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ESTIMATES FOR (d - ud)'1 AND CALDERON'S THEOREM
ON THE CAUCHY INTEGRAL

STEPHEN W. SEMMES

ABSTRACT. One can view the Cauchy integral operator as giving the solution

to a certain d problem. If one has a quasiconformal mapping on the plane that

takes the real line to the curve, then this d problem on the curve can be pulled

back ioa.d — pd problem on the line. In the case of Lipschitz graphs (or chord-

arc curves) with small constant, we show how a judicial choice of q.c. mapping

and suitable estimates for d — fid gives a new approach to the boundedness

of the Cauchy integral. This approach has the advantage that it is better

suited to related problems concerning H°° than the usual singular integral

methods. Also, these estimates for the Beltrami equation have application to

quasiconformal and conformai mappings, taken up in a companion paper.

Let T be an oriented rectifiable Jordan curve in the plane that passes through

oo, and let fi+ and Q_ denote its two complementary regions. Given a function /

defined on Y define its Cauchy integral F(z) = Cf(f)(z) off Y by

(o.i) F(,),lfM^,     ^r.
y     ' v '     2iti JT   w-z ^

If F+ and F_ are the restrictions of F to Yl+ and Oo, and if /+ and /_ denote their

boundary values, then the classical Plemelj formula states that

,„,, /±(í) = ±I/w + ¿p.v./r^.     ,er.

(Of course, one must worry about the existence of the limits.) The singular integral

on the right side is also called the Cauchy integral of /.

The problem is to know when there are LP estimates, i.e., ||/±||p < Gp||/||p for

1 < p < oo. If T is, say Cl+£ and O.K. at oo, then it is easy to deduce these

estimates from the corresponding facts about the Hubert transform. This does not

work when Y is not smooth.

If T is the graph of a Lipschitz function A:R —► R, the Lp boundedness was

proved by Calderón [Ca] when 11^4'Hoo is small and by Coifman, Mclntosh, and

Meyer [CMM] in general. G. David [Dv] has shown that for each p, 1 < p < oo,

the Cauchy integral is bounded on LP(Y) if and only if Y is regular, which means

that there is a K > 0 so that for all zo G C and all R > 0 the arclength measure of

{z: \z - z0\ < R} D T is at most KR.

In this paper we shall give a new approach to the Cauchy integral. This approach

is less powerful from the real-variable point of view, and we shall only be able to
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obtain small constant results.  However, it is in some respects more natural from

the standpoint of complex analysis, and can be used for other problems.

The idea is to think of the Cauchy integral as the solution to a d problem at Y,

and then make a change of variables to reduce to a d — pd problem relative to the

line, which is solved by summing a Neumann series.

Let us be more precise. Given z G Y define the jump of F across r at z to be

f+(z) - f-(z). By (0.2) this is f(z). Also, F is holomorphic off Y, so that dF = 0

on C \ T. (Here d = d/dz = \(d/dx + id/dy), d = d/dz = \(d/dx - id/dy).)
These two properties can be reexpressed by saying that, in the distributional sense,

dF = f dzY on G, where dzr denotes the usual measure on Y. (If z(s) is an arclength

parameterization of Y, then dzr corresponds to z'{s)\dz(a)\. In asserting that dF =

f dzr, we are using faQ gdz = fn(dg) dz Adz, a form of Green's theorem.) If F is

another function with the same properties as F, then F - F is entire, and a mild

condition at oo will force it to be 0. Thus F is determined by dF = 0 on C \ Y and

jump(F) = / on T.

Suppose p:C-»C takes R to Y. Let G = FoponC\R and j = /oponR.

Then dF = 0 off T transforms into (d — pd)G = 0 off R, where p — pj/pz is the

complex dilatation of p. (This is well known, and also follows from the calculations

at the end of §7.) Also, the jump of G across R is given by g. Conversely, if we

can find G with these properties, then we have F (assuming p^1 is reasonable).

It is convenient to change the problem a little more. Let C(g)(z) denote the

Cauchy integral on R of g, that is, defined by (0.1) with Y = R. Thus C(g) is

holomorphic off R and has jump g across R. Let H = G - C(g) on C \ R. Then

H has no jump across R, and [d — pd)H = pC'(g) off R, where C'(g) denotes the

ordinary derivative of C(g). Because H has no jump, one can think of this equation

as holding on all of C when interpreted in the sense of distributions; i.e., there is

no boundary piece.

Thus, to estimate the Cauchy integral on Y, we need to understand two things:

(a) what sort of mapping we can take p to be, and in particular what are the natural

conditions on p; and (b) what kind of estimates we can get for (d — pd)-1. It turns

out that one can find bilipschitz mappings p so that p will satisfy certain quadratic

Carleson measure conditions, and when p satisfies such conditions and is small one

can solve (d - pd)H = pC'(g) with Lp or BMO estimates on the boundary values

of H in terms of the corresponding norm on g. This will imply Calderón's theorem.

For convenience we shall restrict ourselves mostly to BMO estimates instead of

Lv. In §11 we will show how to make the necessary changes to treat Lv. This does

not really matter, because one can use the real-variable methods of Calderón and

Zygmund to go from BMO to Lp estimates for the Cauchy integral. See [Je].

In §1 we review some definitions and basic facts, and §2 is devoted to bilipschitz

mappings. In §3 we take care of some minor preliminaries, and estimates for d

are given in §4. We give estimates for (d - pd)~x for a certain class of /i's in §5,

and use that to prove the boundedness of the Cauchy integral on chord-arc curves

with small constant (defined in §1).

In the remainder of this paper we develop these topics further and consider some

variations. The class of n's for which we can estimate (d — pd)-1 is enlarged in §6,

and in §7 we look at the Calderón commutators in terms of perturbing d. In §8 we
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show that an obvious way of trying to improve the estimates in §2 does not work,

which would have allowed us to iterate the perturbation argument to estimate the

Cauchy integral on all Lipschitz graphs. In §9 we show how the d — pd idea can

be applied formally to a certain H°° problem, but that the estimates are missing

in the interesting case. We discuss real-variable analogues of some of the estimates

for (d - pd)-1 in §10. As mentioned before, we show how to replace BMO with Lp

in §11.

There is a closely related problem of finding conditions on p such that if p: C —» C

is a homeomorphism and //¿ = ppz then Y = o(R) is rectifiable and ö|r is locally

absolutely continuous. This will be considered in a separate paper [Se 2].

Some general references for this paper are [JK, G, and Je]. The survey paper

[Se 1] might also be useful. Some of the results here were announced in that paper.

I am grateful to R. R. Coifman and P. W. Jones for helpful suggestions and

comments, and also to the National Science Foundation for partial support in the

form of a postdoctoral fellowship.

1. Basic facts and definitions. It will always be true that z — x + iy,

w = u + iv, and ç = £ + in.

BMO is the space of locally integrable functions / on R such that

11/11* = sup — / \f(x) - fi\dx < oo,

where J is any interval and // = |/|_1 ft f(y) dy. By the John-Nirenberg theorem,

there are G, 6 > 0 such that if / € BMO, ||/||» < 6, then

i [e\m-f'\dx<c.
\i\ Ji

A measure A on C is called a Carleson measure (relative to R) if for each R > 0

and x G R, |A|({iu: \w — x\ < R}) < CR, and the smallest such G is called the

Carleson measure norm of A. If we replace the condition x G R by x G E, where F

is some fixed closed set in C, then we say that A is a Carleson measure with respect

toF.

We are going to want to let singular integrals act on Carleson measures, and so

we will need better Lp control locally. Suppose F is a closed set and 6(w) = 6e(w)

is the distance of w to F. Let a(w) be given. For 0 < a < 1 and z ^ F let

Bz = BZta = {w: \w - z\ < a6(z)} and define

(1.1) ar(z) =ar¡a(z) = (jß- /    \a(w)\rdwj

1 < r < oo. We say that a measure A is an r-good Carleson measure (r-GCM)

relative to F if A is absolutely continuous with respect to Lebesgue measure, A =

a(z)dxdy, and if är(z)dxdy is a Carleson measure. This condition is independent

of a, 0 < a < 1, different a yielding equivalent norms. Notice that when r = 1,

äT(z)dxdy is a Carleson measure iff \a(z)\dxdy is. When r > 1 this puts extra

control on a(z) locally, but in the large nothing really changes. We denote the

r-GCM norm of a(z) by ||a||r-GCM-

This notion of r-GCM should be thought of only as a technical variation on Car-

leson measures. In particular, individual values of r are usually not so important,
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but only that 1 < r < oo. For some things, though, r = 2 will be particularly

convenient, or the requirement r > 2 will be useful for getting nice estimates.

When a(z) has some sort of subharmonicity, e.g., if a(z) = 6(z)\Vu(z)\2, u

harmonic, then àoo,a(^) < Caax¿a(z), and so A = a(z)dxdy is an co-GCM if A is

a Carleson measure.

If / G BMO(R) and C(f) denotes its Cauchy integral, then |y| |G'(/)|2 dxdy is a

Carleson measure relative to R (see [G]), and is hence an co-GCM. More generally,

suppose ip(x) is a function on R such that |^(i)| < G(l + |x|)~2 and /f° ip(x) dx =

0. Define ipy(x) = (l/|y|M*/lvl) for y G R. Then \ipy * f(x)\2\y\-1 dxdy is
a Carjeson measure, with norm dominated by U/H*. (See [CM1, p. 148, or Je,

Chapter 6].)

If we assume also that \ip^'(x)\ < G(l + |z|)-2 for j = 1,2,...,K, then

|yJ'VJ'(V'j, * f(x))\2\y\"1 dxdy is a Carleson measure for the same j's. In partic-

ular, if K = 2 and if

2

a(x,y) = Y,WV3(^y*f)(x)\2\y\-2,
•2=0

then a(x,y)dxdy is a Carleson measure. This implies that ax<a(x,y)dxdy is a

Carleson measure, and a Sobolev embedding argument gives that if b(x,y) =

\^Py*f(x)\2\y\-1,then

b~oo,ß(x,y) < C(a,ß)ä1<a(x,y)    if ß < a.

Thus \ipy * fix^y^dxdy is an oo-GCM if \ip^{x)\ < G(l + |x|)-2, j = 0,1,2,

and / ip(x)dx = 0.

A variation of this is the following. Suppose 9(x) is a G°°(R) function with

compact support, with no condition on f Odx, and 9y(x) = (l/\y\)9(x/\y\). Then

\yV(9y * /(x))|2|2/|_1 dxdy is an oo-GCM with norm < G||/||2. The reason is that

there are ip1,^2 G G°°(R) with compact support such that /ipl dx = 0, i = 1,2,

\y\(d9y(x)/dx) = ipy, and y(d9y(x)/dy) = tf(x). Similarly,

\yiVHy*f(x)\2\y\-idxdy

is an oo-GCM if j > 1.

Let T be an oriented rectifiable Jordan curve that passes through oo, and let

z(t) be an arc length parameterization. We say that F is a chord-arc curve if

Is — t\ < (1 + K)\z(a) — z(t)\ for all s,îêR, and the smallest such K is called the

chord-arc constant of Y. Examples include Lipschitz graphs and logarithmic spirals.

Coifman and Meyer [CM2, 3] showed that if z'(t) = eib^ where b G BMO(R) has

small enough norm, then T is a chord-arc curve, and has small constant. Conversely,

they also showed that if Y is a chord-arc curve with small constant, then there is a

real-valued BMO function b with small norm such that z'(t) = etb^. In fact, they

showed that ||6||, « 4K.

The first part is simple. Suppose b G BMO is real valued, ||6||* is small, s,ieR,

and / = [a,t]. Let ß\ = exb', where as before b¡ is the mean of b over /, so that
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1/3/1 = 1. Then

\z(a)-z(t)-ßI{a-t)\ = \[ (z'M-ßt)
\J s

du

(1.2)

i r*
=   /  (el(b(u'~bl'> - 1)

\J 9

du

< /   |e!(6(")-f")-l|dií
/J s

< J* \b(u)-bi\du<\a-t\\\b\\„

so that (1 + ||6||»)_1|s — t\ < \z(a) — z(t)\. The converse is considerably harder.

If T is a chord-arc curve, then there is a mapping p: C —> C such that p(R) = Y

and p is bilipschitz, i.e., G-1|z -w\< \p(z) - p(w)\ < C\z - w\. See [Tl, 2; JK].
This is often useful for dealing with the geometry of the complementary domains

ofr.
BMO(r) for a chord-arc curve Y is defined exactly as for R, except that arcs

replace intervals.

2. Some well-behaved bilipschitz mappings. To carry out the program

described in the introduction we must first find suitable mappings p: C —► C such

that p maps R to the given curve Y. Here Y will be the graph of a Lipschitz function

with small norm, or more generally a chord-arc curve with small constant. These

mappings will be bilipschitz, and their dilatations will satisfy certain quadratic

Carleson measure conditions.

Good bilipschitz mappings p for Lipschitz graphs Y were first constructed by

Dahlberg, and his construction worked in Rn as well. This was simplified greatly

by Kenig and Stein who found a simple formula, which will be presented in a

moment. Unfortunately, this formula does not work for chord-arc curves, nor does

it give the best sort of estimates. A construction of Tukia [T2] (modified slightly)

does work for all chord-arc curves and gives the better estimates, but it is not very

explicit, because it uses the Riemann mapping. When the chord-arc constant is

small, one can find a formula again, which is essentially just the Beurling-Ahlfors

construction, and which we discuss also in this section.

Let T be the graph of a Lipschitz function A: R —* R with small norm. Let tp be

a G°°(R) function with compact support such that <p(x) = tp(—x), f <p(x) dx = 1,

and set <py(x) = (l/|y|)<p(a;/|y|), y G R, y / 0. Define n(x, y) = py* A(x) if y ¿ 0,

77(2,0) = A(x), and

(2.1) p(x,y) =x + iy + in(x,y).

This is the formula of Kenig and Stein.

PROPOSITION 2.2. //H^'Hoo ¿5 amall enough, then p ia a bilipschitz map of Q
onto itself, p(R) = Y, \Vnn(x,y)\ < Gn||A'||00|y|_n+1 for n > 1, and for n > 2,

\yn-1^np(x,y)\2\y\~1 dxdy is an oo-GCM with norm at most CnWA'W2^.

Such a mapping p was first found by Dahlberg, without the restriction that

H-d'Hcx) be small. When ||j4'||oo is not small one replaces iy by iLy in (2.1), where

L > 0 is large enough.
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Because dn(x,y)/dx = tpy *A'(x), Wdrj/dxWoo < C||j4'||oo, and also

\Vn-\dr,{x,y)ldx)\ < Cn||>l,||00|y|-n+1.

When y # 0, y(dtpy/dy) = tpy, where ip is G°°, compactly supported, and / tp dx =

0. Thus if 9(x) = /^ 4>(u) du, then 9 is also compactly supported. Thus y(d<py *

A(x)/dy) =ipy* A(x) = \y\9y * A'(x), and so \\dr¡(x,y)/dy\\<x = \\0y * ¿(x)||oo <
CWA'IU Also, \Vn-\dn(x,y)/dy)\ < C„||A/||00y-»+1.

In particular, we get that n(x,y) is a Lipschitz function on C, with norm <

G||j4'||oo. If ||j4'||oo is small enough, then o is a small perturbation of the identity

in the Lipschitz topology, and p is bilipschitz.

Let us check the Carleson measure estimates. Since dn(x,y)/dx = tpy * A'(x),

\yiVi(dn(x,y)/dx)\2\y\-1 dxdy is an oo-GCM with norm < G||A'||2 < CH^'H*, by
the remarks of §1. Similarly, since dn(x,y)/dy = (sgny)9y * A'(x),

\yiV3(dr,(x,y)/dy)\2\y\-1dxdy

is an co-GCM, with the same norm estimate. This proves the proposition. An

immediate consequence is the following.

COROLLARY 2.3. If p = dp/dp is the complex dilatation of p, then for j > 1
|yJV-V|2|y|-1dxdy is an oo-GCM with norm < C^WA'W^.   Also ||/í||l°°(c) <

Now suppose that Y is a chord-arc curve with small constant K. Let z(t) be

an arc length parameterization of Y, so that z'(t) — etb^ for some real-valued

6eBMO(R) with ||6||, small.
Let tp, ip be G°° functions supported on [-1,1], tp > 0, tp even, ip odd, / <p(x) dx

= 1, and f rp(x)xdx = 1. Define p: C —♦ C by

p(x,y) = tpy *z(x)+i(sgny)ipy*z(x),        y ¿ 0,

p(x,0) = z(x),

where tpy(x) — (l/|y|)^(x/|y|), as always. This is essentially the Beurling-Ahlfors

construction.

PROPOSITION 2.5. Suppose Y has small chord-arc constant, and p is as in

(2.4). Then p is a bilipschitz map of C onto C, p(R) = Y, ||c>p||i,°°(c) and

II \dp\ - 1||l°°(C) are both small, |VJ'ö(x,y)| < C(j)\y\~j+1, j > 1, and

\dp(x,y)\2\y\~1dxdy    and    W^Vp\2\y\~l dxdy,

j > 2, are oo-GCM's with norm at most G(/)||6||2. Also, if p = dp/dp is the

complex dilatation, then ||aí||¿«>(c) *5 small, and \y3 VJ'/*|2|y|-1 dxdy is an oo-GCM

for j > 0, with norm < G(/)||6||2.

Thus for the mapping (2.4) there are Carleson measure estimates for dp and p

(not just Vp,). Thus p is not far from being conformai.

Because / ip = 0, ipy*z(x) —♦ 0 as y —► 0, and so p(x, y) is continuous everywhere,

even on R. Since ^f(x) is Lipschitz (with norm 1), p is Lipschitz and |VJ0(x,y)| <

C(j)y~]+1, just as in the proof of Proposition 2.2. Using \elx — eiy\ < \x — y\,

it is easy to show that ||z'||* = ||e,6||» < 2||ft||», so that the co-GCM norm of

|y>-1V>fl(x,y)|2|y|-1dxdy, j > 2, is at most G(j)||*'||2 < G(/)||6||2.
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Let us estimate dp. For y > 0 there is a 9(x) G G°°(R) with compact support

such that ydp(x,y) — 9y * z(x). If z(x) = x or z(x) = 1, then p(z) = z or

p(z) = 1, respectively, and in both cases dp = 0. This implies that f 9(x)dx =

0 = f9(x)xdx. Thus if v(x) = /f 9(t)dt, then >> has compact support and

/ u(x) dx = 0. Hence (l/y)9y * z(x) — vy * z'(x), and

^(x.y)]2^!"1 dxdy = |i/y * z'(x)|2|y| dxdy

is an co-GCM with norm < G||2'||2 < G||6||2. A similar argument works for y < 0,

but 9(x) will be a little different, though having the same properties.

Also, \dp(x,y)\ = \vy * z'(x)\ < G||2'||* < G||¿>||», and so dp is small. A similar

argument gives that y|V2ö(x,y)| < G||í>||*, and hence is small, which we will need

shortly.

Consider now dp. As before, there is a compact supported a G G°°(R) such

that ydp(x,y) = ay * z(x) for y > 0. If z(x) — 1, p(z) = 1, dp = 0, which

implies that fa(x)dx = 0. Hence ß(x) = f_a(t)dt has compact support, and

dp(x,y) = (l/y)ay * z(x) = ßy * z'(y). If z(x) = x, then z'(x) = 1, p(z) = z, and

dp = 1, so that / ß(x) dx = 1. Set b(x, y) = (l/2y) f*+* b(t) dt. Altogether, we get

that

\dp(x, y) - elb^y) \ = \ßy* z'(x) - elbix'y) \

= \f ßy(x,u)(z'(u)-etb^^)du

< I'|0v(*.«)lk<(6(u)~6(l,1')) - l\du

< I \ßy(x - u)\ \b(u) - b(x,y)\du< G||6||*.

A similar argument works for y < 0, but with a slightly different ß. Therefore

II \dp\ — l||oo is small.
It remains to show that p is bilipschitz, i.e., that there is a G > 0 such that

C_1\z — w\ < \p(z) - p(w)\ < C\z - w\ for all z, w G C. Let z0 G C \ R be given,

and assume z satisfies \z — zq\ < ^\yo\. By Taylor's theorem,

(2.7) p(z) = p(z0) + (z- zo)dp(zo) + (z - z0)dp(z0) + error,

where | error | < C\z - z0\ \\b\\*, because |V2p(x,y)| < G|y|_1||6||*. Since |«3p(0O)|

and | |dö(zo)| — 1| are both dominated by ||6||*, we get

(1 - C\\b\U)\z - z0\ < \p(z) - p(zo)\ < (1 + C\\b\\t)\z - z0\

when \z — zo\ < ||yo|-

We want to do this for all z, zq, and for this we need a lemma.

LEMMA 2.8. Let a G R and h > 0 be given, and set I = [a — h,a + h],

b¡ = ¡II'1 fjb(x)dx, ßi = elb', z(x) = z(a)+ßi(x-a), andp(w) = z(a)+ßi(z-a).

Then for w such that \w - a\ < \h, \p(w) - p(w)\ < Cn||6||*.

In other words, around a and at the scale of h, p(w) is approximately a translation

and a rotation.
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As in (1.1), for t G I one has that

\z(t) - z(t)\ = \z(t) - z(a) - /3/(r - a)\ < Í \b(s) - bj\ds
(2.9) Ja

< Í \b(a)-bI\ds< \I\\\b\\. = h\\b\\,.

Observe that p is what you get from (2.4) if you substitute z(x) for z(x). This and

(2.9) imply the lemma.

Let us finish proving that p is bilipschitz. Suppose z,w G C are given, and let

us show that C~l\z — w\ < \p(z) - (w)\ for some G > 0. If either \z - w\ < \y or

\z — w\ < 2V, then we fall in the case we have already done, and so we may assume

that \y and \v are < \z — w\. Let a = x and h = 10\z — w\, and let p be as in the

lemma. Then z and w both lie in {c: \ç - a\ < \h}, so that

\z-w\ = \p(z) - p(w)\ < \p(z) - p(z)\ + \p(z) - p(w)\ + \p(w) - p(w)\

<Ch\\b\\, + \p(z)-p(w)\

<10C|«-w|||&l|. + |p(*)-p(w)l-

If the chord-arc constant of Y is small enough so that 10G||6||* < \, then l|2f-w)| <

\p(z) — p(w)\, and p is bilipschitz.

3. Preliminary estimates for the Cauchy integral. Let Y be a fixed chord-

arc curve and let 6(w) = 6r(w) = dist(w,T). Given a function / on Y we define

its Cauchy integral F(z) on C \ Y by (0.1). This makes sense if / G Lp(Y), 1 <

p < co. If / G BMO(r), the integral may diverge, but F(z) can be defined modulo

constants, because the integral defining F(z) — F(w) does make sense for any z,w G

c\r.
Let us define precisely the jump of F across Y using nontangential limits. For

any given K > 0 and z GY define

A(z) = {w G C \ Y: \z - w\ < K6(w)},

B(z) = {(zx,z2):zx,z2 GA(z) and F-1|¿ - 2i| < |z-22| < K\z- zx\},

;•(*) = 3*(F)(z) = sup{\F(zx) - F(z2)\: (zx,z2) G B(z)},

and

(3.1) j(z) = j(F)(z) = lim(F(zx) - F(z2)),

where the limit is taken as both zx G Yl+ and z2 G Yl-, (zx,z2) G B(z), tend to z.

LEMMA 3.2. Suppose that Y is a chord-arc curve and f G LP(Y), 1 < p < co,

or /eBMO(r).
(a) ||/* ||p < Cpll/llp if P < °°> and if f G BMO(r), then for each arc I there is

a constant C¡ such that for each q < co,

(l/r^lAF-G/H^Hdzl)   9<G9||/||*;

(b) j(z) = f(z) a.e. onY;

(c) (¡r(sup{6(w)\F'(w)\: w G A(z)})p\dz\)llp < Cp\\f\\p if p < co, and < G||/||*

if f G BMO;
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(d) 6(w)F'(w) —► 0 aa w —► z nontangentially for a.e. z GY;

(e) \F(z)\ < Cv\\f\\p6(z)-llp ifp < co, and if p = co,

\F(z) - F(w)\ < G||/||*(| logflz - w\ + 6(z) + 6(w))\ + \ log6(z)\ + | logôHI).

Note that (e) implies that F is a locally integrable tempered distribution on C.

As a distribution, dF = fdzr, where dzr is the complex measure on Y defined

by (g, dz?) = fTgdz. Indeed, it is well known that if n G G°°(C) has compact

support, then

ri(z) = —: //   -dn(w)dudv,
itiJJcw-z

i.e., (iti)~lz~1 is the fundamental solution of d. Chasing definitions and inter-

changing orders of integration gives dF = f dzr-

Lemma 3.2 is easy to prove. If w ^ Y, then 6(w)(z — w)~2 dz is a nice mean

zero bump on Y, whose corresponding maximal function is controlled by the Hardy-

Littlewood maximal function. From this it is easy to get (c) and (d) when f G Lp,

and the BMO case is also easy. The p < co part of (e) follows from Holder's

inequality. When p = oo, one integrates F' along a path from z to w such that

/■J" Md/'H?) is controlled by the logarithm stuff. When T = R one can find such

a path by taking hyperbolic geodesies. In general one reduces to Y = R by a

bilipschitz change of variables.

For (a) and (b) observe that

F(zx) - F(z2) = -i- / -.-^-^--/(«,) dw,
2iti jT (w - zx)(w - z2)

so that /*(/) is controlled by the Hardy-Littlewood maximal function (because of

the definition of A(z) and B(z)), which implies (a). By the residue theorem, if

zx G 0+, z2 G Yl-, and f(w) = 1, then F(zx) - F(z2) = 1, and (b) can be derived

from this by standard approximation to the identity arguments.

4. Estimating d of a good Carleson measure. As stated in the intro-

duction, one of our goals is to get good estimates for (d — pd)~l, and as a first step

we need to understand d . In this section we give estimates in terms of BMO and

Carleson measures. We will discuss Lp analogues in §11.

Let r be a chord-arc curve, let fi+ and fi_ denote its complementary regions,

and let 6(w) = 6r(w) — dist(iy,r). Let 9: C —+ C be a bilipschitz mapping such

that (9(R) = T. It was pointed out at the end of §1 that such a 9 always exists. For

each zGY and t G R, define rt(z) = 9(9~1(z) + it). When T = R, we take 9 to be

the identity and rt(x) = x + it. Each w G C can be represented as Yt(z) for one

z G Y and one t G R. Using Yt(z) we can define radial boundary values on Y and

a radial maximal function in the obvious way, for a given function on Yl+ or Q_.

PROPOSITION 4.1. Suppoae a(z)dxdy is an r-good Carleaon meaaure on 0+

(relative to Y), 1 < r < co. Then there ia a locally integrable function F(z) on Yl+

with the following propertiea:

(a) if dF and dF are defined in the distributional sense on Q+, then dF — a,

dF is locally integrable, \dF\ dxdy ia an r-GCM on Yl+ relative to Y, and

\\dF\\r_GCM < C(r,Y)\\a\\r.GcM',
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(b) limt_0+ F(rt(z)) = f(z) exiata for almost all z G Y, and f G BMO(r),

11/11* <G(r,r)||a||r.GCM;
(c) F satisfies a radial maximal function estimate, that for each arc I on Y there

is a constant C¡ such that

(4.2) —I    sup   \F(rt(z))-C,\ \\dz\< C(r,r)||a||r_GCM.
\l\ Ji \o<t<|/| j

If we also assume that r > 2, then F is continuous on Yl+, the boundary values

in (b) exist nontangentially, and in (c) we can replace the integrand in (4.2) by its

nontangential version,

fj(z) = sup{|F(tu)-G/|:tu€fi+, 0 < \w - z\ < 10.5(tu) < |/|}.

The point of this lemma is that it allows us to compute d a on all of C in terms

of F and the Cauchy integral of a BMO(r) function. We will discuss this further

after the proof.

The proof of the proposition is inspired by Jones [Jsl], but it is much easier

than that. Consider first the case where T = R and Yl+ is the upper half-plane U.

Define

(4.3) K(„)=_I__^_,

so that âzK(z, ç) = <5Ç, except for a multiplicative constant, which we ignore.

Let x(ç) denote the characteristic function of {c: \c - i\ > i}, and define

(4.4) F(z) = JI [K(z, c) - K(i, c)x(c)]a(c) dt¡ dn.

We subtract off K(i, ç)x(ç) to make the integral converge at co. There is nothing

special about i, and other point in Í2+ would do, and using a different point will

only change F by an additive constant.

The integral converges at co because the kernel has enough decay and because

\a(ç)\dÇdn is a Carleson measure. F(z) is locally integrable because a(ç) and

\z — c|_1 are. When r > 2, the integral converges absolutely, because a(ç) G

Lroc(Yl+), since o(c) is an r-GCM, and because K(z, ■) lies in Lfoc(Yl+) for all q < 2

and all z G Yl+. One can also check that F is continuous on Yl+ when r > 2. In

any case, 3F = a on Yl+ in the sense of distributions.

Let us estimate dF, which is given by

'"'    «"-Mir a(c)dCdr¡.
z-ç)2z-ç     z-ç(z-ç)2]

This integral converges at co, but for ç near z the first term should be interpreted

as a principal value. The second term does not need to be taken as a principal

value, since \z - ç|-1 is locally integrable, so that that term already gives rise to

something locally integrable.

For z G U let Bz = {w: \w — z\< A¡y} and let Bz denote it double. Set

H{z) = {\k\SSB \dF^\Tdudv) -
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so that in the notation of (1.1) in §1, H(z) = (dF)~(z). Let xo G R and R > 0 be

given. We need to show that

(4.6) // \H(z)\dxdy<CR\\a\\r.GCM-
J J\z-xo\<R

Let a(z) = n(z) + f(z), the near and faraway parts, where n(z) is supported on

{z: \z — Xo\ < 2R}, and f(z) is supported on the complement. We shall assume

that a(z) = n(z), because the contribution from f(z) is easier to deal with.

Let Xz(') denote the characteristic function of Bz. We can split a(ç) into two

pieces, ax(ç) = a(ç)xz(ç) and a2(ç) = a(ç)(l — Xzis)), and this induces a splitting

of dF(w) into two pieces, which we denote as Gx(q) and G2(tu). These also depend

on z, but for convenience we suppress this dependence in the notation.

Let Hx(z) and H2(z) denote the corresponding pieces of H(z), so that for i = 1,2

Hi(z)=(-r±- if   \Gt(w)\Tdud¿
\ I     z I J J B z

Let us show that

(4.7) {\B*\~l ¡J   \Gi(w)\rdudv\      <c(\B

This implies (by chasing definitions) that

Hx(z)dxdy < GF||a||r.GcM.

1 j!   \a{e)\r dtdr,

l/r

¡Ll\z-x0\<R

To prove (4.7) we look at the kernel. By definition,

n 1 n

G'M=-/Xl(^c)2 w - ç     w - ç (tu - r;)2J
ai(ç)dcdr).

Observe that

1 r¡ 1

(tu — c)2 tu - c      (w - ç)2

1

+
V(w-ç)

(tu - c)2 2i     2ÍW-C

Thus

°M-fI.[hlïh?+l'(w,ç) ax(ç)d£dn,

where \L(w, c)| < 100i7_1|tu - c|_1 for wxç G Bz. Since l/(w - ç)2 is a Calderón-

Zygmund kernel, it is bounded on Lp, 1 < p < co (but not L1, and that is why

we had to introduce r-GCM's). The kernel L(w, c) induces a bounded operator on

LP(BZ), 1 < p < co, because fjiw¡<v í7_1|w|_1 dudv < C Altogether we get (4.7),

since ax(c) =a(ç)xz(t;).

Consider now G2(tu). By definition,

\G2(w)\ = IL
JJtc.k-

|C-X0|<2/Î}\S2

1 V 1 V

,a(c)|d^dn
{f.\(-x0\<2R} l^-d3

(tu - ç)2 w - c     w - ç (tu — c)2

V

ax(ç)dc;dri
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for w G Bz. (We have used the fact that if w G Bz and ç GU\BZ, then \w - ç\ and

\w-ç| are comparable.) Call this last expression T(w). Observe that T(tu) < CT(z)

if tu G Bz (by looking at the kernel), so that

H2(z) = (\B.\-1 ff   \T(w)\rdudv\      < CT(z).

By Fubini,

/ / H2 (z) dxdy <C if T(z) dx dy
JJ\z-x0\<R JJ\z-x0\<R

<C ff ff ^>\a{ç)\dçdrldxdy
J J\z-x0\<R J J\c-x0\<2R \z - Ç\

= C ff iff î-^dxdy)|a(c)|de^
J J\ç-x0\<2R \JJ\z-xo\<R \z - Ç\ J

<C ff \a(c)\dÇdn<CR\\a\\r.GCM-
JJ\ç-x0\<2R

Putting together the estimates for Hx(z) and H2{z) gives (4.6), and hence part

(a) of the proposition.

Parts (b) and (c) follow from (a) and Varopoulos [VI], since |VF|dxdy is a

Carleson measure. Let us prove the nontangential analogues when r > 2.

Let us show that F has nontangential boundary values. For x G R define f(x)

formally by replacing z by x in (4.4). We must show that that integral converges

for almost all x.

Let J be any interval and xo be its center, and set I = {x G U:x G I, 0 <

y < |J|}. Analogous to the xii) m (4-4), let x(ç) be the characteristic function of

{c:|ç-x0+î|J||>||/|}. With

Ci = Il [K(xo + i\I\,c)x(ç) - K(i,ç)x(ç)]a(ç)dÇdr,,

the definition of f(x) gives

(4.8) \f(x)-Ci\< ff \K(x,ç)-K(xo + i\I\,ç)x(ç)\\a(ç)\d!;dri,

and from Fubini we get that /, |/(x) - G/|dx < G|/| ||a||cM- In particular, the

right side of (4.8) converges for a.e. x, and so the integral defining f(x) converges

a.e., and f(x) is well defined.
Let us verify that F has / as its nontangential boundary values. Let / be any

interval, and let us prove convergence on I. Let J denote the double of /, and let

J be as above. We may suppose that suppa(ç) Ç J, because the faraway part is

easy to handle. For z G U let Xi(?) = Xi,*(?) denote the characteristic function of

{c: \c — z\ < jo~y}, and let X2 = 1 — X- Observe that

\K(z,c)x2(ç)\<C\K(u,ç)\

if z lies in a cone with vertex U. Observe also that as z —> u G I nontangentially,

K(z,ç)x2(ç) tends to K(u,c). Because

f M \K(u,ç)\\a(c)\dt;dr,dri<C ff \a(ç)\dÇdr,<C\\a\\CM,

and in particular ffj \K(u,ç)\ |a(ç)|d£di7 < co for a.e. u, we conclude from the



CALDERÓN'S THEOREM ON THE CAUCHY INTEGRAL 203

dominated convergence theorem that

F2(z) = llK(z,ç)x2(ç)a(ç)dÇdr}

converges to f(u) a.e. and in £'(|/|) as z —► u nontangentially.

This leaves

Fx(z) = ¡j K(z,c)xi(ç)a(c)dtrdr,,

which we now show tends to 0. By Holder's inequality, |Fi(z)| < Cyär(z), where

är(z) is defined by (1.1), with a = 1/10. (It is here that we use the assumption

r > 2.) One can check that if u G I and \z - u\< lOy, then

yar(z) < C Il      är(s,t)
da dt

7i-s|<10í

.<èy<t<l.ly

so that

/        sup    \Fx(z)\\ du< f C        [f    är(a,t)'
Jl \ \z-u\<cy j Jl J J

\     y<e J \s-u\<10t
\ t<l.le

<C I      I       àr(s,i)ds
JWJ Jo

du

dt.

This last integral goes to 0 as e —> 0, because ffXOJ är(a, t) da dt < C\I\ < co. Thus

Fx(z) —7 0 a.e.   as2-»u nontangentially.

The proof of the nontangential version of (4.2) can be done using the calculations

we just did.

This completes the proof of Proposition 4.1 in the case where Yl+ = U. Suppose

now that T is a general chord-arc curve, and let Ö:C-»C and rt(z) be as in the

beginning of this section. If c G C, c = rt(z), z G Y, and t G R, define c* = r-t(z).

Thus c •—» c* is a bilipschitz reflection across Y. Define

K(w,c) =     *     Ç*~*.
v      ;     w-çw-c*

Clearly dK(w,ç)/dw = C8í(w). Define F(w) as in (4.4), but replacing i by any

fixed tuo G Yl+, and taking x(f) to be the characteristic function of {c: \ç — tu0| >

^¿r(tuo)}. One can prove the proposition in general in the same way as when

Ù+ = U. (For many of the estimates it is useful to use the bilipschitz map 9 to

reduce to calculations on U.) This concludes the proof of the proposition.

Proposition 4.1 allows us to compute d of a good Carleson measure. Suppose

T is a chord-arc curve (the line, for instance), and a(z)dxdy is an r-GCM relative

to T, r > 1. In particular a(z) is a locally integrable tempered distribution on C,

and we want to find another tempered distribution G on C such that dG = a on

C.
Let a+ and o_ denote the restrictions of a to Yl+ and fi_, and let F+ and F_

be functions on Yl+ and Q_ that satisfy the conclusions of Proposition 4.1 with

respect to a+ and o_, respectively. Define F on C \ Y by setting F = F+ on

n+ and F — F_ on Q_.   From the proposition it follows that F is a tempered
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distribution on C, and that dF = a on C \ Y, but not necessarily all of C, because

F may have a jump across Y.

Let /+ and /_ be the boundary values of F+ and F_ on Y, in the sense of (b)

in the proposition. Let 6 = /+ — /_, the jump of F across Y. Define the measure

dz\- supported on Y as before (see §2). Then dF — a + bdzr on all of C in the

sense of distributions. (Inessential multiplicative constants are ignored.) Here bdzr

is interpreted as a measure, and it is also a tempered distribution. This equation

comes from Green's theorem in the form frgdz = /n+ (dg) dz A dz, applied to Yl+

and fi_. For fi_ there is a minus sign for the line integral because the orientation

reverses.

Let Cr(b)(z) denote the Cauchy integral of b,

Cr(b)(z) = ^- f -^-dw,        z<£Y.
2iti Jr w - z

As observed in §3, Gp(6) is a tempered distribution, and d(Cr(b)) = bdzr on C,

in the distributional sense. Thus if G = F — Cr(b), then dG = a on C as tempered

distributions. In particular, G has no jump across Y, because F and Cr(b) both

have jump given by b.

If G is another tempered distribution such that dG = a on C, then G - G is

entire, and hence a polynomial. A mild growth condition at infinity will force it to

be constant, which is natural, since we are working with BMO.

Thus we can estimate d of an r-GCM. In the next two sections we use this to

get estimates for (d — pd)'1 = d    (I — pdd    )~1.

5. The Cauchy integral on chord-arc curves with small constant.

THEOREM 5.1. There exiata n > 0 auch that if Y ia a chord-arc curve with

conatant K < in then the Cauchy integral on Y ia bounded on BMO(r). More

preciaely, given f G BMO(r) there ia a holomorphic function F on C \ Y with the

following propertiea:

(a) F+ = F|n+ and F_ — F|n_ have nontangential boundary valuea a.e. on Y,

which we denote by f+ and /_, where / = /+—/_ and ||/±||* < G||/||*;

(b) F+ and F_ aatiafy the nontangential veraion of (4.2), with the right aide

replaced by G||/||»;

(c) \F'(z)\26r(z) dxdy ia a Carleson measure with norm < G||/||2;

(d) F is given by the Cauchy integral (0.1) of f, modulo constants.

The Cauchy integral on these curves was first estimated by Coifman and Meyer

[CM2, 3]. We have stated the boundedness of the Cauchy integral in this somewhat

indirect way because that is how it comes out in our proof, which is based on the

following estimates for (d - pd)^1 of an r-GCM.

THEOREM 5.2. For each r, 1 < r < 2, there is a -y > 0 so that the following

holds. Suppose p G L°°(C), \\p\\oo < 1, and ImPM-1 dxdy is a Carleson measure

with norm < 72. Then for each r-GCM a(z)dxdy there is a function G(z) on C

such that (d — pd)G = a on C \ R and G = H — C(b), where C(b) denotes the

Cauchy integral of b ( on R), and

(i)6GBMO(R), H&ll. < C||a||r.GcM;
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(ii) if H+ — H\rj and H- — H\l, where U and L denote the upper and lower

half-planes, then H + and H- satisfy (b) and (c) of Proposition 4.1;

(iii) if h+ and h- denote the boundary values of H+ and H-, then b = h+ —h-,

so that G has no jump acroaa R;

(iv) ifVH ia defined onC\R in the diatributional sense, then \VH\dxdy is

an r-GCM, and its norm is dominated by the norm of a. Furthermore, if 2 <

r < co and |n|2|y|_1 dxdy is an r/2-GCM with amall enough norm, then the aame

concluaion holda, and in (ii) H+ and i7_ will satisfy the nontangential version of

(b) and (c) in Proposition 4.1.

Loosely speaking, we think of G as satisfying (d — pd)G — a on all of C. This is

not precisely correct, because dG may not be locally integrable on C, so that p(dG)

may not be defined as a distribution on all of C. On C \ R it is O.K., because dG

is locally integrable there. By the next lemma, though, pC'(b) is locally integrable

on C, where C'(b) denotes the derivative of C(b) on C \ R, which allows us to

interpret p(dG) = p(dH) — pC'(b) as a locally integrable distribution. Notice that

this problem goes away if b is smooth or if p vanishes near R.

LEMMA 5.3. // |/i|2|y|_1dxdy is a Carleson measure and b G BMO(R),

then \pC'(b)\dxdy is a 2-GCM, with norm < G||6||,|| M2|y|_1 dxdy\^¿2M. If
\p\2\y\~1 dxdy is an r/2-GCM, then \pC'(b)\dxdy is an r-GCM, with norm at

most C\\b\\4 \p\2\y\-1 dzdyU^ccM-

Since b G BMO(R), |G'(ô)|2|y|dxdy is a Carleson measure. It is also an

oo-GCM because of the harmonicity of C'(b), by a remark in §1. Thus Holder's

inequality gives the estimate for pC'(b).

Let us show how to derive Theorem 5.1 from Theorem 5.2 as outlined in the

introduction. Let p: C —► C be the bilipschitz mapping in Proposition 2.5, such

that p(R) = T. Let p be the dilatation of p, pz = ppz, so that ||aí||oo is small and

|/i|2|y|_1 dxdy is an oo-GCM with small norm.

Let / G BMO(r) be given, and let /0 = fop, so that /0 G BMO(R). By Lemma

5.3, if a = pC'(fo), then \a(z)\dxdy is an oo-GCM.
Let G be as in Theorem 5.2, with this p and a, and with r = 4. (Any r > 2 will

do; the point is to get nontangential estimates.) Define Fq — G + G(/o), and let

F = F0 o p-1. The fact that id - pd)F0 = 0 off R transforms into dF = 0 off Y,
so that F is holomorphic off Y. Properties (a) and (b) in Theorem 5.1 follow from

their analogues in Theorem 5.2, since they are preserved by bilipschitz mappings.

To prove (c) it is enough to show that |VFo|2|y| dxdy is a Carleson measure.

Since Fo = H — C(b) + C(fo), we need only worry about H, because b, /o G

BMO(R). We know (from Theorem 5.2) that |V#|dxdy is a 4-GCM, and hence

a 2-GCM. This implies that |Viï|2|y|dxdy is a Carleson measure, for the same

reason that l1 Ç I2. Let us check this.

Set a(z) = \VH(z)\, and let â2<a(z) be as in (1.1) with a = ^, say. Define

d(z) = \VH(z)\2\y\, and let di,Q(z) be as in (1.1) also. As remarked in §1, d(z) dxdy

is a Carleson measure if and only if dx<a(z)dxdy is. By definitions, dx¡a(z) <

Cy(ä2ta(z))2, and ä2,a(z) is a Carleson measure. It follows that if ya2<a(z) is

bounded, then diiQ(z) dxdy is a Carleson measure, as desired. Using the notation
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of §1 (around (1.1)),

y2à2%a(z) < C /      ä2ta(z)dxdv
JBz¡a

< C I à2ta(w)dudv < Cy,
J {w.\u-x\<2y}

since ä2,Q(tu) dudv is a Carleson measure. Thus yä2.a(z) is bounded, which implies

that d(z) dxdy = \VH(z)\2\y\ dxdy is a Carleson measure, and hence (c) holds.

Now consider (d). It is enough to show that the Cauchy integral of /+ gives

Ff on fi+ and 0 on 0_, and similarly for /_. This is proved by approximating

T by closed curves inside Yl+. For this it is important that the Cauchy integral of

/+ G BMO is defined modulo constants, so that there is enough decay at co for the

approximation to work.

Thus Theorem 5.1 can be derived from Theorem 5.2. Notice that G is small

compared to ||/||., since p is small, and hence F o p-1 = F0 = G + G(/o) is a small

perturbation of G(/o).

There is another result of Coifman and Meyer [CM 2,3] which is closely related

and which can also be obtained from Theorem 5.2. Suppose that b G BMO(R) is

real valued and has small norm. By the John-Nirenberg lemma, eb^ is locally in-

tegrable, and in fact h(x) = f^ eb^ dt is a homeomorphism of R onto itself. Define

the operator Vj, by Vh(f) = f ° h. It is well known (see [Js 2]) that Vn is bounded

on BMO. Let H denote the Hubert transform, Hf(x) = P. V. J^° f(y)/(x - y) dy,

which is also bounded on BMO.

Consider VhHVr-1, which can be written as P. V. /^0[/(y)/(/i(x)-/i(y))]/i'(y) dy

by making the change of variables y —> h(y). Coifman and Meyer proved that if ||6||*

is small enough, then V^/fV^-1 — H has small operator norm on BMO, < G||6||* in

fact. They used this to prove the boundedness of the Cauchy integral on chord-arc

curves with small constant.

Let us show how we can estimate VhHVr1 — H using Theorem 5.2 and the

same argument as for the Cauchy integral. As in (2.4) define p(x,y) = <py * h(x) +

i(sgny)ipy * h(x) when y ^ 0, p(x,0) = h(x). This is a minor variation of the

Beurling-Ahlfors extension, and if ||6||« is small enough, p(x,y) defines a quasicon-

formal (but not necessarily bilipschitz) map of C onto itself. If p is the dilatation

of p, one can show that \\p\\oo is small and that |n|2|y|_1 dxdy is an co-GCM with

small norm.

A function G defined on some domain is holomorphic iff (d — pd)(G o p) = 0.

The Hilbert transform is to holomorphic functions as V^i/V^-1 is to solutions of

(d — pd)F = 0. More precisely, if / is a given function on R, then /± = ±|/ +

Hf/2iti have holomorphic extensions F± to the upper and lower half-planes, by

(0.2) applied to Y — R. By making the change of variable p, we see that if g is a

given function on R, then g± = +\g + (l/2iti)VtlHVr1g have extensions G± to

the upper and lower half-planes that satisfy (d — pd)G± = 0.

Suppose you are given g G BMO(R). To estimate VhHVr1 g, we must find

G on C \ R such that (d — pd)G — 0 and G has jump g across R, and then

estimate its boundary values, which will be given by +^g+(l/2iti)VhHVr1g (from

above and below). By Lemma 5.3, |uG'(^)] dxdy is an co-GCM with small norm,
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since p is small, and we can use Theorem 5.2 to find E(z) on C \ R such that

(d - pd)E — pC'(g) on C \R and F has no jump across R. Because C'(g) is small,

F is small, and in particular the boundary values of F have small BMO norm.

Thus G — E + C(g) is the function we are looking for, and its boundary values are

a small perturbation of those of C(g). This means that VhHVr1 — H has small

operator norm on BMO. One can check that its norm is < C||6||* if ||o||, is small

enough.

It is worthwhile to compare our arguments with those of Coifman and Meyer.

Theirs used singular integrals acting on the line, while ours deal more with operators

acting on the whole plane. Also, for them the estimates for V^FV^-1 — H were a

stepping stone to get to the Cauchy integral, while for us they are both examples

of the same thing.

Let us prove Theorem 5.2. We first proceed formally. We want to solve

(d — pd)G = a, and so we want to take G = (d — pd)_1a — d    (I — pT)~la, where

T = dd . From §4 we can get that pT is a bounded operator from r-GCM's to

r-GCM's with small norm if p satisfies the hypotheses of Theorem 5.2 (with small

norm). Indeed, if a(z) is a p-GCM, then from §4 we can write d a = F — C(b),

where |VF| is an r-GCM and b G BMO(R). Thus pTa = p(dF) - pC'(g). The
first term is an r-GCM because |VF| is and p G L°°(C), and the second term is

handled using Lemma 5.3. Thus pTa is an r-GCM with small norm.

The problem with this argument is that it is not clear how to interpret pC'(g),

since C'(g) is not locally integrable on C. We had the same problem in stating

Theorem 5.2. However, if we define pC'(g) to be the pointwise product on C\R, and

ignore R, then by Lemma 5.3 we get a locally integrable function on G. Theorem

5.2 was stated in such a way that if we define pC'(g) in that way, then the preceding

formal argument for getting G works. Let us verify that.

Suppose a(z) is as in the statement of the theorem. To find G it is enough to find

Gj = Hj — C(bj), j = 0,1,2,..., such that dGo = a, dGJ+x = pdG, on C \ R, and
such that Hj and bj satisfy (i)-(iv) above, with norm estimates like C^^WaWr-ocu,

where 7 is as in the statement of the theorem. For then we can take G = ^°10 Gj

if -7 is small enough, and G will satisfy the conclusions of the theorem. (Formally,

G3=Gj = d~l(pTya.)

By the remarks at the end of §4, we can find Ho and 60 satisfying (i)-(iv) and

such that if Go = H0- C(b0), then dG0 = a. On C \ R, dG0 = dH0 - C'(b0),

and so p(dG0) = p(dH0) - pC'(b0) is an r-GCM, since dHo is and p G L°°(C) for

the first term, and by Lemma 5.3 for the second. Using §4 again we can find Gi so

that <9Gi = p(dGo). Iterating this procedure gives the Gj.

Theorem 5.2 can be generalized to the case where R is replaced by any fixed

chord-arc curve Y, as long as you know that the Cauchy integral on Y is bounded.

The proof is the same as before. More precisely:

THEOREM 5.2'. Suppoae Y ia a chord-arc curve, and auppoae the Cauchy in-

tegral on T is bounded on BMO(r), so that the concluaiona of Theorem 5.1 hold

for Y. Then Theorem 5.2 holda with R replaced by Y, e.g., Carleaon measures

are defined relative to Y, C(b) is replaced by Gr(6), \p\2\y\~l dx dy is replaced by

\p\26r(z)~1 dxdy, etc. The constant 7 depends on the chord-arc constant of Y and

on the estimates for the Cauchy integral on Y.
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Using this result one can show that the Cauchy integral on curves near Y are also

bounded on BMO. One would like to iterate to get estimates for the Cauchy integral

on all chord-arc curves, or at least all Lipschitz graphs, starting with the real line.

The problem with this is that the size of the allowed perturbation of Y depends on

the estimates for the Cauchy integral on T, and not merely the geometry. Thus if

you try to iterate to get large perturbations, the estimates will blow up. We discuss

this further in §8.

6. Estimates for (d—pd)~l for more general p. In Theorem 5.2 we obtained

estimates for (d - pd)~x when |n|2|y|_1 dxdy is a Carleson measure and is small.

However, the p that shows up for the mapping (2.1) does not satisfy this condition,

but instead |yVw|2|y|_1 dxdy is a Carleson measure.

We would like to have a version of Theorem 5.2 that also allows these types of

/i's. The place where the proof breaks down is with Lemma 5.3: we needed the

Carleson measure condition on p to insure that pC'(g) is a GCM if g G BMO. We

needed pC'(g) to be a GCM to compute d     of it using §4.

However, we can still compute d (pC'(q)) if \yDp\2\y\~x dxdy is a Carleson

measure, by integrating by parts. If g G BMO(R), then yC'(g) lies in L°°(C)

and has boundary values 0 a.e. on R by Lemma 3.2(c) and (d), in particular no

jump across R, and d(yC'(g)) = C'(g). Thus to compute d (pC'(q)), a good

first guess is ypC'(g). This function lies in L°°(C) and has vanishing boundary

values on R, by Lemma 3.3(d), and d(ypC'(g)) = pC'(g) +y(dp)C'(g). The last

term is a GCM, so that d of it can be computed by §4, and so d (pC'(g)) =

ypC'(g) - d    (y(dp)C'(g)) can be computed.

(As in §5, pC'(g) does not make sense as a distribution on all of C, strictly

speaking. Thus we interpret F = d (pC'(g)) to mean that dF = pC'(g) on C\R

and F has no jump across R. We use this interpretation throughout this section.

The preceding computation does give such an F. Note that we can extend pC'(g)

from C \ R to a distribution on C by identifying it with dF.)

In this section we shall use this integration by parts to obtain an extension of

Theorem 5.2 that allows this other class of p's.

There are other conditions on p that one can consider, for example, p G L°°(C),

yVn  €  L°°(C), and \y2V2p\2\y\~l dxdy a Carleson measure.    For such a p,

y(dp)C'(g) will not be a GCM, and to compute its d one must integrate by

parts again:

d-\y(dp)C'(g)) = \y2(dp)C'(g)-d-\\y2(tp)C'(g)).

The last term can be handled using §4. More generally, one could assume that

yiVip G L°°(C) for / = 0,1,...,K - 1 and \yKVKp\2\y\~l dxdy is a Carleson

measure. To compute d (pC'(g)) for such a p one must integrate by parts K

times. We shall not consider these more general conditions on p in detail because

the algebra is messy and because it is not clear what the interesting examples are.

There is another extension which is more interesting, which is to replace R by a

chord-arc curve Y. In the above integration by parts we used the function y (e.g.,

in d(yC'(g)) = C'(g)), which is good for R but not for Y. There is a substitute for

T, given by the following.
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LEMMA 6.1. Suppose Y is a chord-arc curve. Then there exists a complex-

valued function 7 = 7r defined on C with the following properties:

(^)6r(z)/C<\1(z)\<C6r(z);

(b) |V'7(z)| < cm*)*-1;

(c) ifj > 2, then \6r(zy-1V^(z)\26r(z)-1 dxdy is an oo-GCM;

(d) \dqiz) - l|2<5r(2)-1 dxdy is an oo-GCM.

Theae eatimatea depend only on the chord-arc constant ofY.

This function 7(2) is a variation of the "adapted distance function" on Lipschitz

domains in Rn of B. E. J. Dahlberg. There one requires 7(2) be be real-valued

and that (a), (b), and (c) hold, and also that d^/dy > G > 0. Notice that if 7(2)

satisfies (a), (b), and (c) and also |c*7| > c > 0, then 7(2) = (d^(z))~l^(z) satisfies

(a), (b), (c), and (d).

The proof of Lemma 6.1, which is based on conformai mappings estimates, will

be given at the end of the section.

Let us show how one uses 7(2) to compute d . For this, and for the rest of

the section until we prove Lemma 6.1, we assume that the Cauchy integral on Y is

known to be bounded on BMO(r), so that the conclusions of Theorem 5.1 hold.

Suppose g G BMO(r) and that we want to compute d (C^{g)). When T = R

we multiplied by y. In the general case we try multiplying by q:d{^C'(g)) —

(di)C'T(g) = C{.(g)+(d-t-l)C'(g). By Lemma 6.1(c) and Lemma 5.3, (ö^-ljcf (g)

is a GCM, and so d of it can be computed using §4. (Strictly speaking, we

should extend Lemma 5.3 to the case where R is replaced by a general curve Y,

and where one requires that \p\26r(z)~1 dxdy is a Carleson measure relative to Y.

This extension is easy.) Thus we can compute d    (C^{g)).

Suppose now that p G L°°(C) and |V/i|2<5r(2)dxdy is a Carleson measure (rel-

ative to T). To compute d    (pC'T(g)), we first observe that

d(lpC'r(g)) = pC'v{g) + (Ô7 - l)pC'v{g) + i(dp)C{.(g).

By Lemma 5.3 again, the last two terms are GCM's and d of them can be

obtained using §4. From this we get d    (pC'v(g)).

What we want to do now is to get an extension of Theorems 5.2 and 5.2' that

allows /z's such that \Vp\26r(z) dxdy is a Carleson measure with small norm. That

is, we want estimates for (d - no)-1. To do this we need not only to control

d (pC'T(g)), but also d (pdd )3, as in §5. This is achieved by more integration

by parts. There is a complication, which is to properly choose the space of functions.

In §5 we just used r-GCM's, but now other terms show up, like 7/iCf(o), which is

not a GCM, and more generally, (l/n!)7nGp^(o), because we have to repeat the

integration by parts. We must first define our function space to incorporate these

new terms, and afterwards the estimates for (d - pd)~l will be easy.
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Using G  1à~r(z) < \"t(z)\ < C6r(z) and the Cauchy integral formula one can

show that there exists D = D(Y) > 0 so that if G(z) is holomorphic off Y, then

(i)       SUp±|7(2)P'|G«(2)| < FJSup|7(2)||G'(2)|,
í¿rj!  ' z<£r'

(6-2) (ii) ltl(zyG^(z)

1/2

6r(z)   ldxdy

oo-GCM

< Lfi\\ \1(z)G'(z)\26r(z)-1dxdy\\1¿2GCM.

Of course the GCM norm is taken relative to Y.

For 2 < r < co define

M2ir = M2tr(Y) = {pG L°°(C): \Vp(z)\26r(z)dxdy is an r/2-GCM relative to Y},

and we give it the norm

ll^llM2,r = IH|l°° + || |V/z|2<5r(2)dxdy||r/2.GcM.

Here Vp denotes the distributional gradient on C\T; we ignore anything that lives

onT.

For 2 < r < co we define the space Ur — Ur(Y) to be the set of all locally

integrable functions on C that can be represented as an I1 sum of functions of the

following two types:

(6.3) (i)    F-Cr(b),    where b G BMO(r), ||o||* < 1,

|VF|dxdy is an r-GCM with norm < 1, F+ = F|n+ and F_ = F|n_ satisfy (b)

and (c) of Proposition 4.1 with ||/±||* < 1 and with the left side of (4.2) at most 1,

and where the jump of F across Y = f+ — /_ is equal to bj; also, when r > 2, we

require that the nontangential versions of (b) and (c) in Proposition 4.1 hold, and

that the left side of the nontangential version of (4.2) be at most 1;

(6.3) (ii)    m(z)D^(jl)-11(zyCiTj)(b),    where 3 = 1,2,3,...,

6 G BMO(r), ||6||* < 1, m(z) G M2,r, ||m||Ma,r < 1-
By Lemma 3.2(c) and (d), and also (6.6), a function of type (6.3)(ii) is bounded

by a constant depending only on Y and has vanishing nontangential boundary values

a.e. on T, from above or below. Since functions of type (6.3) (i) are locally integrable

and have no jump across Y, the same is true of all the elements of Ur. Also, the

left side of (4.2) (or its nontangential version, when r > 2) will be bounded for

all elements of Ur(Y), since that is true for Cr(b) (because we are assuming that

the Cauchy integral on Y acting on BMO is bounded) and since functions of type

(6.3) (ii) are bounded.

We define the Ur(Y) norm of a function / to be the infimum of J2 \ak\ over au

representations / = J2ak'Pk, where each tpk is of the form (6.3)(i) or (ii). Note

that many tpk's may be of type (6.3)(ii) with the same j but different m's and g's.

We consider constant functions to have norm 0.

Define U'r(Y) to be the space of functions on C \ Y which can be represented as

an Z1 sum of functions of the following two types:

(6.4)(i) a(z), where |a(ar)| dxdy is an r-GCM with norm < 1;

(ii) m(z)((j - l)!)-1F-J + 17(2p-1G^)(6), where m, j, and b are as in (6.3)(ii).

The U¡.(Y) norm is defined analogous to the Ur norm. One should think of elements

of U¡.(Y) as being derivatives of elements of Ur(Y), by the following.
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PROPOSITION 6.5. (a) If f G Ur(Y) and if df anddf are defined on C \ Y
distributionally, then df and df lie in U¡.(Y), with norms dominated by the norm

off.
(b) If g G U¡.(Y), then there is an f G Ur(Y) such that df = g on C \ T, and

with a norm estimate.

The / in (b) is unique up to an additive constant. For suppose fi,f2 G Ur(Y)

satisfy 3/i = df2 on C \ Y. Then d(fx — f2) = 0 on C \ Y, and hence on G, since

/1 - /2 has no jump across Y (because fx and f2 do not). Thus fx — f2 is entire,

and hence a polynomial since it is a tempered distribution. Since fi — f2\r lies in

BMO, /1 — f2 must be a constant. In particular, d is well defined as a map from

U'r into Ur.

Observe that although g G U'r(Y) is only defined on C \ Y, it can be extended to

a tempered distribution on C by identifying it with df, f as in (b). Because / has

no jump across Y (by definition of Ur(Y)), df will not have a boundary term on Y,

and so this identification is reasonable.

Before proving Proposition 6.5, let us use it to estimate (d — pd)_1. The point

is that if d, d, and d     are defined by Proposition 6.5, then

(8 - pd)-1 = d~\l - pdd'1)-1

can be dealt with as in §5.

For 2 < r < co, define

N2,r = N2:T(Y) = {pG L°°(C): \p\26r(z)-1 dxdy is an r/2-GCM relative to Y},

and give it the norm

IHk2.r = IMU°°(c) + II H^rW-1 da;dy|li/2-GcM-

This is the sort of condition we considered in §5.

LEMMA 6.6. If g G U'r(Y) and p G M2,r(Y) or p G N2,r(T), then pg G U'r(Y),
with

WßgWu^CMWgWu,,
where \\p\\ denotes the M2¡r or the N2,r norm of p.

This is easy to check. If p G M2,r, one can show that if g is of type (6.3)(ii),

then so is pg. This uses the fact that if mx,m2 G M2^r, then mxm2 G M2j. If

p G N2tT, one can show that if g is of type (6.3)(ii), then pg is an r-GCM, i.e., a

term of type (6.3)(i), and with bounded norm. This uses (6.2)(ii), Lemma 5.3, and

the fact that |Gp(Z>)|2¿r(2) dxdy is a Carleson measure, since b G BMO.

THEOREM 6.7. Suppose p G L°°(C), p = px + p2, where px G M2,r and

P-2 G N2:r, 2 < r < co, and that px and p2 have small enough norm (depending on

Y and the estimate for the Cauchy integral on Y). Suppose g G U¡.(Y). Then there

is a G G Ur(Y) such that (d — pd)G = g on C \ Y, and the Ur(Y) norm of G is

dominated by the U'r(Y) norm of g.

This is proved in a similar way as Theorem 5.2 was proved. It is enough to find

Gj G Ur, j = 0,1,2,..., with geometrically decreasing norms such that dGo = g

and dGj+x = pdGj on C \ Y, for then G = Y^o^j uas the desired properties.
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One can find Go using Proposition 6.5. If G2 has been obtained, then dGj G U'T,

pdGj G U'r by Lemma 6.6, and one can find GJ + i G Ur such that dGj+x = pdGj

on C \ T by Proposition 6.5. The decrease of the norms of the Gj comes from the

assumption that p is small.

The basic example for Theorem 6.7 is when g = pC'(b), b G BMO(r), which

is what shows up when estimating the Cauchy integral on a nearby curve, as in

the introduction. In particular, one can use Theorem 6.7 and the mapping (2.1) to

obtain estimates for the Cauchy integral on Lipschitz graphs with small constant,

just like Theorem 5.1 and its proof. The mapping (2.1) depends on the Lipschitz

graph in a very simple way, which makes it possible for us to compute in more

detail what our d approach is doing to the Cauchy kernel. This is discussed in the

next section.

Let us now prove Proposition 6.5. To show that d and d take UP(Y) into Up(T)

boundedly, we need to see what they do to terms of type (6.3)(i) and (ii). The

derivative of a term of type (i) is trivially a term of type (6.4) (i). For a term of

type (6.3) (ii) we have that

d{m(z)D^(jl)-11(zyClij)(b)}

= (dm)(z)D-*(j\)-11(zyc¥)(b)

+ m(z)D-'((j - 1)!)-1(Ö7)(2)7(^-1G^(6)

+ m(z)D-i(jl)-11(zyC{Tj+1)(b).

The last term is of type (6.4)(ii), by definition. So is the middle term, except

for a constant factor, because d^ G M2,r by Lemma 6.1. The first term on the

right is an r-GCM of bounded norm, and hence of type (6.4) (i). This is because

\dm(z)\26r(z) dxdy is an r/2-GCM and \C'V(b)\26r(z)dxdy is an co-GCM with
norm < G||6||2 < G, and by using (6.2)(ii) and Schwarz's inequality, as in the proof

of Lemma 5.3.

If we took d instead of d the above calculation simplifies because the last term

does not appear.

Now consider part (b) of Proposition 6.5. Given g G U¡.(Y), we want to find

/ G Ur(T) such that df = g on C \ Y. If g is of type (6.4)(i), we can find / of type
(6.3)(i) by §4.

Suppose g is of type (6.4)(ii), i.e.,

g(z) = m(z)((j - l)!)-1F^ + 17(2r1GÍ.j)(6).

The idea is that when you multiply this by 7(2)//, you get an approximation to

d of it, leaving terms that can be handled using §4. (Indeed, if m = 1, 7(2) = 2y,

and Y — R, then that gives d    g exactly.) More precisely,

ä(m(2)(/!)-1F-J+17(2)^C^)(ft))

= dm(z)(jl)-1D-'+11(zyC[rj)(b)

+ m(z)((j - l)\)-lD-i+H*)*-l(H*) - 1)4J)W

+ m(z)((J-l)\)-1D-*+11(zy-1C{Tj)(b).
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The last term is what we want to take d of. The left side is d of something of

type (6.3)(ii), except for a factor of D. If the other two terms are r-GCM's, then

one can find d of them as terms of type (6.3) (i), by §4. As usual, one proves that

they are r-GCM's using (6.2) (ii) and Schwarz's inequality. For the first term one

uses also that |9m|2<5r(2) dxdy is an r/2-GCM, while for the second one uses that

|¿>7 - l|2¿r(2)_1 dxdy is an co-GCM, by Lemma 6.1.

That proves Proposition 6.5. Let us now come back and prove Lemma 6.1. We

shall find such a function 7(2) on Yl+; one can find 7 on fi_ in the same way.

Let $ be a conformai mapping of Yl+ onto the upper half-plane such that $(co) =

co. Define 7(2) = 2($'(z)) Im$(2). Condition (a) follows from the fact that

lm$(z) « |$'(2)|<5r(2). (See p. 22 of [PI] or (1.6) in [JK].) The distortion theorem

for Schlicht functions applied to the restriction of $(tu) to {w:\w — z\ < 6~r(z)}

implies that

(l/c)\$'(w)\<\&(z)\<C\&(w)\

when Itu - z\ < §<5r(¿). This and Cauchy's integral formula yields |$(J'(tu)| <

C(j)6r(z)~:'+1\^ (z)\ if/ > 2 and |tu-2| < ^Sr(z). From these estimates one gets

(b) easily.

To prove (c) and (d) it is enough to show that if f(z) = $"(z)<&'(z)~x, then

for / > 0, \6T(z)l+1fW(z)\2êr(z)-1dxdy is an co-GCM relative to Y. That this

is enough follows from the estimates we just did and direct computation. (For

example,

07 = 23(<F~1)Im$ + 2¥~ld(lm<¡>)

= -2$7~2<F7(Im$) + l.)

The Cauchy integral formula allows us to reduce to / = 0. Because f(z) is holomor-

phic, it is enough (by a remark in §1) to show that |/(2)|2ór(2)dxdy is a Carleson

measure instead of an co-GCM.

Notice that / = g', where g = log$'. If * = $-1, then $'(2) = #'(<I>(2))-1, so

that g = -log^'($(2)). Because Y is a chord-arc curve, log*' lies in BMOA of

the upper half-plane, by a theorem of Lavrentiev and Pommerenke (see [P2, JK]).

We are therefore reduced to the following.

LEMMA 6.8. Suppose h(z) lies in BMOA of the upper half-plane, and set g(z) —

h(${z)) on Yl+. Then |o'(2)|2<5r(2)dxdy is a Carleson measure (relative to the

chord-arc curve Y).

This lemma is not hard to derive from the Hp theory on chord-arc domains in

[JK]. We shall assume the reader is familiar with that paper.

To show that |g'(2)|2r5p(z) dxdy is a Carleson measure it is enough to show that

for k(z) lying in H2(Yl+),

(6.9) ¡j    \k(z)\2\g'(z)\26r(z)dxdy<C\\K\\2.

Indeed, suppose 20 and R > 0 are given as in the definition of Carleson measure.

There is a tuo G fi_ such that 6r(w0) > R/C and |tu0 - 20| < CR. This can be

shown using a bilipschitz mapping of C onto C that takes R to Y. Define k(z) =

R3/2(z — Wq)~2, which lies in F2(n+) with norm bounded independently of 20 and
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R. Applying (6.9) with this k(z) shows that (6.9) implies that \g'(z)\26r(z)dxdy

is a Carelson measure relative to Y.

To prove (6.9) we reduce to the upper half-plane using the conformai mapping

\f. The left side of (6.9) is equal to

//J Jv
|fc(*(2))|2|&'(*(2))|2¿r(*(2))|*'(2)|2dxdy

UHP

J Jr.
\k(*(z))\2\(go*y(z)\26r(*(z))dxdy.

UHP

We noted before that |<I>'(2)|ór(2) is comparable to Im$(2). This implies that

6r($(z)) « y|<í'(2)|. Substituting this and ft = jo$ gives above

< G ff      |fc($(2))*'(2)1/2|2|/i'(2)|2ydxdy.
J ./UHP

Because h G BMOA, |n'(2)|2ydxdy is a Carleson measure on the upper half-plane,

this expression is dominated by the square of the F2(UHP) norm of (fccf)^')1/2,

which is equivalent to the F2(Q+) norm of k. This proves (6.9), and finishes the

proof of Lemma 6.1.

7. A closer look at the Calderón commutators. It is worthwhile to com-

pare our methods with those of Coifman, Mclntosh, and Meyer [CMM]. To do this

properly we need to understand what the d — pd approach does to the Calderón

commutators.

Let AR ■—► R be Lipschitz, ||^4'||oo small, and let Y denote its graph. To avoid

technicalities, let us make the a priori assumption that A' is compactly supported

and Holder continuous. In terms of the graph coordinates x 1-+ x + iA(x) the

principal value version of the Cauchy integral in (0.2) is given by

*/(*) = ¿P.V./_
f(y)(l + iA'(y))

-00 (x-y)+i(A(x)-A(y))
dy.

The Calderón commutators are defined by

so that R — ̂ 2^'=0(i/2it)(—i)nRnM, where M denotes the operator of multiplica-

tion by 1 +iA'.

Because a power series is a power series is a power series, we ought to be able

to re-express the Calderón commutators in terms of the calculations in §§5 and 6.

Well suited for this is the mapping given in (2.1), p(x, y) = x + iy + ir¡(x, y), where

r¡(x,y) = tpy * A(x) if y 7^ 0 and n(x,0) = A(x). In §§5 and 6 we worked with

00

id - pd)'1 = d~\l - pad'1)'1 = d'1 ^2(fidd~1y,

j=0

where p = (dp){dp)~1. We could expand p into a series in A, substitute that into

the series for (d — pd)"1, and then collect terms to get the Calderón commutators,

but that would be a horrid mess. Instead we use a slight variation of the d - pd

calculation to make the algebra tractable.
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Suppose / is defined on Y, say smooth and compactly supported for technical

convenience, and let F be its Cauchy integral (0.1), so that dF = 0 off Y and

the jump of F across Y is /. Also, F'(z) is locally integrable if / is, say, Holder

continuous. Let G = F o p, so that the jump of G across R is given by g(x) =

f(p(x)) = f(x + iA(x)) and (pzd - pzd)G = pz(d - pd)G = 0 off R. Thus if we

compute (pzd — pjd)G on all of C we get only a boundary term coming from the

jump.

When you compute the distributional derivative dG/dx on C you get the same

thing as on C\R; there is no contribution on R from the jump. When you compute

dG/dy on C, though, you get not only the part from C \ R, but you also pick up

a boundary term from the jump, namely g(x) dx, where dx denotes the measure

on C that is supported on R and agrees with Lebesgue measure there. Because

d = \(d/dx + id/dy) and d = \(d/dx — id/dy), the boundary terms for dG and

dG are ^ig(x)dx and -\ig(x)dx, respectively. Thus, on C, we get that

(pzd- Pzd)G = (pz + pj)(i/2)gdx.

Since pz + pz = dp/dx, and since the right side lives on R, we get

(pzd-pzd)G = (i/2)(l+iA'(x))gdx.

We can rewrite the left side as

((1 + in,)d - irtzd)G = (I + i(r,z - ruT^dG,

where T — dd    , so that

(7.1)

G = d  \l + i{riz-rrzT))-1r-Mgdx

= Í£(-tr^1fa.-»»r)B] (j¿Mgdxy

The boundary values of F on Y from above and below are given by (0.2). Thus

the boundary values of G on R above and below are given by

l 1 °°
-g±Rg=-g±J2^(-l)nRnMg

71=0

1 °°
= -(1 + iAT'Mg ± ¿2 ^{-i)nRnMg

77 = 0

OO ,1 . N

= 52(-i)n{îiAT±^Rn)Mg.
77 = 0

Since n is a linear function of A, we get by matching terms homogeneous of the

same degree that the boundary values of

(7.2) {-i)nà~\r,z -r¡z-T)n (¿Mgdx)

from above and below are given by

(7.3) {-i)n{i{AT±iRn/2it){Mg).
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When n = 0, Rn is the Hubert transform, d (h dx) is given by the Cauchy integral

of h, and this statement reduces to (0.2) for Y = R.

This representation for the Calderón commutators should be compared with the

P< — Qt formulas in [CMM]. Here we are computing the nth Calderón commuta-

tor in terms of the nth power of an operator acting on functions on C, while in

[CMM] the nth Calderón commutator is represented as an integral of nth powers

of operators acting on R. Also, in [CMM] one works with spaces like L2 (R), while

here we must estimate the operators on the space of r-GCM's, or Ur and U'T from

§6-
It is natural that one can represent the nth Calderón commutator as an nth

power, since one is looking for estimates like ||-ñn|| < Cn to get Calderón's theorem.

We should explain how one estimates the right side of (7.1) using §6. This is

not immediate because Mg(x)dx does not lie in U'T, and so we must enlarge that

space.

We should first get straight what estimates we are looking for. Unlike R, Rn

is not bounded on BMO because it does not map constants to constants, and

so we must instead consider Rn as an operator from L°° into BMO. We do not

lose anything, because standard methods (see [Je]) allow one to show that R is

bounded on BMO if it maps L°° into BMO boundedly. Thus we want to show that

if g G L°°(R) then we can get BMO estimates for the terms in (7.1).

We need to take a closer look at nz and n^. By Proposition 2.2, nz and «=

both lie in M2, with norm < C||v4'||oo- Also, nz and 77= are smooth off R, and

their boundary values are given by ^A'(x), from both above and below. Indeed,

(d/dx)r](x,y) = (d/dx)(tpy * A(x)) = tpy * A'(x) tends to A'(x) as y —► 0. Also

0.(7.4) —— tpy * A(x) = I      — tpy(x — u)A(u)du^>0a.e.    as y
&y J—oo oy

For a.e. x, A(u) = A(x) + A'(x)(x -u) + o(\u - x\) asw->i. Since / tpy(u) du = 1

and /tpy(u)udu = 0, the latter because we chose tp to be even, we get that

f°°   d f°°   d
/      — tpy(x — u) du — 0 =  /      —tpy(x-u)(x — u)du.

j—oo &y j—oo ®y

Thus in the right side of (7.4) we can replace A(u) by o(\u — x|), from which (7.4)

follows.

Thus nz and ry¡ are well defined on R. In particular, multiplication of Mg(x) dx

by nz or nz makes sense.

To use §6 to estimate (7.1), we need to enlarge Ur and U'r. Define U'r just like

we defined U'T before, except we now allow also a third type of term, h(x) dx, where

h G L°°(R), ||/i||oo < L and (as before) dx denotes Lebesgue measure supported on

R. Similarly, we enlarge Ur by allowing it to contain also terms of the form C(h),

i.e., the Cauchy integral of h, where h G L°°(R) and \\h\\oo < 1- This new larger

space we call Ur. Thus the elements of Ur are allowed to have jumps, unlike Ur,

but the jumps must be bounded.

We also define M2>r to be the space of p G M2,r such that u is continuous on

C \ R, has radial boundary values almost everywhere on R, and these boundary

values are the same from above and below (i.e., no jump). Thus nz and ??= lie in

M2,r-
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Let us indicate how one extends the result of §6 to UT and U'T. Analogous to

Proposition 6.5, d, d:Ur —► U'T and d :U'T —► Ur. Now, when we compute d

and d, we must allow for boundary terms coming from the jumps. We need only

check what happens to the new terms.   If C(b) G Ur, then dC(h) = \hdx and

dC(h) = C'(h) + \hdx, both of which lie in U'T. IfhdxG U'T, then ¿T1 of it is

2C(h) G Ur. Analogous to Lemma 6.6, if p G M2>r and g G U'T, then pg G U'r. One

need only check the case where g = hdx, and that is O.K. because p must be well

defined on R. Just as in Theorem 6.7 and its proof, one can estimate the terms of

(7.1) as elements of Ur, and show that the series converges in Ur if ll-A'Hoo is small

enough.

(We have been sloppier than usual about distribution theory in the above com-

putations. These things work out if we make a priori smoothness assumptions on /

and A. If we do not, then we cannot define everything in terms of classical distri-

bution theory, but instead we have to reinterpret d and d slightly to make things

work out, like we did in §§5 and 6.)

There is a more direct way of computing the relationship between the Calderón

commutators and perturbations of d, but which is less convenient for worrying

about jumps and boundary values.

Suppose p: C —» C is bilipschitz and that h is, say, Lipschitz and compactly

supported. Then

d(h op) = ((dh) o p)pj + ((dh) o p)p^,

d(hop) = {(dh)op)pz + ((dh)op)-pz.

Multiply the first by pz and the second by pj, and subtract

(7.5) (pzd - Pzd)(h o p) = {(dh) o p)(\pz\2 - |^|2).

Define Vp, Dp, and Mp by Vp(f) = f o p, Dpf = (pzd - pjd)f, and Mpf =
i\Pz\2 - \Pz\2)f- Then (7.5) becomes

DpVp(h) = MpVp(dh),    or    Dp = MpVpdVp-1(h).

Thus
TT-l,

Drx(h)(z)=Vpd    Vp-1M-1(ñ)(2)

= V» (17^r-(vp-iMrih)(w)dudvsj (z)

= V>{L^pMh{w)dudv)iz)

except for an unimportant multiplicative constant. In the third equality we used

the change of variables formula and the fact that \pz\2 — \pj\2 is the Jacobian of p.

Suppose p(z) = z + in(z), where n has small Lipschitz norm. Then

»7=0
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Also,

D;1 = (d + ir,zd-imd)-í=Tí(I + i{rlz-mT))-í
oo

= Y,i-i)nd~1{rlz-rtwT)n,
77 = 0

where T = dd     as always. Thus

(-i)"d-l(r,z-mT)nh(z) = (-i)n I {v{{ZJj^Jirh(w)dudv,

except for a multiplicative constant for the right side.

8. Perturbations of Lipschitz graphs and why you cannot (in general)

iterate to get all Lipschitz graphs. Let A0: R —► R be a Lipschitz function and

let Ax be another, and let To and Yx denote their graphs. Suppose \\A'0 — j4.iII«, is

small. As in §2, define mappings po and px of C onto itself by

Pj(x, V) = x + iLy + i<Py * aj(x),       j = 0,1,

where L > GH-A'-Hoo is large enough so that the pj are bilipschitz.   As before,

pi{R) = Ti.
Define p = px o p0 *. Then p is a bilipschitz map of C onto itself which is a

small perturbation of the identity, since \\A'0 — A'x\\ is small and p(Yo) = Yx. One

can show that the dilatation p = p^/pz of p lies in M2t00(Yo), with small norm if

\\A'o — A'x\\ is small, using Proposition 2.2 and Corollary 2.3.

Let Go and Gi denote the Cauchy integral operators on Y o and Yx. Suppose

that we know that Go is bounded on BMO (so that the conclusion of Theorem 5.1

holds for r0), and that we want to estimate Gi. As in the introduction and also

§5, this reduces to the following: given g G BMO(r0), find G on C \ T0 with no

jump on To and BMO boundary values and satisfying (d — pd)G = pC0(g). This

can be done using Theorem 6.7, since C0(g) G Ur(Y0) for every r < co. Thus the

Cauchy integral on Yx is bounded on BMO(r0) if \\A'Q — AJloo is small enough.

An interesting special case of this is when Ax = XAo, A close to 1. One can use

these estimates to give another proof of the differential inequality of Calderón [Ca].

One would like to iterate this perturbation argument to go from the real line to

all Lipschitz graphs. As pointed out at the end of §5, this does not work, because

the estimates explode. It would be interesting if one could find a way of making

this work. That would require better control on the relationship between p and the

geometry of Y.

There is a natural way to try to fix this that works for some particularly nice

Lipschitz domains, e.g. sawtooth domains. The point is that if we can find functions

7(2) that satisfy somewhat better estimates than in Lemma 6.1 then one can get a

better version of Theorem 6.7 that allows the iteration procedure to converge.

Let us be more precise. Let T be a Lipschitz graph (or a chord-arc curve), and

suppose we know that there is a function 7(2) on G that satisfies (a) and (b) of

Lemma 6.1, but instead of (c) and (d) it satisfies

(8.1) (c') \8T(zy-lViv(z)\dxdy is an co-GCM if/ > 2,

(d') |97(2) - l|¿r(«)-1 dxdy is an co-GCM.

These Carleson measure conditions are stronger than their quadratic analogues (c)

and (d).
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Using such a 7 one can redo the set-up in §6. Define

Mi,r = A/i,,(r) = {p G L°°(C): |V/i| dxdy is an r-GCM relative to Y},

with the norm

II^IIm,,,. = IHI00 + II |V/i|dxdy||r_GCM-

Here Vn denotes the distributional gradient on C \ Y; we ignore any contribution

on T. Define the spaces Vr = Vr(Y) and Vr' = Vr'(r) exactly like Ur and U'T in §6,

except that M2j is replaced by Mx¡r and one requires that 7 satisfy (8.1).

With these definitions the analogues of Proposition 6.5, Lemma 6.6, and The-

orem 6.7 will hold with estimates that do not depend on the boundedness of the

Cauchy integral on Y. Indeed, in §6 we needed the boundedness of the Cauchy in-

tegral on T to know that |Gf (g)\26r(z) dxdy is an co-GCM if g G BMO(r), which

we needed to conclude that |Vm| |Gp(è)|<5r(2) dxdy, \dq — 1| |G'(o)| dxdy, etc., are

r-GCM's. If m € Mx¡r and 7 satisfies (8.1), then all we need is that 6T-(z)\C'(g)\ is

bounded, which we know trivially, by Lemma 3.2(c).

Suppose we know that we can find 7(2) satisfying (8.1) for all Lipschitz graphs,

with estimates depending only on the Lipschitz constant. Then the Mx¡r — Vr

analogue of Theorem 6.7 would be true for all Lipschitz graphs, giving estimates

for (d — pd)-1 if p G MX}T has small norm, how small depending only on the

Lipschitz constant.

Suppose To is the graph of the Lipschitz function A0, and Yx is the graph of

Ax = Ao- Then the preceding paragraph would imply that if the Cauchy integral

on To is bounded, then it is also bounded on Ti if |A — 1| < fr(||/40||). (Indeed,

p(x, y) = x + iXy maps To to Ti, and its dilatation p is constant and small if |A —1|

is small. In particular, ||/í||mi|00 is small too.) One could then iterate to go from the

boundedness of the Cauchy integral on graphs with small constant to all Lipschitz

graphs.

On the surface it seems not unreasonable that one could find a 7(2) satisfying

(8.1) for all Lipschitz graphs. This would be true if Proposition 2.2 were true with

\V2p\dxdy a Carleson measure instead of |V2p|2|y| dxdy. This could be done if

we knew that for any Lipschitz function /: R —» R there is a Lipschitz extension

F to the upper half-plane such that |V2F|dxdy is a Carleson measure. Whether

this could be done was an open question. It may not seem unreasonable, in view

of the theorem of Varopoulos [VI, 2] that any g G BMO(R) has an extension to

the upper half-plane such that |VG|dxdy is a Carleson measure. However, the

Lipschitz version is false; see Proposition 8.2 below.

It is not completely clear to me how to prove that 7(2) satisfying (8.1) does not

exist in general, but I do not believe that it could. One reason is the nonexistence

of the good Lipschitz extension. The other is that if it did exist, the estimates that

you would get for the Cauchy integral on Yx in terms of the Cauchy integral of To

(r0, Ti as above) would be too good to be true.

Such a 7(2) does exist for sawtooth domains, and in fact you can construct 7(2)

by hand, as was pointed to me by C. Kenig. Thus for sawtooth domains the above

perturbation argument does work to give the boundedness of the Cauchy integral

on all of them.
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Let us return to the problem about Lipschitz extensions. Suppose / G L°°(R),

and let F/(x, y) denote its Poisson extension to the upper half-plane. By Fefferman-

Stein we know that |VF/(x,y)|2ydxdy is a Carleson measure. Let us say that /

is particularly nice if |VF/(x, y)| dxdy is a Carleson measure. Let PNL°° denote

the space L°° functions with norm ||/||oo + II I^F/I dxdy||cM- It is known that not

every L°° function has this property; see [G, p. 237].

PROPOSITION 8.2. Suppose /:R —► R is Lipschitz, F(x,y) is a Lipschitz ex-

tension of f to the upper half-plane, and that V2/, defined distributionally, is locally

integrable and |V2F| dxdy is a Carleson measure. Then f G PNL°°. In particular,

not all Lipschitz functions have such an extension.

The converse is also true: if / is Lipschitz and /' G PNL°°, then such an

extension exists. You cannot simply take the Poisson integral, because that would

not converge (too much growth at co), but if you use a compactly supported bump

instead of the Poisson kernel it works. Using this, one can extend Proposition

2.2 and Corollary 2.3 to show that if Y is the graph of A, A' G PNL°°, then

yn_2|Vnp| dxdy are co-GCM's if n > 2. One can then use that to show that

Lemma 6.1 remains valid for the graphs even if we replace (c) and (d) by (8.1). In

particular, the perturbation argument described before applies to these graphs to

show that their Cauchy integrals are bounded. Sawtooth domains are examples of

these "particularly nice" Lipschitz domains.

The idea for the proof of Proposition 8.2 is the following. The characterizations

of Lp or BMO in terms of the gradient of the Poisson integral are delicate, but

the corresponding results for Lipschitz spaces or Besov spaces are less delicate and

reduce to integrating the derivatives of the Poisson extension along the right paths.

(See, e.g., [S, Chapter 5, §4, and p. 147] in particular.) Moreover, you do not even

need the extensions to be harmonic or anything like that. This is how it is for

Proposition 8.2, but it would not work that way for L°° instead of Lipschitz.

We shall need a preliminary fact.

LEMMA 8.3. Suppose that |a(x,y)|dxdy is a Carleson measure on the upper

half-plane. Then so is \Py * ay(x)\dxdy, where Py(x) denotes the Poisaon kernel

and ay(x) = a(x,y).

This is proved using standard near and far part arguments. Let xrj G R and

R be given, and let us indicate how to estimate the \Py * ay(x)\dxdy measure of

{z G UHP: \z — xo\ < R}. Let a — a1 + a2, where a1 lives in {z: \z — x0| < 2R}

and a2 lives in the complement. One estimates the contribution from a1 using

||Fy * /||i < D/11, and the hypotheses that |a(x,y)| dxdy is a Carleson measure; the

contribution from the a2 term is controlled using the decay of the Poisson kernel.

Let us prove Proposition 8.2. To show that /' G PNL°° we first show that

\dx2^y
ir-tPy    * f(* dxdy = ¿CW)(«) dxdy

is a Carleson measure. Write

fix) = {F(x, 0) + F(x, 2y) - 2F(x, y)} - F(x, 2y) + 2F(x, y).

From the lemma it follows that

d2 „     „, ,1  .   .       I-     M
wpy * F*M

dxdy ;Fy) (*)Vax2
dxdy
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is a Carleson measure since |V2F|dxdy is, and similarly for the F(x,2y) term.

Denote the expression in braces by A2F(x,y). If F is G2 in y, then

}2

A2yF(x,y) = l  I   ^F(x,y + t)dtda,

and by Fubini,

A2F(x,y)|< fV (y-
J-y

r2y  I ;

d?2F{X'y
t) dt

dt2
F(x,t) dt.

Thus

(8.4)
ax2

l    l r°° 7 d2    \
Fy*(A2Fy)(x)| = |y^ (j^Py) (x-u)A2yF(u,y)du

<C rJ -c

riy"U '
t\V2F(x,t)\dtdu.

(y + |x-tt|)4'

It is not hard to show that if |a(x, y)| dx dy is a Carleson measure and if b(x, y) =

y~2 f0y t\a(x,t)\dt, then b(x,y)dxdy is also a Carleson measure. By Lemma 8.3,

Py * by(x)dxdy is also a Carleson measure. Since (8.4) tells us that \d2Py/dx2 *

(A2Fy)(x)| is dominated by Py*by(x), we get that the former determines a Carleson

measure.

Thus \(d/dx)Pf'\dxdy is a Carleson measure, and we need to show that

\(d/dy)P(f')\/dxdy is. Since (d/dx)P(f) is harmonic, \(d/dx)P(f')\dxdy is an

co-GCM, by a remark in §1. Thus, if a(z) = \(d/dx)P(f')(x,y)\, and ä(z) =

su.p{a(w): \w — z\ < \y}, then ä(z)dxdy is a Carleson measure. By the Poisson

integral formula on the disk {tu: \w - z\ < |y}, y|(d2/dx2)P(/')(x,y)| < Cä(x,y).

Since P(f') is harmonic, we get that

d2
y dy

2F(/')(x,y)   dx dy < Ca(z) dx dy

and so the left side is a Carleson measure. Since
C, /"OO     o2

JLp(f>)(x,y)=J     —P(f')(x,t)dt,

a simple argument allows us to conclude that \{d/dy)P{f')(x, y)\ dx dy is a Carleson

measure. Thus /' € PNL°°, and Proposition 8.2 is proved.

9. Problems concerning H°°. Let T be a rectifiable Jordan curve in the plane

that passes through co, and suppose F is a closed subset of Y of positive length.

Let f2 = C\F, and let H°°{Cl) denote the space of bounded holomorphic functions

on fi. It is known (see [M]) that F°°(n) will always contain something besides

constants. The proof is based on Calderón's theorem and a duality argument. One

would of course like to understand H°°(Yl) better, in particular be able to construct

H°°(Q) functions explicitly, and to solve the corona problem for H°°(Yl).

If T = R, a standard way to construct H°°(Yl) functions is to take a real-

valued L°°(E) function /, take its Cauchy integral F(z), and then exponentiate,
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eF{z) g H°°(Q). Recently, Garnett and Jones [GJ] proved the corona theorem for

H°°(Yl) for all F when T = R, extending a result of Carleson [Cr] who proved

it when F is uniformly thick. Jones [Js3] has obtained results for more general

domains with thick boundary.

Understanding F°°(fi) is infamitely connected to L°° estimates for the d prob-

lem on Yl. ("Infamitely" means infinitely, intimately, and infamously.) In view of

this it is natural to try to use the methods of this paper to attack the problem when

T is a chord-arc curve with small constant. In other words, we want to reduce from

T to R, just like we did for the Cauchy integral.

So let T be a chord-arc curve with small constant, let p be the bilipschitz mapping

as in (2.4) and Proposition 2.5, and let p be its dilatation. Let F be a closed subset

of T of positive length, and let F0 = p~x(E) Ç R, so that F0 is closed and has

positive length. Let fi0 = C \ Fo- If F(z) is holomorphic on Yl, then F0 = F o p

satisfies (d — pd)Fo = 0 on Ylo- Let F°°(fio, p) denote the set of all such functions

on fi0 that are also bounded, so that F0 G H°°(Yl0, p) iff F0 = F o p, F G H°°(Yl).

One would like to solve OF = a on Yl with F e L°°(Yl) for given 0(2). This

is equivalent to solving (d — pd)Fo = ao on Ylo, with /o = Fop and oo =

(a ° p)pz1(\pz\2 — \pz\2), by (7.5). If we understand d well on Ylo, then we should

be able to solve this by summing the series

00

F0 = (I - d~lpd)~ld~lao = ^2(d~1nd)jd~1a.

3=0

This is analogous to the Cauchy integral case in §5. There "understanding d on

fio" was replaced by "understanding the Cauchy integral on R", which we do.

The problem with this program is that we do not really understand d on fi0 for

a general set Eq Ç R. For that matter, it is not even clear what the correct notion

of Carleson measure is. Garnett and Jones have estimates for d when the data ao

lives on a certain part of fio, the part where the boundary Eo is thick, but not

when ao lives on all of fio, which is what we need here.

For uniformly thick Fo, d is sufficiently well understood on fio so that the above

program can be carried through, and we will indicate how that works in this section.

Because the corresponding F Ç Y will also be uniformly thick (since p is bilipschitz),

the estimates for d on Yl are already contained in the work of Jones [Js3]. However,

this method is different, and it may be useful in the case of general F.

Suppose Fo satisfies Carleson's uniform thickness condition, i.e., there is a 7 > 0

such that |F0 fl (x - t, x +1)\ > 7Í for all x G F0 and t > 0. Let A be a measure

on fio- We say that A is a Carleson measure relative to F0 if there is a G > 0 such

that for all R > 0 and u G F0, |A|({2 G Yl0: \z-u\< R}) < CR. This definition is

not reasonable if Fo is not uniformly thick. Define 6(z) = 6e0(z). We can define

r-GCM's relative to Fo just as in §1. As with the Cauchy integral we will need

1 < r < 00 because there are singular integrals around, but here we will assume

r > 2 also in order to get L°°(fio), not just L°° estimates for the boundary values.

(Taking r = 3 is fine.)

PROPOSITION 9.1. Suppose F0 Ç R is uniformly thick and 2 < r < 00. As-

sume that p G L°°(C) is such that |w|2|y|_1 dxdy is an r/2-GCM with small norm

and that ||u||oo is also small, how small depending on the thickness constant 7 and
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also r.   Then for all a(z) such that |a(2)|dxdy ia an r-GCM relative to Eo there

ia an F G L°°(fio) auch that VF ia locally integrable, (d — pd)F — a on fio, and

||F||oo<G||o||r.GCM.

COROLLARY 9.2. Same hypotheaea aa above. If G G F°°(fi0) then there ia an

FeF°°(fi0,/i) auch that

\\F - G||Loo(no) < GUGIIoodMloo + || H2 + M"1 dxdyWljlccJ.

It seems reasonable to conjecture that the corollary holds for arbitrary closed

sets F0 Ç R.

As pointed out in the beginning of the section, you can construct G G F°°(fi0)

by taking exponentials of Cauchy integrals. By the corollary you can find F G

H°°(Ylo, l¿) which is a small perturbation of G if p is small.

As in §5 there are two basic classes of examples of /x's. The first comes from

starting with a chord-arc curve Y with small constant, taking p as in (2.4), so that

p(R) = Y, and taking p to be the dilatation of p. Then, as before, F G H°°(Ylo,u)

iS Fop-1 g F°°(fi), fi = C \ F, F = p_1(Fo) Ç Y. Proposition 9.1 lets you solve

dH = a on fi with H G L°°(Yl) when \a(z)\dxdy is an r-GCM on fi.

For the other example, suppose b G BMO(R) is real-valued and has small norm.

Define h(x) = f? eb^ dt, a homeomorphism of R to itself. As pointed out in §5,

we can extend à to a quasiconformal map p of C to itself whose dilatation satisfies

the hypotheses of Proposition 9.1. In this case F = p_1(Fo) still lies on R. Notice

that F is uniformly thick, because Fo is and because h'(x) is an A^, weight.

In both cases one is perturbing Fo a little bit, and Corollary 9.2 implies that

F°°(fi) is then perturbed only a little. This should be compared with the work

of Coifman and Meyer [CM2, 3]. There one perturbed the real line into a chord-

arc curve with small constant, or perturbed it with a homeomorphism h as in the

preceding paragraph and concluded that the corresponding Hardy spaces H\ and

H2 (or their BMO analogues) moved only a little.

We should point out that one can extend the class of allowable u's in the propo-

sition and the corollary in a manner analogous to that in §6.

Corollary 9.2 can be proved by showing that \pG'\dxdy is an r-GCM, using

Proposition 9.1 to solve (d — pd)H = pG', and then setting F = G — H.

Proposition 9.1 is proved using the techniques of this paper, §5 in particular, and

the d technology of [Jsl] and [GJ]. There is another important ingredient. You

need to know that if you solve dF = a on fio with a(z) an r-GCM relative to Fo

and F G L°°(fio), then you can control dF also. The way to do this is to use §4 to

obtain a different solution F on C\R, i.e., dF = a on C\F, with F satisfying BMO

estimates and also with estimates on dF. Then F — F is holomorphic on C \ R

and also in BMOA, and so one can get a quadratic Carleson measure estimate on

d(F - F) on C \ R. (This argument should be compared with the argument at the

end of §4 for estimating dd    a.)

We shall not give the details of the proof of Proposition 9.1. There is one

other thing which is useful for the proof, though, and which is standard fare for

d problems on these types of domains. If / = [a, b] is any interval on R, let

/ = {z G C: |y| < min(|2 — a\, \z — b\)}. Thus I is the union of two triangles in C

with base /, one pointing up, the other down. Let {/¿} denote the disjoint intervals
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whose interiors make up R \ Fo- For studying a d problem on fio, it is useful to

consider separately fi2 = (Jt-^t an(I fii = fio \ fi2- Most of the action occurs on

fii, while on fi2 one can deal with each It separately and directly. To patch fii

and fi2 together, you solve a d problem. In particular, when doing the details of

the argument in the preceding paragraph for estimating dF, one should really deal

with fii and fi2 separately.

10. Real variable versions. Some of the things we have done have real-

variable analogues. Take §4, for example, especially the remarks at the end. That

told us the following. Suppose |a(2)|dxdy is an r-GCM, 1 < r < co, relative to

the real line, say. Then d (a) = F — C(b), where F satisfies the conclusions

of Proposition 4.1 on the upper and lower half-planes, F has jump b G BMO(R)

across R, and C(b) denotes the Cauchy integral of b. Thus dd (a) = dF — C'(b),

where C'(b) denotes the derivative of C(b) off R, which has a natural extension to

a distribution on all of C. Also, dF denotes the distributional derivative of F on

C \ R. This is an r-GCM, and in particular it is locally integrable, and so it has a

trivial extension to a distribution on C. Because F - C(b) has no jump across R,

dd    (a) has no boundary term on R.

The operator T = dd is sometimes called the two-dimensional Hilbert trans-

form. It is given also by the singular integral

(10.1) T/(2)=P.V.|c^Aïd£dr?,

except for an inessential multiplicative constant.

Now suppose we are working on Rn+1, and that T is a convolution singular

integral with kernel K(-) defined on Rn+1, which for simplicity we assume is ho-

mogeneous of degree — (n +1) and is G°° away from the origin. Let us write points

in Rn+1 as (x, s) or (y, t), x,y G R", s, t G R. Define two functions tp+ and ip~ on

Rn by xp±(x) = K(x, ±1), and for s G R, s ¿ 0, define

Ux) = (í/kD^íi/M),
where we fake + or — depending on whether s is positive or negative. By homo-

geneity, (l/\s\)ips(x) =K(x,8).

We need a cancellation condition on K(-), that /R„ tp±(x)dx = 0. This cor-

responds to fs„ K(z')dz' = 0, where S™ and ST? denote the unit sphere in Rn+1

intersected with t > 0 and t < 0, and where we use (r,z') G R+ x Sn to denote

polar coordinates for Rn+1. Indeed, for each e > 0,

/   K(z')dz1 = (-2loge)-1 f '    f   K(z')dz'r'1 dr
JS" Je       Jsi

= (-2loge)-1 f '    f   K(rz')rndz'dr
h       Jsi

since K(.) is homogeneous of degree — (n + 1). Converting this to rectangular

coordinates, and using the condition / ?/)±(x) dx = 0 and also easy kernel estimates,

one can show that the double integral remains bounded, and hence the whole thing
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tends to 0, as e —> 0. In particular, the condition /V'± = 0 implies that K(-) is a

Calderón-Zygmund operator.

A measure A on Rn+1 is called a Carleson measure if there is a G > 0 so that

for each xo G Rn and R > 0,

|A|({(x,s) € Rn+1: \(x,a) - (x0,0)\ < R}) < CRn.

We define r-GCM's just as when n = 1, in §1.

PROPOSITION 10.2. Suppoae \a(x, s)\dxda ia an r-GCM, 1 < r < co, and that

T and K() are aa above. Then Ta can be written as ä(x, a) + (l/\a\)ips*b(x), where

\ä(x,s)\dxds ia an r-GCM and b G BMO(R").

In the case where T is given by (10.1), (l/\a\)i¡)s * b(x) corresponds to C'(b). In

general, just as with the Cauchy integral,

-r-rlps * b(x)
Is!

doc ÛS
|s| dxda = \ips * b(x)\2

is an co-GCM. (See p. 85 of [Je], for instance.)

Notice that although (l/\a\)ips *b(x) is locally integrable on Rn+1 \Rn, it is not

generally on Rn+1. However, it does have a natural extension to a distribution on

Rn+1. Also, suitable a priori assumptions on a force b to be nice enough so that

(l/\a\)ipa * b(x) is locally integrable on Rn+1.

Let us prove the proposition. We shall content ourselves with the case where

a(x,s) lies in L2(Rn+1) to avoid technicalities, but the estimates will not depend

on this assumption.

By definition,

Ta(x, a) = P. V. if       K(x -y,a- t)a(y, t)
J Jr»+i

dydt.

This is not a Carleson measure because K(-) does not decay quickly enough at co.

The (l/\a\)ips * b(x) term comes in as a correction to provide that decay.

Let tp(x) be a G°° function on Rn with compact support such that / <p(x) dx = 1,

and define ¡pa(x) = (l/|s|n)^>(x/|s|) for a G R, a ^ 0. Define

(10.3) b(x)= f   f   tpt(x-y)a(y,t)dydt.
JrJr"

This is the balayage of a(y, t), and it is well known (and easily verified) that b G

BMO(R") when |a(y,í)|dydí is a Carleson measure. If a(y,t) is not in L2(Rn+1),

the integral needs to be defined modulo constants to make sense. See [G, pp.

229-230].
Let us write Ta(x, a) as

P. V. ff       [K(x -y,s-t)- (K{-, a)*tpt)(x- y)]a(y, t) dy dt
(10.4) JJ*r"+l

+ (K(tp,s)*tpt)(x-y)a(y,t)dydt.
J JB.n + 1

Here K(-,s) * <pt stands for the convolution in the Rn variables. The second term

is equal to

/     K(x-u,a)      (tpt * a(-,t))(u)dtdu —-r-ripa *b(x).
Jr." Jr \s\
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Call the first term in (10.4) a'(x,a). The proof that it is an r-GCM is very

similar to the proof of part (a) of Proposition 4.1. We want to prove the analogue

of (4.6) with dF replaced by a' in the definition of H(z). As before, a' can be split

into two pieces, Gi and G2. The Gi part is the localized part, and it is controlled

by proving the analogue of (4.7). This is proved using the boundedness of T on U

and an easy estimate for (K(-, a) * tpt)(x — y), similar to the proof of (4.7).

For the G2 part, just as in §4, one uses Fubini and an estimate on the decay of

the kernel. In our case we need to look at the kernel

L((x, a), (y, i)) = K(x -y,s-t)- (K(-, a) * tpt)(x - y)

when \(x,s)-(y,t)\ > \s\/2. When |(x,s) - (y,i)| > |a|/2 and |i| < ^(|x-y| + |s|)

we have that

(10.5) \L((x,s), (y,t))\ < C\t\(\x -y\ + \a\ + \t\)-n~2.

This follows from

d
\VxK(x,a)\ +

and it is helpful to write

K(x,a)
da

<G(|x| + |s|)
-77-2

L({x,3),(y,t)) = [K(x-y,3-t)-K(x-y,8)] + [K(x-y,a)-(K{;8)*tpt)(x-y)}.

When \(x,s) - (y,t)\ > \a\/2 and \t\ > ±(\x - y\ + \a\), (10.5) still holds. This is

verified by applying \K(x,a)\ < G(|x| + |s|)~n_1 to the first term in L((x, a), (y,t)),

and by writing the second as ( 1 /1 s | ) ipa * tpt (x — y), estimating it using f %p (x) dx — 0

and the smoothness of tp.

Using (10.5) one can estimate the G2 part as in §4. That is how Proposition

10.2 is proved.

There are some n-dimensional problems in which Proposition 10.2 shows up that

are analogous to what we did for d and the Cauchy integral in C. We shall give

two examples, connected to perturbations of the Dirac operator and the Laplacian.

Recall that the Clifford algebra G„(R) is the algebra generated by an iden-

tity eo = 1 and n other elements ex,...,en satisfying the relations e2 = — 1,

i = 1,2,...,n, and etej = — e^ if 1 < i, j < n, i ^ j. Define the Dirac op-

erator D by D = ¡Cr=oe"' where f5¿ = d/dxt. (Unlike our earlier (x, s) notation,

we now let x = (xo, xx,..., xn) denote an element of Rn+1.) A G„(R)-valued func-

tion / defined on a domain in R"+1 is Clifford analytic if Vf = 0. A basic reference

for Clifford analysis is [BDS].

There is a natural analogue of the Cauchy kernel, by

F(x) = c„|x|-"-1    x0eo-£

This kernel gives the fundamental solution of P, i.e., it is the kernel of D"1. There is

also a Cauchy integral formula. As when n = 1, if f(u) is a G„(R)-valued function

on Rn, and if

F(x) = F(/)(x) = f    E(u-x)f(u)du,        xeRn+1\Rn,
Jr"
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is its Cauchy integral, then DF = 0 off R™ and the jump of F across R™ is given

by /.
Now suppose that J is a differential operator given by J — Y^i=oljLi^i^ where

each pi is Clifford valued, n¿ G L°°(Rn+1), and |/i¿(x)|2|x0|_1 dx is an r/2-GCM,

1 < r < co, with small norms. Consider the problem of solving (D — J)F = 0 on

R77+i \R77 and F has jump j- across Rnje BMO(R") given, with BMO estimates

on the boundary values of F (and a maximal function estimate, and estimates on

the gradient, etc.).

This can be done like the proof of Theorem 5.2. Let us sketch the details,

allowing sloppiness we did not allow earlier. If we set G = F - F(/), then we are

reduced to solving (D - J)G = JE(f), on Rn+1 \ R™ where G has no jump across

R". One can show that |VF(/)(x)|2|xo| dx is an co-GCM, and that |JF(/)|dx is

an r-GCM, analogous to Lemma 5.3. We want to define G by

G = (D- J)-\jE(f)) = D~\l - JD~1)-1(JE(f)).

For each i, the operator T¿ = d{D~l satisfies the conclusions of Proposition

10.2. Indeed, each T¿ can be written as a linear combination of the identity and

an operator that satisfies the hypotheses of the proposition. This is because each

T can be expressed as a combination of second Riesz transforms, by looking at

the Fourier transform side, and the second Riesz transforms can be written as

such a linear combination, as is shown later in this section. The conditions on

the /ij's imply that JD'1 takes r-GCM's to r-GCM's, and with small norm. We

did the analogous computation for pT = pdd in §5. Thus (/ — JD)~X takes

r-GCM's to r-GCM's. Hence G is given by V~x of an r-GCM, and one can show

that this forces it to have BMO boundary values. Indeed, one computes D~l using

the Cauchy integral F(x). When computing the boundary values on Rn of D~x

of an r-GCM, the eo component of F(x) gives rise to a balayage of the Carleson

measure, and hence lives in BMO, while the e¿ components of F(x) give rise to

Riesz transforms of that balayage, and so they also are in BMO. (Of course, these

things must be interpreted modulo constants to make the integrals converge at co.)

The problem with all this is that the perturbation D — J of D does not seem to

arise as naturally in higher dimensions as it does in R2, e.g., induced by bilipschitz

changes of variables. If instead of requiring that |n¿|2|xo|_1 dx be an r/2-GCM,

we could get away with requiring that |Vn¿|2|x0| dx be an r/2-GCM, with u¿ still

Clifford valued, then the perturbation D — J would arise more naturally. For ex-

ample, such perturbations come about when considering the n-dimensional version

of (2.1). By §6, we can allow such perturbations when n = 1. Unfortunately, there

we used integration by parts tricks that seem to be peculiar to n = 1. (They do

not work for the Clifford algebra because of noncommutativity.)

It would be nice if one could make something like this work more naturally in

R"+1, n > 1. Notice that in the above argument we did not use all the information

that Proposition 10.2 gave us. We used the fact that xpt * b(x) satisfies a quadratic

Carleson measure condition, but we did not use the cancellation it has. When

n — 1, those integrations by parts did take advantage of the cancellation. One

would like to find some substitute in R".

Now let us consider perturbations of the Laplacian. The estimates we get are not

new; see [FJK and Dh] for much more general results. The point here is more the
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connection with what we have been doing. Let V* denote the divergence operator,

and let ^4(x) be a bounded (n + 1) x (n + 1) matrix-valued function on Rn+1 such

that ||^4(x, s)||oo is small and |^4(x, s)|2|s|_1 dxda is an r/2-GCM with small norm.

Consider the operator V*(/ + A)V = A + VMV. We want to look at this similar

to the way we looked at d — pd and D — J.

Suppose F(x, s) is harmonic on Rn+1 \R" and has BMO boundary values on R"

from above and below. We do not require that these two sets of boundary values

coincide. We do require that F be the Poisson integral of its boundary values on

R"+1 and R"+1. Let us show that we can find G on Rn+1 such that G has no

jump across Rn, V*(I + A)VG = -(VMV)F on R"+1 \ R", and G has BMO

boundary values on R" that are small in norm compared to F's.

This problem should be compared to the problems we considered earlier, like

(d - pd)H = pC'(g) and (D - J)H = JE(f). Notice that G + F satisfies
V*(I + A)V(G + F) = 0 on Rn+1 \ R" and the boundary values of G + F differ

from those of F only slightly. This implies, for example, BMO estimates for the

Dirichlet problem for V*(J +A)V on R"+1 or R"+1, by iteration.

It follows from Fefferman-Stein that |VF|2|s| dxds is an co-GCM. Thus (like in

Lemma 5.3), |AVF|dxds is an r-GCM. Hence we may as well consider the more

general problem of V*(J + A)VG — V*q on R"+1 \ Rn where a is vector valued,

\ct(x,a)\dxda is an r-GCM, V*a is defined distributionally, and where G has no

jump and BMO(R") boundary values.

Let A = A1/2, R = VA-1, the vector of Riesz transforms, and R* — V*A_1.

Rewrite (A + VMV)G = V*a as A(J + R*AR)AG = A.R*a, so that

G = A~1(I + R*AR)-1R*a
oo oo

= j2íí~1(-i)3(R*ARyR*a = J2k-1(-iyR*(ARR*ya.
3=0 j=0

Note that all of this makes sense if we assume a priori that a G L2(Rn+1), since

H^Hoo is small. We want to get BMO estimates that do not depend on that as-

sumption.

Let us show that the conclusion of Proposition 10.2 holds for RR*. We need to

show that if P(x) is a polynomial on Rn+1 that is homogeneous of degree 2, and

if (T/)A(£) = (P(£)/lf |2)/(0t then T satisfies the conclusions of the proposition.

If P(x) = |x|2, then T — I, and this is trivial. Thus we may assume that P(x) is

harmonic. By Theorem 5, p. 73 of [8] we know that

TF(x) = P. V. f       K(x - y)f(y) dy,
Jr"+1

where K(x) = c„(P(x)/|x|n+3).

We must show that this kernel satisfies the cancellation condition at the be-

ginning of this section. As before, we rename the (x, s) coordinates as (x0,x') =

(x0,Xi,... ,xn), where xo = s. If P(x) = xtXj, i ^ /, the cancellation condition is

clear. Thus we can assume that P(x) = £"=0 ßiX2 where £"_0 ß% = 0. If ß0 = 0,

then it is easy to check the cancellation condition using the symmetry among the

other x,'s. This leaves F(x) = nx§ — |x'|2. In this case

K-l^r   A\-        n|x°|2 ~ |x'12

1 °'    >~ (|x0|2 + |x'|2)("+3)/2'



CALDERÓN'S THEOREM ON THE CAUCHY INTEGRAL 229

and the cancellation condition becomes

r'|2

dx' = 0.L n-|x'|2

„ (l + |x'|2)("+3)/2

In polar coordinates this reduces to

r    "-r2    r-idr=ri(_r-_Ï dr=0
Jo    (l + r2)(»+3)/2r JQ    dr\(l + r2)("+iV2)ar     "'

Thus the conclusion of Proposition 10.2 holds for R*R, so that AR*R takes

r-GCM's to r-GCM's with small norm if A is small. Hence Y^T=q{AR*Ry a- defines

an r-GCM that we will call 7. Define

G = A-1F*7 = A-2V*7 = A-!V*7 = A"1 | ¿ ~% j ,

where 7,. denotes the zth component of the vector-valued function 7. We know that

A-1 is given by convolution with c„|x|~(n+1)+2, except when n = 2, which we

leave to the reader, so that

C ^ rl 1

G(X) = Cn ^—. ^(y) dy.
jRn+i j=0 °£3 \x   y\

We want to show that on R", i.e., when Xo = 0, this defines a BMO function.

For / = 0, (d/dxo)(l/\x — y|n+1) gives precisely the Poisson kernel when xo = 0.

Thus the / = 0 piece is just the balayage of the Carleson measure 70(y), and so

lives in BMO(Rn). For the other /'s,

d 1 (xj - Vj)
Cr.

dxj \x — y|"  1 |x — y|n+1

is a conjugate Poisson kernel, and so you get the Riesz transform of the balayage of

a Carleson measure, which is still in BMO. Thus we get the desired BMO estimates

for the boundary values of G.

Unfortunately, as in the case of perturbations of D, these perturbations of A

do not arise naturally from changes of variables when n > 1. The reason is the

following. The condition on A(x, a) forces it to vanish when s = 0. If p:Rn+1 —»

Rn+1 is quasiconformal, the condition that the restriction of its maximal dilatation

K to R™ be identically 1 is much stronger when n > 1 than when n = 1. Indeed,

when n = 1, Proposition 2.5 gives lots of such mappings.

11. Analogues for Lp, 1 < p < 00, instead of BMO. Using the tent

spaces of Coifman, Meyer, and Stein [CMS] we can obtain Lp analogues of our

earlier estimates. Let us recall a few of the definitions and properties. We restrict

ourselves to the upper half-plane U since the extension to chord-arc domains is

easily made, using a bilipschitz mapping.

For x G R let N(x) be the cone {(y,t) G U: |x - y| < t}. Given q, 0 < q < 00,

and a measurable function f(y,t) defined on U, set

A*W=(fjN    \fM\qr2dydt\
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if q < co and A»(/) = sup{|/(y,i)|: (y, i) € U}. For 0 < p < co define the tent

space Tp = {f:Aq(f)GLp(R)}.
Another important functional is Cq, 0 < q < co, defined by

<W)W-B{ijI///l/to.OI'*îp.

where J is any interval containing x and J = {(y,t):y G I, 0 < t < \I\}.  When

0 < q < p < co, ||Gg(/)||p and ||Aj(/)||p are equivalent norms (Theorem 3

of [CMS]). With this characterization of Tp the natural endpoint space TLf0 is

{/: \f(y,t)\gt~1dydt is a Carleson measure}, and that is how Tp is defined. With

these definitions, there is a natural duality between Tp and Tp,, 1 < p, p', q, q' < co,

l/p+l/p' = l,l/q+l/q> = l.
For Lp the space {f:tf G Tx} plays the same role that Carleson measures do

for BMO. For example, it follows immediately from duality that the balayage of

an element of T\ lies in LP(R), 1 < p < co. Another example is the result of

Varopoulos, that if F is defined on U and |VF|dxdy is a Carleson measure, then

F has radial boundary values in BMO(R). By the same proof, if i|VF| G Txp then

the radial boundary values / satisfy /#(x) < GGi(£|VF|)(x), where f* denotes

the Fefferman-Stein sharp function of /. Thus ||/||p < Gp||/#||p < Gp||i|VF| ||tp if

/ is not too bad at co.

Similarly, {tg G T™} = {a:|g|2ídydí is a Carleson measure} is to BMO as

{g.tg G T2) is to Lp: both characterize the gradient of the Poisson integral of a

function in BMO or Lp.

As with Carleson measures, we define the good tent spaces r - GTP = {/: / G

Tp}, where

f(z) = fa(z)=(\Bz\-11   \f(w)\rdudv

Bz = {tu: |tu — 2| < aô(z)}, 0 < a < 1. As in §1, this condition does not depend on

a, and when r = q,q- GTP = Tp.

There is a tent-space Lp analogue of Proposition 4.1. For simplicity we continue

to restrict ourselves to the upper half-plane U.   Suppose ya(z) lies in r — GTf,

1 < p < co and 1 < r < co. Define

(11.1) F(z) = u' K(z,c)a(c)dí,dn,

where K(z,ç) is given by (4.3). Unlike (4.4), we do not need to subtract off a

constant; the integral converges at co because p is finite.

The function f(x) obtained by formally replacing z by x G R in (11.1) lies in

Lp, as can be shown using duality. (In fact, / is the balayage of a.) One can show

that ydF(z) lies in r - GTf by estimating Gi(y|dF(z)|), similar to the BMO case.

A Varopoulos type argument shows that F has radial boundary values in Lp, and,

analogous to (4.2),

(11.2) (Mf)(x)=swp—        sup   \F(x + it)\dx
i3x i-M y/o<t<i/i

»/ '
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lies in Lp. (Unlike (4.2), we can get rid of C¡, because p is finite.) When r > 2, F

is continuous, has nontangential maximal function in IP', and the boundary values

exist nontangentially.

§5 should undergo similar changes. For Lemma 5.3, we need that if g G Lp and

p is as before (i.e., pGr/2- GT%°), then tpC'(g) € r - GTf. For this we need that

/ G T% and a G T£° imply af G Tf if 1 < p < co. This is a variation of remark (b)

following Theorem 3 in §6 in [CMS], and it is proved using the Gi functional and

the duality between T¿ and T2°° (part (a) of Theorem 1, §4 in [CMS]).

§6 can also be suitably modified. We do not have to change the definition of

M2<r, but Ur and U'r need to be replaced by {/p,r and Up with Lp taking the

place of BMO, and tent spaces replacing Carleson measures. Similarly, for §10, in

Proposition 10.2, r-GCM should be replaced by {f:tf Gr - GTf} and BMO by
Lv. We omit the details.
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