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ELLIPTIC AND PARABOLIC BMO
AND HARNACK'S INEQUALITY

HUGO AIMAR

ABSTRACT. We give a generalization of the John-Nirenberg lemma which can

be applied to prove A2 type conditions for small powers of positive solutions

of elliptic and parabolic, degenerate and nondegenerate operators.

One of the main tools in the original Moser proof of Harnack inequalities for

elliptic and parabolic equations is a John-Nirenberg type lemma concerning the

behavior of the distribution of a function satisfying a bounded mean oscillation

property [Mi, JN and M2]). This technique has extensively been used in different

elliptic situations. For example: in [FKS], Fabes, Kenig and Serapioni use the

John-Nirenberg lemma for BMO (wdx) (w G A») proved by Muckenhoupt and

Wheeden in [MW], in order to prove regularity of solutions of degenerate elliptic

operators. In [FL and FS], Franchi, Lanconelli and Serapioni apply the John-

Nirenberg type inequality proved by Burger in [Bu] on spaces of homogeneous type,

in order to extend Moser's technique to different degenerate elliptic operators. In

the parabolic case the situation is different since Moser [M3] has obtained another

proof of Harnack's inequality by an extension of Bombieri's argument [B], which

does not use John-Nirenberg type lemmas. The degenerate parabolic situation

studied by Chiarenza and Serapioni [CSi and CS2] follows the pattern of [M3].

In a recent paper, [FG], Fabes and Garofalo returned to the original Moser proof

of parabolic Harnack inequality. The main point is their extension of

A. P. Calderón's proof of the John-Nirenberg lemma [N]. In their subdivision and

selection process, the rectangular geometry of the parabolic balls and the transla-

tion nature of the time lag play an important role.

On the other hand it is well known that the usual (elliptic) selection process

can be carried over to the general setting of spaces of homogeneous type applying

Wiener type covering lemmas. See, for instance, Macias and Segovia [MS].

The main purpose of this note is to give an extension of the John-Nirenberg

lemma to the setting of spaces of homogeneous type with general "time lags",

in such a way that both, degenerate and nondegenerate, elliptic and parabolic

situations, become particular cases.

In §1 we state the result, and its applications and examples. In §2 a John-

Nirenberg type lemma is proved. In §3 we shall prove Theorem (1.7).

1. Statement of the result. Applications. Let X be a set, a nonnegative

symmetric function d on X x X shall be called a quasi-distance if there exists a
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constant K0 such that d(x,y) < K0(d(x,z) + d(z,y)) for every x, y, z G X, and

d(x, y) = 0 if and only if x = y. Let p be a positive measure defined on a a-algebra

of subsets of X which contains the d-balls and satisfies the following inequalities

0 < p(B(x,2r)) < Ap(B(x,r)) < oo, for some constant A, every x G X and r > 0.

We shall say that (X, d, p) is a space of homogeneous type if A" is a set endowed

with a quasi-distance and a measure satisfying these conditions. In this note we

shall consider a space of homogenous type for which continuous functions are dense

in L1. If / is a positive measurable function on X and E is a measurable subset of

X, msif) means p(E)-1 fE f dp.
(1.1) DEFINITION. Let B(x0,Ro) be a fixed ball in the space of homogeneous

type (X, d, p). We shall say that a function

T: B(x0,R0) x (0,Ro) - X x R+;    T(x,r) = (£,p),

is a lag mapping if there exist three constants Ki,i— 1,2,3, such that the inequal-

ities

(1.2) d(x,(7)<Kxr,

(1.3) K2p<r< K3p,

hold for every x G B(xo, Ro) and r G (0,V?o]-

In the definition of BMO we shall use nonnegative functions h of the real variable

t, which share the following properties with small powers of t+ — (t + |i|)/2: h is

continuous, nonnegative, h(t) = 0 if t < 0, h(t) is increasing for t > 0, h(t + a) <

h(t) + h(a) and e~eh^ is an integrable function on (0, oo) for every e > 0.

(IA) DEFINITION. Let / be a real-valued measurable function on the space of

homogeneous type (X, d, p). We shall say that / satisfies a BMO condition with lag

mapping T on the ball B(xq, Ro), with respect to h, if there exists a real function

C(x,r) on B(x0,Ro) x (0, Ro] such that

(1.5) mB{Xir)(h(f-C(x,r)))<N(f),

(1-6) rnBUiP)(h(C(x,r)-f))<N(f),

for some constant N(f) and every (x,r) G B(x0, Ro)x(0, Rq}. Let BMO(x0, Ro,T, h)

be the class of all such functions.

The main result of this note is the following.

(1.7) THEOREM. Let T be a one-to-one lag mapping on B(x0,Ro) with the

following property, there exiata 0 < 7 < 1 auch that for every r < Ro

(1.8) B(x0, ir) x (0, nr] C T(B(x0, r) x (0, r]).

Then there exiat two conatanta 8 and C depending only on Ki,A,^, and a lag

mapping S on B(x0,8Ro) {S{x,r) = (ç,t)) auch that if f G BMO(x0,Ro,T,h) and
u — e~f, the inequality

(1.9) (mB{x,r){u~e)) ■ (mB,(iT)(u*)) < C

holda for aome e > 0, depending only on N(f), and every (x,r) G B(xo,8Ro) x

(0,8R0]. Moreover, the mapping S can be given explicitly in terma ofT:

S(x,r) = (Ç(x,r/n);np(x,r/n)),
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where £ and p are the componenta of T and r\ ia a conatant depending only on Ki,

¿ = 0,1,2,3.

Roughly speaking, Theorem (1.7) asserts that if/ is of bounded mean oscillation

with lag mapping T, then some positive power of e_i belongs to an A2 class with

a lag mapping closely related to T.

In the next paragraph, examples and applications are given.

(1.10) Elliptic caae: [Mx and JN] Let

»>i=i
dxi    %J dxj

where üíj(x) is a measurable symmetric matrix satisfying the inequalities A|£|2 <

aij(x)£i£j < A|^|2, A and A constants. If u is a positive solution of Lu = 0 on the

cube Qo, using Poincaré's inequality, Moser proves the usual BMO property for

v = log 1/ti on the cube 2~1Qo:

there exist a constant C = C(n, A, A) and, for each subcube Q of

2_1Qo, a number C(Q) such that

±-h„-cm<c.
ÍQÍJQ

This condition is clearly equivalent to (1.5) and (1.6) with h(t) = t+ and T the

identity. Then, Theorem (1.7) gives the usual A2 condition for u£, since S is also

the identity.

(1.11) Degenerate elliptic caae I: [FKS and MW]. The coefficients aij of L

satisfy the weaker condition Atu(x)|£|2 < a¿j-(£)&£.,■ < Atü(x)|£|2 with w G A2. The

weighted extension of Poincaré's inequality gives a weighted BMO for v. Theorem

(1.7) applies to the situation X = R", dp = wdx, d the euclidean distance in R™

and T the identity.

(1.12) Degenerate elliptic caae II: [FL, FS and Bu]. The condition on av, is of

the form Xw(x)X2(x)/-2 < <iij(x)ÇiÇj < A.w(x)\2(x)Ç2, where w G A2 on the space

of homogeneous type with distance given by the vector (Ai, A2,..., A„) (see [FS]).

Theorem (1.7) applies again to obtain a weighted A2 condition on balls in such a

distance.

(1.13) Parabolic caae: [M2, M3 and FG]. Let u be a positive solution of du/dt =

Lu, L as in (1.10). Poincaré's inequality gives now a "parabolic BMO with time

lag": for every parabolic subrectangle R of the unit cube in Rn+1 there exists C(R)

such that

and

7¿| I    V(v-c(R))+dx dt<C

¿r j    sJ(c(R)-v)+dxdt<C
%   I Jr-\R-

where R+ and R~ are the upper and lower halves of R. The structure of space

of homogeneous type is (Rn+1,d, A), where A is Lebesgue measure and d is the

translation invariant distance defined by

d((x, t); (0,0)) = max{|x|, y/\F\};        i€R", t G R.
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The lag mapping T is given by

T((x,í);r) = ((x,í-2r2);r).

It is easy to see that (1.8) is satisfied. Since S((x,t);r) = ((x,t - 2r2/n2);r) and

n < 1, then we have the expected lag proportional to r2 in the A2 condition for a

positive power of u, which takes the form

mRl(u~£) -mR2(ue) <C

needed to apply Moser's method.

(1.14) Degenerate parabolic caae. As we said in the Introduction, a class of

degenerate parabolic operators has been studied by Chiarenza and Serapioni [CSi

and CS2]. There, Harnack's inequality is obtained when the degeneration of the

elliptic part is as in (1.11) with the weight w belonging to Muckenhoupt's class

-Ai+2/n- The method used in [CSi and CS2] is that of Bombieri and Moser and

consequently avoids John-Nirenberg type lemmas. The purpose of this paragraph

is to prove that Theorem (1.7) applies in this situation.

Let us start by introducing a structure of space of homogeneous type on Rn+1

associated to the R" weight which defines the degenerate elliptic operator L. Let
wGAp(Rn),

Ap:   I f        w)( f        w-^-A       =\Q(x,r)\".
\jQ(x,r)     J   \JQ(x,r) J

Let hx(r) = (Jqix r) tü_1^p_1')p-1 and /i"1 be its inverse function. Let us define

d:Rn+1 xRn+1 -^R+u{0},

d((x,t); (y,a)) = \x-y\ + fe^fli - a\) + fc^flt - s|)

and p — w x A on the Borel subsets of Rn+1, here A is the one-dimensional Lebesgue

measure and w{E) — fE wdx. Condition Ap can be rewritten as

Av:p(B((x,t);r)) = r^,

where B((x,t);r) is the d-ball with center (x,t) G R"+1 and radius r > 0. From

this expression for Ap, the doubling property of p is clear. The quasi-triangle

inequality for d follows from the fact that w G Aoo- Then (Rn+1,d,p) is a space

of homogeneous type which fits the degenerate parabolic operator for p = 1 + 2/n.

The family of balls in (Rn+1,d, p) is equivalent to the family of all rectangles of

the form

È((x, t); r) = Q(l,r) x(t- %hx{r); t + \hx(r)).

Let u be a positive solution of

du _ y~*    &   (       ^  \

~dt~ ^ dx~\aiJdx~)U
i,] = l

on a cube of R"+1, where A — (oti(x)) is a symmetric matrix of measurable

functions satisfying the structural condition studied by Chiarenza and Serapioni,

namely
77

(1.15) AW(x)|c;|2 < £ atJ{x,t)^ < At<;(x)|e|2,

i,j=l
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where w G A1+2/n(Rn). To apply Moser's method [M2, p. 118] in order to obtain

a BMO type condition for v = log 1/u, we need the following slight modification of

the weighted Poincaré's inequality of Fabes, Kenig and Serapioni [FKS]:

(1.16) LEMMA. Let 0 < <p < 1 be a continuoua function with aupport in the

cube Qr auch that ita level aeta are convex aeta. Then there ia a poaitive conatant

C auch that the inequality

f \v - V\2(pw < CR2 f \Vv\2<pw

holda for every Lipachitz function, v, defined on Qr, where V — f v<p/ f <p.

The function v = log 1/u satisfies the following inequality

f i¡)2vdx\\\ + ]- f2 I 4>2VvAVvdxdt<2 f * f Vt/> • AVipdxdt,

where
n

iP = t/>(x) = I^XuK)
v=l

and
1    if |x„ -x°| < r,

Xv{xv) =     0   if |x„ - x°| > 2r,

linear interpolation   otherwise.

Therefore, from (1.11), we have

f -i¡)2vdx\\\ + ̂  f ' f \Vv\2w^2dxdt<2A(t2-tx) f w\Vip\2 dx.

Applying Lemma (1.16) and taking tx —*• t2 we find that

/ Hx,t)-V{t)\2W{x)dx<C'W2^X^.
jQ(x0,r) r2\Q(x0,r)\dt      \Q(x0,r)\r2 JQiX0¡r)

Let £0 € R, xo € Rn and 0 < r < 1 be fixed; tx = t0 - ^^„(r), t2 = t0 + \hXo(r)

and t G (tx,t2). From (1.17) it is clear that

dV       MQ(zo>r))
-   V. C  -   ^* 77?

dt  -    r2|Q(x0,r)|     '     •

Therefore V - Vx := V(t)-V(tx) < m(t-tx) < mhXo(r). For a > 3mhXo(r) we set

Qa(t) = {xG Q(x0, r) : v(x, t)-Vx> a}.

If x G Qs(t), then v(x, t) — V>a + Vx—V>a — mhXo(r) > 0, consequently, from

(1.17) we get

dV       (a-V -Vx)2    .- ,x., ^
-17 + c-J7Yi-TtH-^QsW) < m.
dt \Q(xo,r)\r¿

Integrating the above inequality from tx to t2 and using our definition of p, we have

p{(x, t) G ¿((xo, to); r) : v(x, t)-Vx>a}< c l^^o, r)|j-a
a — mhXo(r)
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for every a > 2>mhXo(r). Therefore

f s/{v(x,t)-Vx)+dp(x,t)
J B((x0,to);r)

< (3mhX0(r))1/2p(B((xo, t0); r)) + CÄ^1.

Since w G A1+2/„, the first term on the right side is bounded by cp(B((xo, to); <"))>

that the same bound is also true for the second term follows from Holder's inequal-

ity. Now replacing t by 2tx — t in the above argument, we get

f y/(Vx-v(x,t))+dp(x,t)
J B((xo,t0-hxo(r));r)

< cp(B((x0,to - hX0(r));r)).

The preceding inequalities show that v belongs to BMO with h(a) = y/s+ and lag

mapping satisfying (1.8), given by

T((x,t);r) = ((x,t-hx(r));r).

Theorem (1.7) applies to show that the solution u satisfies the following inequality

[/ u~£dp ) ■ f / u£dp) <cp(B((x,t);r))2
\J B((x,t);r) J      \JB((x,T);r) J

where r = t — hx(r/n).

2. A John-Nirenberg type lemma. The following Wiener type covering

lemma can be found in [CW] with a slightly different statement.

(2.1) COVERING LEMMA. Let (X,d,p) be a space of homogeneous type. Let

8 — {Ba = B(xa,ra): a G Y} be a family of baila in X auch that \Jaer Ba ia

bounded. Then, there exiata a aequence of disjoint balls {Bi} C S such that for

every a G Y there exiata i satisfying ra < 2r¿ and Ba C ß(xt, SK^rT).

In this section B(xx,Rx) is a fixed ball in the space of homogeneous type (X,d,p),

T is a fixed lag mapping on B(xx, Rx) and / is a fixed function in BMO(xi,RX,T, h)

such that A^(/) = 1 and C7(xi,i?i) = 0. In order to further simplify notation, we

set

M = K^Kr1 + 2Kx)K3Kr1 + ^K^1 + Kx] + 1

and

n = [#0(1 + 2MK0)]-1 < [K0(l + 2K0)}-1.

(2.2) Observation. For every x G B(xx,nRx) and every

rG[2nK0Ri,(l/K0-ri)Rx}=:I

we have

B(xx,r)Rx) C B(x,r) c B(xx,Rx).

Since n < [#0(2^0 + 1)]_1, / is nonempty.
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Let us consider the following modifications of T(x, r) and C(x, r):

S(x,r) =T(x,r)   on [B(xx,Rx) x (0,RX)} - [B(xx,riRx) x /],

= T(xi,Äi)    on .B(xi,?7.Ri) x J,

ß(x,r) = C(x,r)    on \B(xx,Rx) x (0,RX)] - \B(xx,nRx) x I],

= 0   on B(xx,nRx) x I.

It is easy to see that S is a lag mapping with constants depending on n. Moreover,

if S = (o, t) we have

d(x,tr(x,r)) < Kx ■ r
2.3 \r    JZrzt        forr<2r,K0Ri,

K2t <r< K3T

mB{x,r)(h(f-ß(x,r)))<l   ifr<2nKoRi,

mB{o;T)(h(ß(x,r) - /)) < 1    everywhere.

(2.5) LEMMA.   / G BUO(xx,Ri,S,h) with norm bounded by Ar¡-io^A.

PROOF. We only need to consider the case (x,r) G B(xx,nRx) x I. From

Observation (2.2) we get

mB(x,r)(h(f - ß(x, r))) = mB{Xtr)(h(f - C(xx, Rx)))

p(B(xx,Rx))  <A    ioSaA    D

p(B(xx,rjRx))

For a given A > 0 set Ylx :— {x G B(xx,nRx): ß(x,r) > A for some r G

(0, (1/Ko - v)Ri}} and, for x € Ylx,

Rx(x) := {r G (0, (1/K0 - n)Rx] : ß(x, r) > A}.

(2.6) LEMMA.   Let An > An_i > • •• > Ai > 0 and Ylk = YlXk, then

(2.7) for every x GYlk there exiata rk(x) < 2r]KoRi auch that

ß(x,rk(x))>Xk>ß(x,Mrk(x)),

(2.8) if y G Ylk+1 C Ylk then rk+1(y) < rk(y).

PROOF. Let x € Qn, then Rn(x) = Rx"(x) ¿ 0. We choose rn(x) G Rn(x)

such that Mrn(x) $. Rn(x). From the definition of n we have 2MK0n = 1/K0 - n.

We also know that rn(x) G Rn(x) C (0,2KovRi], then Mrn(x) < 2K0nMRx =

(1/Ko — n)Rx and therefore, ß(x,Mrn(x)) < X„. So (2.7) is proved for k = n.

Let us assume that rn,...,rk+1, k > 1, satisfy (2.7) and (2.8). Let y G Ylk. If

y £ Ylk+1 then we can get rk(y) in the same way as we have got rn. If y G Ylk+1,

set R = Rk(y)-[0,rk+1(y)). Let rk(y) G R such that Mrk(y) £ R. Also Mrk(y) <

(1/Ko - r))Ri and Mrk(y) > rk+1(y), then ß(y,Mrk(y)) < Xk.    D

The preceding lemma and the Covering Lemma (2.1) can be applied together in

order to obtain the following result.
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(2.9) LEMMA. Let {Afc}£=1 be auch that Xk+X > Xk > 0. Then for each k =

1,2,..., n there exists a sequence {xk : i G Z+} c Ylk auch that:

(2.10) B(S(xk,rk(xk)))nB(S(xk,rk(xk)))=0    ifi^j;

(2.11) for every x GYlk there exiata i G Z+ auch that r(x, rk(x)) < 2r(xk, rk(xk))

and
B(S(x,rk(x))) C B(a(xk,rk(xk));5K2T(xk,rk(xk)));

(2.12) ß(xk,rk(xk)) >Xk> ß(xk,Mrk(xk)),    for every i G Z+;

oo

(2.13) Ylk C \jB{o(xk,rk(xk));Nr(xk,rk(xk))),

i=i

where N dependa only on Ki i = 0,1,3.

(2.14) Let j G Z+, then there exiata i G Z+ auch that

B(S(xk+1,rk+1(xk+1))) C B(xk,Mrk(xk)) c B(a(xk,rk(xk));Pr(xk,rk(xk))),

where P depend only on the Ki 'a.

PROOF. For each x G Ylk we have the positive number rk(x) satisfying (2.7).

Applying the lag mapping S to the pair (x,rk(x)) we get (o(x,rk(x)); r(x,rk(x))),

which defines the ball B(o(x,rk(x))\ r(x,rk(x))). In this way we have the family

of balls
8k = {B(a(x,rk(x)); r(x, rk(x))) : x G Ylk}.

It is clear that the set defined by the union of all members of Bk is bounded. So

that we can apply the Covering lemma in order to obtain a sequence {xk} C Ylk

satisfying (2.10), (2.11) and (2.12). Let us prove (2.13): let x G Ylk and i be the

positive integer associated to x by (2.11), then from (2.3) we have

d(x,cr(xk,rk(xk))) < KQ[d(x,o(x,rk(x))) + d(o(x,rk(x));o(xk,rk(xk)))}

<K0[Kxrk(x)+5K2r(xk,rk(xk))}

< Ko[KxK3T(x,rk(x)) + 5K2T(xk,rk(xk))}

< K0[2KXK3 + bK2} ■ r(xk,rk(xk)),

and (2.13) is proved. In order to prove (2.14) let us observe that, because of (2.11),

there exists i G Z+ such that r(xk+1 ,rk(xk+1)) < 2r(xk,rk(xk)) and

B(S(xk+1,rk(xk+1))) C B(o(xk,rk(xk));bK2T(xk,rk(xk))).

Let x G B(S(xk+1 ,rk+1(xk+1))), we can estimate the distance from x to xk apply-

ing the triangle inequality to the following chain of points

x -^ a(xk+1,rk+1(xk+1)) ^ xk+1 ^ o(xk+1,rk(xk+1)) -^ o(xk,rk(xk)) ^ xk,

so that, from (2.3) and (2.8) we have

d(x,xk) < Kl[T(xk+1 ,rk+1(xk+1)) + Kxrk+1(xk+1) + Kxrk(xk+1)

+ oK2T(xk,rk(xk)) + Kxrk(xk)}

< KlKKr1 + 2Kx)rk(xk+1) + (bK2/K2 + Kx)rk(xk)\

< Mrk(xk).

The last inclusion in (2.14) is easy.    G
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(2.15) LEMMA.   Let {Xk}^=0 be auch that Xk+X > Xk > 0.   Then there exists a

constant Q depending only on A and the Ki's such that the inequality
oo

(h(Xk+1) - h(Xk) - l)YiKB(S(xk+1,rk+1(xk+1))))

¿=i
oo

<Q¿2»(B(S(xk,rk(xk))))

i=l

holds for k — n — 1, n — 2,..., 1,0.

PROOF.   Set B*k = B(S(xk,rk(xk))).   For every j G Z+ we have Afc+i  <

ß(xk+1,rk+1(xk+1)), then, from (2.4) and the properties of h it follows that

h(Xk+x) <1+ mB.k+i(h(f)),

consequently
oo oo      ~

(n(Afc+i)-l)¿>(B;fc+1)<W        h(f(y))dp(y).
j=i 3=iJb?+1

From (2.14) we know that each B*k+1 is enclosed in some B(xk,Mrk(xk)). Given

i G Z+, set

J, = {j: B*k+1 C B(xk,Mrk(xk)) but B*k+1 £ B(xk,Mrk(xk))

for 1 = 1,2,...,*-1}.

Then, from (2.10), (2.12), (2.5) and the second inclusion in (2.14) we get
oo oo -

(MA*+i)-i)E/«(£;*+l)<x;£ /    Kf)dp
i'=l ¿=1 j€JiJB,

oo       -

= E / , h(f-ß(xk,Mrk(xk))+ß(xlMrk(xk)))dp

^EW M/-/?(^,Mrfc(xtfc)))d/.

+h(Xk)J2ß(B*k+1)
j€J,

oo oo

< Av- iog2 a £ ^^ m^^*))) + A(Afc) £ ^(b;*+1)

7=1 J=l

oo oo

<gEM5*fc) + ^(Afc)EMs;fc+1)- D
«=1 J=l

(2.16) LEMMA.   There exiat poaitive conatanta a and b depending only on A and

the Ki 'a auch that the inequality
oo

¿2p(B(S(xx,rx(xx)))) < a2-bhWp(B(xx,nRx))

i=l

holds for every A > 0.
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PROOF. Let Q be the constant in Lemma (2.15). Choose n and r such that

h(X) = h(r) + n(2Q + 1) and 0 < h(r) <2Q + 1. Let Afc = h~1(k(2Q + 1) + h(r)),
then we can apply Lemma (2.15) to the sequence A = A„ > An_i > ■•• > \r¡ = r.

Observe that h(Xk+x) - h(Xk) -1 = 2Q. Then

E M*;fc+1) * \ E mk)>
j€Z+ i€Z+

by iteration

EMß;n)<2-"EMß;0)

3 3

_ 2h(r)/(20+l) . 2-h(X)/(2Q+l) X^ ¡¿{B*0).

3

This finishes the proof of the lemma.    D

(2.17) LEMMA. There exiat two poaitive conatanta a and b depending only on A

and the Ki 'a auch that the inequality

p{xGB(xx,nRx): f+(x) > X} < a2~bh(x) ■ p(B(xx,nRx))

holda for every A > 0.

PROOF. Let us show first that {x € B(xx,nRx): f+(x) > A} C Yla, where

a = ^-^^(A) - 1) for n(A) > 1. Let x G ß(xi,nÄi) such that x £ Yla, then

ß(x,r) < oi for every r < 2nKoRi- Observe now that

u(Jr r)) f        h(f)dp<        ! f        h(f-ß(x,r))dp + h(a)<h(X),
p(B(x,r)) JB(Xtr) P(B(x,r)) JB(x<r)

by differentiation of the integral we get /+(x) < A. Now, from Lemma (2.16) and

(2.13) with a instead of A^, we see that

u{x e B(xx,nRx): f+(x) > A} < p(Yla)

<J2^B(^x?,ra(xf));NT(xf,ra(xf))))
i

<CJ2»(B*a) < a2-»h^ • p(B(xx,r,Rx)).    D

i

The result of this section is summed up in the following statement.

(2.18) JOHN-NIRENBERG TYPE LEMMA. Let T be a lag mapping on the ball

B(xx,Rx) of the space of homogeneoua type (X,d,p). Then, there exiat n(Ki) > 0,

a(A,Ki) > 0 and b(A,Ki) > 0 auch that for every f G BMO(xx,Rx,T,h), the

inequality

p{x G B(xx,r¡Ri): [/(x) - C(xx,Rx))+ > X}

<ae~bh^'N^ ■ p(B(xx,nrx))

holda for every A > 0.
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3. Proof of Theorem (1.7).

(3.1) LEMMA. Let T = (£,p) be a one-to-one lag mapping on B(xo,Ro) aatiafy-

ing (1.8). Then there exiat n(Ki) > 0 and8(i,Ki) > 0 such that BMO(x0, Ro,T, h)

C BMO(xo,ty¿ño,TTÍ,/), where Tn(x,r) = (^(x,r/r));,np(x,r/r))) and 1(a) = a+.

PROOF. Let / G BMO(x0,tRo,T,/i). If x g B(x0,Ro/2K0) and r < Ro/2K0,
then B(x,r) C B(xo,Ro). So we can apply Lemma (2.18) in order to obtain

p{y G B(x, nr) : [f(y) - C(x, r)] + > A} < ae-*"^'™ - p(B(x, nr)),

then, from the integrability hypothesis on e~£h we have

(3.2) mB,Xtnr)lf-C(x,r)]+<N'(f)

for every x G B(xo,Ro/2Kq) and r < Ro/2Ko- Let us now observe that, be-

cause of (1.8), T_1 is a lag mapping on the ball B(xo,^Ro), and that -/ G

BMO(x0,iRo,T-1,h) with constants c(£,ö) = -C7(T_1 (£,,?)) = -C(x,r). Ap-

plying again Lemma (2.18) we get

(3.3) mB(^p)[C(x,r)-f]+<N'(f),

for every f G B(x0,lRo/2K0) and p<^Ro/2K0. If we take 8 < ^K2/2K^[KX + 1],
then the image under T of B(xo,6Rq) x (0,6Rq) is contained in the set for which

(3.3) holds. Set a = nr in (3.2) and (3.3), we have

mB{x,s)[(f-C(x,a/ri))+}<N'(f)

and

mB^(x,s/r,);rip(x,s/V))[ÍC(x,8/ri) - /) + ] < N'(f),

for every (x, a) G B(xo, r¡6Ro) x (0, rjSRo}. This finishes the proof of the lemma.    D

Applying Lemmas (3.1) and (2.18) we obtain the following result.

(3.4) LEMMA. LetT — (£,p) be a one-to-one lag mapping on B(xo,Ro) satisfy-

ing (1.8). Then, there exist n(Ki) > 0, 6(7, Ki) > 0, a(A,Ki) > 0 andb(A,Ki) > 0
such that given f G BMO(xo,Ro,T,h) the inequalities

(3.5) p{y G B(x, nt) : [f(y) - C(x, t)}+ > X} < ae~bx/N^p(B(x, ni)),

(3.6) p{y G B(o, ns) : [C(x, t) - f(y)}+ > X} < ae~bX/N^ p(B(o, ns)),

hold for every X > 0, x G B(xq, 8Ro), t < 8Ro and some function c(x, i) • ((<r, a) =

Tr,(x,t)).

With these results, the proof of the theorem is now as in the euclidean case: let

s < b/N(f), x G B(x0,8Ro) and t < 8Rq, then

ee(C(x,t)-f(y))+ dp.(y)f u£ dp < e-£C^ f
JB(<x,77s) JB(a,r¡s

< ae-£C^e /    ¿£~b'N^x dXp(B(o, na)).
Jo

On the other hand

/ u~£ dp < otf^'t'e f°° e[E-V^(/)]A dxfl(B(x, nt)).
Jbíxm) Jo
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Consequently

[Ib      U~£dß

for every r < nSRo and x G B(xo,n8Ro), where

(C,r) = S(x,r) = (ax,r/V2);r,2p(x,r/r,2)).
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