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ON THE SECOND FUNDAMENTAL THEOREM OF NEVANLINNA

ARTURO FERNANDEZ ARIAS

ABSTRACT. It is shown that a condition on the size of the exceptional set

in the second fundamental theorem of Nevanlinna cannot be improved. The

method is based on a construction of Hayman and also makes use of a quantita-

tive version of a result of F. Nevanlinna about the growth of the characteristic

function of a meromorophic function omitting a finite number of points

1. Introduction. The second fundamental theorem of Nevanlinna about the

value distribution of meromorphic functions states that for a meromorphic function

F in |z| < r and q > 2 distinct values ax,a2,... ,aq of the complex extended plane

we have the inequality

q

(1.1) (q - 2)T(r, F) < £ N(r, av) - Nx (r) + S(r, F),

i/=l

where Nx(r) is positive and S(r,F) is given by

«r.#5 —(r.f)+-{r,¿y^-}+,l^íf

+ log 2 + log if \aß - a„| > 6 for 1 < u < v < q,

with modifications if F(0) = oo or F'(0) = 0.

The quantity S(r, F) will be, in general, negligible with respect to T(r, F). More

precisely

(1.2) S(r,F) = 0{log T(r, F)} + 0{log r)

as r —> oo through all values if F has finite order, and outside an exceptional set of

finite measure otherwise.

In particular (1.2) implies

(1-3) S(r,F) = o(T(r,F))

for a transcendental function F outside an exceptional set Fi of finite measure.

From (1.1) and (1.3) we obtain

(1.4) (q - 2)T(r, F) < (¿ N(r, a„) J (1 + o(l)).
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142 A. F. ARIAS

But we could still have the relation (1.4) even if (1.3) fails. We can then consider

the exceptional set F2 outside which (1.4) is true. From what we have said above

we deduce that we can choose

(1.5) EX,E2 so that E2 C Ex.

In [1] some conditions on the size of Ex were given; in particular, it was shown

that we can take Ex independent of A so that

(1.6) /    rx dr < 00    for every A > 0.

It is clear from (1.5) that we can also choose F2 independent of A so that

(1.7) /    rxdr <        rA dr < 00    for every A > 0.

In this paper we show that this condition is the best that one can obtain in this

direction for the set F2.

2. Statement of the main result. Precisely we shall prove

THEOREM 1.  For any function $(r) such that

(2.1) $(r)/rx —7 00    for every A > 0,

there exists an entire function such that the corresponding exceptional set E2 satis-

fies

(2.2) Í   $(r)dr =
J E-?

CO.

E-2

The proof of this result is based on a construction of Hayman [5]. The function

/ shown is defined so that it approximates a sequence of polynomials with few

zeros and ¿-values on a sequence of corresponding expanding circles. In this way

N(r, 0), N(r, i) will not grow very quickly for the function / either.

We shall use a result due to F. Nevanlinna (see R. Nevanlinna [8]) to show that

all the auxiliary functions in [5] have characteristic growing near r = 1 quicker than

C log-for certain constant C"s.
1 - r

Using this fact we shall find precise estimates of the size of the set where

(2.3) N(r,Q) + N(r,i) + N(r, 00) <\T(r,f),

and check that this set is big enough to satisfy (2.2).

3. Some preliminary results.

3.1. In the proof of Theorem 1 we shall use several auxiliary results. First of

all we shall prove the above-mentioned result of F. Nevanlinna but we shall obtain

precise quantitative values for the constants involved, whereas he only obtained a

quantitative result.
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LEMMA 3.1.   Suppose that ax,a2,... ,ag-i are distinct complex numbers such

that for a certain 6, with 1 > 6 > 0,

(3.1) 0|/| > 6,    aß < -, l<p<v<q— 1,

and assume that F maps the unit disc conformally onto the universal covering

surface over the Riemann sphere punctured at ax,... ,a9_ij00, satisfying

(3.2)

Then

(3.3)

where

|F(0) - aM| > 6,    |F(0)|<J, u = l,...,g-l.

C2(q)

T(r,F) >Ci(g) log T

1

<r < 1,

Ci(q) =
2(o-2)'

A0 =
1

3.000
and   C2(ç) = 2g + 3.

In the proof of Lemma 3.1 we shall use the magnitude a(w) defined on the

w-plane punctured at oi, 02,...,0,7-1,00 by

(3.4) a(w) = (l-\z\2)\F'(z)\,        w = F(z).

This is a one-valued function of w. Next we consider the function

d(w) —     min     \w — a
i<m<î-i

Ml'

and show that a(w) satisfies

(i) a(w) > d(w),

(ii) a(w) < 2d(w)(\ logd(w)\ + log i + r(i)4/27T2).

(i) follows from the fact that the Riemann surface contains the disc {£| |£ - w\ <

d(w)}, since by Schwarz's Lemma applied to the inverse function of

G(s) = F
s + z

1+zs

in this disc we have

\(G-1)'(w)\ =
G'(0) F'(z)(l-\z\2)

<
d(w)

i.e.

a(w) = \F'(z)\(l-\z\2)>d(w).

(ii) follows from Landau's Theorem applied to

= F((s + z)/(l + zs))-a^

au - aß

where o^ is the nearest omitted value and a„ is any other omitted value.

By Landau's Theorem as in [6],

(3.5) |*'(0)| < 2|$(0)| j I log |*(0)|| + m^ } .
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On the other hand

(3.6)

and

(3.7)

|*'(0)| =
\F'(z)(l-\z\

l*(0)| =

\au — a.

\F(z)-a„\

\av — a„

a(w)

\av — o^l

\d(w)\

\av — aL

From (3.5), (3.6), and (3.7), we conclude

a(w) < 2\d(w)\ (| log |d(iü)|| + log
\av - a.

+
r(i/4)<

2tt2

<2\d(w)\(\log\d(w)\\+log-6+1^^
}■

i.e. (ii).

Now we define

(3.8)
Eß = {w\ \w\ - oM| < 6/2),        p = l,2,...,q-l,

Eq = {w\ \w\ > 2/6},        Eq+X elsewhere.

Then if F(z) is in FM, using (i) we obtain

(3.9) log((l - k|2)|F'(*)|) > log \F(z) - oM|,

and since F(z) G E^ we have \F(z) - aß\ < |o < 1, and so

1

(3.10)

m(r'a") = ¿/£ log

+ ¿/,'°s+

F(reie) - a»

1

d9

F(re«>) - a,
de,

where E'^ = C\FM is the complementary set of E^ and where the first integral is

taken over the set of values of 6 such that F(re'e) G Eß and similarly the second

integral is taken over the set of values of 9 such that F(re%e) G E'ß.

From (3.10) we deduce

¿I   log\F(re16) - aß\de

I •    > = -m(r,o^)-|- — /    log+
27tTe;

> —m(r, aß),        1 < p < q — 1.

Next let us assume w — F(z) G Eq; then we have

F(reie) - a^
de

(3.12) (l-|*|a)|F'(*)|>i|F(*)|.

In fact, in this case |F(2f) - aß\ > \F(z)\ — |oM|, and since |aj < 1/6 < ||F(z)|,

we obtain

(3.13) \F(z) - aß\ > \F(z)\ - \\F(z)\ = \\F(z)\, u = l,...,q- 1.
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By (i), we deduce from (3.13)

(l-\znF'(z)\ = a(w)>d(w)>±\F(z)\,

i.e. (3.12). From (3.12)

(3.14) -1 /   log((l - r2)\F'(reie)\) d0 > ± [   log+ \F(re*e)\ d9 - log2,
2tt JEq 27r ¡Eq

where the integral over Eq has the same meaning as above.

On the other hand,

(3.15) m(r,F) = ¿ U   + J  ) < ¿ J   log+ \F(rel6)\ dO -flog

and so from (3.14) and (3.15)

(3.16) ±- f   log((l-r2)\F'{re*e)\)dô>m{r,F)-log^.

In F,+i we have by (i), (1 - |¿|2)|F'(z)| > d(w) > \6, so that

6_

2"

Now from (3.9), (3.11), (3.16), and (3.17) and using the fact that log|F'(2)| is

harmonic we conclude

9+1

(3.17) ± f      log((l-r2)\F'(re^)\)dO > log-
27r Je.+1

log{(l-r2)|F'(0)|}-¿¿ f   log{(l-r2)|F'Ke)|}dö

> m(r, F) - J2 m(r, aß) - log ( -^ j .
n=i ^     '

Since
m(r,aß) <m(r,F) -log|F(0) - aM| + log+ |aM| +log2

(see Hayman [3, p. 5]), we deduce from (3.2) and (3.18)

9-1

-(q - 2)m(r, F) < log(l - r2) + log |F'(0)| + ^ log+ |o„|

i

+ (q - 1) log2 + log (J¡\ - (q - 2) log<5,

i.e.

1 ,_1
(q - 2)T(r, F) > log —T - log |F'(0)| - £ log+ \au\

(3.19) r i

-(<7-i)iog(T|-iog(Jr)-
K6,

We also have, by hypotheses for o = 1,2,..., q — 1,

2

t5
<5<|F(0)-oM|<|F(0)| + |oM|<-,
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so that

S < d(F{0)) < |.

Thus we obtain by (ii)

imi<4(^+H¡AAW
<?(.ogi+3),

i.e.

log |F'(0)| < log 7 + log8 + log+ log \ + log3 + log2
(3.20) è b

< 2 log -+ log 48.
o

We also have

9-1

(3.21) ^log+|oM|<(o-l)log-.

From (3.19), (3.20), and (3.21), we conclude

(q - 2)T(r, F) > log -i-j - 2 log i - log 48 - fa - 1) log ±
1 — r¿ 6 6

2 / 8
- (g-1) log--log (^2

^ loS r37 " (2(? + 2)log ^ - («J + 3) log 2 - log 48,

hence

if

i.e. if

(q-2)T(r,F)>\log-   -

Thus we get

2    °l-r

\ loS T~ > lQg{48 ■ 2(9+3) ' S-{2q+2)},

r>l_ j_L.2-(9+3).¿29+2y

TfcF)^-^— log-   -

if

which is (3.3).

2(o-2)    öl-r

1 / 1        \ 29+3

r>1-3ÔôôUÔ'
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3.2.

LEMMA 3.2. Let p be a positive integer and x a positive number. Then there

exist ax such that ex < \ax\ < lOea; and a function

(3.22) F(z) = axz + ap+xzp+1 + ■ ■ ■

regular in \z\ < 1, univalent in z < \/2 — 1, and assuming the values i,0 no more

than once in \z\ < 1.

Furthermore for x > 2 the function F satisfies

(3.23) T(r'F)-i¿logrb'    RP<r<^

where

Rp = 1 - ^(ex)-26?

and Aq is a positive constant.

Let Fi be the set {0, ±ex, i, oo} and let R be the universal covering surface over

the complement of Fi. Let Ri, R2 be the surfaces obtained by cutting R from ex

to +00 along the real axis and R3,R4 those obtained by cutting R from -ex to

—oo. Let R5 be the plane cut from ex to +00 and from —ex to —00 along the real

axis and finally let Ro be obtained by joining Ri, R2 to R5 on the segment (ex, 00)

and R3,R4 to R5 along the segment (-00, -ex).

The Riemann surface Ro obtained in this way contains none of the points ±ex, 00

in any sheet and contains the points 0 and i exactly once, those in the sheet R5.

Ro is simply connected and since it does not contain points over ±ex,co, Ro is

hyperbolic.

Therefore there is a conformai map F0 from the unit disc {z\ \z\ < 1} onto Ro,

F0(z) = bxz + b2z2 + ■■■ ,        61 > 0.

By the construction of Ro and Fo we deduce that Fo assumes ¿,0 precisely

once and that it never assumes ±ex, 00. This implies that Fo is subordinate to

the function G which maps {z\ \z\ < 1} onto the universal covering over the plane

punctured at ±ex, 00 satisfying

G(0) = 0,        G'(0) > 0.

This function G maps the sheet R5 onto a quadrilateral Q in the unit disc,

bounded by four quarter circles, orthogonal to the circumference {z\ \z\ = 1}, join-

ing the points z = l,i, —1, — i in the form (l,z), (/', —1), (—1, —i), and (— i, 1).

Q contains the disc {z\ \z\ < \/2— 1} and since Fo(z) is subordinate to G(z), Fq(z)

maps this disc onto a subset of the sheet R5; therefore F0(z) is univalent in

{z||z| < v/2-1}-

By Koebe's Theorem we have

^ 6i(>/2-l)
ex>---,

and since the inverse function z = $(w) maps the disc {w\ \w\ < ex} into the disc

{z\ \z\ < 1}, we can apply Schwarz's Lemma and obtain

b-i^&iO) <(ex)-\
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Hence we have

4
(3.24) ex <bx < —=-ex < 10ex.

>/2-l

Thus we have constructed a function (3.22) in the case p = 1. When p > 1 we

proceed as follows.

If p is odd so that ip ^ ±1, we write Ep = {±(ea;)p,0,¿p,oo} and define Fp(z)

as above with Ep instead of Ex and

(3.25) F(z) = {Fp(zp)Y'p.

A standard argument in the elementary theory of univalent functions shows that

F(z) has the required properties, i.e. it has an expansion (3.22) where ex < \ax\ <

lOea; is regular in \z\ < 1, univalent in \z\ < \¡2 — 1 and assumes the values i, 0 no

more than once in \z\ < 1.

If p is even we consider the set E'p = {±(ex)p,0, —¿p+1,oo} instead of Ep and

the function iFv(-iz) instead of Fp(z) and then define F(z) by (3.25) again.

Finally we prove (3.23). We shall make use of Lemma 3.1.

We consider again the case p odd. The case p even follows with small modifica-

tions.

According to Lemma 3.1, any function F5 mapping conformally the unit disc onto

the universal covering surface over the Riemann sphere punctured at the points of

Ep = {0, ±{ex)p, ip, oo}, such that

(3.26) |F5(0) -a\>6    for every a G Ep,        |F5(0)| < 7,
o

where 6 < min{l, (ex)p, (ex)p - 1} and 1/6 > {(ex)p,l}, i.e. such that (3.1) and

(3.2) are satisfied, has a characteristic function T(r, F5) such that

(3.27) T(r,F5)> i log j±-, 1 - A0 (^A     < r < 1,

where Aq is an absolute constant.

For x > 2, we can take 6 = l/(ex)p.

First we shall consider a translate Fpa of Fp where

pav^        p VI

for some a such that ja] < 1.

We choose the branch of F5 at z — 0, such that Fs(0) = l/(ea;)p, so that

for x > 2 (3.26) is satisfied and then consider a translate Fpa of Fp such that

Fpa(0) = l/(ex)p. It is clear that we can define the function

(3.28) w(2) = F-1oF5

in a neighborhood of z = 0, so that w(0) = 0, and by the construction of Fpa

and F5, u can be continued without limit in the disc and since this is a simply

connected set, we can make use of the monodromy theorem to obtain a function

from the whole unit disc onto itself such that w(0) = 0.

From (3.28) we obtain

F5(z) = Fpa(uj(z)),
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i.e. we conclude that F5 is subordinate to Fpa. Hence Fpa also satisfies (3.27):

(3.29) T(r,Fpa)> \ log
1-r'

l-An[Uex)-2p

13

< r < 1.

Next, we shall prove a similar condition for Fp. To do this, we shall use the

Ahlfors-Shimizu characteristic T0 instead of the Nevanlinna characteristic T. To

and T differ only by a bounded term so that we obtain equivalent statements.

We recall that for a meromorphic function G, T0 is defined by

VQ(r,G)= f
To

Mt)
t dt,

where A(t) is the area, with due regard to multiplicity, of the image on the Riemann

sphere of {z\ \z\ < t} by G.

If G is regular then

Mr, G) = -!-/" log Jl + \G(re*0)\id6 - log \/l + G(0)2.
27r To v

Therefore, using the inequality

log+ x < log Vl +x2 < log+ x + \ log 2,

and the fact that for G regular

T(r,G) = ¿jf *log+|G(r

we obtain

re \de,

(3.30) T(r, G) - log ̂ /TTgW < T0(r, G) < T{r, G) - log ̂ /T+G(fij2~ + | log 2.

First we show that

(3.31)

In fact, we have

z + a

1 + az
> 1

l-o
(1

z + a

whence

1-
z + a

1 + 02
< 1-

1 + az

*--|Q|

1 - loir

>
1- or'

(l-r)(l + \a\

1 - lair
<

1
\f-r),

which yields (3.31).

The function w = (z + a)/(l + äz) maps the disc {z\ \z\ < t}, t > \a\, conformally

onto a disc containing the origin, establishing also a one-to-one and continuous

correspondence between the circumference {z\ \z\ = i} and the boundary of that

disc.

On the other hand by (3.31)

\w(z)\>l--\~(l-t),        \z\=t,
1 - \a\
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i.e. we can conclude that the disc contains the disc with center at the origin

\w\\w\ < 1--r(l-i)i.
I 1 - |o| J

Now since Fp(z) = Fpa((z+a)/(l+äz)), we deduce from the above considerations

that for every solution in

{W|H <!__!_(!_,)}

of Fpa(w) = c, there is at least one solution of Fp(z) = ç in {z\ \z\ < t} and different

solutions of the first equation give rise to different solutions of the last equation.

We now recall that (see Hayman [3, p. 13]),

AFpa(t) = I nFpa(t,ç)dp(c),        AFp(t) = j nFp(t,c)dp(c),

where S is the Riemann sphere, dp is the normalized area element in S, and nFpa (t)

and nFp(t) are the number of roots of Fpa(w) = ç and Fp(z) = ç in \w\ < t, \z\ < t,

respectively.

Therefore we conclude from what we have said above

(3.32) ¿Fp(i)>Af    fi--*     (i-^,        t>|o|.

On the other hand Fp is univalent in {z\ \z\ < ^/2^A.} and Fp(0) = 0. Thus

by Koebe's Theorem the disc {w\ \w\ < bx(y/2 - l)/4}, is covered by the image of

{z\\z\ < ^2-1} by Fp.

Therefore, since Fp(-a) = Fpa(0) = (ex)~p, we can find a in {z\ \z\ < y/2 — 1}

provided that

fc1(y^-l)>     1

ex)p'

But, by (3.24), |6i| > (ex) > 10(ex)_p, since x > 2, so that the above condition

is satisfied.

Now, by an inequality for univalent functions (see Hayman [2, p. 4]), we obtain

lew     m^ MM SNH
|f'(-a)12 (i + |.|/(^-i)).¿ —

and since |6i| > (ex)p, wv. also have

y < 4|Fpf-«J| 4 _J_      J_      1
11 -       |<i,| |/^i|(ex)p - (ex)2p - e2 - 7'

since x > 2.

Next we show that

(3.33) 1-     *     (l-t)>t\        ¡<t<l.
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In fact if |o| < 1/7, and 2/3 < t < 1

1-Í4-
2     .     a     7
_|a|(l-*)>l-<4-3(l-*)

+1 + r +1¿ - -= (i-í){

J       2     4      8      71
^1-íH1+3 + 9 + 27-3| 27(1 -í) > 0.

From (3.30), (3.32), and (3.33) and since Fp(0) = 0 we have

1

2"
T(r,Fp) + ilog2 > T0(r,Fp) = j AFp(t)-i

> [M-^-'^-L^i
(3.34) = f      AFpa(s)di>\[ AFpa

T(2/3)" S 4 Jx/5
M

da

= i{r0(r4,Fpa)-T0Q,Fpa)}

it
>^T(r4,Fpa)-r(^,F. 5l0g2}-

Now we obtain a lower bound for T(r4, Fpa) and an upper bound for T(l/5, Fpa).

To do the first point, we make use of (3.29) and obtain

(3.35)

if

(3.36)

and if

n^^^iog^^iog-^-

- ( log-
6 V       1 - r O-è108^

r4>l-A0{í(ex)-2p)
13

1
log- >21og4,     i.e. r > 1 - e"16,

1 — r

both conditions can be included in (3.36) after decreasing ^40 if necessary.

Next we obtain an upper bound for T(l/5, Fpa).

Fp is univalent in {z\ \z\ < \/2 — 1}, therefore by an inequality for univalent

functions (see Hayman [2, p. 4]), we get

(3.37) \FP(z)\ <
\bi\r20\z\

(ro-N)2'

On the other hand for |£| < 1/5, \a\ < 1/7, we have

e-o

<r0 = y/2-l.

1 — az
<   lfl + M       1/5+ 1/7 = 1
- 1 + loliei -  1 + 1/35      3'
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so that for |£| < 1/5

Fpa(e) = Fp(ifA)=Fp(2),

where \z\ < 1/3. Hence since r0 = \/2 - 1 > 2/5, we conclude from (3.37)

(3.38) KMI < JMiiL < ij^ = .2|6,| < U0C4'.

From (3.38), we obtain

(3.39) T(l/5,Fpa) < log{120(ex)p}.

Therefore if (3.36) holds, we have by (3.34), (3.35), and (3.39)

T(r,Fp) > \ (llog-J- -log{120(ex)p} - ±log2} - Jlog2
(3.40) 4 (.12       l     r l j      L

1, 1

96    ° 1 - r

if

¿log147>log{120(ea:)p} + ^log2,

and this will happen if

(3.41) 1 > r > 1 - (480(ex)pr24.

Again we can put together (3.36) and (3.41) in

(3.42) l>r4 > l-A0(ez)-26p,

with a new .Ao-

Now, from (3.25) and (3.40), we deduce

(3.43) T(r,F) = ^,Fp) > ¿log^

if

(3.44) l>r4p>l->lo(ea;)-26p,

whence

T{r, F)>¿- log       l       = ¿- (log -Í— -
73 45n 96p       p(l - r)      96p V      1 - r

> -log-- 192p    s 1 - r

if, in addition to (3.44), we have

- >21ogp,    i.e. r > 1 - -r
1 — r p¿

Using the fact that 4p(l - r) > 1 - r4p, we conclude that (3.44) and (3.46) will

be satisfied if

(3.47) l>r>l-^(ez)-26p,
P

with Aq an absolute constant.

We have that (3.45) holds in the range (3.47), so that we have proved (3.23).

This completes the proof of Lemma 3.2.

(3.46) log -—: > 2 log p,    i.e. r > 1
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3.3.

LEMMA 3.3.   Suppose that ax,... ,ap are preassigned complex numbers, not all

zero, and write M = J2l=i \av\ and M > e^-

Then the function

AAK f,M-E^lO^+^2p

(3.48) "(2) - M + EtU^-"

has precisely 2p zeros and no poles in the disc

(3.49) {z\ \z\ < exp(-l/2p)}.

Furthermore the function ui satisfies the following inequality:

(3.50) 1 - 16p2(l - |*|) < |w(»| < 1 - 1(1 - \z\).
8p

First we observe that \w(z)\ = 1 for |z| = 1, w has no poles in {z\ \z\ < 1}, and

by Rouché's Theorem ui has 2p zeros in the unit disc. Next we show that these 2p

zeros are in the smaller disc (3.49).

We write rp = exp{-l/2p}. Then for rp < \z\ < 1, we have

p

^2auz"
v=l

< M < £ = pr2p < \pz2p\,

i.e. (jj(z) ^ 0 for rp < \z\ < 1, and therefore if zv, 1 < v < 2p, are the zeros of w in

the unit disc, we have

\zv\ < Tp, 1 S v < 2p.

We now consider the function

n«=n By-z-
v=l l       Z»Z

Then $(z) = uj(z)/Yl(z) is regular and not zero in {z\ \z\ < 1} and \$(z)\ = 1 on

\z\ = 1. Thus |$(z)| = 1 and

2p

(3.51) u(z) = ela°iï(z) = eie° TT   Z     Zv ,

u=l 1 - ~Z»Z

where f?o is a constant such that 0 < #o < 27t.

Using (3.49) we deduce that for \z\ = r > rp, we have

We write

and obtain

r-rp rp + r

1 - rpr 1+ rpr

1 - x2p = (1 - i)(l + x + ■ ■ ■ + x2p~l) < 2p(l - x)

(3-53) =     (l-r)(l + rp)<_4p_

1 - rpr l~rp
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On the other hand if t = l/2p, so that 0 < t < 1/2, we have 1 - e_i = te~T, 0 <

t < 1/2, hence

1 - e_t > te~1/2 > -t,        rp = e_i < 1 - -t = 1 - —.
2 2 4p

Thus we obtain from (3.53)

(3.54) l-z2p < -JP-(i-r) < 16p2(l-r).
1       Tp

Now, (3.52) and (3.54) yield the left-hand inequality of (3.50). To prove the

right-hand inequality we obtain an upper bound for y2p. We have

.-•**.-,-íi^^i«-r,)(l-r)>!¿I.

From this follows the right-hand inequality of (3.50).

3.4.

LEMMA 3.4. Suppose given the complex numbers ax,a2, ■ ■ ■ ,ap, not all zero,

and write M = Ylt=i Ia" I-
Then there exists Fp(z) regular in \z\ < 1, assuming i and 0 no more than 2p

times, and with a power series development

(3.55) Fp(z) = axz + a\ + ■ ■ ■ + apzp + 0(zp+l),

near z — 0. Furthermore

J2 — 1
(3.56) |FP(2)| < 40eM    in \z\ < ^——,

and if M > 2, we have

(3-57) T(r,Fp) >^log 3-L.,        R, < r < 1,

where

R'p = l-^l-(16eM)-1000p4.

Let F(z) be the function whose existence is asserted in Lemma 3.2 with x — M.

Let us write Oi = p, then eM < p < lOeM, and consider the function

( } " » + Zl=iä„z*r>-»>

as in Lemma 3.3.

Then we define

(3.58) Fp(z) = F(u{z)).

One can check that
p

u{z) = p-1 J2a"z" + °(zP+l)>
1/7777=1

and so

Fp(z) = puj(z)+0(zp+1),

whence we conclude (3.55).
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The equation u(z) — ç has precisely 2p roots in {z\ \z\ < 1} for any c in {ç| \ç\ <

1}, and since the equations F(w) = 0 and F(ui) = i have at most one root in the

unit disc, we deduce that the equations Fp(z) = 0 and Fp(z) = i have at most 2p

roots in {z\ \z\ < 1}.

Since F(z) is univalent in {z\ \z\ <ro = v7^— l}i we have by a classical inequality

for univalent functions

™<A%-    «<•»■
By Schwarz's Lemma, \u(z)\ < \z\ for \z\ < 1 and so for \z\ — ro/2 we obtain

\Fp(z)\ <     ^.^j     < 4p\oj(z)\ < 40eM\z\ < 40eM,
(r0- \u{z)\y

which is (3.56).

To prove (3.57), we shall make use of (3.23) and the definition of Fp in (3.58).

We shall also use the Ahlfors-Shimizu characteristic To instead of the Nevanlinna

characteristic T as we did in the proof of Lemma 3.2.

First we show that

(3.59) AFp(t)>AF(l-16p2(l-t)),        t > rp = exp{-l/2p}.

This follows from the definition of Fp in (3.58) and the fact that the number of

roots in {z\ \z\ < t} of any equation of the form

(3.60) Fp{z) = c

is not less than the number of the roots in {w| \ui\ < 1 — 16p2(l — t)} of the corre-

sponding equation

(3.61) F(uj) = (.

To see this, suppose that cjo is a r0°t of (3.61) in {u\ |w| < 1 — 16p2(l — t)}.

Then we prove that the equation

(3.62) u(z) = w0

must have at least one solution in {z\ \z\ < t}, say zq-

In fact, the image by w of {z\ \z\ < t} is a domain D(t) contained in {w| \u <

1} containing the origin, since lj(z) has 2p zeros in the smaller disc {z\ \z\ <

exp(—l/2p)}, and whose boundary is contained in the image of {z\ \z\ = t}. Then

using the left-hand inequality of (3.50) we have

(3.63) \u)(z)\ > 1 - 16p2(l - i),        \z\ = t, t> exp{-l/2p},

so that we can conclude that D(t) contains the disc {w| |w| < 1 — 16p2(l — i)}, i.e.

the equation (3.62) admits at least one solution zo in {z\ \z\ < t}.

Now

Fp(z0) = F(u(zo)) = F(w0) = Ç,

i.e. zq is a solution of (3.60).

Therefore for every solution of (3.61) in {oj\ |w| < 1 — 16p2(l - t)} there is at

least one solution of (3.60) in {z| |ä| < í} and different solutions of (3.61) yield, in

this way, different solutions of (3.60).
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As in Lemma 3.2 we recall that (Hayman [3, p. 13])

AFp(t) = [ nFp(t,ç)dp(c),        AF{t) = / nF(t,ç)Odp(ç),
Js JS

where S is the Riemann sphere, dp is the normalized area element in S, and nF (t),

nF(t) are the number of roots of (3.60) and (3.61) respectively, in the disc of radius

t.

From all these considerations we conclude (3.59).

To prove (3.57), we shall make use of the following inequality:

(3.64) 3n(l - t) > 1 - t3n > n(l -t),        \ < t3n < 1, n > 1.

In fact, let us observe that the quotient

1 — t3n
?—!— = i + t + t2 + --- + t3n-1

increases with t, so that it is enough to consider the case t3n = 1/5 for the right-

hand inequality in (3.64). The left-hand inequality is obvious.

3We write h = 1/n, a = ¿logo, and note that

1 - í        5,.,     „~ah\ „ §ah _ 51og5  ^ 1= -(1 - e-ah) <—- = —2- <
l-i3n      4' '        4 Yin        n

which proves (3.64).

Now we make use of (3.59) and apply the right-hand inequality of (3.64) with

n = 16p2. Let r' = 5-1/3™ and observe that r' > rp. Then for r > r' we obtain

T0(r,Fp) - 7b(r',Fp) = J] AFp(t)j > [ AF{{\ - n(l - t)}j

(3-65) >-LA^j-àCA^di

= i-{r0(r3»,F)-To(i,F)}.

Next we find an upper bound for To(l/5, F) and a lower bound for To(r3n, F).

To obtain an upper bound for T0(l/5, F), we observe that F(z) is univalent in

|^| < ro, where ro = \/2 — 1 > 2/5. Thus for |^| — 1/5 < (l/2)ro, we have by an

inequality for univalent functions (Hayman [2, p. 4]),

IFC0ÏI Izlr2. 4
|F0)| < ' / J '  ' ° < M |F'(0)| < -p < 8eM.

(~o ~ \z\) o

Hence

(3.66) T0 (|,F) <T(i,F) + ¿log2 < log(8eM) + ¿log2.

By (3.23) in Lemma 3.2

(3.67) T(r*»,F) > ¿ log ̂  > ¿ (log ^ - log3n}

if

(3.68) r3n>l-—(eM)"26p.
P
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Thus by (3.65), (3.66), and (3.67) we have

(3.69)

r(r,Fp)>2b(r,Fp)-ilog2

* i {íkp {logïh -log3n} "log(8eM) 4log2} 4log2

in the range (3.68).

From (3.69) we obtain

if (3.68) holds, and if in addition

(3.71) r > l-A(16eM)-1000p\

We make use again of the inequality

1 - r3n < 3n(l - r) = 48p2(l - r),

and conclude that (3.68) will be satisfied if

(3.72) r>l-^(eM)-26p.

(3.71) and (3.72) will be satisfied simultaneously if

(3.73) r>l-^(16eM)-1000p4,

after decreasing Ao if necessary.

But (3.70) and (3.73) yield (3.57) and the proof of Lemma 3.4 is complete.

4.    Proof of Theorem 1.  We prove Theorem 1 by showing that given an

arbitrary function $(r) satisfying (2.1), there is an integral function / such that

(4.1) N(r, 0, /) + N(r, i, f) + N(r, oo, /) < \T(r, /),

for

(4.2) Pk - PkHpk) < r < Pk - lk,        k>k0,

where

(4.3) A(r) =
log $ (If)

log 2r    '

which tends to infinity as r tends to infinity by (2.1), {pk} is a sequence which

grows to infinity very quickly, and {^/k} is a sequence decreasing to zero in such a

way that

(4.4) lkpXkPk) ^0   as k -7 oo.

Thus increasing fco if necessary we ensure that all the intervals (4.2) belong to

F2.

We show that we can assume A(r) increasing. In fact, since X(r) —+ oo as r —> oo

there exists rjv such that for r>r^¡,\(r)>N, then we define Ai(r) by

Xx(r) = N,        rN <r <rN+x,
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and $1(7-) by the relation

Then it is clear that A(r) > Ai(r) and therefore by (4.3) and (4.5) $(r) > $i(r).

Hence it is enough to prove that there exists / satisfying (4.1) in a set satisfying

(2.2) with $i(r) instead of $(r).

We shall also assume pk > po = 2 and A(po) > 0, i.e. ^(1) > 1. Then

(4.6) p-kX(Pk)<l,        sopk-pkX{pk)>yk.

Then using (4.3), (4.4), and (4.6) we obtain

f   *(r)dr=j  (Ar)^2rUr>YdPXk(Pk)-{Pk-lk-(Pk-p~kKpk))}

= E^(Pfc)-^A(Pfc)(1-^(M)>(1+o(1))E1 = 00-

feo feo

Next we proceed to construct the function / and the sequence {pk}- Once {pk}

has been defined, we will define 7^ = pk ', and since pk —* 00, (4.4) is

satisfied.

We define / by
00

(4-7) f(z)=YJKzn,
1

and proceed to construct the coefficients bn successively.

We set 61 = 1. Now let {pk} be a strictly increasing sequence of positive integers

such that pi = 1. We assume that we have already defined bn for n < pk and

proceed to construct bn for Pk < n < Pk+i-

Simultaneously we shall inductively define the increasing sequence of positive

numbers {pk} with po = 2 and tending rapidly to infinity and the increasing se-

quence {pfc}.

Let us assume that pk and Pk+i have already been chosen and let Fk(z) be the

function defined in Lemma 3.4 with p — Pk and

(4.8) an - bnpZ    for 1 < n < pk.

Then if an are the coefficients of Fk(z) for all n, we define bn by (4.8) for

Pk < n <Pk+i-

Now we assume that pfe_i and pk have already been chosen. Then we take pk

so large that the following conditions are satisfied:

Pk+i

(4.9) pk > 40eBk

where

A V^-1Ao = -2->

(4.10) pk >

2pk-

A0

Pk

Bk = J2 \b«\

16p;

l-y/2

v=l
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(4.11) p^>+1 > f-(50Gfc^)1000p4,
^o

where Ck = XX=i l&f l> which can be done since X(p) tends to infinity with p, and

finally

(4.12) ^^(X(pk)+ l)logpk-log2 > 8p, log Ç,

where 6 is a number such that 0 < 6 < \, for instance we can take 6 — j, and

again (4.12) can be satisfied if pk is sufficiently large since X(p) tends to infinity as

p tends to infinity.

Now we show that if pk is chosen so that (4.9)-(4.12) are satisfied we can define

Pk+i so that the inductive definition of the sequences {pk},{Pk} is finished and

therefore also the definition of f(z) in (4.7), and we check that f(z) constructed in

this way satisfies (4.1).

First of all we show that if pk satisfies (4.9) then

(4.13) \bn\ < (2pk-i)-n,        Pk<n<pk+i.

In fact by (3.56) in Lemma 3.4 and Cauchy's inequality we have

(r     \~n

—2—)      .        Pk<n<pk+i,

where
Pk Pk

M* = £lW<PÍ*'£rU
t/=l 1/7=1

which is bigger than pi > 2.

Writing

Ao = ^1,        Bfe = £lU
i/=i

we deduce from(4.8) and (4.14) for pk <n < pk+i

\bn\<4QepPr-nA^nBk.

Whence we conclude (4.13) if

prpk<40e(^iyBk

i.e.
/Or,.        i\"/(n-Pk)

Pk > (40eBk)^-p^ ■ (^±

and this will be satisfied for all n > pk if (4.9) holds since Bk > \bx\ = 1.

From (4.13), we deduce that f(z) given by (4.7) is an integral function.

Next we show that all the roots of the equations

(4.15) ^f-) =0    and    Fk(-
\PkJ \Pk

are in the disc {z| |z| < pk - pk        }.
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In fact, let us recall that Fk(z) = F{w(z)}, where

.:(,_YZk=ia^ + ^Vk

1 >~ ß + ElUä.z^-" '

where eMk < p < 10eMk and Mk = YZti K\ = EÍU \K\puk-
The equations F(u>) = 0 and F(ui) = i have at most one root in {w| |w|

Let wo and ojx, respectively, be these roots in case there are any.

The roots of (4.15) are the same as those of

<!}■

(4.16) u
(¿)-

u>o    and   w Wi.

Therefore we can deal with (4.16) instead of (4.15).

The equation u(z) — c has precisely 2pfc roots for |ç| < 1, in particular the

equations uj(z) = ojo and lj(z) — cjx have in total 4p*. roots. Let us write s =

max{|cJo|, |wi|}; then we show that s < \¡2 — 1, so that it is less than a number

between zero and one independent of fc. In fact wo = 0 and since F is univalent in

\z\ < \¡2 — 1, Koebe's ^-theorem implies |u>i| < \¡2 — 1 provided that u > 4 and

since
Pfc Pk

u > eMfc > Mk = J2 \a»\ = E \b»\Pk
v=l v=l

it will be enough to have pi > 4, which is implied by the assumptions po = 2

and (4.9). Therefore by the left-hand inequality of (3.50), all the roots of the two

equations above must satisfy

1 - 16p¿   1 <«.

i.e.

(4.17) < 1-
16p2

16p2 16p^

We now make use of (4.10) and obtain

(4.18) pk >

From (4.18), we get

(4.19)

>
16p2

2-v^      l-(\/2-l)      1

1
1-s

l6pl
< 1-

1

Pk
<

Pk
n-HPk)
Pk

Pk

Therefore all the roots of (4.16) are in {z\ \z\ < Pk~PkX^Pk'}, and the same happens

for the roots of (4.15), which was what we were trying to prove.

Since the set {z\pk — oj~ < \z\ < Pk - Ik} is compact and the functions

Fk(z/pk) and Fk(z/pk) - i have no zeros in it, there is £k > 0 such that

(4.20)
Pfc

> Ek    and Fk A-,
Pk)

>£k-

Finally, we will see that Pk+i, which has not been determined yet, can be take

so that (4.1) holds.
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We write

F* (-) = E B"z"'
W    ¿Ti

and note that the series is absolutely uniformly convergent in {z\pk - pk <

\z\ < Pk — Ik}, so that we may choose p^+i so large that

(4.21) E    \Bn\\z\n<\£k
n=Pk+i

in this set.

We also have by (4.13)

oo oo

E   K\\z\n<   E  2"" = 2
n=Pfc+i + l 77=pfc+i + l

-Pfc+i

for the same values of z, i.e. taking pjt+i large enough we can get that

(4.22)

And then from (4.21) and (4.22)

E     \K\\z\n<\ek.
n=Pk+\+l

(4-23) /(*) -<£) J2   ibn-Bn)zn
p*+l+l

<£fc

in {z\pk - pk X(Pk) < |ar| < pfc - 7fc}.

With the choice of pfc+i the inductive construction of the sequences {pk} and

{pk} is complete the therefore also of the function /. Furthermore we conclude

from (4.20), (4.23), and Rouché's Theorem that the equations

f(z) = 0   and   Fk
Pk)

have equally many roots in {z\ \z\ < r} for those values of r in

Pk - Pk <r <Pk-lk

and the same is true for the equations f(z) = i and Fk(z/pk) = i.

By Lemma 3.4, the number of the roots of all these equations is at most 2pk.

By (4.13) we have |ft„| < 1 for all n. Thus for 0 < \z\ = p < 1/2 we have

\f(z)\<J2pn<-^<2p<l.
ti l-P

We also have for such p

p2        p-2p2

1-p
\nz)\>p-Y,pv = p-rr >0.

n=2

Therefore there is 6, 0 < 6 < |, such that the equations f(z) =0 and f(z) = i

have no roots different from 2 = 0in{;z||2f|<<5}.
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We deduce from this that for Pk - Pk <r < Pk - Ik, we have

n(t,i) =0,    t < 6,        and       n(t,i) < 2pk,    t < r,

so that

(4.24) N(r, i) = jT ^M dt < 2pk log £,

and since f(z) has a simple zero at the origin and no other zeros in {z|0 < \z\ < 6},

we obtain similarly

(4.25) N(r, 0) = J* "^ dt + log S < 2Pk log I.

By Lemma 3.4 we have

(«e) r(,.fk(¿))as¿lh,í-i7jí

in pfc - PfcA(p,:) <r < pk-lklf

(4.27) ^^-= 1 - p-(Mp*)+i) > , _ ^o (16eM )-iooopi

Pfc Pk

where M, is given by M, = X)^=i Io"!' an(^ °y (4-8)

pt pt

Mk = j2\a»\<PkkT,\b»\ = ckppkk
v=l i/=l

where G, depends on the bv, v <pk-

Hence (4.27) is satisfied provided that

pHPk)+i > ^Í(50Cfc^t)iooop?
Ao

which is (4.11).

Therefore (4.26) holds for those r in

Pk- Pk <r < pk- 7fc.

Finally we have by (4.12)

r(r,/(») > T (r,Fk ff )) -log2 > T-r^ (A(pfc) + l)logpfc -log2
(4.28) V        \Pk)) 8000p¿

>8Pí:log^

for r such that

Pk-p~kX(Pk) <r<Pk-lk-

Thus from (4.24), (4.25), and (4.28) we conclude

N(r, 0) + N(r, i) + N(r, oo) < \T(r, f)

in pk - pk <r < Pk-lk-

This proves (4.1) and the proof of Theorem 1 is complete.
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