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QUASICONFORMAL MAPPINGS
AND CHORD-ARC CURVES

STEPHEN W. SEMMES

ABSTRACT. Given a quasiconformal mapping p on the plane, what conditions

on its dilatation ß guarantee that p(R) is rectifiable and p\ji is locally abso-

lutely continuous? We show in this paper that if ß satisfies certain quadratic

Carleson measure conditions, with small norm, then p(R) is a chord-arc curve

with small constant, and p(x) = p(0) + f e°0 dt for x G R, with a G BMO

having small norm. Conversely, given any such map from R —► C, we show

that it has an extension to C with the right kind of dilatation. Similar results

hold with R replaced by a chord-arc curve. Examples are given that show that

it would be hard to improve these results. Applications are given to conformai

welding and the theorem of Coifman and Meyer on the real analyticity of the

Riemann mapping on the manifold of chord-arc curves.

Let p be a quasiconformal map of the plane onto itself. Thus p is a homeo-

morphism with locally integrable distributional derivatives, and pj = ppz, where

p G L°°(C), IMIoo < 1- Here we use the notations

¿-"-s'-K**'*)'- '-Ï(*-£)'■
This function p is called the complex dilatation of p. The mapping theorem for q.c.

maps states that for each p G L°°(C), \\p\\oo < 1> there is a q.c. map p on C with

dilatation p, and p is unique up to normalization.

A basic problem is to understand how geometric properties of p are reflected in

p. For example, one would like to have natural conditions on p which imply that

p(R) is rectifiable and p |r is absolutely continuous. This question arises naturally

when considering problems in conformai mappings and conformai welding.

In this paper we obtain such estimates for the mapping theorem, and we also

give some applications.

Our results involve BMO, Aoo weights, chord-arc curves, and Carleson measures,

and so we first review the appropriate definitions. A locally integrable function /

on R lies in BMO if

||/|U=sup-^ f\f(x)-fj\dx
I  \1\Jl
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is finite, where J is any interval, and where // =  |7|   x fj f(y) dy.   The John-

Nirenberg lemma states that there exist G, 6 > 0 such that

|/|-i few-f'Ux<c

if 11/11» < 6. See [G, Je].
We can extend the definition of BMO to any locally rectifiable curve by replacing

intervals with arcs. Thus any arclength parameterization preserves BMO.

Let w(x) > 0 be locally integrable on R. Set w(E) = fE w(x) dx, and let \E\

denote the Lebesque measure of E. We say that w is an Aoo weight if for every

e > 0 there is a 6 > 0 such that if I is any interval and E Ç I, then |.E|/|J| < S

implies w(E)/w(I) < e. See [CF, G, and Je] for basic properties of iœ weights.

An important fact is that logt/; G BMO if w G A^, and {logtu: w G Aoo} spans an

open subset of real-valued BMO, inducing a natural topology on Aoo- In particular,

there is a 7 > 0 so that eb G A if b is real valued and ||6||, < 7. The definition of

Aoo can be extended to curves as before.

Suppose h is an increasing homeomorphism of R onto itself, and define the

operator Vh by Vnf = f o h. Then Vh determines a bounded operator on BMO if

and only if h is locally absolutely continuous and h' G Aoo- (See [Js].) Results on

Aoo imply that these homeomorphisms form a group.

When n > 2, the Jacobian of any q.c. map p on Rn is an A^ weight, and Vp

preserves BMO(R"). If n > 2 and p also maps some hyperplane to itself, then the

restriction of p to that hyperplane is quasiconformal. When n = 2, the restriction

of p to a line it preserves gives a homeomorphism of that line satisfying a doubling

condition. Such a homeomorphism is often called quasisymmetric, and it generally

is not even locally absolutely continuous. A homeomorphism h of R onto itself

that is locally absolutely continuous and satisfies h' G A will be called strongly

quasisymmetric.

Let T be a locally rectifiable Jordan curve in the plane that passes through 00,

and let z(t) be an arclength parameterization. We call Y a chord-arc curve with

constant k if \a - t\ < (1 + k)\z(s) — z(t)\ for all a, t G R. (That is, if the length

of the chord is always at least (1 -I- fc)_1 times the length of the arc.) Coifman

and Meyer [CM2] proved that if k is small enough then there is a real-valued

b G BMO(R) with small norm such that z'(t) = elb^. Conversely, they showed

that if z'(t) = e*6^' and ||6||, is small enough, then z(t) = fQ elb(-3^ da parameterizes

a chord-arc curve with small constant. (Specifically, ||6||» ~ y/k.)

More generally, if Zo(-) is an arclength parameterization of a fixed chord-arc

curve To, then there is a ¿o > 0 so that if b is real valued and ||6||* < 60, then

/0 e'b^8o(a)da parameterizes a chord-arc curve. Moreover, David [Dl] has shown

that for chord-arc curves there is a natural choice of arg z' lying in BMO that iden-

tifies the space of all chord-arc curves with an open subset of real-valued BMO(R).

As with Aoo, this allows us to think of the space of chord-arc curves as a topological

space, in fact a Banach manifold.

Roughly speaking, Aoo weights are to chord-arc curves as ex is to elx.

Suppose r(t) maps R homomorphically onto Y. We say that r(t) is a strongly

quasisymmetric embedding if it is locally absolutely continuous, if Y is a chord-

arc curve, and if |r'(x)| € Aoo- These conditions imply that r is q.s. in the usual
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sense. A slight extension of Lemma 3 in [CM3] shows that if r0(t) is a strongly q.s.

embedding then there is a ¿o > 0 such that if b is a complex-valued BMO function

and ||6||* < So, then

r(t)= [ e^r^da
Jo

is still strongly q.s. One can extend the definition of strongly q.s. to mappings from

one chord-arc curve to another.

A measure A on C is called a Carleson measure relative to a given chord-arc

curve T if there is a G > 0 such that |A|({z: \z - z0\ < R}) < CR for all z0 GY

and R > 0. The smallest such G is the norm of A.

Carleson measures are infamitely connected to BMO. By Fefferman-Stein, a

function / on R lies in BMO iff \VPf\2ydxdy is a Carleson measure relative to

R, where Pf denotes the Poisson extension of / to the upper half-plane (UHP).

Varopoulos has shown that / G BMO(R) iff / has an extension F to the upper

half-plane such that |VF| dxdy is a Carleson measure.

Natural conditions on a dilatation for rectifiability results on the corresponding

q.c. mapping turn out to be in terms of Carleson measures. Given a chord-arc

curve T, let 6r(z) = dist(2,T). We define spaces M(Y) and N(T) by

M = M(Y) = {p G L°°(C) : \Vp\26r(z) dxdy is a Carleson measure relative to Y}

and

jV = N(Y) = {p G L°°(C): \p\26T(zy1 dxdy is a Carleson measure relative to Y}.

We define || ||m and || ||jv to be the sum of \\p\\oo and the square root of the

Carleson norm. One should think of N as being the stronger condition because it

forces p to vanish on Y.

We shall also consider Mf]N and M + N = {p G L°°(C) : p = px +p2, px G M,

p2 G N}, with ||/z||m+jv = hif{||//i||M + ||a*2IIjv: ß = Pi + P2}- One can easily
characterize M + N in terms of a Carleson measure condition on the L2 mean

oscillation of p on the Whitney cubes of C \ Y.

THEOREM 0.1. Suppoae Y0 ia a chord-arc curve and p G M(Y0) + N(Y0),

IMIaí+ív < 7o = 7o(ro), where 70 > 0. Let p: C —► C be a quaaiconformal

mapping with dilatation p. Then p(Yo) is a chord-arc curve, p|r0 is absolutely

continuoua, and there is a complex-valued function a G BMO(Fo) with small norm,

\\a\\* < G(ro)||/i||Af-i-Af)) such that

p(zi) = p(z2) + P e<wUw,
J Z-i

where zx, z2 G Yo and f 2 denotes the integral along To from z2 to zx. In particular,

if To = R, then the chord-arc constant of p(R) is small.

This extends results of Carleson [C] and Dahlberg [Dh] for q.c. maps of the

upper half-plane onto itself. In Dahlberg's case the dilatation satisfied condition

N, while Carleson considered a stronger square-Dini condition.

It is surprising to me that these quadratic Carleson measure conditions M and N

arise naturally in this context. Usually such a quadratic condition is accompanied

by some cancellation, e.g., harmonicity, or one simply has an ordinary Carleson

condition, as in Varopoulos' theorem.

The next result gives a partial converse to the above.
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THEOREM 0.2. Suppoae r(t) ia a atrongly quaaiaymmetric embedding of IL into

C. Then it has a quasiconformal extension p: C —► C whose dilatation lies in

M n N. In fact, for each / > 0 \y3 V3p\2\y\_1 dxdy is a Carleson measure relative

toR.

We shall obtain estimates for Vp too; see §4.

There is also a version of this when R is replaced by any given chord-arc curve

r0.

These two results do not characterize the q.c. maps p: C —<■ C such that p |r is

strongly q.s., even in the small constant case. One can easily construct q.c. maps

that fix each point on R but whose dilatation satisfies nothing like M or N. (Put

a twist on each Whitney cube of C \ R, but without moving the boundary of the

cube.)

Theorem 0.2 is not hard to get from a method of Tukia. Unfortunately, this relies

on the Riemann mapping, and one would like to have something more explicit. In

the case where r(t) is a small perturbation of the identity (in the BMO topology),

one can give an explicit formula, even when the starting-off curve is not R. This

formula is a variation of the Beurling-Ahlfors formula. (When the starting-off

curve is not R, though, the formula is more complicated.) However, even the

small perturbation case is interesting for applications. This is especially true since

these applications also depend on Theorem 0.1, which is available only in the small

constant case.

For Theorem 0.1, the large constant case is extremely unclear. It is not even

clear what the natural conjecture should be. In view of the example of [SI], the

large constant case must be tricky, if tractable.

A natural way to attack Theorem 0.1 is to try to solve (d — pd)f = pz, where

/ = log(pz). In particular, we want ||/|r0 II* to be small. BMO estimates for d — pd

are given in [S3], but pz is not the right kind of data. However, when p lies in a

variant of M n N, one can make this approach work, which we do in §2.

In general we have to take a different tack. The d — pd estimates in [S3] show

that if p G (M + N)(Yo) with small norm, then you can control the Cauchy integral

on p(Yo). From that you can show that p(Fo) is rectifiable, chord-arc, and all the

rest. This is done in §3.

This is reminiscent of [CM3], where certain mappings were estimated by seeing

what they did to related operators, to wit, the Szëgo projection and the Cauchy

integral. This is analogous to algebraic topology, where maps are studied by looking

at what they do to attached algebraic structures, like homotopy and homology

groups.

Although the method of §3 is more general, the approach in §2 is more direct and

gives more information. For example, it allows you to also estimate V/ = V(logpz),

and it tells you about the power series (in p). Also, in §2 there is a new estimate

for d (Lemma 2.5) which is perhaps interesting in its own right.

In §1 we prepare for §§2 and 3 by making certain useful reductions. §4 is devoted

to Theorem 0.2 and its variants. We give applications in §§5 and 6 to conformai

welding and to the theorem of Coifman and Meyer on the analyticity of the Riemann

mapping.



QUASICONFORMAL MAPPINGS AND CHORD-ARC CURVES 237

A useful result that we use repeatedly in this paper is that for each chord-arc

curve T there is a bilipschitz map of C onto itself that takes R to Y. See [Tul, 2,

JK].
The author is grateful to R. R. Coifman and P. W. Jones for helpful comments

and suggestions, and also to the National Science Foundation for partial financial

support in the form of a postdoctoral fellowship.

Some of the results of this paper were announced in the survey paper [S2]. The

reader may find that paper useful for background information and for getting a

better view of the "big picture".

1. Preliminary reductions for Theorem 0.1. In this section we give a way

to identify exponentials of small BMO functions, and then we show how this allows

us to make a priori assumptions on p.

LEMMA 1.1. There is a small number 6q with the following property. Let v be

any complex-valued function on R, not identically 0 a. e. on any interval. Suppose

also that there is a 6 < ¿o such that for each interval I there is a constant ci so

that

(1.2) l/p1 f \v(x) - a\dx < ¿l/l-1 f \v(x)\ dx.

Then v = ea, where a G BMO, ||a||* < Ce.

The converse is also true, with cj = exp(|I|_1 f¡a). This follows from John-

Nirenberg and \ex — 1| < |x|elxL

Observe that \c¡\ must be comparable to |J|_1 f¡ \v\, in fact,

(1.3) (1 - ¿o)M < \I\~l I \V\ <(1+ ¿o)|cr|.

Also, by hypothesis, ft \v\ is never 0.

Let us first assume that v is nonnegative. Let a(x) = logf(x) and ßi = loge/.

From (1.2) and (1.3) we get

(1.4) l/l"1 / \eaW-0> - l\dx < (1 + 60)S < 28.

Because \ex — 1\ > min(||a;|, .01),

|ea(x)-/3, _ j| > 2Q06     ¡f |a(x) _ ^i > 4Q06

and if 6 is sufficiently small. Hence (1.4) implies

\{x G I: \a(x) - /?/| > 4006}| < |/|/100.

Therefore, ||a||, < C6, by Stromberg [Str] (see also [G, p. 270]). (This argument

gives that |a| < oo a.e. in particular, so that v > 0 a.e.)

Now suppose that v is complex valued. The hypotheses of the lemma hold for

|u| with c/ replaced by |c/|, so that || log |t>|||* < C6. If u = v/\v\, then

w|c/| -ci - -u(\v\ - \cj\) + (v- Ci).

Thus

l/p1 f \u(x)\c!\ - a\dx < 26\I\~1 f \v(x)\dx,
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whence |/|_1 /, \u(x) — d¡\ dx < 38, where d¡ = cr(|cr|)_1. Altogether, we get that

u is unimodular and ||u||* < 6<5.

We need to find a good logarithm of u. This is equivalent to showing that if z(t)

is an arclength parameterization of a chord-arc curve Y with small constant, then

z'(t) = e,b^\ where ||2>||, is small. Indeed, the chord-arc constant k of Y is small iff

||z'||* is, and k » ||z'||», by Lemma 6 in [CM2]. In that paper they show that such

a b does exist, and with the estimates we need for Lemma 1.1.

Let us indicate another proof of the existence of a good logarithm of u. Let

Pu denote its Poisson integral in the UHP. Then \Pu\ < 1, and one can check that

\Pu(z)\ > l-c||u||» > 1-G<5 since |u(i)| = 1. As in [G, p. 348 and p. 372, Exercise

11], there is a G°° function f(z) on the UHP such that ||/ — Ptt||oo < ||u||* and

|V/|dxdy is a Carleson measure with norm < C||f/||*. Thus |/(z)| > 1 — C6 for

all z, and because the UHP is simply connected, we can define g(z) = log f(z).

Thus V<7 = (V/)/_1 defines a Carleson measure with norm < G||u||», and so

by Varopoulos [V], g(z) has radial boundary values g(x) a.e. on R, g G BMO(R),

\\g\\. < C||ti||.. Also, HZ-PuHoo < ||u||. implies that ||P(t¿)/_1 - îy«, < 2||u||„
and so if ||u||. < 6<5 < ^, we can define log(P(ti)/_1) so that its L°° norm is

< 10||ti||». This also holds on R, since / has radial boundary values. Therefore we

can write
uix\ — eg{x)+\og(u{x)f(x)-1) ^

and the exponent has BMO norm < G||u||«.

This completes the proof of the lemma. Incidentally, once you know that v = ea

where ||a||* is small enough, then automatically 8 ~ ||a||». This a priori estimate

can be obtained from John-Nirenberg and \ex — 1 - x\ < C\x\2e^.

Lemma 1.1 also holds if R is replaced by any locally rectifiable curve, since you

can pull back to R with an arclength parameterization.

LEMMA 1.5. To prove Theorem 0.1, it suffices to prove the following. Let To be

any chord-arc curve, and let zq(-) be an arclength parameterization. Then there is a

small constant 70 = 7o(rrj) > 0 so that if p G M(Yo) + N(Y0) has norm < 70, then

p |r0 is locally absolutely continuous and v(x) — (d/dx)(p(zo(x)))z'0(x)~1 satisfies

the hypotheses of Lemma 1.1 with 8 < G||/í||m+jv-

If we define v on To by £¡(^0(2:)) = v(x), then

ÇZ2
p(z2) — p(zx) +        v(w)dw   when zx,z2 G Y0.

Jzi

Because of this, Lemma 1.5 follows from Lemma 1.1 and chasing definitions, except

for showing that Y = p(Yo) is a chord-arc curve. In fact, if 80 is small enough, and

if fco and fc denote the chord-arc constants of Y0 and Y, then A: < 1 + fc0. This

follows from Lemma 3 in [CM3]. It is proved using a John-Nirenberg argument

and the fact that v — ea, ||o||* small.

LEMMA 1.6. To prove Theorem 0.1, it suffices to do the same thing as in

Lemma 1.5, except that we may make the a priori assumption that p is C°° with

compact support disjoint from To-

A well-known theorem states that if p, pn G L°°(C), pn —> p a.e., sup ||n„||oo <

1, if p, pn are q.c. maps with dilatations u, pn, and if the p's are suitably normalized,
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then pn —> p uniformly on compact sets. To prove Lemma 1.6 we need to show

that you can approximate p, and that everything is O.K. when n —» oo. Let us

first show how to approximate p.

LEMMA 1.7. IfYo is a chord-arc curve, then we can find Lipschitz functions

mn(z) such that 0 < mn(z) < 1, mn(z) has compact support disjoint from To,

mn(z) —* 1 as n —> oo if z £ To, and \Vmn\28r0(z)dxdy is a Carleson measure

with norm < G(Fo).

When To = R this is straightforward. In general, we reduce to the real line using

the fact that there is a bilipschitz map of C onto itself that takes R to To [Tul, 2;

JK].

LEMMA 1.8. If p G M(Yo) + A^o), then there are pn, smooth and with

compact support disjoint from To, such that pn —► p a.e., \\pn\\oo < IImIIoo* o,nd

WPuWm+n < G||/x||m+jv-

Consider mnp. This has all the right properties except that it is not smooth.

That is easily fixed.

Let pn, p: C —> C be q.c. maps with dilatations pn as in Lemma 1.7, suitably

normalized so that /)„-»/) uniformly on compact sets. Let us show that if the

conclusions of Lemma 1.5 hold for the p„'s and if ||/í||aí+at is small, then they also

hold for p.

By the remark after Lemma 1.5, each r„ = pn(Yo) has chord-arc constant <

1 + fco. Let r„(t) = pn(zo(t)) and r(t) = p(zo(t)), so that rn maps R to Yn and is

locally absolutely continuous. By the chord-arc condition,

(1.9) / 2 \r'n(t)\dt <(2 + k0)\rn(t2) - rn(tx)\.
Jti

(length of arc) (length of chord)

Let vn(x) = (d/dx)(pn(zo(x)))z'0(x)~1, which satisfies (1.2) with 8 < G||/lí||m+íV-

By Lemma 1.1 and the fact that |r^(i)| = |un(i)|, || log |r^(i)|||* is small, and so

by the standard argument using John-Nirenberg, we have the reverse Schwartz

inequality
1/2

(i/r/Ki°)   <C(i/|-/ki),
where G does not depend on n or on the interval /. From this, (1.9), and the uniform

convergence on compact sets of the pn, we conclude that p |r0 is locally absolutely

continuous, with derivative locally in L2, and that Y = p(Y0) is a chord-arc curve

with constant < 1 + fco-

It remains to show that v(x) = (d/dx)(p(zo(x)))z'0(x)~l also satisfies (1.2). Be-

cause |z0(a;)| — 1) (1-2) for vn is equivalent to

(1.10)     \I\-^ l^£(pn(Zo(x)))-Cl,nz'0(x)  dx < Slir1 l^(pn(z0(x)))

where I = [íi,ía] is any interval on R and c^n is some constant.

Let us show that if we replace c/jn by

Pn(zo(t2)) - Pn(zoitl))

dx,

cI,n -
Zo(t2) - Zo(tX)
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then (1.10) remains valid with 8 replaced by (1 + k0)8. (This is helpful because we

can control the limit of c'¡ n.) To see this, observe that (1.10) implies

|/rX|k(20(Í2)) - Pn(Zo(tl))\ - C/,„[zo(i2) - Z0(íl)]|

(1.11) < the left side of (1.10) < the right side of (1.10).

Because |z0(Í2) - zo^i)!!^-1 > (1 + fco)-1, we get that

(1 + fco)_1|c'/in - c/,„| < the right side of (1.10).

Thus (1.10) still holds if c/in is replaced by c'¡ n and 8 is replaced by (1 -f fco)<5.

This together with the chord-arc condition (1.9) yield

1/1-1 / | TX{PMX))) - C'.«*Ó(Z)|  dx < (1 + fco^/r1 I | J-x(pn(Z0(x)))    dx

<(2 + fc0)2¿|/r1|Pn(Zo(í2)) - Pn(Z0(tl))\.

Let us take the limit as n —» oo. The right side tends to the correct thing, so that

r I a
limsup|/|_1 / \—pn(z0(x)) - c'Inz'0(x)  dx

77—700 J I  I OX

(1-12) < (2 + fco)2<S|/rx|/>(2o(Í2)) - p(*o(*i))|

dx.<(2 + ko)28\I\-1l^(p(zo(x)))

The lim sup on the left is at least

dx.\I\-1l^(p(z0(x)))-c'Iz'o(x)

One way to see this is to approximate this last by

l7l_1É|/   (JiP(*o(x))-c'Iz'0{x)>)dx

where {/,} is a finite partition of /. This can be approximated by

(1.13)
3=i r'i

dx
(Pn(z0(x))) -c'l,nZ'oix)j dx

because pn —> p locally uniformly. Clearly (1.13) is at most

\I\-' l\±-x(Pn(zo(x)))-c'Lnz'o(x) dx.

All these things together imply that (1.10) is valid with pn replaced by p if we

replace 6 by (2 + k0)26.

This finishes the proof of Lemma 1.6.

2. Theorem 0.1 for nice p's by solving a Beltrami equation. A natural

way to try to prove Theorem 0.1 is to try to get BMO(Fo) estimates for logpz by

solving the equation

(2.1) (d- pd)X = pz,
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where A = logpz. (It is easy to check that (2.1) follows from pj = ppz, by taking d

of both sides and dividing by pz.) In [S3] related estimates for d — pd are obtained.

For example, it is shown there that if p G M(r0) + A'(ro) has small norm, and if

|a(z)| dxdy is a 2-GCM relative to r0 (which is just a little better than a Carleson

measure), then you can solve (d — pd)f — a on G with / |r0G BMO(ro).

Unfortunately, in our situation a = pz is not a Carleson measure, but rather

satisfies a quadratic Carleson measure condition if p G M.

In general, when p G M + N, it is not clear how to salvage this, and we have

to do something else. (See §3.) However, if p is slightly better than M n N, this

argument can be made to work, which is what we do in this section.

The idea is as follows. Suppose p G M H N, and let us try to solve (2.1): if

T = dd~\

\ = (d-pdr1(pz) = T1(I-pT)-1(pz)
oo oo

(2.2) = ^r'orfT'o.) = d~lpz + Y¡ar\^Ty-l^TyL.)
3=0 3=1

= d~1pz + (d-pd)-1(pTpz).

Suppose we can show that d (pz) |r0€ BMO(r0) and that \Tpz\28r0(z)dxdy is

a Carleson measure. Then \p(Tpz)\ dxdy is a Carleson measure, since p G N (and

by Schwarz's inequality). We can then attack (d — pd)~x(pTpz) using [S3].

Let us make all this precise. First recall the definition of an r-GCM from [S3].

Let a(z) and 0 < a < 1 be given. For z ^ Y define

Bz = BZsa — {w: \w - z\ < a6r(z)}

and

(2.3) ä(z) =är<a(z) = í \Bz\~1 /    |a(i//)|rdudi/J (w = u + iv).

We say that \a(z)\dxdy is an r-good Carleson measure, or r-GCM, relative to Y if

\ä(z)\dxdy is a Carleson measure. This is independent of a, 0 < a < 1, different

a yielding different norms. As r increases the condition becomes stronger, and

it coincides with the usual Carleson measure condition when r = 1. An r-GCM

is the same as a Carleson measure in the large, but locally it must have better

integrability when r > 1. This notion is needed for letting singular integrals (like

T) act on a(z) which are unbounded on L1 but are bounded on Lr, 1 < r < oo.

In this section we will work with /Li's that are a little better than MON. De-

fine 2-GMN(r) to be the space of /z's in L°°(C) such that \p\26r(z)~1 dxdy and

|V/i|2<5r(z)dzdy are 2-GCM's. The 2-GMN norm is defined in the obvious way.

Similarly we define 2-GN(r) = {p G L°°(C): |Ai|2<5r(z)_1 dxdy is a 2-GCM}. Thus
2-GNC N and 2-GMN CMfliV. Observe that if

\6r(zYV3'p\28r(z)-1dxdy

is a Carleson measure, / — 0,1,2, then p G 2- GMN, by Sobolev's lemma.
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PROPOSITION 2.4. There exista 70 = 70(r) > 0 such that the following holds.

Suppose p G 2-GN(r) has norm < 70 and v G 2-GMN(r). Suppose also that

p,v are smooth and have compact support disjoint from Y. Then there is a amooth

function A auch that |VA| G L2(C), (d - pd)X = vz on C, and A|r G BMO(r),

with ||A |r ||. < C(r)H2.GMN. Alao, VA G N(Y), \\V\\\N < C(r)||i>||2.GMN-

Because \\p\\oo is small (and hence < 1) and v G L2(C),

00

X = (d-pd)-1u = J2d~1(pTY(„)
3=0

converges in the Sobolev space L\(C) — {/: Vf G L2} (since T is unitary on

L2). Because p and v are smooth and compactly supported, this series can be

differentiated arbitrarily often and it still converges in L\, so that A is G°°.

Before proving the BMO estimates for A let us show how the proposition implies

Theorem 0.1 when p G 2-GMN(r0) has small enough norm. Assume first that

p is also smooth and has compact support disjoint from To- Let A be as in the

proposition with v = pz. Since p is compactly supported, A is holomorphic on

R < \z\ < 00 for some R. From VA G L2 we get that A'(z) = c/z2 + ■ ■ ■ at

00, so that A(z) = —c/z + ■ ■ ■ at 00, by adding a constant if necessary. Standard

arguments (see [AB, especially the proof of Lemma 7], or [A2, p. 95]) show that

one can find a q.c. map p: C —► C with dilatation p such that logpz — A.

Let zo(£) be an arclength parameterization of To- Then

/3 d
p(z0(s)) = p(zo(0)) + /    —p(z0(s)) da.

By the chain rule,

— p(z0(s)) = Pzz'o(s) + Pzz'0(s)

Thus

= Pz(zo(s))z'0(a)    1 + p(z0(a))

p(z0(a)) = p(zo(0)) + j  pz(z0(s)){l + a{s))z0(s)ds,
Jo

where ||«||¿oo(Ri is small. This and the smallness of || log/30|ro||* imply the conclu-

sion of Theorem 0.1.

As in Lemma 1.6, we can get rid of the assumption that p G G°° with support

disjoint from To- (Here one needs the analogue of Lemma 1.8 with M + N replaced

by 2-GMN, but that is easy.) Thus Proposition 2.4 implies that the conclusion of

Theorem 0.1 holds if p G 2-GMN(r0) has small enough norm.

To prove Proposition 2.4, we need an estimate for d.

LEMMA 2.5.   Suppose that v is C°°, has compact support disjoint from Yq, and

at \i/z\26r(z) dxdy and |í/|2¿>r(z)_1 :

\AO(Y) and |T(i^)|2¿r(z)dxdt/ is a

only on the above two 2-GCM norms.

that \isz\26r(z)dxdy and \v\26r(z)   l dxdy are 2-GCM'a.   Then d    (vz)\r lies in

BMO(r) and \T(uz)\28r(z)dxdy is a 2-GCM relative to Y, with norms depending
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This should be compared with Wolff's d estimate [G, p. 322]. There the extra

cancellation came from an estimate on the derivative of the data, while here it

comes from an estimate on the primitive v of the data vz.

Let us derive Proposition 2.4 from the lemma. As in (2.2),

\^W\vz) + (d-pd)-1(pTvz).

By the lemma the first piece is O.K. and p(Tvz) is a 2-GCM, since p G 2GNÍT).

Because ||m||jv is small, we can solve (d — pd)~l(pTvz) with the desired estimates by

Theorem 5.2 in [S3]. (That theorem is stated in a complicated way to circumvent

distributional technicalities. In our case the technicalities do not arise because of

the a priori assumptions on p and v.)

Let us prove the lemma. Set

F(c) = d~\iyz)(c)= f vz(w)— dudv.
Je Ç~w

(From now on we shall ignore inessential multiplicative constants.) Consider first

F |r- Since suppig n Y = 0, integration by parts gives

F(ç) = /   v(w)-.-r^dudv    forcer.
/c (í-w)¿

Assume first that T = R. To estimate ||F|r||* it is enough to pair F\R with any

g in (real-variable) H1. By Fubini, we get

(2.6) ¡RFg^ = jcy{w) (/R Ji^-ys(*l) dudv-

The inner integral is the derivative of the Cauchy integral of o, and hence has an

integrable area function. Because |z/(z)|2|t/|_1 dxdy is a Carleson measure, (2.4)

can be estimated as in Remark (a) on pp. 148-149 of [FS] or p. 313 of [CMS].

When T is a general chord-arc curve, one argues similarly. One takes g to be

an arbitrary function in atomic H1(Y), for which one can prove the area function

estimates in the usual way from the L2 case in [JK] and the boundedness of the

Cauchy integral on all chord-arc curves ([D3]; see also [CDM]). The last step of

the argument can be reduced to the line using a bilipschitz change of variables

[Tul, 2, JK].

We are left with estimating

(2.7) dF(ç) = T(uz)(ç) = lc       *       vz(w)dudv,

where the integral is interpreted as a principal value. We assume first that Y — R,

suppf Ç UHP, and c G UHP. Our calculations will be similar to those in the proof

of Proposition 4.1(a) in [Se3].

Let Xo G R and R > 0 be given. We want to show that |d.F(c)|2|77|d£dr/ is a

2-GCM, ç = £ G ir], and so we must estimate

(2.8) u    \H{c)\dtdr,,
Ç6UHP

where H(ç) = (IßJ-1 /  (\dF(w)\2v)2dudv)
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and where Bc is as in (2.3) with a — .1, say.  We need to break up dF into two

pieces, near and far from the singularity in (2.7).

Let <p(w) be a G°° function supported in \w\ < 1 such that f(w) — 1 if \w\ < ^.

Define <pt(w) = <p((w — c)/10r¡). Thus

dF(ç) =   /-rx<pí(w)vz(w)dudv+-r-r(1 - <Pç(w))vz(w) dudv
Je (ç-u>r Je (i - w)

= Gx(ç) + G2(ç).

To control the contribution of Gx(ç) we need that

1/2

15,I"1 I (|Gi(w)\2v)2dudv
Jb< j

^Gjlß.r1 f  (\vz(w)\2v)2dudv
\ Jbc i

(2.9) v
-   1/2

where Bz is the double of Bz. This is proved just like (4.7) in [Se 3]. (The point is

that T is bounded on L4 and Gi(r;) only involves vz(w) for w near c.) Using (2.9)

the contribution of Gi in the integral in (2.8) is controlled by the 2-GCM norm of

\vz(w)\2vdudv.

For G2 we integrate by parts to obtain

G^)=       t, _ w)3 (! - tP¿w))ví7w) dudv + I dip¿w)u(w)dudv.

The second term is localized just like Gi, and it is handled in the same way, using

that |iv(t<;)|2|t;|-1 dtidt; is a 2-GCM. (This time it is easier, because the singularity

is killed.)
This leaves the first term, which is dominated by

(2.10) S(i)= [      —^\v(w)\dudv,
./UHP  IS — w\

because \ç - w\ and |c — w\ are comparable if c,w G UHP and |ç - w\ > n/10.

Clearly S(z) < CS(c) if |z - c| < n/10, by looking at the kernel, and so

(2.11) i1^-11/  (\S(w)\2v)2dudv\       <G|5(ç)|2t?.

Hence the contribution to the integral in (2.8) is at most

(2.12) II   |5(c)|2n didn.
ceuHP

\<-x0\<R

Write v = vx + v2, where suppi^i  Ç {c G UHP: |c - xo| < 2R} and v2 is

supported in the complement.   The v2 role in (2.12) can be estimated directly,

using (2.10). Because

L |i/(c)|2i7_1dedn<GÄ
|í-iol<2ñ

by assumption, the i^i part of (2.12) is estimated using the following well-known

result.
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LEMMA 2.13.   The operator

f      nl/2v1'2
Af(ç)= T{-—^f(w)dudv

/uhp K~w|á

is bounded on L2 (UHP, dx dy).

The vx part of (2.12) is at most f \Af\2 d£dr), where f(w) = vx(w)v~1/2, and

the lemma gives the estimate we wanted.

The lemma is proved using Schur's lemma. Observe that

/ T-^rdudv<C.
/uhp K-w|3

It is enough to check this for ç = i, by homogeneity, and that is easy. One has the

same inequality when integrating in ç. By Jensen's inequality, and then Fubini,

/      \Af(c)\2dtdr,< f      Cf      ̂ ^QlttwtfdudvdÇdr,
Amp /uhp    /uhp \t-w\á

<C f      |/(w)|2dtid7j.
/uhp

This finishes the proof that \T(vz)\2y dx dy is a 2-GCM on the UHP when Y = R

and supp/^ Ç UHP. The above argument simplifies when estimating T(uz) on the

LHP. In that case it is unnecessary to split dF into Gi and G2 or to introduce

the cutoff function <p((w), because the kernel no longer has a singularity. Instead,

T(uz) is reduced directly by integration by parts to

/ ,——^\u(w)\dudv,        c G LHP, w G UHP .
/c K-w|3

This is treated just like (2.10).

The case T = R, supp v Ç LHP is the same.

Similar arguments apply when T is a general chord-arc curve. Many of the

estimates can be reduced to the line using a bilipschitz map 6 on C that takes R

to T. Some minor modifications must be made, e.g., in <Píiw) = <7>((w — í)/l0n), n

should be replaced by ¿r(f)- In (2.10), w should be replaced by w*, where w >-► w*

is a bilipschitz reflection across T that leaves every point of Y fixed. (This can be

easily obtained using 9 above.) The details are left to the reader.

This completes the proof of Lemma 2.3.

3.  Theorem 0.1 in the general case using the Cauchy integral. Let us

first review what the Cauchy integral is. Let T be a rectifiable Jordan curve passing

through oo with complementary regions Yl+ and YI-. Let / be a function on Y. We

define its Cauchy integral by

(3.1) F(z) = ^-. í í^-dw,        zéY.
K     ' v ;     2m Jr w - z      ' ^

If /+ and /_ denote the boundary values of F± — F |n±, then the Plemelj formula

states that

(3.2) f±(z) = ±if(g) + ±.p.Y.f^dw,        zGY.
2 ¿111 Jy  W — Z

This singular integral is also called the Cauchy integral.
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In particular, the jump of F across Y, i.e., /+ - /_, equals /. This property

and the analyticity of F off Y are simultaneously expressed in the equation dF =

f dzr-, interpreted in the sense of distributions, where dzr denotes the measure on

T inducing the line integral /r dz. This d equation and a mild growth condition at

co characterize F.

Now suppose that To, p, and p are as in Theorem 0.1. Assume also that p

is smooth and has compact support disjoint from To, so that p is smooth. Let

Ti = p(Y0). We wish to compare the Cauchy integral on Y0 with the pull-back via

p of the Cauchy integral on Ti. Let / be a function on Yq. The Cauchy integral

Fx of / o p~l on Yx satisfies dFx = 0 off Yx and Fx has jump / o p~x on Yx. Thus

G = Fx o p satisfies (d — pd)G = 0 off To and its jump across To is given by /.

Let H = G — F, where F is the Cauchy integral of / on Y0 ■ Then H has no jump

across To, and (d — pd)H — pF' off To- Because H has no jump, this equation

holds on all of C, in the distributional sense; there is no boundary term for H, as

there is for dF. Thus H = (d — pd)~1(pF'). By the a priori assumptions on p,

pF' is smooth and has compact support, and so we can always find H such that

VH G L2, H G G°°, H is holomorphic in a neighborhood of oo, and H vanishes at

oo, just as in the remarks after Proposition 2.4.

The point is to get estimates. By Theorem 6.7 of [S3], if / € BMO(r0), then

H\y0 has BMO norm at most G||uJ|m+jv||/||» if UmIIm+at is small enough. (Note

that §6 of [S3] simplifies in our situation, because the a priori assumptions on p

get rid of distributional technical problems, such as defining pF' on C.)

It turns out to be more convenient for us to work with L2 instead of BMO,

because the latter ignores constants. (Any Lp, 1 < p < co, would work as well.)

As pointed out in §11 of [S3], §6 can be modified to work for Lp. In particular, if

/ G L2(Y0) and ||/í||aí+¿v is small enough, then ||if|r0||2 < C||/z||m+n||/||2-

In order to use this to control p we need to convert it into a statement about

singular integrals. The boundary values of F are given by (3.2), and those of G by

fcO-^/W + K'-v./.^^pi«-), zer0.

Because p = 0 on r0, p is holomorphic on r0 and dp(w) = p'(w)dw.   The L2

estimate on H\To — (G — F)\t0 implies that

Kof(z)=Y.V.t   1^-dw    and    Kf(z)=P.V.[
Jr0w-z /ro

f(w)p'(w) dw

p(w)-p(z)

z G Yo, satisfy \\K - Ko\\ < C\\p\\m+n as operators on L2(r0).

Because K0 is bounded on L2(Y) [D, CDM], \\K\\ < G if ||u||aí+/v is small

enough. Let us use this to estimate \p'\ on To and the chord-arc constant of Yx.

The idea is as follows. Fix an arc of To, and set / = p1 on that arc and zero

elsewhere. Then evaluate Kf on an arc far enough away from the first one so

that p(w) — p(z) is roughly constant if z and w come from the two arcs, but not

too far away, so that p(w) — p(z) is not too small. This can be done because p is

quasiconformal. Using ||Ä"/||2 < C\\fh we will get estimates on p'.

Let I be any arc on r0, with endpoints a and b. For zi,Z2 G Y0, let A0(zi,Z2)

denote the arc of Yq that joins them, and similarly for Yx and Ax(-,-).  Because
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IMIm+ív is small, we can assume that \\p\\oo < \- Using the distortion theorems

for q.c. maps (see [JK]) we can find absolute constants Gi,G2,G3, and G4, and

points Zi,Z2 G r0 so that if D = diamp(I) = diam(A(p(a),p(b))), then

(3.3)(i) D<Cx\p(a)-p(b)\;
in) \a-b\ >|zi-z2| >Cïl\a-b\;

(iii) diam(Ax(p(zx),p(z2))) < D;

(iv) 1000£» < dist(Ax(p(zx),p(z2)),Ax(p(a),p(b))) < C3D;

(v) lOOOdiam(J) < dist(A0(zx,z2),I) < G4diam(7).

Thus / and Ao(zx,z2) will be the two arcs discussed in the preceding paragraph.

From (3.3) it follows that there is a real number a such that if w G I and

z G A0(zx,z2), then

(3.4)
p(w) - p(z)

\p(w)-p(z)\

1
< —.- 50

Define / G ¿2(r0) by f(w) = p'(w)dw/\dw\ if w G I and f(w) = 0 elsewhere. Here

|dtü| denotes arclength measure, so that dw = (dtu/|dt7y|)|dt<;|. Then

G^|/M|2|dH>G||/||2>||tf/||2

>  f \f \p'(w)\2\dw

JAo(zi,Z-2)  \JI

2

\dz\
p(w) - p(z)

>c-./ (ffttílM¡)'M       |bï(3.4,]
Ja0(z„z2) \Ji \p(w)-p(z)\J

w«)-,<w(y>'Mñ<H)!->c-'

For the last inequality we used (3.3), more than once, and the chord-arc condition

on r0. Thus

/,
p'(w)\2\dw\<C^a)-p^2

11 \a~b\

and so by Schwarz's inequality,

(34) l\p'(w)\\dw\<C\p(a)-p(b)\.

This implies that Yx = p(Yo) is a chord-arc curve, with uniformly bounded chord-

arc constant (if ||n]|M+jv is small).

To finish the proof of Theorem 0.1, we want to show that (1.2) holds with v

replaced by p', R replaced by Y0, and 8 < C\\p\\m+n. We will do the same sort

of thing as above, but using ||Ä" - Ä"0|| < G||n|¡M+Ar instead of ||Ä"|| < G. Let

a,b,I, zx, and Z2 be as above.

If we replace p by ap + ß, a, ß G C, then nothing changes, neither the dilatation

of p nor the operator K. Thus we may assume that p(a) = a and p(b) = b. Let us

first get some control on p(w) — w for nearby w.

We want to show that

(3.5) \PM - w\ < CWplUa - b\
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for w G Ao(a,b) U Ao(zx,z2). When \\p\\oo < \ the left side is at most G|a - b\, by

the distortion theorem. When p = 0, the left side is 0. We now use a well-known

Schwarz' lemma trick. If we replace p, \\p\\oo < 5, by zp, \z\ < 1, then p depends

holomorphically on z, and (3.5) follows from Schwarz' lemma. (We could also have

estimated \p(w)-w\ in terms of \\p\\m+n, which is good enough here, by computing

(K — Ko)f explicitly when / is the characteristic function of an arc.)

We are now ready to verify (1.2) in our situation. Let / be any function sup-

ported on Ao(a,b) such that |/| < 1. Writing ||u|| for ||u||m+jv and using (3.3), we

have that

CMWa-by'2 >C\\p\\\\fh>\\{K - Ko)f\\2

>C-l\a-b\-^2 f \Kf-K0f\\dz\
J A0(z,,z2)

>C~l / \a-b\-1'2-   [ ( —
Ja0(zuz2) JA0(a,b) \w -

From (3.5), (3.4±), and (3.3) we obtain

r      \f     (   p,{w)
JAo(zi,z7) \JAo(a,b) \

p'(w)

z     p(w)-p(z)i
f(w) dw \dz\

i-zj

s/   /JA0(zi,22) JA0(a,b)

p(w) - p(z)     w

\p(w) -w + p(z) - z

f(w) dw \dz\

\p'(w)\\dw\\dz\
\w - z\\p(w) - p(z)\

<f f CWnWoola-bF^ffWUdwUdz
JAo{zi,Zí) JA0(a,b)

<C\\p\\oo\p(a)-p(b)\ = C\\p\\oo\a-b\.

Plugging this into the preceding gives

Taking

yields

f       f     (Ouzl)mém
JAo(zuZi)   JA0(a,b)  \    W- Z     J

p'(w) — 1   dw

\dz\<C\\p\\\a-b\.

f(w) =
\p'(w) - 1\ \dw

(w) - 1
f f ^W)-%w

Ja0(zuz2)   /a0(o,6)       W-Z
\dz\ <C\\p\\\a-b\.

As with (3.4), we have from (3.3) that for some ß G R,

«*-
w

\w
< —    if zGAo(zx,z2),wGAo(wx,w2).

5U

Hence

/ \iP^ïldw\<CRef e^'{w)-%
JAo(a,b)      \W-Z\ JA0(a,b) W-Z

<c\f \^-\dw\
\JAo(a,b)       W-Z
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From this and (3.3) we get

f \p'(w)-l\\dw\<C [ f ^}w)~.^\dw\\dz\
JA0(a,b) JAc{zi,xt)JA0(a,b)      \W - z\

<G||p|||a-&|.

Because of the normalization p(a) — a and p(b) = b, we can write this as

P(b)-P(a)      J,.JlM<cmp{a)_pm

< C\\p\\ f \p'(w)\\dw\
JAAa.b)

i
JAo(a,b) b — a

-p'(w)

This is still valid if we remove the normalization p(a) = a, p(b) — b. Thus (1.2)

holds, with 8 = G||u||. In view of Lemma 1.6, we have finished the proof of Theorem

0.1.

4. Extensions of strongly q.s. embeddings and Theorem 0.2. This sec-

tion is broken into three subsections. In the first we use (a slight variant of) the

Beurling-Ahlfors formula for strongly q.s. embeddings of R into C that are a small

perturbation of the identity. In the second the general case is done using ideas of

Tukia [Tu 2], and in the third we give a formula for small perturbations of the

identity on a given chord-arc curve (instead of the line). This last is important for

§6-
4i. Small perturbations of the identity on R. Suppose r: R —» C is given by

r(t) — r(0) + /0 ea(u'du, where a G BMO is complex-valued, ||a||* small. Set

a — a + iß, h(t) = f0 eQ("' du, and b = ß o h~l.  Because ||a||» is small, h' and

(ft-1)' are A« weights, and ||6||. < C\\ß\\t < G||o||». Thus z(t) = r(0) + /o* eib^ du

is the arc-length parameterization of a chord-arc curve with small constant, and

r = z o h.

Let <p and ip be G°° functions supported on [—1,1], <p even, ip odd, <p(x) dx = 1,

fip(x)xdx = 1. Set fy(x) = l^rVCM-1*), and define p: C -► C by

p(x,y) = tpy *r(x)+i(sgny)ipy *r(x),        y^O,

p(x,0) = r(x).

An important fact is that p(z) = z if r(x) = x.

PROPOSITION 4.2. There is a 70 > 0 such that if ||a||* < 70, then p is

a quasiconformal map of C onto itself with the following properties. Its dilata-

tion p satiafiea \\p\\oo < C||all*> and for j > 0, \y3V3p\2\y\~x dxdy ia a Carle-

aon meaaure with norm < Gj||o||2, and \y3V3p(z)\ < Gj||a||,. For j > 2,

\y3~l(V3p)(dp)~ï\2\y\~l dxdy ia a Carleaon meaaure and |j/p_1|VJ/)||i9p|-1 ia

bounded, both with estimates in ||a||«.

In the case where a is purely imaginary this follows from Proposition 2.5 in [S3].

Let us indicate how its proof can be extended to this more general situation.



250 S. W. SEMMES

We shall repeatedly use certain well-known BMO calculations. For example, if

Il/Il« is small, then \<py * e^\ is comparable to | exp(<py * /)|. Indeed, since f <p = 1,

(4.3)

(a) {tpy * ef)(x) - eVv'fW = e^*s{x\y * (e/(-)-(P»*/d) _ i)(I))

i     rx+y

(b) |(^2/*e/)(x)-e^*/(x)|<G|e^*/(x'|-^ /        |e/(«)-/**»v(») - \\du,
2y Jx-y

(C) <Py*f(x)-^-ifXyf(u)du<C\\f\U,
¿V Jx-y

one gets from John-Nirenberg and \ex — 1| < |x||ex| that

(4.4) (2y)~1 fX  V \efM-f**y(*) -l\du< G||/||,
Jx-y

if 11/11* is small enough. In particular, |exp(<£>y * /)| and \ipy * ef\ are comparable

if 11/11» is small. Also,

(4.5) \exp(<py*f(x))\<C\exp(<py*f(x'))\    if \x - x'\ < y.

Consider p on the UHP. (The LHP is treated similarly.) As in [S3], dp(x,y) =

uy * r' and dp = ßy * r' where f v = 0 and f ß = 1, and v and ß are C°° and

supported on [—1, lj. (This reflects the fact that p(z) = z if r(x) = x.) Thus

Hx,y)\
dp

dp
<C|(i/w*e°)(a:)||exp(-/3i,*a(a;))|

= C\(vy*ea-ßy*aix))(x)\

= C\uy * (e»-^*»(*) - i)(ar)| < C\\a\U

if ||a||» is small enough, by (4.4).

Let us show that |/i|2t/_1 dxdy is a Carleson measure.  For each interval I we

must estimate
■1*1

/   /     \p(x,y)\2y  1dxdy.

We may assume that J5/ a = 0, because adding a constant to a does not change p.

Since \ßy * ea\-1 « C|e-"«*a| « C\ßy * e~a\,

/  /     \pix,y)\2y 1 dxdy

-c11 l("y *ea^\ßy*e~a(x)\2y~ldxdy

<C\f   sup    \ßy*e-a(x)\4dx)
\JlO<y<\I\ I

Ii[CWv*ea{x)• dy
1/2

2^|   dx
y
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Because supp/?, suppt/ Ç [-1,1], we can replace a by a\5i, and because f v = 0,

we can replace vy * ea by vy * ((ea — l)xs/)- Since the maximal and Littlewood-

Paley functions sup!/>0 \ßy* f(x)\ and (/0°° \uy */(x)|2 dy/y)1/2 are bounded on Lp,

1 < p < co (see [Je or St]), the above is at most

(/j^w^i,2(i|e°-i|4d*r

Using John-Nirenberg, the smallness of ||o||», and f5I a = 0, we obtain

^GI/l^llall^l/I^^CI/Hlall2.

Thus the Carleson measure norm of \p\2ydxdy is at most C||a||2.

The estimates for the higher derivatives of p and p are similar, and we omit

the details. (The reader may find §§1 and 2 in [S3] helpful for this.) We are left

with showing that p is a homeomorphism on C. One could mimic the proof of

bilipschitzness in [S3] when Re(a) = 0, but for simplicity we give a less direct

proof.

Suppose first that a is smooth and has compact support. Let us check that p

must then be G1. It is always smooth off R. Because dp(x,y) = uy * r'(x) and

dp(x,y) = ßy * r'(x), f v = 0, f ß = 1, and r' is continuous, it follows that dp

and dp are continuous on R, where they take the values 0 and r'(x), respectively.

Since our earlier estimates give that p is small and dp is never 0, p is locally

a homeomorphism on G, and is also an open mapping, by the inverse function

theorem. Since a has compact support, r(x) = x + o(x) at oo, and p(z) = z + o(z)

at co. Hence p(z) —> co as z —» co, and standard topological arguments (i.e., the

monodromy theorem) imply that p is a homeomorphism of C onto itself, and is

hence quasiconformal.

Consider now the general case. Given a G BMO, ||a||» small enough, we can find

a,-, smooth and compactly supported, such that ||a,-||* < G||a||«, a, —► a a.e. and

locally in L1, ea> —► ea> locally in L1, and /0 a, = J0 a for all /. The corresponding

Pj are quasiconformal with small dilatation, by the above arguments. If we require

that rj(0) = r(0) for all /, then r¿ —► r uniformly on compact sets, and pj —> p does

too. Because of our normalizations we can conclude that p is quasiconformal. This

proves the proposition.

4ii. The general case. Suppose r: R —» C is strongly q.s., so that Y — r(R) is a

chord-arc curve and r(x) = z(h(x)), where z(-) is an arclength parameterization of

T and h'(x) = \r'(x)\ G ^4oo- We want to find a well-behaved q.c. extension p of r,

so that p in particular satisfies the conclusions of Theorem 0.2.

Let fi+ and f2_ denote the complementary regions of Y, and let $+ and $_ be

conformai maps of the UHP and LHP onto Yl+ and 0_ that take co to itself. Define

increasing homeomorphisms h+ and ñ_ on R by $±(x) = z(h±(x)). Lavrentiev's

theorem states that h'± G Aoo (see [JK]).

Let fc± = hZÍ1 o h, so that r = $± o fc±. To get the desired extension p of r we

follow Tukia [Tu 2] and first find good extensions of fc+ and fc_ and then compose

with 3>+ and $_. A smoothed up version of the Beurling-Ahlfors exension could

be used, but for technical reasons it is convenient to break up k± into small pieces

beforehand.
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Suppose k(x) is an increasing locally absolutely continuous homomorphism on

R such that k' G A»- Define kt by kt(x) = fc(0) + f* fc'(ti)4 du, 0 < t < 1. Then

k't G Aoo, with constants independent of t, so that / t-7 / o fcf_1 defines a uniformly

bounded family of operators on BMO(R). For s < t,

(kto(k:i))'(x)^k'(kri(x))t[(krl)'(x))

= k'(k;1(x))t-s.

Thus

||log(fct o kr1)'^ = (t- 5)|| logfc' o k~% < C(t - a)\\ logfc'H».

By taking t — a sufficiently small we make || log(fct ° fc71)'||» as small as we like.

Because fco(x) = x and fci = fc, we can write fc = fcjv ° fcjv_i o • • • o fc2 o kx with

|| logfcyll« as small as we like for each /. (N will depend on how small we want it.)

Apply this to fc+ and fc_ to get fc+j and fc_j. Proposition 4.2 gives extensions

p+j and p_ j of these. Define p+ = p+,at o p+ijv-i o • ■ • o p+,i, and similarly for

p_. Thus p+ and p_ are q.c. maps that extend fc+ and fc_, and hence preserve the

UHP and LHP. Define p by p = $+ o p+ on the UHP and p = $_ o p_ on the LHP.

Then p is a q.c. map on C that extends r. We want to estimate its derivatives

and dilatation, in particular their Carleson measure estimates. By symmetry it

is enough to do this on the UHP. We first need to know when a q.c. change of

variables is nice to Carleson measures.

Let 0 be a q.c. map of the UHP onto itself. Consider the following properties:

(4.6)(a) G"1 < y\d6\/lm0 <C, 0 = 0(x,y);
(b) 6(x) = 0(0) + /* w(t) dt, wgAoo-

The first one says that 0 preserves the hyperbolic metric on the UHP to within

constants.

If p is defined by (4.1) with r' = ea, ||a||» small, a real valued, then 0 = p satisfies

(a) and (b) above. Let us check (a); (b) is by definition.

As in the proof of Proposition 4.2, |dp| « \exp(ßy * a(x))\, where f ß — 1. By

definition, Im p(x,y) = i¡)y * r(x). The definition of ip implies that ip = 7', where 7

is smooth, supp7 Ç [—1,1], and /7 = 1. This implies that ipy — \y\(d/dx)^y, so

that i¡)y * r(x) = \y\-)y * r'(x). Since /7 = 1, ^ * r'(x)| « |exp(7y * a(x))\, and

this is comparable to \exp(ßy * a(x))\, because \\ßy * a — -yy * a||¿°° < G||a||», by

(4.3)(c). Thus p satisfies (4.6)(a).

If 0 is a q.c. map of the UHP onto itself, the following is a consequence of (4.6) (a)

and (b) (and is in fact equivalent to (4.6)(a) and (b)):

There is a w G Aoo and a G > 0 such that

1     fX+V
(4.7)        C-1\d0(x,y)\ < - /        w(t)dt<C\d0(x,y)\    for all x,y G R.

y Jx-y

Indeed, the distortion theorem for q.c. maps implies that

Im 0(x + iy) « 0(x + y) - 0(x - y) = /        0'(u) du.
Jx-y

Observe that iff?, 0 are two q.c. maps on the UHP that satisfy (4.6)(a) and (b),

then so do 0~l and 0 o 0, i.e., they form a group.
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LEMMA 4.8. Let 0 be a q.c. map of the UHP onto itaelf that aatiafiea (4.6)(a)

and (b). Suppoae that a(z) ia locally integrable on the UHP and that \a(z)\dxdy ia

a Carleaon meaaure. Then \et(0(z))\\d0(z)\dxdy ia alao a Carleaon meaaure, with

norm dominated by the norm of a.

This corresponds to the fact that if h' G A^, then / —► / o h preserves BMO.

Let us prove the lemma. Set ß(z) = a(0{z))(d0(z)) and let xo G R and R > 0

be given. We want to show that

//
\ß(z)\dxdy<CR.

«6UHP
|z-z0|<fi

By the distortion theorems, if R = 0(xq + R) — 0(xq — R), then

0({z G UHP: \z - xQ\ < R}) Ç{wG UHP: \w - 0(xo)\ < CR}

for some G > 0. Thus it is enough to show that

\ß(0-1(w))\Je-i(w)dudv < CR,II
u>€UHP

\w-8{x0)\<CR

where Jg-i denotes the Jacobian of 0  1.   Because 0 and 0 i are q.c, |Je-i|

|<90_1|2 and |<90_1| « \d0 o 0~l\~l, and so the integral above is dominated by

(4.9) ff       \d(0-1(w))\\a(w)\dudv.
tueUHP

\w-0(xo)\<CR

Because 0~l satisfies (4.6) and (4.7), there is an Aoo weight w(x) so that

|(3(ö-1(^))|«y-1 fX+Vw(t).
Jx-y

w*(t) = sup|t/-1 f       w(t)dt: \x-t\<y<CR\,

If

then

re(x0)+CR 7 re(x0)+cñ \V(i+«)
R-1 / w'(t) dtKClR-1 / w(t)1+s dt

Je(x0)-CR \       Je(x0)-CR )

( . fB(x0)+R \

<GLR_1 / w(t)dt)
\       Je(x0)-R )

< CR-1(0-1(0(xo) + R)- 0~1(0(xo) - R))

<C(R)~1R.

On the second inequality we have used the reverse Holder inequality for w(t) and

also the fact that tu(i) dt is a doubling measure. In the last inequality we used the

distortion theorem.
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This maximal function estimate for d(0_1) and the Carleson condition on a

implies that (4.9) is < CR. This proves the lemma.

Notice that \f(0(z))\y~1 dxdy is a Carleson measure if |/(z)|y_1 dxdy is and if

0 satisfies (4.6), by the lemma.

Theorem 0.2 is a consequence of the following.

PROPOSITION 4.10. Let p be aa above, and let p be ita dilatation. Then, for j >

0, |j/J'V7'/i|2|y|-1da;dj/ ia a Carleaon meaaure. Alao, for j > 2, |î/p_1|V'p||c>p|_1

ia bounded, and |tA7~1(VJp)(dp)~1|2|j/i~1 dxdy ia a Carleson measure.

It is enough to prove this on the UHP. From Proposition 4.2 we know that each

p+j satisfies the conclusions of Proposition 4.10, and also (4.6). Straightforward

computation and Lemma 4.8 imply that p+ = p+)jv ° • • ■ ° P+,i has the same

properties. (This should be checked one composition at a time.) As for p = $+ op+,

first observe that it has the same dilatation as p+, because $+ is conformai. The

estimates on V3 p are obtained as above, using also the fact that log<J>'+ G BMOA Ç

Bloch.
4iii. Small perturbations of the identity on a chord-arc curve. Let T be a fixed

chord-arc curve and let z(-) be a fixed arc-length parameterization of Y. Let a

be a complex-valued BMO(r) function such that ||a||» is small, and suppose that

r: Y —» G satisfies r(z) = r(zo) + f" ea^ dw for z,zo G Y, where the integral

is taken along Y. Thus if a = 0, then r is a translation. We want to find a

q.c. extension p of r whose dilatation satisfies estimates analogous to those in

Proposition 4.2. We shall give a formula similar to 4.1. First we need the following.

LEMMA 4.11. There is a bilipschitz mapping r of C onto C such that r(x) =

z(x), x G R, and \y3V3u\2\y\~l dxdy is a Carleson measure for j > 0, where v is

the dilatation oft. Also, \V3r\ < Cj\y\3~l, j > 1.

To prove this we apply the argument in the preceding subsection to r(t) = z(t).

Thus if h, h+, h-, fc+, fc_, <!>+, and $- are as before, then h(x) = x, k± = (h±)_1.

We also define p+ and p_ as before and we take r to be what we called p before,

i.e., r = <í>± o p± on the UHP and LHP. All the desired properties of r follow from

Proposition 4.10, except the bilipschitzness.

It is enough to show that G_1 < \dr\ < C. By symmetry, it suffices to do this

on the UHP. Because dr = ($'+ op+)dp+, it is enough to show that \<&'+(z)(dp+) o

p~*(z)\ = |$'+(z)(d(p_1)(z))-1| is bounded above and below. Since p~T satisfies

(4.6)(a), the distortion theorems give

\d(pzr){z)\ « y-1 lmp-\z) « y-'ip+'ix + y)- p-\x - y))
rx+y

= y~1 h'+(t)dt,
Jx—y

the last equality from definition chasing.

Since h'+ G Aoo, h'+ G Ap for some p < co. This and Jensen's inequality give

22/

From
rx+y

i      rx+y /  i      rx+y

-  / h'+ (t) dt « exp     —  / log h'+ (t) dt
■y Jx—y \¿y Jx-y

±jf'    mwm-LLj-fcfWt)* < 0|| log ft'+1
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and the fact that log|$'+(z)| is the Poisson integral of log|$'(x)| = logh'+(x), we

get that |$'(z)| « |5(p^1(z))|, as desired. Thus r is bilipschitz. This proves the

lemma.

Let T, r, and a be as before the lemma. For the rest of this section we let z(t)

denote an arclength parameterization of Y, so as not to confuse it with the complex

variable z = x + iy. We want to find a formula for a good extension of r. This is

trickier than (4.1). Set b(t) = a(z(t)) and s(t) = r(z(t)), so that ||&||* is small and

s(t) = s(0) + f0 eb(u>z'(u) du. Let <p(x) be a smooth even function on R such that

f <p = 1 and supp£> Ç [-1,1], and put <py(x) = \y\~1tp(\y\~1x). We also want that

\(<Py * z')(x)| > fío for some £o > 0. This is achieved by requiring p - \\-1/2,1/2] to

have very small L1 norm, since |z'(x)| = 1 and | f% z'(t) dt\ > (1 + fc)_1|x - y\, by

the chord-arc condition on Y.

Define Pyf = <py * f and Ryf = (Py(z'))-1Py(z'f). Thus Ry(l) = 1, so that
Ryf, like Pyf, is an average of / at the scale of y. Unlike Py, it is "well adapted"

to z'. Such operators show up in [DJS] in a more complicated way. Here we shall

need only easy properties of Ry.

Using t(z) from Lemma 4.11, define

(4 12) o-(x,y) = <Py*s(x) + Ry(eb)(x)(T(x + iy)-<py*T(x)),        y^O,

<x(x,0) = s(x).

Here ipy * t = <py * (t|r) = <py * z. Let p = a o r_1.

PROPOSITION 4.13. p is a quasiconformal map of C onto itself. If p denotes

its dilatation, then for j > 0, \Sr(z)3V3p(z)\28r(z)dxdy is a Carleson measure

relative to Y with norm < Gj||a||2, and \6r(z)3V3p(z)\ < Cj\\a\\*.

Let us motivate (4.12). Compare it to (4.1). The first terms are the same. By

the definition of i¡) in (4.1), ip = 7' where f 7 = 1, so that the second term in (4.1)

can be rewritten as i(sgny)ipy * r = iy^y * r'. For the corresponding term in (4.12),

we have replaced iy by t(x + iy) -fy* t(x). Notice that the two are equal if Y = R

and t(z) = z. In general, r(x + iy) — <py *r(x) is roughly perpendicular to Y at z(x)

and is smooth at the scale of y. We use Ry(eb) instead of 7y * eb in (4.12) because

it gives better estimates. For example, it is responsible for |p|2¿>r(z)-1 dxdy being

a Carleson measure.

The geometrical motivation for (4.12) is the same as for the Beurling-Ahlfors

formula. One has to compensate for the fact that Y is not a line, for which the

bilipschitz map r is helpful. The point is that on each arc of Y, r is roughly a

combination of a translation, dilatation, and rotation. A good extension of r should

have the same property on any disk centered on Y, where the choice of translation,

dilatation, and rotation is forced by r. Both (4.1) and (4.12) have this property.

(The reader should draw some pictures.)

Let us prove Proposition 4.13. First notice that Ry has many properties in

common with Py. For example, (4.3) and (4.4) hold with <py * / replaced by

Ryf, and if ||/||» is small enough, then \Ry(eJ")\ is comparable to \exp(Ryf)\. (In

fact, these properties hold for any decent approximation to the identity.) Also,

\y3V3(Ry(ef)(x))\ < GJ||/||,|Ä3/(e-f)(x)| for / > 1. This last is because y3V3Ry(l)

= 0, so that (4.4) can be used.
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We also have the square function estimate

(4.14) II ly'V'to/KaOI'lyr1 dxdy < C,||/||i2(R),       / > 1.

We will do this for / = 1 only; / > 2 is similar. Thus

(4.15) yVRyf = -y[V(Py~z')]{Py~zr2Py{~z'f) + Py{Sf)-xyVP^f).

The second term is controlled using the fact that Qyg = yVPyg satisfies

IL¡Qygfly^dxdyKCWgWl
c

This can be derived using Plancherel; see [Je, Chapter 6], for example. The second

term is controlled by

IL\Qy(z')\3\Pv(z'f)\2\y\-1dxdy,
'c

which is at most H/H2, since |<3y(z')|2|t/|_1 dxdy is a Carleson measure.

We need to estimate the derivatives of o.

(4 16) Ba{z) = d{iPy * S{X)) + WiOMMj;) - <Pv * T(x))

+ Ry(e»)(x)dT(z) - Ry(eb)(x)d(py * r(x)).

The third term is the main term. The second is at most G|i/||9(i?3/(e6)(x))|, since

t is bilipschitz. By our preceding remarks, this is < G||6||»|Ä!/(e{>)(x)|.

Also,

(4.17) \Ry(eb)(x)-1yd(Ry(eb)(x))\2\y\-1dxdy

is a Carleson measure relative to R, with norm < G||6||2. Let / be any interval,

and let us see how the integral of (4.17) over I = {z G C: x G I, \y\ < \I\} is

estimated. We may suppose that f5Ib = 0, and we can replace d{Ry{eb){x)) by

d(Ry((eb - l)(x)). Expand d(Ry(eb - l)(x)) as in (4.15). We can ignore the factors

of PJ/(z')_1, since they are bounded. The contribution of the first term is

II \Ry(eb)-1Qy(z')Py(~z'(eb - I))!2!*/!"1 dxdy

<C f       sup       [\Ry(eb)(t)\-*\Pv(z(eb - l))(t)\2]dx < C\\b\\l
JI \x-t\<\y\<\I\

The first inequality is because \Qy(z')\\y\~~l dxdy is a Carleson measure (since

|z'| = 1), while the second uses \Ry(eb)\~1 k. \Ry(e~b)\, John-Nirenberg, and the

IP boundedness of the Hardy-Littlewood maximal function. The second term is

dominated by iü!/(eí')(x)_1Qj,(z'(eí> - l))(x). This can be dealt with just as in the

proof of the Carleson measure estimates for p in Proposition 4.2.

The first and fourth terms in (4.16) are given by

(4.18) d(<fy * s{x)) - Ry(eb)(x)d{<py * r(x)).

Observe that

— (<py * s(x)) - Ry(eb)(x) — (<py * t(x))

= <py * (z'eb)(x) - Ry(eb)(x)<py * z'{x) = 0,

by definition of Ry. (This is why we introduced Ry.)
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Now consider the d/dy part. Because f(d/dy)<py(x) dx = 0, we can find a G C°°

such that (d/dx)ay(x) = (sgny)(d/dy)<py{x) and suppa Ç [—1,1]. Because <p(x) is

even, f7py(x)xdx = 0, so that f(d/dy)<py(x)xdx — 0, which implies that fa = 0.
Because a' — ebz', we obtain

(4.19) ^(<py * a(x)) - Ry(eb)(x)^(<py * r(x))

= (sgny)[ay * (e»z')(x) - Ry(eb)(x)(ay * z')(x)}.

Let F(x,y) denote the right side of (4.19). Then

\F(x,y)\ < C\Ry(eb)(x)\\\b\\t    if ||b||. is small enough.

Let us check this. Fix x and y. We may suppose Ry(b)(x) = 0, so that \Ry(eb)(x)\ >

G|exp(ÄJ;(&)(x))| > G. Also, we can replace eb in (4.19) by eb - 1. With these

normalizations, each of the two terms in (4.19) can be dominated by ||6||, using

(4.4), with ipy*f replaced by Ryf.
We also have that \(Ry(eb)(x))~1F(x,y)\2\y\~1 dxdy is a Carleson measure if

||6||» is small enough. Indeed, let J be any interval, and let / = {z G C: x G

I, \y\ < \I\}, and let us show that

//
'_ \(Ry(eb)(x)r1F(x,y)\2\y\-1 dxdy < G||6||2|/|.

We may suppose that /5/ 6 = 0, and we can replace eb by eb — 1 in both terms

in (4.19). Now those two terms can be estimated separately, using ^(e6)!-1 rs

|exp(—Ry(b))\ «a ¡^(e-6)! and arguments like those used to prove the Carleson

measure estimates for d(Ry(eb)(x)) before. (The first term in (4.19) is like the

second term in (4.15), and vice versa.)

Altogether, da(z) = Ry(eb)(x)dT(z) + remainder, where

|remainder| < G|Äj,(eft)(x)

and

\\\(Ryie'^x))-1 (remainder^2lyr'dxdyWcm < C\\b\\2

if ||ô||» is small enough.   This still holds with d replaced by d; therefore, since

G"1 < \dr\ < G,

(4.20)    ^ = -Í- + leftovers,
da      dr

where |leftovers| < G||6||» and \\\leftovers\2¡y]'1 dxdy\\cm < G||6||2.

In particular, \\da/da\\oo < \>(l + Wdr/drWoo) < 1 if ||6||* is sufficiently small.

To show that o is quasiconformal we must show that it is a homeomorphism on

C. Assume first that b is smooth and compactly supported, in addition to ||6||*

small. When y ^ 0, a is smooth (because r is) and do / 0 (by the above estimates

on "remainder"), and so a is locally a homeomorphism and also an open mapping

on C \ R, by the inverse function theorem. This breaks down when y — 0 because

r is not G1 on R, but we can repair the argument.

Fix x0 G R. Using the smoothness of b and the preceding calculations of da

and da one can show that the Lipschitz norm of the restriction of a(z) - eb(-x°h(z)
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to \z — xo\ < 8 tends to 0 as 8 —► 0. Because r is a bilipschitz homeomorphism

of C onto C, this implies that if So is small enough, then a maps |z — xo| < ¿>o

homeomorphically onto an open set. (The proof of this is similar to the proof

of the inverse function theorem.) Thus a is an open mapping and is locally a

homeomorphism at each point in C.

Because suppô is compact, one can show that a tends to co at co: Ry(eb)(x)r(z)

is the main term, while the other two combine to become much smaller. (To check

this, use the fact that eb — l has compact support.) Standard monodromy arguments

imply that a is a homeomorphism of C onto itself, and is hence quasiconformal.

In the general case one approximates b by bj G C°° with compact support,

HMI* - C|HI*> ancl Jo bj(x)dx — f0 b(x)dx, as in the proof of Proposition 4.2.

There is a complication now, that Ry(eb')(x) converges uniformly on compact sub-

sets of C \ R, but not of C itself. However, the normalizations force that for any

compact subset K of C, \Rybj(x)\ < Cx\\bj\\*\logy\ + C2(K) for x + iy G K. Here
Gi does not depend on K, but G2 does, because there is also logarithmic growth

in x. If ||6||* is small enough, then

\Ry(eb>)(x)\ < C\exp(Ryb](x))\ < G^M"1/2

for x + iy G K. In (4.12), though, this gets hit by |r(z) - ¡py * t(x)\ < C\y\. From

this one obtains that a3 —> a uniformly on compact subsets of C if we also make

the normalization 3j(0) = s(0) for all /. Thus a must be quasiconformal if ||ft||* is

small enough.

Therefore p = a o r_1 must be q.c, and its dilatation p satisfies ||p||oo < C|HI*

and \p\28r(z)~1 dxdy is a Carleson measure relative to Y with norm < G||6||2. This

follows from the well-known formula for the dilatation of a composition (see [A2]),

, t_df Ph-Pf

df1 - P/Ph

and the estimates (4.20).

The estimates for the higher gradients of p can be obtained similarly, using also

the estimates for the higher derivatives of r in Lemma 4.11. This completes the

proof of Proposition 4.13.

5. A problem in conformai welding. Let T be a Jordan curve that passes

through 00, let Yl+ and fi_ denote its complementary regions, and let $+ and $_

be conformai maps of the UHP and LHP onto Yl+ and f2_ such that $±(00) = co.

Define a homeomorphism ft on R by ñ = (<í>_ |r)_1 ° ($+ |r)- The problem is to

go back and forth between Y and h. Note that h controls the relationship of the

harmonic measure on the two sides of Y.

If T is a quasicircle, then h satisfies the doubling condition

<-) "-'<-W^r-M'
Conversely, to every such h there corresponds a Jordan curve Y, unique up to affine

transformations on G, and T is a quasicircle. See [Al].

The problem is to characterize the welding homeomorphisms that correspond

to the class of chord-arc curves, or, more generally, to rectifiable curves. From

Lavrentiev's theorem and basic properties of Aoo weights it follows that h' G Aoo
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if T is chord-arc. (Of course, h is locally absolutely continuous if Y is locally recti-

fiable.) David [D2] showed that chord-arc curves with small constant correspond

precisely to those h's such that ||log/i'||, is small. Unfortunately, h' G Aoo does

not characterize chord-arc curves: There is a nonrectifiable quasicircle such that

G_1 < ft' < G (see [SI]). However, Bishop, Carleson, Garnett, and Jones [BCGJ]

have characterized the curves such that h is absolutely continuous when Y is a

bounded Jordan curve; Y must be nearly rectifiable in a certain precise sense.

In this section we consider David's result. One direction, that if Y is chord-

arc with small constant then ||logft'||* is small, follows from conformai mapping

estimates due to Lavrentiev and Pommerenke. (See also the next section.)

Conversely suppose || logft'||, is small, so that h! G Aoo and (5.1) holds. Ahlfors

[Al] gets the curve from h as follows. First extend h to a (sense-reversing) q.c.

map of the UHP to the LHP. Then g*(z) = g{z) is sense preserving and takes the

LHP to itself. Let p be its dilatation, and set p = 0 in the UHP. Let p be a q.c. map

on G with dilatation p. As in [Al], Y = p(R) has ft as a welding homeomorphism.

From Proposition 4.2 and Theorem 0.1 it follows that T is a chord-arc curve with

small constant if || logft'||* is small.

6. The Riemann mapping for chord-arc curves and the theorem of

Coifman and Meyer. In this section we give a new approach to Coifman and

Meyer's theorem [CM3] on the real analyticity of the Riemann mapping as a func-

tion of the chord-arc curve. Let us first recall what all this means. (See also [S2].)

Let To be a fixed oriented chord-arc curve with arclength parameterization z0{t).

If bG BMO(R) is real valued and ||6||» is small enough, then

z(i) = z0(0)+ / e*b(s)z0(s)ds
Jo

is an arclength parameterization of another chord-arc curve Y. This gives a natural

notion of a small neighborhood of r0. Using this one can turn the space of all

chord-arc curves into a Banach manifold (modeled on BMO) in a natural way. In

fact, David [Dl] has shown that by defining argz'(i) carefully this space can be

identified with an open subset of real-valued BMO(R).

Let i> denote a conformai map of the UHP onto the left side of Y such that

$(co) = co. Define a homeomorphism ft: R —» R by h(t) = $_1(z(£)). From

Lavrentiev's theorem it follows that ft' e A», and hence log ft' G BMO. Observe

that if $ is another such conformai mapping, then $(z) = $(cz + d) for some c > 0

and d G R, so that log ft' = log ft' + loge. Therefore, as elements of BMO, log ft'

and log ft' are the same, and log ft' does not depend on the choice of $.

The theorem of Coifman and Meyer is that for each To, zo(i), the correspondence

b 1—7 log ft' is a real analytic mapping from a neighborhood of 0 6 BMO into

BMO. This means that this function has a norm convergent multilinear series, with

estimates on the terms; see [CM2, 3] (or [S2]) for a precise definition. In particular,

the mapping has Frechet derivatives of all orders, and if ||b||« is small enough, then

||logft'-logft0||. <G||ft||,.

It is very important to use ft, which is defined in terms of $>_1, rather than

$ itself. For one thing, as an element of BMO, log $' is not independent of the

choice of $. Also, even though ft' e ./loo implies (ft-1)' G A^, the correspondence
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ft h-» ft Ms not even continuous in the BMO topology, except at the origin (i.e.,

about the identity map).

Even the continuity of the mapping b >-> log ft' in the BMO topology was not

known until the theorem of Coifman and Meyer, except when r0 = R. In that case

a small neighborhood of To consists of the chord-arc curves with small constant

[CM2]. Since fto(x) = x if To = R, the continuity of 6 i—♦ log ft' about To is just

the statement that ||logft'||, is small if the chord-arc constant of Y is. This is

equivalent to || log<ï>'||* being small, which had been proved earlier (see [PI, 2, 3]).

(This is the conformai mapping estimate mentioned in §5.) The simpler special

case of To = R should be kept in mind throughout this section.

Let us show how to apply the methods of this paper to the mapping b ¡—► log ft'.

Define rb = z o Zq 1 and ß = b o Zq-1 , so that

rb{w) = rb(w0) + /    elß(z) dz,        w0, w G Y0,
Ju>o

where the integral is taken over the corresponding arc on r0. By Proposition 4.13

(or 4.2 when Y = Ro) there is a q.c. extension pb of rb given by (4.12) ((4.1) when

T0 = R) whose dilatation pb lies in M(r0) D N(Y0) with norm < C||6||».

The mapping b >—> pt, is real analytic. One can easily write down a formal power

series expansion, but the issue is whether one can get uniform norm estimates on

the terms of the power series. By §4, the mappings b i—► pb t—► pb are perfectly

alright if b is complex-valued, as long as ||6||» is small. In particular one gets the

same estimates for pb. This complex extension is also formally complex analytic.

Moreover, using Cauchy's theorem like in §10 of [CM2], one can estimate the terms

of the power series for pb in b in terms of the boundedness of ||pt||Mniv- This gives

the real analyticity of b h-> pb.

Let us show how to go from pb to ft. We use a well-known set-up from q.c.

mappings (see e.g. [A3]) together with our estimates. Suppose first that To = R.

Consider the restriction of pb to the UHP, a q.c. map onto the left side of Y. Then

Pfc°»?_1 is conformai if n is a q.c. map of the UHP onto itself with dilatation pb there.

Define v = vb by u — pb on the UHP and u(z) = v(z) on the LHP, and let n : C —► C

be the q.c. map with dilatation v satisfying »7(0) = 0, »7(1) = 1. Then n maps the

UHP to itself, and pb o n_1 is conformai. Because pb(t) = z(t), t G R, we get that

»7|r = ft. From Theorem 0.1 it follows that ||logft'||» < G||p&||M+Ar < G||6||. if

||6||* is small enough.

Furthermore, in the notation of §2, pb G 2-GMN(R). This follows from the

Carleson measure estimates on V3p, j = 0,1,2, and Sobolev's lemma. Thus the

method of §2 is applicable. This is good because that method gives an explicit

power series for log r]z in terms of v, which is exactly what we want.

There is a disgusting technical point here, which is that we made some a priori

assumptions in §2. Morally, it is the estimates that are important, and we shall not

worry now about the issue of getting rid of the a priori assumptions. However, one

way to do this is indicated below.

Consider the case of general To- Let $0 and ft0 be as before. Then pb o $0

defines a q.c. map of the UHP onto the left side of Y, with dilatation equal to

(pb o $o)^,ó/*ó-   (See the formula at the end of §4.)   Set u equal to this on the
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UHP, define v(z) = u(z) on the LHP, and let n be as before. Then $ = pijO^on-1

is conformai, and ft = (>7|r.) o ft0, because p¡,|r0 — H — z o Zg-1.

We need to control v. Because log<J>0 e BMOA (see [JK]), we have that

\ynVn{W0(%)-1}\2y-1 dxdy

is a Carleson measure if n > 1. For pb o <p0, first observe that if \a(z)\dxdy is

a Carleson measure on Yl\ — the left side of r0, then \a($o(z))$0(z)\ dxdy is

a Carleson measure on the UHP. This could be proved in much the same way as

Lemma 4.8. (In fact, one could apply Lemma 4.8 to 7ro<p0, where ^(0°^) = UHP and

■k is bilipschitz.) Alternatively, the bilipschitz map r: C —> C such that r(R) = Y0

given by Lemma 4.11 is given on the UHP by $+ o p+, where in particular p^1

satisfies Lemma 4.8. From this one gets the desired property of $o, because r is

bilipschitz.

From pb G N(Y0) one gets that pb°$o S N(R). This uses the preceding remarks

and the fact that 8r($o(z)) « |$ó(*)l2/ (see> e-S-> Í1-6) of [JKD- Hence v e N(R).
One proves similarly that (yn\Vnv\)2y~1 dxdy is a Carleson measure if n > 0.

In particular, v G 2-GMN(R). Thus one can apply Theorem 0.1 to get that if

9 — v\r, then \\g\\* < G||ft||» if ||6||* is small enough. From this and h'0 G A we get

that || log ft' — logftóH* < G||6||*. As before, the method of §2 gives a power series

for g in terms of v, and hence b, modulo a priori assumptions.

Let us indicate another method for computing log ft' in terms of b that is more

in the spirit of [CM2, 3].
Let $o and $ be as before. By the results of Lavrentiev and Pommerenke

(see [PI, 3 or JK]), log$' and logi>0 lie in BMOA of the UHP, and hence have

boundary values almost everywhere on R. Define B(x) = Imlog<l>'(ft(x)) and

B0(x) = Imlog$0(ft0(x)) on R. Because z(t) = $(ft(i)), z'(t) = eiBW a.e., so

that B is a choice of argz'. Let H denote the Hubert transform and define V), by

Vhf = /oft. The analyticity of log$' implies that H (Reloge') = Imlog4>', which
itself yields (as in [CM1, 2])

(6.1) log h'^VnHVr^B).

Morally, it is clear that B and Bo + b should be the same when ||6||, is small,

but because argz'(<) is not well defined, we must be careful. Let us assume for now

that B = Bo + b, and prove it afterwards.

Let v, n be as above, so that r)\n = g, ft = g ° ho, and v is the dilatation of n.

We can rewrite (6.1) as

(6-2) log ft' = VhoVgHV-lV¡rol (Bo + b),

since Vh = Vh0Vg. Since ft0 G A^, Vh0 and V^"1 are bounded operators on BMO.

Also, VgHVg~l(f) can be computed in terms of a d — vd problem: if F is defined

on C \ R, has jump / across R, satisfies (d — vd)F — 0 off R, and also satisfies

certain estimates, then the boundary values of F on R from the UHP are given by

\f + (l/2i)VgHVr1(f)- (The case v = 0, g(x) = x, is the classical case.) This is

shown in §5 of [S3].

It is also shown in [S3] that if v G N(R) has sufficiently small norm, then F as

above exists with BMO boundary values if f G BMO(R), and that F is given as a

power series in v, all with the right norm estimates. Since we already know that v
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has a good power series in b, we conclude from (6.2) that log ft' can be expressed as

a power series in b (if ||6||* is sufficiently small). Notice that we do not run into the

earlier problems with a priori assumptions here, because none are made in [S3].

It is interesting to compare the previous argument with the method of §3. In

both we use [S3] to go from estimates on v to estimates on VgHVg~l. In the

preceding we went from there to log ft' using (6.2). In §3 we went to logg' directly

from the estimates for VgHVr1 and the formula for its kernel.

Let us check that B = B0 + b if ||6||« is small enough. It suffices to show that

\\B - Boll* is small if ||6||. is. For we know that z'(t) = eiB^, z'0(t) = e¿B°W, and

that z'(t) = z'Q(tym- Thus e^b-B°-V = 1 a.e., so that {l/2ir)(B - B0 - b) is

integer valued. If ||6||» is small, then so is \\B — Bo — b\\*; if (l/27r)(ß — B0 — b) is

also integer valued, it must be constant, i.e., = 0 as an element of BMO.

To show that ||ß - Soll* is small if ||6||* is, we use (6.1). Our earlier argu-

ments (i.e., applying Theorem 0.1 to n) show that g = «Ir, satisfies ||log</||» <

G||i/||aí+at < G||6||, if ll&ll* is small enough. Since ft0 G A», ||logft' - logft0||* —
\\logg'oho\\,<C\\logg'\\t. By (6.1),

Bo^-Vh.HVr^logh'o)    and   B = -^//V^1 (log ft').

Hence

B - Bo = -VHÜVr'ilogtí - logfto) - (VnHVr1 - V^HV^ilogh'o).

Because ft0 G A^, we have ft' G Ax with uniform estimates on the ¿loo constants

if || log ft' - logftóH» < G||i>||» is small enough, so that

\\VnHV~1 {logh' -logh'0)\\. <C\\b\U.

Also,
VnHVr-1 - V^HV^1 = Vho(VgHV~l - H^1

has operator norm < G||i/||ív on BMO if ||f||jv is small enough; as before, this

follows from §5 of [S3]. Since logft0 G BMO, we get that ||S - B0||. < C||6||, if
||6||» is small enough, as desired.
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