insist that all other triples are not collinear, we have refined tri-

angulated proper plane polygons (Figure 3.1 A). The following simple result applies

(Proposition 1.2.5).

PROPOSITION 3.4. A triangulated polygon, with no triangle collinear, is plane-

isostatic.

Any triangulated proper plane polygon, and any refined triangulated proper plane

polygon, are plane-isostatic.

Similarly, we can take a spatial polygon (no 3 points collinear, not necessarily

coplanar) which is triangulated by bars. If we add one extra joint (not coplanar

with any triple of the previous joints), and connect it to all the other joints, we

create a proper blocked polygon (Figure 3.1 B). Since this framework can be built

from a triangle by adding a sequence of noncoplanar 3-valent joints, we have the

following result.

PROPOSITION 3.5. A proper blocked polygon is an isostatic bar and joint frame-

work in space.

This framework is an example of a simple framework—it can be built from a tri-

angle by a sequence of 3-valent joints. Other examples of simple frameworks, which
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we will use later, are shown in Figure 3.2 A. Of course most isostatic frameworks

are not simple (Figure 3.2 B) and these complex frameworks present the essential

problems.

3.2. Infinitesimal motions and generic properties.

DEFINITION 3.6. An infinitesimal motion of the framework F = (G,Q) is an

assignment of 3-vectors to the vertices M = (mx,... ,mv), the velocities, such that

for each edge ij G E, (g¿ — qj) ■ (mi — nij) = 0.

These equations form the rows of the rigidity matrix of the framework. These

rows are also the edge loads defined above. There will always be certain trivial

infinitesimal motions—such as the translations (m,..., m) for any vector m and the

rotations Mnk with 1 < h < k < 3, m¿ = (0,..., 0, (ft)*, 0,..., 0, (qi)h, 0,..., 0).
These rotations and translations generate the space of rigid motions. An internal

motion is an infinitesimal motion which is not a rigid motion.

DEFINITION 3.7. A bar and joint framework is infinitesimally rigid if and only

if every infinitesimal motion is a rigid motion.

There is a correspondence between these rigid motions and the equilibrium equa-

tions of statics. From this observation, and the fact that row rank = column rank

in the rigidity matrix, the following fundamental facts follow [17].

THEOREM 3.7. A bar and joint framework does not resolve the load Lst if and

only if there is an infinitesimal motion M such that (ms — mt) ■ (qs — ft) ^ 0. A bar

and joint framework in 3-space is infinitesimally rigid if and only if it is statically

rigid.

A given graph has a set of realizations Q G R3v, with ft ^ qj if ij G E. The

rank of R(G,q) is determined by minors being zero—i.e. polynomial equations in

the coordinates of Q [23]. When some points make these polynomials nonzero,

then almost all values will. (These values form an open dense subset of R3v.) We

can think of choosing a set of variables for the (ft).y (or more exactly a set of

algebraically independent real numbers over the rationals, forming a general point)

and use these to find the common or "generic" properties.

It is known that if a graph G has a generic property in 3-space, then the real-

izations in 3-space with this property form an open dense subset of R3v. It is also

known that if almost all realizations of a graph are even finitely rigid (lack finite

motions) then almost all realizations are statically, or equivalently infinitesimally

rigid [2]. This justifies the use of the term generically 3-rigid. Conversely, if a

framework has an infinitesimal internal motion in all realizations, then almost all

realizations have finite, nonrigid motions.

PROPOSITION 3.8. A graph G is generically 3-isostatic (3-rigid) if and only if
there is at least one framework realizing G in 3-space which is isostatic (statically

rigid).

3.3. Polyhedral frameworks.

DEFINITION 3.11. A polyhedral framework is a realization of a proper polyhedron

((V, F; I), Q) as a bar and joint framework in projective 3-space with

(i) a joint for each vertex;

(ii) a bar for each edge of the polyhedron;

(iii) additional bars for each face to triangulate the face.
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As we saw above, the statically rigid frameworks form an open set in the space

fi3" of all realizations, and if this set is nonempty, it is dense in the space (the rigid-

ity almost always occurs). We would like similar results for the class of polyhedral

frameworks—but we have the basic problem that there is no simple euclidean space

of realizations. The realizations of a polyhedron form an algebraic variety in R3v+4¡

defined by the equations axqx + a2q2 + 03*73 + 04 = 0 for each vertex (71,92,93)

incident to the plane with coordinates (ai, 02,03,04). If two polyhedral frameworks

are close in this variety, then they are also close as bar and joint frameworks. This

gives the first property we need.

THEOREM 3.10. For a given polyhedron, the set of statically rigid polyhedral

frameworks is an open subset of the variety of all polyhedral frameworks.

It would be simple to show that the statically rigid frameworks are dense in the

variety if the variety was irreducible. However, this is not true (see Remark 2).

However, we can take the set of proper realizations (which is not a variety) and

show by a direct coordinatization of the subset, that static rigidity either never

occurs or almost always occurs. The key to our coordinate system is the Steinitz

list of the vertices and faces.

THEOREM 3.11. The set of proper realizations of an abstract 3-connected

spherical polyhedron is coordinatized by an open dense subset of Rc where c =

e + f + 6. The euclidean coordinates of the points and planes are rational functions

of these choice coordinates.

If one proper polyhedral framework on P is statically rigid, then the statically

rigid realizations form an open dense subset in this coordinatization.

PROOF. Take a Steinitz list for the polyhedron, beginning at any edge. Make an

arbitrary choice for the coordinates of the two planes (8 choices), ensuring they are

distinct and not parallel. For each vertex of this edge, we must satisfy the 2 linear

equations (they lie on the 2 planes) so we have a 1-parameter set of choices. These

parameters are the next 2 coordinates, chosen to keep the points distinct. The

remaining euclidean coordinates are found as rational functions of the coordinates

of the planes and these parameters.

At each stage in the list, we have evolved a set of 3v + 4f — i choice coordinates.

The euclidean coordinates of all current planes and points are rational functions of

these choice coordinates, and when these rational functions are defined, we have a

proper realization. At the next step in the list we add a new vertex or face, incident

with 3' < 3 previous elements of the list.

For a face, this gives j < 3 homogeneous linear equations in 4 unknowns, with

the coefficients given as rational functions of the previous choices. Since, for a

proper realization, these are independent, we have 4 — j parameters to choose. The

euclidean coordinates of the plane are then rational functions of these parameters

and the coefficients and hence, rational functions of the choice coordinates. (We

must also ensure that the plane is finite, and not (0,0,0,1) but this is mererly

another determinant condition to be avoided.)

Similarly, for a vertex we have j linear equations in the 3 variables. Since there

are proper realizations, these are, in general, independent and consistent. This

leaves 3 — j parameters to add to the choice coordinates, so that the solutions are

rational functions of the choice coordinates.
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In both cases, we conclude that there are 3v' + 4/' — i' choice coordinates if

we have v', f and i' vertices, faces and incidences at this position in the list. By

induction this will be true for the final list for the spherical polyhedron. However, by

Euler's formula v — e+f = 2. Each edge represents 4 incidences, and each incidence

occurs in 2 edges, so 2e = i. By simple algebra this yields 3v + 4/ - i = e + f + 6,

as required.

(ii) The static rigidity of any framework is characterized by a set of polynomial

conditions in the euclidean coordinates of the vertices. If we replace these vertices

by the rational functions of the choice coordinates, and clear fractions, we have a

set of polynomial conditions in the choice coordinates. Since there is some stat-

ically rigid proper polyhedral framework, there is some choice which makes one

of the polynomials nonzero. Therefore almost all values of the choice coordinates

make this condition nonzero, and almost all proper realizations have statically rigid

polyhedral frameworks.   D

REMARK 1. The choice coordinates also describe many improper realizations.

The coordinates actually break down when either (i) the equations in some step

are dependent, because a particular triple of vertices on a face was collinear (or 2

vertices were concurrent), or several faces at a vertex were dependent, or (ii) we get,

implicitly, points at infinity, because the planes are parallel and the equations are

inconsistent. Since realizability is really a projective property, and static rigidity is

also a projective property [7], it would be natural to use projective coordinates for

both the planes and the points, and remove the second defect in the choices.

In fact, we created an artificial situation by using 4 coordinates for the planes

but 3 coordinates for the points. If we multiply a plane by a constant it is the same

plane, so each proper realization is represented by an /-dimenional space of choice

coordinates. If we remove these equivalent choices, and the 6-dimensional space

of euclidean congruences, there are essentially e choices for each polyhedron. We

could eliminate this equivalence, and restore symmetry to the points and planes by

insisting that no plane passes through the origin (the last coordinate is always 1).

This gives a coordinate system with c' = 3v + 3/ - i = e + 6. On the other hand we

can use homogeneous projective coordinates for the points and have 4v + 4/ - i =

e + f + v + 6 choices and v + f equivalent coordinates for the same polyhedron.

REMARK 2. Consider the set of improper realizations with all vertices as distinct

points on a line, and all faces as distinct planes through this line. This allows 6

choices for the first two vertices, determining a line, 1 choice for each remaining

vertex, and two choices for each face: 6 + (v — 2) + 2f — e + f + 6 choices. This

subset of the realizations has the same dimension as the proper realizations. This

shows that the variety of realizations of a spherical polyhedron is reducible. Since

none of these realizations are statically rigid as bar and joint frameworks, we cannot

remove the assumption of proper realizations in the theorem.

On the basis of this theorem we call an abstract polyhedron generically rigid

(isostatic) if some, and therefore almost all, proper polyhedral frameworks are

statically rigid (isostatic).

We must now become explicit about which discs of our bound polyhedra are to

be holes, and which are to be blocks.

DEFINITION 3.12. An abstract block and hole polyhedron (P; B,C) is an abstract

bounded polyhedron (P; D) with a partition of the discs D — Bl)C.
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A proper block polyhedron is a proper realization Q of the underlying polyhedron

P.
A block polyhedral framework on a proper block polyhedron ((P; B,C),Q) is a

bar and joint framework formed by

(i) placing a joint at each vertex;

(ii) placing a bar on each boundary and each regular edge;

(iii) triangulating each regular (plane) face;

(iv) replacing each disc in the blocks B by a proper block polygon (using an

extra vertex for this disc).

All edges interior to a hole are omitted, so it really forms a hole in the framework.

If there are no holes or blocks, this reduces to a polyhedral framework.

All of these definitions extend to refined block polyhedra, with the proviso that a

refined block polyhedral framework has a refined triangulated proper plane polygon

for each regular face. Theorem 3.11 also extends to these refined block polyhedra.

Each refinement adds one skeletal vertex, one edge, and one dimension to the

coordinate system. With the skeletal vertices placed at the end of the list, this

choice is the position along the natural edge, and we maintain independence of all

the linear equations.

If one block polyhedral framework on a particular proper block and hole polyhe-

dron is statically rigid, then any other choice of triangulations and proper blocked

polygons will also be statically rigid. In fact this rigidity is also preserved if we use

any other isostatic framework for the discs which are blocks.

From these observations we have the following theorem.

THEOREM 3.13. The set of proper realizations of an abstract refined 3-con-

nected spherical polyhedron is coordinatized by an open dense subset of R7 where

c = e + f + 6. The euclidean coordinates of the points and planes are rational

functions of these choice coordinates.

If one (refined) block polyhedral framework on a (refined) block polyhedron is

isostatic (statically rigid), then

(i) every (refined) block polyhedral framework on the same polyhedron is isostatic

(statically rigid);

(ii) almost all (refined) block polyhedral frameworks on the same abstract (refined)

block and hole polyhedron are isostatic (statically rigid).

This again justifies the term generically isostatic (or generically rigid) for the

abstract block and hole polyhedra fitting this theorem.

THEOREM 3.14. If an abstract block and hole polyhedron has a proper subnet

P' which is generically rigid, then P is generically rigid.

PROOF. The proof will proceed by induction up any construction sequence from

P' to P.
Assume P¿ is generically statically rigid and take some statically rigid refined

block polyhedral framework.

If P¿+i comes from P¿ by edge stretching, then we have the same block polyhedral

framework, so Pt+i is also generically statically rigid.

If P,+ i comes from Pt by an edge split, placing r on the natural edge si, then

we choose a distinct joint on the line of st, and the vertices opposite this edge in
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the triangulations of the two faces at the edge. If we add r as a 3-valent joint

connected to s and these select vertices, then it is not coplanar (the realization was

proper) so the new framework is statically rigid. We have triangulated these two

faces with triangulated refined proper polygons. This gives the required statically

rigid refined block polyhedral framework for P¿+i.

Assume P¿+i comes from Pt by a split of face g along the new edge s, t. In the

refined block polyhedral framework for Pt we retriangulate the face g so that st is

a bar. By Theorem 3.5, this gives a statically rigid framework which is isomorphic,

as a graph, to a refined block polyhedral framework for P¿+i. Since Pt+i can be

realized arbitrarily near the given statically rigid realization of this graph for P¿,

these nearby frameworks are also statically rigid as required.

Assume that Pl+i comes from P¿ by pointing a boundary triangle s, t,u. Given

the statically rigid block polyhedral framework for P,, we add r as a 3-valent joint,

off the plane of the noncollinear triangle s,t,u. By Theorem 3.2, this is a new

statically rigid framework for P¿+i, as required.    D

REMARK. If we are told that P' is generically isostatic, then the proof shows that

P is also generically isostatic. The proof also shows that we can insert extra skeletal

joints onto regular edges of any block polyhedral framework without changing the

static properties.

Our major task for the rest of the paper is to find appropriate proper subnets

P' for given classes of abstract block polyhedra. For example, we saw in §2.3 that

every 3-connected spherical polyhedron contains a tetrahedral graph, and it is well

known that a tetrahedron is isostatic unless the four vertices are coplanar.

COROLLARY 3.15. Almost all proper realizations of each abstact 3-connected

spherical polyhedron are isostatic as polyhedral frameworks.

This result also follows directly from Theorem 3.12 and Alexandrov's Theorem

that polyhedral frameworks on convex polyhedra are isostatic (Theorem 1.3.1). This

theorem was suggested by the title "Almost all simply connected surfaces are rigid"

[9], but only proven there for triangulated spherical polyhedra.

4. Cylindrical towers and 4-connectivity.

4.1 Cylindrical towers. We have seen that a triangulated convex polyhedron is

isostatic. If we remove one bar and make a quadrilateral hole, then the framework

has a nontrivial infinitesimal motion in all realizations, and becomes a mechanism,

almost always. It is natural to ask what new bars could return us to an isostatic

framework. For example, Kuiper asked which dihedral angles (angles between ad-

jacent faces) flex in the mechanism [14]. This is equivalent to asking which quadri-

lateral blocks around a dihedral angle will make a new isostatic block polyhedral

framework.

There are certain obvious things to be avoided. If the quadrilateral hole and the

quadrilateral block are separated by a triangle of vertices, then, in effect, the hole

lives in the triangulated polyhedron one one side of this cut, and the block lives in

the triangulated polyhedron on the other side. The hole side is now underbraced,

and flexes, while the block side is overbraced and stressed. We show that this is all

that can go wrong in a general realization.
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Figure 4.1

DEFINITION 4.1. Two discs in an abstract bound polyhedron are 4-connected

if at least 4 vertices must be removed to separate all vertices of one disc from all

vertices of the other.

THEOREM 4.1. An abstract block and hole polyhedron with a single quadrilat-

eral hole and a single quadrilateral block is generically isostatic if and only if the

hole and block are 4-connected.

PROOF. Assume that the hole with vertices 01,02,03,04 is 4-connected to the

block with vertices bx,b2,b3,b^. By Dirac's Theorem and the 4-connectivity we

have 4 vertex-disjoint paths between the discs. Up to a permutation of the labels

around the hole, this means there are 4 vertex-disjoint paths ex from 01 to bx,..., e±

from a4 to 64. (Some of these may be of zero length, if the discs share vertices.)

This guarantees that we have one of the quadrilateral cylinders illustrated in Figure

4.1 A as a proper subnet. (The blocks are shown as cross-hatched discs.) In all

of these the quadrilaterial discs may be split into 2 faces, but in some they must

be split, as indicated by the dotted lines, to keep the 3-connectivity (see §6). Each

of these subnets can be built as an isostatic block polyhedral framework. For the

first subnet in Figure 4.1 A, the verification is shown in Figure B: we begin with a

block, and add a sequence of 3-valent, noncoplanar joints—ending with an example

of an isostatic framework on a proper realization. A similar process verifies that all

the illustrated subnets are isostatic.

Since the given abstract block polyhedron contains a generically isostatic subnet,

the abstract block and hole polyhedron is also generically isostatic.

Assume that the hole and block can be separated by removing the 3 vertices

s, i, u. For convenience, construct a convex realization of the polyhedron, and a

block polyhedral framework on this realization. Each pair st,tu, and us either

shares an edge or a face in the polyhedron, so we can assume that each pair shares

a bar in the realization. If we cut the framework into two pieces at this triangle, then

one component (including s, t, u) contains the block but not the hole. Therefore

this component of v' vertices contains at least 3v' — 6 + 1 bar, and must contain a

static stress in every realization. Since any block framework for this abstract block

and hole polyhedron will contain exactly e = 3v — 6 bars, and a static stress, it will

not be statically rigid in any realization.    D
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Figure 4.2

This result holds "in general". Past experience with Cauchy's theorem, and

related results, shows that "general" properties may "always" happen for convex

polyhedra. In this spirit we offer a simple convex counterexample.

EXAMPLE 4.1. Consider the polyhedron in Figure 4.2A—with vertices: ai =

(1,0,1), o2 = (0,1,2), o3 = (-1,0,1), o4 = (0,-1,2), bx = (1,-1,-1), b2 =

(1,1,0), 63 = (-1,1,-1), 64 = (-1,-1,0). This is clearly convex, triangulated,

and 4-connected. If we omit 0204, to create the hole 01020304, and block the

quadrilateral 6162&3&4 with vertex q and its bars (Figure B), the hole is 4-connected

to the block. However, the realization given has a nontrivial infinitesimal motion:

fix each ft with velocity (0,0,0), and assign the horizontal veclocities: vx = (1,0,0)

to ax, v2 = (0,-1,0) to 02, t>3 = ( — 1,0,0) to 03, and V4 = (0,-1,0) to 04. The

view down the z-axis (Figure C) shows, geometrically, why these velocities are

permitted, since they are perpendicular to the bars from the ft, and they have an

appropriate symmetry around the quadrilateral hole. (In [24, §1.2] we describe the

general geometric conditions which make this framework infinitesimally flexible.)

For other polyhedra, the "almost always rigid" becomes "always rigid" in proper

realizations. Observe that, once more, convexity is not important to the behavior.

EXAMPLE 4.2. Consider the first subnet shown in Figure 4.1A. Since this can

be built as a simple framework, all proper realizations leave the required triples of

bars noncoplanar—and preserve the static rigidity. Therefore all block polyhedral

frameworks on proper realizations of this polyhedron are statically rigid.

The entire proof can easily be generalized to /c-gonal holes which are fc-connected

to fc-gonal blocks.

DEFINITION 4.2. Two discs in an abstract bound polyhedron are k-connected

if at least k vertices must be removed to separate all vertices of one disc from all

vertices of the other.

THEOREM 4.2. An abstract block and hole polyhedron, with a single k-gonal

hole and a single k-gonal block, is generically isostatic if and only if the hole and

block are k-connected.

If we are satisfied with static rigidity instead of isostatic behavior, we can clearly

use a larger block, which remains fc-connected to a fc-gonal hole. The proper subnets

will be statically rigid and stressed. If the connectivity fails, the separation gives

a higher count on the stresses in the overbraced component, and this will still

guarantee that the structure is never statically rigid.
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THEOREM 4.2. An abstract block and hole polyhedron, with a single k-gonal

hole and a single block is generically rigid if and only if the hole and block are

k-connected.

4.2. 4-connected polyhedra. We have seen that the omission of one bar to create

one hole and the blocking of one dihedral angle to create one block produces rigidity,

provided the hole and block are disjoint and 4-connected. In particular, if the

polyhedron itself is 4-connected (i.e. deleting any 3 vertices does not disconnect the

polyhedron) then any disjoint hole and block will give a generically isostatic block

polyhedron. This answers the question posed by Kuiper [14, Remark 9].

THEOREM 4.3. Given a 4-connected abstract triangulated spherical polyhedron,

almost all realizations as a bar and joint framework, with one bar removed, flex all

the dihedral angles between the remaining triangles.

We can also imagine that the removed edge does not remove the adjacent trian-

gles. Do the dihedral angles at these triangles also flex? The answer is yes, but a

proof using bar and joint frameworks would require a number of details which we

will omit here.

4.3. 5-connected spheres. There is a natural generalization suggested by Theorem

4.3. If we remove two bars from a triangulated sphere, this creates a 2-dimensional

space of nontrivial motions. We say that two dihedral angles are independent in

these motions if their angular velocities parameterize the space of nontrivial motions

in this realization. Equivalently, bracing these two angles with blocks will remove

all nontrivial infinitesimal motions.

CONJECTURE 4.1. Given any 5-connected abstract triangulated spherical poly-

hedron, then almost all realizations as a bar and joint framework with 2 bars removed

leave each pair of dihedral angles of the remaining triangles independent.

If the two removed bars and the two chosen dihedral angles each make pentagonal

discs, then the conjecture follows from Theorem 4.2. For the other cases we will

need new results.

CONJECTURE 4.2. If a ^-connected abstract block and hole polyhedron has two

quadrilateral holes and one pentagonal block, then the block and hole polyhedron is

generically isostatic.

CONJECTURE 4.3. If a b-connected abstract block and hole polyhedron has two

quadrilateral blocks and one pentagonal hole, then the block and hole polyhedron is

generically isostatic.

REMARK. By a general "reversal" property of block polyhedral frameworks,

Conjectures 4.2 and 4.3 turn out to be equivalent (see §6).

CONJECTURE 4.4. If a b-connected abstract block and hole polyhedron has two

quadrilateral blocks and two quadrilateral holes, then the abstract block and hole

polyhedron is generically isostatic.

We have proper subnets for each of the conjectures. In Figure 4.3A we show a

subnet for two quadrilateral holes, and one pentagonal block, in Figure B we have

the reversed subnet, and in Figure C we show a subnet of two quadrilateral holes
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Figure 4.3

and two quadrilateral blocks. (To give some symmetry to the drawings the exterior

circle is now a single regular face.) We conjecture that all 5-connected configurations

contain one of these or a regular contraction. By a regular contraction we mean the

shrinking to a vertex of some regular edges in the subnet which have one 3-valent

end at a hole or block. Such a regular contracted subnet has an isostatic realization,

as a block polyhedral framework, if and only if the original subnet has an isostatic

realization. (For a 3-valent vertex at a hole, we simply reverse the contraction by

adding the 3-valent vertex; for a 3-valent vertex at a block, we use the reversal

process mentioned above.)

Even when we cannot characterize the general arrangements which guarantee

suitable initial configurations, we can use the given subnets to generate all the

proper extensions: the 3-connected spherical polyhedral containing this proper sub-

net. Our techniques will always generate large classes of generically isostatic block

polyhedral frameworks. In this spirit, we observe that Figure 2.IB shows other

generically isostatic configurations which can be used as proper subnets.

5. Related patterns and results.

5.1 Extended polyhedral frameworks. In a variety of settings it is very useful to

know about rigid bar and joint circuits: statically rigid frameworks in which the

removal of any one bar leaves an isostatic framework. Such a circuit provides the

protection of an optimal overbracing—one failure of a member will not cause a

disaster.

Theorem 4.4 converts to a theorem about circuits. We can replace the quadri-

lateral block by a single tetrahedron on these four vertices. In effect this adds a

single bar across a dihedral angle. The static rigidity with another bar removed,

now becomes the guarantee that this extended framework is a circuit, in general

realizations.

THEOREM 5.1. If an abstract triangulated spherical polyhedron is 4-connected,

then adding a single bar across any dihedral angle creates a generic circuit.

PROOF. The triangulated sphere is isostatic in general (and all convex) realiza-

tions. This covers the deletion of the extra edge.

If an edge not in the tetrahedron is deleted, this leaves a quadrilateral hole and

a quadrilateral block, and Theorem 4.2 guarantees this is isostatic.

If the bar is in the tetrahedron, but opposite to the added bar, then its removal

also leaves a triangulated sphere.
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Figure 5.1

If the angle is ac and the omitted bar is ab, then we proceed as follows. The

polyhedron P*, with a and all adjacent edges omitted, is still 3-connected with

a modified face g: dx,... ,dk,c. This can be realized as an isostatic polyhedral

framework, with g triangulated so that no extra edges enter vertex c. We now add

the vertex a in the plane of g, but not collinear with any two vertices (Figure 5.1A).

If we connect a to 2 vertices di and dk, and to 6, this will still give an isostatic

framework (Figure B). Finally, we can replace the face g by all edges to a which

appear in P, except ac (a retriangulation of the polydon di,... ,dk,a (Figure C)).

This is a plane-isostatic framework, and gives a new isostatic framework for P. A

small movement of o, out of the plane of g, yields the required isostatic proper

realization (Figure D).    D

REMARK. Example 4.1 shows that this result only holds "in general", and does

not hold for all convex realizations.

Could the extra bar be added between any two nonadjacent vertices? Yes, but

we need to alter the vocabulary of §§2-4 to apply to frameworks with special added

edges and deleted edges, rather than frameworks with special faces.

DEFINITION 5.1. An abstract extended spherical polyhedron is an abstract 3-

connected spherical polyhedron P, with a set C" of edges of the polyhedron and a

set B' of pairs of vertices which do not share a face in the polyhedron. A face is

open if some edge is in C", otherwise it is regular.

A proper subnet of an abstract extended spherical polyhedron (P;B',C) is a

proper subnet P' of P which contains, as paths of length 1 all edges in B',C, and

all edges of open faces of (P, B',C).

An extended (refined) polyhedral framework for a proper subnet P' of an abstract

extended polyhedron is a proper realization of the underlying polyhedron as a bar

and joint framework in 3-space with

(i) a joint for each vertex;

(ii) a bar for each edge of the polyhedron not in C", and a bar for each pair in

B';
(iii) additional bars for each regular face, to give a proper (refined) triangulated

polygon for the face.
The previous inductions and coordinate system for block polyhedra clearly apply

to the extended polyhedra. We record the essential facts.

THEOREM 5.2. If one (refined) extended polyhedral framework on a (refined)

extended polyhedron is isostatic, then

(i) every (refined) extended polyhedral framework on the same polyhedron is

isostatic;
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Figure 5.2

(ii) almost all (refined) extended polyhedral frameworks on the same abstract

(refined) abstract extended polyhedron are isostatic.

If an abstract extended polyhedron has a proper subnet P' which is generically

isostatic, then P is generically isostatic.

THEOREM 5.3. If an abstract 3-connected triangulated spherical polyhedron is

extended by a single bar ab between nonadjacent vertices, and the resulting graph is

4-connected, then the resulting extended polyhdedral framework is a rigid circuit in

generic realizations.

PROOF. Since the original triangulated sphere gives an isostatic framework in

generic realization, we know that the extended polyhedral framework is generically

rigid, and that the added bar ab can be omitted.

If we omit a bar ac adjacent to the extending bar ab, then the resulting framework

is isostatic.

Assume that the omitted edge su is not adjacent to the extending bar. The

omission creates a quadrilateral stuv. By the 4-connectivity of the polyhedron, we

can find 4 vertex disjoint paths to this quadrilateral, with 3 beginning at a, and

1 at b (Figure 5.2A). Around the vertex o there is a rim of vertices attached to

o, forming a simple polygon. For each of the paths T and V we choose the last

rim element (£' and v') in the path, and shorten the path to T' = a,t',... ,t, and

V: a,v', ...,v. We connect u to a by a path which avoids t,v, and b (using the

4-connectivity). After shortening this path, to have only one vertex on the rim, the

net looks like Figure B, up to relettering.

We now connect the vertex b to the vertex s by 3 vertex-disjoint paths which

avoid a. At most two of these can contact the rim. By simple topology around the

rim, we must have two paths X and Y with (i) first contact on one of the paths,

say U', at x" and y" respectively and (ii) at least one (say X) avoiding the entire

rim. If Y contacts U before touching the rim, we insert x",... ,b,... ,y" to replace

x",.. .,y" in U', and create a subnet like Figure C, with no rim vertices beyond

u'. If Y contacts the rim at y', before y", we insert a, y',..., b,..., x" in place of

a,u',...,x" at the beginning of U', and again create a subnet like Figure C, with

no rim vertices beyond u1.

Finally, we add sections of the rim (which cannot cross the other existing paths)

to create a subnet in Figure D, with the extending bar ab included. These subnets
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Figure 5.3

have isostatic realizations (Figure 5.3). As usual, some of the paths may be of

zero length, within a polyhedron. However, by our assumptions, at most one path

directly to a, or b, such as U or T, could be of length zero. All the possible

contracted subnets can easily be derived, and constructed as isostatic frameworks.

Since all cases produce a subnet with isostatic realizations, Theorem 5.2 applied to

show that P minus the bar su is also generically isostatic.

Since the intersection of a finite number of open dense subsets (one for each edge

of P), is also an open dense subset, we know that P is a statically rigid circuit in

generic realizations.    D

As mentioned in the Introduction, these circuits can be built as minimal stati-

cally rigid tensegrity frameworks [17]. Figure 5.3 shows several examples of such

frameworks, with cables as dotted lines and struts as double lines.

We conclude this section with the corresponding generalization of Conjecture

4.1.
CONJECTURE 5.1. Given any triangulated sphere and any two added edges,

such that the resulting graph is 5-connected, then in generic realizations any two

bars can be omitted to leave an isostatic framework.

6. Conclusions. This paper has concentrated on proving that certain modified

polyhedral frameworks are generically isostatic in space. There are a number of

interesting geometric properties which hold for these block polyhedral frameworks:

(a) If a realization is statically rigid, then any projective equivalent realization

is statically rigid.

(b) If a block polyhedral framework is stressed (infinitesimally flexible), then the

reversed framework, created by switching blocks and holes, is infinitesimally flexible

(stressed).

(c) If a block polyhedral framework is isostatic, then the reversed framework is

also isostatic, in the same realization.

(d) If a block polyhedral framework is statically rigid, then the polar block poly-

hedral framework, built on the polar polyhedron, with blocks for blocks, holes for

holes, vertices for faces, and faces for vertices, is also statically rigid.

These geometric results will be explored elsewhere.

Most of these results also apply to 2-connected spheres, if we make some small

modifications. For example, as was noted by Barnette and Grünbaum [4], every

2-connected sphere has a Steinitz list. There is a major problem about which 2-

connected spheres have proper realizations, but this centers on the existence of
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appropriate subnets to start the inductions. Since our basic results were worded as

a passage from an assumed subnet to a final polyhedron, they easily generalize.

DEFINITION 6.1. A proper subnet P' of a bounded 2-connected polyhedron

(P, D) is a subnet P' such that

(i) P' contains all vertices, edges, and faces of the disc set D;

(ii) the natural vertices and edges of P' form a 2-connected planar graph.

(iii) the vertices of P which are not natural vertices of P' are 3-connected to the

natural vertices of P'.

We have a simple generalization of Theorem 2.1, which follows from the same

proof.

THEOREM 6.1. Given any bounded 2-connected polyhedron (P,D) and proper

subnet P', there is a sequence of proper subnets P' = Px, P->,..., P„ = P such that

Pn+i comes from Pi by

Step (a) replacing a path in Pi of one regular edge in P by a longer path in

G joining the same terminal vertices, pairwise disjoint from the paths in Pi (edge

stretching);

Step (b) dividing a path in P, into two paths at a path vertex, which becomes a

new skeletal vertex of Pn+i (edge splitting);

Step (c) inserting a new path (disjoint from the paths in Pi), such that the termi-

nal vertices of the path are skeletal or natural vertices of Pi, and they are separated

by the remaining natural vertices of Pi (face splitting);

Step (d) inserting a 3-valent vertex attached to threee vertices s, t, u, such that

all 3 edges among s,t,u are boundary edges (pointing a boundary triangle).

THEOREM 6.2. Given a construction sequence P' = Px,...,Pn = P for an

abstract 2-connected spherical polyhedron P, such that P' has a proper realization,

then each refined abstract spherical polyhedron Pi has a proper realization.

The block polyhedral frameworks are defined as before.

THEOREM 6.3. The set of proper realizations of an abstract 2-connected spher-

ical polyhedron is coordinatized by an open dense subset of Rc where c = e + f + 6.

The euclidean coordinates of the points and planes are rational functions of these

choice coordinates.

If one block polyhedral framework on P is statically rigid, then the statically rigid

realizations form an open dense subset in this coordinatization.

Again the term generically isostatic (or generically rigid) is used for the abstract

block and hole polyhedra fitting this theorem.

THEOREM 6.4. If an abstract block and hole 2-connected polyhedron has a

proper subnet P', which is generically rigid, then P is generically rigid.

THEOREM 6.5. An abstract 2-connected block and hole polyhedron, with a single

k-gonal hole and a single k-gonal block, is generically isostatic if and only if the

hole and block are k-connected, and the graph obtained by adding the block vertices

and its edges is 3-connected.

If we look back at Figure 4.1 A, we see, for example, that this theorem allows us

to not subdivide any of the holes or blocks.
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The techniques employed here will not apply directly to polyhedra, and poly-

hedra frameworks built around other surfaces. For example, for toroidal surfaces

we may not even have a Steinitz list of the vertices and faces, and there remain

unsolved problems about the realizability of even well-connected abstract toroidal

polyhedra. Nevertheless, we believe that the analogues of many of these results

will be true for properly realized toroidal polyhedra. The techniques developed

here can be combined with other inductive techniques for triangulated surfaces to

show that each triangulated one-holed torus is generically 3-rigid. A more general

vertex splitting technique [29] has recently been applied by Allan Fogelsanger to

prove the generic rigidity of all triangulated closed surfaces in 3-space.

In another direction, the results of this paper and the first paper are simple

cases of the determination problem for spherical polyhedra: which sets of data—

edge lengths, dihedral angles, coplanarity, etc.—will make a spatial polyhedron

unique, at least locally? The answer is critical to providing minimal, sufficient

descriptions, and maximal, independent choices for polyhedra in computer aided

design and computer reconstruction of spatial scenes. Some initial results, including

the translation of the theorems given here, will be presented in [28].

The study of these questions requires a continuing interaction of the practi-

cal algorithmic questions, and the general geometric and combinatorial analysis of

polyhedra. In such an interaction, the results will flow in both directions. Our two

papers have clearly been built on the classical theorems of Cauchy and Steinitz on

convex polyhedra. Conversely, the d-dimensional analogue of Alexandrov's Theo-

rem, on the rigidity of convex d-polytopes with triangulated 2-faces, gives a new,

stronger form of the lower bound theorem for the number of edges in a general d-

polytope [3, 13]. We will also see, in [28], that a classical theorem of Clerk Maxwell

about the statics of plane frameworks gives important insight into the structure of

dihedral angles in a spatial polyhedron.

The current developments in discrete applied geometry should be fruitful for

both the mathematicians, and the applied workers.
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