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EDWARD E. SLAMINKA

ABSTRACT. We prove a generalization of the Brouwer Translation Theorem

which applies to a class of homeomorphisms (free homeomorphisms) which ad-

mit fixed points, but retain a dynamical property of fixed point free orientation

preserving homeomorphsims. That is, if h: M2 —> M2 is a free homeomor-

phism where M2 is a surface, then whenever D is a disc and h(D) n D = 0,

we have that hn{D) n D = 0 for all n ± 0.

THEOREM. Let h be a free homeomorphism of S2, the two-sphere, with finite

fixed point set F. Then each p 6 S— F lies in the image of an embedding

<pp: {R2,0) -» (S2 - F,p) such that:

(i) h</>p = 4>PT, where t(z) = z + 1 is the canonical translation of the plane,

and

(ii) the image of each vertical line under (j>p is closed in S2 — F.

The class of free homeomorphisms has been introduced and studied by M. Brown

in connection with the dynamics of surface homeomorphisms.

Introduction. L. E. J. Brouwer, from 1909 to 1919, formulated and presented

the Brouwer Plane Translation Theorem [2-6, 9, 10]. In modern terminology it

can be stated thusly.

THEOREM. Let h be a fixed point free orientation preserving self homeomor-

phism of R2, the plane. Then each p € R2 lies in the image of an embedding

<j>v: (i?2,0) -> {R2,p) such that:

(i) h(pp = (f>pT, where t(z) — z + 1 is the canonical translation of the plane, and

(ii) the image of each vertical line under <pp is closed in R2.

In his first proof of this theorem [3-6] he assumed that a simple curve bounded

only two domains. Later [7] he discovered the Lakes of Wada continuum and

realized the error in his proof. The second proof [9] utilized the Brouwer Translation

Arc Lemma, which was proved using the No Retraction Theorem [8] and the concept

of index of a fixed point. However, this proof contained serious gaps.

Since 1920 a succession of authors [1, 13-16, 17, 18] have presented proofs of

this theorem, each either correcting errors in the previous proof or embarking upon

a simplification for the proof. For a more thorough discussion of this problem, the

reader should consult [11] which presents the history of Brouwer's work and [16]

for the history of the plane translation theorem.
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In this paper, we use the notion of free homeomorphism, introduced and devel-

oped by Brown [12]. A homeomorphism h: M2 —► M2, for an orientable surface

M2, is said to be free, if for each disc D, with the property that h(D) n D = 0, it

follows that hn(D)C\D = 0 for all n ^ 0. As a consequence of the Brouwer Transla-

tion Arc Lemma, an orientation preserving fixed point free homeomorphism of the

plane is a free homeomorphism. It should also be noted (cf. [12]) that since there

exist no free homeomorphisms for Mn, n-manifolds, for n > 2, the concept of free

homeomorphism is intimately related to the dynamics of surfaces. The interested

reader should consult Brown [12] for a detailed study of free homeomorphisms.

We present a version of the Brouwer Translation Theorem for free homeomor-

phisms of S2, the two-sphere, with finite fixed point set, which generalizes the

standard Brouwer Plane Translation Theorem.

Let hbe a, fixed point free, orientation preserving homeomorphism of the plane.

Then h has a unique extension to a homeomorphism h of S2 with precisely one fixed

point K, where K is the point of compactification. Since the Euler characteristic

of S2 is two, the fixed point index of K is also two. By a result of Brown [12], h

and also h must be free homeomorphisms, and thus our theorem can be applied to

obtain the classical Brouwer Plane Translation Theorem.

§1 of this paper contains the definitions and notation used in the sequel. In §2

we collect the work of Brown [12] on free homeomorphisms which will be used in

the proof of the main theorem. In §3 we present the proof of this theorem.

I would like to express my greatest appreciation to my advisor Mort Brown for

suggesting this problem, for his advice and his continued support throughout this

research. I am also grateful to Jim Kister for clarifying the many subtleties in the

problem and his ongoing interest in this work.

This paper contains work based upon the author's Ph.D. dissertation at the

University of Michigan.

1. Preliminary definitions and notation. The unit interval will be denoted

by/.
Let Rn denote euclidean n-space endowed with the standard norm ||x||.

Let S2 be the unit sphere {x € R3 \ \\x\\ = 1} embedded in R3. The distance

d(p, q) between two points p, q in S2 is the length of the geodesic in S2 from p to

q using the metric inherited from R3.

The notation \p,q] (respectively (p, q)) will denote a homeomorph of the closed

(resp. open) interval / with endpoints p and q in S2.

A ball B{p, r) in S2 centered at p € S2 of radius r is the set {x € S2 | d{x, p) <r}.

A disc D in S2 is a homeomorph of B(p, 1).

We will use the conventions int(X), bd(X), and X to denote the interior, bound-

ary and closure of a set X in S2 respectively.

A homeomorphism h: S2 —► S2 is said to be free [12] if h is an orientation

preserving homeomorphism such that if D is any disc in S2 and D n h(D) — 0,

then DDhn{D) = 0 for all n ± 0.

As we will be considering a specific free homeomorphism, h: S2 —> S2, the

notation Xn for hn(X) will be employed in the sequel, with the convention that

X° = X. For the same reason let F denote the fixed point set of h.

The following two concepts are central to the proof of the main theorem.
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DEFINITION. Let h: S2 —* S2 be an orientation preserving homeomorphism of

the two-sphere. A disc D C S2 is said to be critical if and only if D n D1 ^ 0 and

D n D1 C bd(D). The disc D is at moai critical if D is critical or DnD1 = 0. A
disc .D is not at most critical if int(D) n int(Z)1) ^ 0, that is, D overlaps its image.

We will concentrate upon the following sets as candidates for critical discs.

DEFINITION. A set D C S2 is a partial disc whenever:

(i) D = A -D2 ± 0, where Du D2 are balls in S2,

(ii) center(Di) & D2, and

(iii) D(lD2 is a nonempty, connected arc of bd(£>2).

Let the radius of D and the center of D be those of £>i.

Figure l

We will say that the partial disc D is situated along the ball D%. Given an arc

[a, b] on bd(£>2), we can construct a partial disc D along £>2 which intersects £>2

only at [a, b]. This partial disc is then determined by the distance from center(D2)

to center(£>). When this distance and the arc [a, b] are specified, we denote the

partial disc by D(a,b).

For any homeomorphism h: S2 —► S2 and point p& F, there exists a small ball

B(p) centered at p such that B{p) n Bx(p) = 0. We can construct a critical disc

by enlarging the radius of B{p) to get a ball B{p) which intersects its image only

in points along the boundary of B(p).

We can extend this process to any small disc D containing p by appealing to the

Schoenflies Theorem and radially extending the equivalent ball B(p). This gives us

a critical disc D, by conjugation, containing p.

In the sequel we will also be concerned with critical partial discs which do not

require the inclusion of a specified point. To accomplish this we first choose a small

partial disc D0 along a given ball B such that DoHDq = 0. We will then construct

a continuous family of partial discs Dt, t e I, along B such that:

(i) radius(X?t) > radius(Z?s), t > s,

(n)D1nD\JL0,



280 E. E. SLAMINKA

(iii) Dsf]Dt^0 for all s,t€l, and

(iv) if x e int(Dt), x &. Ds and t > s, then there exists u with t > u > s such

that x e bd(Z>„).

These conditions ensure the existence of a critical partial disc Dt for some t G I.

2. Free homeomorphisms and translation lines. We will list several prop-

erties of free homeomorphisms which will be used in the sequel. The reader is

referred to Brown [12] for proofs of these and other properties.

DEFINITION. Let h: S2 —► S2 be a free homeomorphism. A half-open, half-

closed arc a = [a;, a:1) is a translation arc if a D h(a) = 0. The invariant set

La = Ui^-oo ^'(a) is called the translation line (generated by a).

PROPOSITION 1 [12, THEOREM 4.7]. La is homeomorphic to the real line.

(La is not necessarily a closed line however.)

Thus we may naturally order La so that if p e La then p < p1.

PROPOSITION 2 [12, THEOREM 4.6]. {Spanning property for translation

arcs.) Let h be a free homeomorphism of S2, L a translation line for h, and let

a — \Pia) be a translation arc in L which generates L. Let C be a continuum

satisfying (1) C fl a = 0 and (2) C intersects both components of (L — a). Then

CC\h(C)^0.

IfC is a disc, LC\C is an arc [p,q] onbd(C) andq > p1, then int(C)n/i(int(C)) ^

0. Thus C overlaps its image and is therefore not critical (nor at most critical).

PROPOSITION 3 [12, LEMMA 5.1]. Let h be a homeomorphism of S2 and let

E be a disc such that h(E) C int(.E').  Then h is not free.

PROPOSITION 4 [12, THEOREM 5.1]. Let h be a free homeomorphism of S2

and let D be a disk in S2 such that h(D) C D.  Then D has a fixed point on bd(D).

The final proposition we need will be supplied with Brown's proof, as we will

require a modification of it in our proof of the main theorem.

PROPOSITION 5 [12, LEMMA 4.1]. (Translation arcs exist.) Let h be a free

homeomorphism of S2. Ifp andp1 are in the same component of S2 —F then there

exists a translation arc from p to p1.

PROOF. Let D be a small disk in S2 - F containing p in its interior. En-

large the disk D by a continuous family of disks Dt C S2 — F, 0 < t < 1, such

that D0 = D, Dt C int(A0 whenever t < t1, Dt f) h(Dt) = 0 for all t < 1,
int(Di) n h{int(Di)) - 0, and bd(D,) n h(bd(Di)) # 0. Let z € bd(Di) n
/i(bd(Di)), and let h(y) = z. So y € bd(-Di).
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Figure 2

Let a = \y,z) be an arc in £)i such that p € a — y C int(Z?i). Then a is a

translation arc containing p. So also is the union of the subarc [p, z] of a with

[z,?1) of/1(a)-

LEMMA 1. If D is a critical disc and D n F = 0 then D* n D1' - 0 for

\i-j\ > 1-

PROOF. Without loss of generality assume that D n D" ^ 0 with n > 1 and

that Dn does not intersect D1 through Dn~2. Pick g e bd(D) n bd(Dn). Hence

q~n € bd(D). Let a = [q,q~n] be an arc such that int(a) C 'mt(D). Hence

a n a1 = (q U q~n) D (g1 U g_n+1)

= (g n g1) u((?n g~n+1) u (q~n n g1) u (g~n n <rn+1).

Since £> n F = 0, then g n q1 = 0 = q~n D g""+1. Since fl"nB' = 0, then

g fl g_n+1 = 0. Since ft has no periodic points, g1 ^ g_n. Hence a D a1 =0. But

g € a fl an; hence the homeomorphism is not free, a contradiction.

LEMMA 2.   For each point p E S2 — F and critical disc D with p € int(£>) and

DC\F = 0, there exist three translation arcs a, u and v such that:

(i) p€ int(a)nint(£>),

(ii) u,v C bd(£>), and

(hi) int(u),int(u), and La are disjoint.

PROOF. Without loss of generality, by the Schoenflies Theorem let D be a ball.

As in the proof of Proposition 5, let a = [y, y1) be a translation arc through p with

y € bd(£>). Let u,v be the two arcs on bd(D) with endpoints y, y1. Let e, e1 € u

be a point and its image such d(e, e1) is minimal, where d( , ) is the distance along

the arc u. Since D n F = 0, dfoe1) ^ 0. We claim that [e.e1) n [eSe2) = 0. If
not then there exists an / such that e < f1 < ei along u1. The simple closed curve

aUu is mapped to the simple closed curve a1 Uu1 with the same orientation, since

h is orientation preserving. Hence the inverse image of Z1 must lie between e and

e1 along u. This implies that d(f,f1) is less than d(e,el), a contradiction.

Let u = [e, e1] fl u and similarly construct v. The arcs a, u and v are translation

arcs, and, by Lemma 1, int(u),int(t>) and La are disjoint.

These arcs provide two translation lines LU,LV which are disjoint from La except

possibly at the iterates of y and y1, the endpoints of a.
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Figure 3
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3. Main theorem. The following theorem is the version of the Brouwer Trans-

lation Theorem which will be proved.

THEOREM.  Let h be a free homeomorphism of S2 with finite fixed point set F.

Then each p€S2 - F lies in the image of an embedding <j>p: (R2,0) —► (S2 - F, p)
such that:

(i) h(j)p = <t>pT, where t(z) = z + 1 is the canonical translation of the plane, and

(ii) the image of each vertical line under <f>v is closed in S2 — F.

As a consequence of this theorem, the image of the i-axis under <j>p is a translation

line through p.

The proof will be divided into its local and global aspects. In the first part,

using the results of §2, we construct LU,LV and La. We will then construct two
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U

V

Figure 5

additional translation lines -ku(i) and £„(i). The construction for £u(i) will be

accomplished by showing that there exists a specific critical partial disc, part of

whose boundary lies on Lu. We will think of £«(i) as above Lu, which is above La.

A similar construction will be made for Lv^y

In the second part we will iterate this procedure, and, with earful control of the

area of the associated partial discs, we will determine the existence of the embedding

4>p-
PROOF. By Proposition 4 there exists a translation line La through p. By

Lemma 2 of §2 there exist two translation lines Lu and Lv "above" and "below"

La.

By the Schoenflies Theorem we can conjugate h to obtain a homeomorphism h

such that D is mapped to a ball D(0) centered at p. Without loss of generality

denote h by h.

The following proposition constructs either a simple arc from La to a fixed

point, which does not intersect its image, or a critical partial disc which will yield

a translation line "above" Lu.

PROPOSITION 6.   There exists either

(i) a critical partial disc D(l) situated along D(0) such that D(\) C\D(0) C u, or

(ii) a simple arc I from p to a point q € F such that I CM1 = q and lC\La=p.

PROOF. The arc u = [C,Cl] for some point C on bd(D(0)). For each x e

(C, C1) parametrize (C, x) by t € /.

For each t € (C, x) we will construct a partial disc D(t, x) such that bd D(t, x) n

D(0) = [t,x] C bdD(0). We need only show where the center of D(t, x) is located.

Let r = radius of D(0).

For each x e [C, C1] and t 6 (C, x) define r(t, x) to be the scalar valued function

which is linear along each line segment of slope —1 in the (t, z)-plane, to have

limiting value 0 on the line x = t, and limiting value n — r on the lines t = C and

x = C1 as indicated in Figure 6.

Let the center of the partial disc D(t, x) be situated r + r(t, x) from the center

of D(0) along the line bisecting the arc [t,x] C bd£>(0) and passing through the

center of D(0).
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Since (,i e bd(D(0)) nbd(Z?(<,i)) and d(p,center(D(t, x))) > r, we have con-

structed a partial disc D(t, x). The family D(t, x), t 6 (C, x), is a continuous family

of partial discs (cf. §1) which has the following properties:

(i) as t —» x, r(t,x) —► 0,

(ii) as t —► C, r(i, x) —»7r - r, and

(iii) if y 6 int(£>(i,x)) then there exists a ti € (£,£) on the arc u such that y £

int(D(«i,x)).

Property (ii) implies that when t -» C, bd(Z?(i,x)) -» bd(Z?(0)).



A BROUWER TRANSLATION THEOREM FOR FREE HOMEOMORPHISMS 285

Using the fact that FnD(O) — 0 and Proposition 2, there exists a compact set

G with D(0) C int(G), G D F = 0, such that for t sufficiently close to x along u,

D(t,x)r\D1(t,x) = 0,        D(t,x)f](Lu-u)=0     and     D(t,x)cG.

Let t approach C along u until D(t,x) either

(a) is critical, but does not meet Lu— u nor a fixed point,

(b) meets a fixed point and is critical, but does not meet Lu — u, or

(c) meets Lu - u, and is at most critical.

If t -* C then by (ii) above, bd(D(t,x)) ~* bd(£>(0)). But if D(t,x) is at most

critical, then F C bd(D(0)) which is a contradiction. Hence by (ii) and (iii) the

above are the only possible cases.

In case (a) the requirements of the proposition have been met. For case (b) take

a simple arc / in D(0) U D(x, t) from p to a fixed point q on bd(D(t, x)) such that

int(i) C int(D(0) U D(t, x)), and / n La = p. Thus / n I1 = q and I n LQ = p.

The final case constitutes the remainder of the proof of Proposition 6.

Case (c). Assume that for each x G (C,Cl) the partial disc so constructed

intersects Lu — u and is at most critical. Call this partial disc, the partial disc

associated to  x, D(x).

We shall show that there exists an x G (C, C1) such that D(x) is not of case

(c) by demonstrating that these partial discs induce a partition of the open in-

terval into two nonempty, disjoint and relatively closed sets, thereby arriving at a

contradiction.

LEMMA 3.   D(x)D(Lu-u)c(C1,C2)u(C'1,C).

PROOF. The partial disc D(x) cannot contain either C or C1 by construction.

If D(x) meets Lu — (C~l,C2) then there exists an arc on bd(D(x)) which spans

both x and x1 or x and x_1. Hence by the spanning property for translation arcs,

D(x) is not at most critical, that is, int(D(x)) nint(£>1(x)) ^ 0.

DEFINITION. Call those x G (C,Cl) such that D(x) meets (C1^) (respec-

tively (Cl,C2)) type-C (resp. type-C1).

LEMMA 4. The two sets composed of x G (C,CX) of type-C or type-C1 are

disjoint, nonempty and relatively closed in (C,CX).

PROOF. Disjoint. Let D(x) be a partial disc such that x is of type-C and of

type-C1. Then there exists an arc on bd(D(x)) which spans both C and C1. By

the spanning property of translation arcs, we have a contradiction.

Nonempty. Assume that x G (CC1) is of type-C1. Let M = D(x) ("1 [C1,^].

Since M is compact, let m(x) be the least element in M in the order < of [C1 ,C}.

The point m(x) ^ C1 or C2. Consider the point m~1(x) G (C,C^) and the

partial disc D(m_1(x)). We claim that m~1(x) is of type-C. Assume to the

contrary that m_1(x) is of type-C1. If x < m~1(x) along (C,Cl) then the arc

[x, m(x)\ C bd(D(x)) is an arc which spans both m(x) and m_1(x) and hence, by

the spanning property for translation arcs, D(x) overlaps its image and is not at

most critical.

Similarly we can show that m-1(x) < t where t is such that D(x) = D(t,x).

Let m(m"i(x)) be, as defined above, the first point along [C1^2] such that

D(m-l(x)) intersects [C\C2]. If m(m_1(x)) > m(x) along (Cl,C2) then the arc
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[m~1(x),m(m~1(x))] C bd(D(m_1(x))) is an arc which spans both m_1(x) and

m(x). Thus by the spanning property for translation arcs, D(m~1(x)) overlaps its

image, a contradiction.

Thus for m_1(x) to be of type-C1, m_1(x) < t and m(m~1(x)) < m(x). In

order to present a contradiction, we need to consider the manner in which D(x)

intersects (C1,^) for any x G (C,Cl).

Let s(x) be the simple closed curve from x to m(x) (along D(x)) to C1 (along

u1) to x (along u).

LEMMA 5.   The simple closed curve s(x) does not separate C from C2.

PROOF. Assume that s(x) separates C from C2. Since h is orientation pre-

serving, int(D1(0)) must intersect D(x). Thus we must have that bd(D(x)) fl

(bd(£>1(0)) - u1) ^ 0. Let a C D(0) be an arc with endpoints C,Cl passing

through p such that int(a) C int(D(0)). The arc a is a translation arc which

generates a translation line L„. Let b be an arc from y e (t,x) to a point

z G bd(D(x)) n (bd^^O)) - u1) such that int(6) C int(D(x)) and y1 ^ z. Let a

be an arc from p to y such that int(a) C int(D(0)) and afla=p. Let d be an arc

from z to q with q > p1 on La such that int(d) c int(D1(0)) and d fl b — z. Since
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d(x)(   b\ ^rc2      \\ j

D(0)

Figure 10

d separates D(0) into two discs Ai and A2 with int(a) C A\, we can choose d such

that int(d) C int(j4.£) and dno1 = 0.

The arc aUbUd spans p and p1 along L~, hence (oL)6Ud)n(a1 U&1 Ud1) ^ 0.

We will now show that each term in the expansion is empty by grouping these terms

into those which have similar proofs and proving one of each type as an example.

Assume that b n b1 =0.

(1) ana1, dfld1. Since int(a) C int(L>(0)) and p g bd(Z>(0)), if a Ha1 ^ 0 then
y = y1, which is a contradiction.

(2) a1 nd, a1 0 6, ft1 nd. Assume that 61 nd ^ 0. Then 6nd-1 # 0. However

d_1 C A2 and b C Z?(x), yet D(0) n £>(x) = [t,x] and [t,x] C\A2 = 0, which is a

contradiction.

(3) a D d1. Since a C I>(0) and d1 C £>2(0), a n d1 c D(0) n Z>2(0) = 0, by

Lemma 2.

(4) oD61,6nd1. Consider aDb1. Let ci be an irreducible arc in a from b to 61

with endpoints y and w, where w G aflfr1, and let 172 be the arc in 61 with endpoints

y1 and w. Let i?1 be a small disc containing g2 such that E C\ E1 = 0. As in the

proof of Proposition 5, enlarge E1 until E HE1 ^ 0. Let /? be a translation arc

generated which contains g2- The arc /? can be constructed so that (3(1 gi = w.

Then gi spans j/ and y1 along L@. Hence <7i D^J jt 0, which implies that ana1 ^ 0,

a contradiction.

Since these cases present a contradiction, b n b1 ^ 0 and thus D(l) overlaps its

image, a contradiction. Hence Lemma 5 is true.

Let A(x),B(x) (resp. A(m~1(x)), B(m~1(x))) be the two components of S2 —

s(x) (resp. S2 - s(m-x(x))) with C,C2 G £(x) (resp. B^'^x))). If D^-^x))

does not intersect (x, m(x)) along D(x) then

A(x)cA(m-1(x)),    B(x)DB(m-1(x))     and   s(x) ns(m_1(x)) = 0.



288 E. E. SLAMINKA

_     8l

y    V* 'z yJ*l& # 'zl

Figure n

However, since C2 G B(m~l(x)) and m(m~l(x)) < m(x) on (C1^2) we

must have that (m(x),C2) along (C1^2) intersects int(D(m_1(x))). Thus

int(D(m_1(x))) meets D(l), a contradiction. Hence D(m~1(x)) meets (x,m(x))

along D(x). But D(x), D(m~1(x)) are constructed from balls, thus

m(x) e'mt(D(m-1(x))).

Therefore (C1,C2)nint(£»(m-1(x))) ^ 0 which again implies that intern"1 (x)))

meets D(l), a contradiction.

Hence given a point x of type-C1, we can construct a point m~1(x) of type-C.

The reverse statement can be proven similarly.

Closed. Let xi,x2,... be a sequence of points in (C, C1) of type-C1 such that x G

(C, C1) is a limit point. Associated to each x; are points ti, m» where U is such that

D(xi) = D(ti,Xi) and m, is m(xi) as noted above. Pick subsequences of x;,£j,mj

which converge to x,t,m respectively and relabel this subsequence Xi,ti,mi. We

claim that this subsequence determines a partial disc D(x) of type-C1. Let D(t,x)

be the partial disc at t,x. If mt(D(t, x)) n (Lu — (C,CX)) ^ 0 then there exist

infinitely many i such that mt(D(ti,Xi)) n (Lu — (C,C^) ^ 0, a contradiction.

Similarly D(t, x) is at most critical. Thus by the spanning property, m^C2. By

the continuity of r(t,x), m G Lu — (C, C1) and m ^ C1 else x = C1. Since D(t,x) is

at most critical, we have that vc&(D(t, x)) n (I„ - (C, C1)) = 0, but m G (C1, C2),

hence x is of type-C1. A similar proof holds for the set of points of type-C.

Since the open arc cannot be represented as the disjoint union of two relatively

closed, nonempty sets, there exists an x G (C, C1) satisfying Proposition 6.

This completes the proof of Proposition 6 and the local part of the main theorem.

We will now iterate the above process and construct the embedding </>p.

Construction of <j>v. Let <f>v map the x-axis to the translation line La such that

(0,0) i-+ p and (-±,0),(i,0) i-> y,yx, where a = [y,yl\ along La, and h<t>p = <j>pr

on the x-axis. By Proposition 6 there exists a simple arc / from p to a fixed point

g or there exists a critical partial disc D(l) with the above-mentioned properties.

If the simple arc / exists, let 4>v map the positive y-axis U origin to / - g so that

(0,0) h-> p. The embedding <j>p can then be extended to the entire upper half-plane.

In the other case, D(l) exists and either there exists a fixed point or a translation

arc u(l) on bd(.D(l)) - bd(D(0)). If the fixed point occurs, proceed as above to

obtain <f>v. Otherwise, u(l) generates a translation line Lu^ "above" Lu. Repeat

Proposition 6 to obtain D(2), D(3),-If we arrive at a D(N) with a fixed point
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Figure 13

on bd(D(7V)) - bd(D(N — 1)), then, as above, we obtain <f>v defined on the upper

half-plane.

LEMMA 6. Di(j)r\Dk(l) ^0 if and only if k = i and \l-j\ < 1, or I = j and
\k — i\ < 1. Hence the interior of the discs are disjoint.

PROOF. Without loss of generality i = 0, j = 0. Assume that D(0)C\Dk(l) ^ 0

and k, I > 0.

If / = 0 then by Lemma 1, k = —1,0 or 1.

Thus / = j and \k - i\ < 1.

Assume that fc = 0 and / > 1. Let a be a simple closed curve from p G D(0)

through D(0),D(l),...,D(l) to D(0) such that a lies in int(U|=0D(i)) except

possibly where D(l) meets D(0). The simple closed curve a separates S2 into two

discs E\,E2 such that h(E\) C E\. By Proposition 4, Ei must have a fixed point

on its boundary. However the only possible fixed point must be on the intersection

of D(l) and D(0). By construction D(0) does not intersect the fixed point set.
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Z>(0)

Figure 14

Assume k-l > 0. Let x G bd(Dk(l))nbd(D(0)) and y G bd(Z>fc(0)nbd(Z>*(/-l))
be the endpoints of an arc a such that int(a) C mt(Dh(l)). Let b be an arc with

endpoints x,p such that int(6) C int(£>(0)). Let d be an arc with endpoints y,pk

such that int(d) C int(Uj=0 ^>k(i))- Then the arc a U b U d spans p,pfc along La.

But a, 6 can be chosen such that d n b1 = 0. Hence ana1 / 0, and Dk(l) is not

at most critical, a contradiction.

LEMMA 7. Either there exists a fixed point y such that each neighborhood of y

contains infinitely many D(i), or some D(N) has a fixed point on its boundary.

PROOF. Assume that none of the D(i) has a fixed point on its boundary. Let K

be any compact set not meeting F. Since F is finite, there exists an e > 0 such that

any partial disc D of radius less than e, not having a fixed point on its boundary

and intersecting K, has the property that D D D1 — 0. If the radius of the partial

disc D is r, then area(£)) > 7rr2/2. Hence, by Lemma 6, area U"=i ^(i) > mre2/2.

Since a.rea.(K) < area(S'2), n must be finite. Thus all but a finite number of the

D(i) do not intersect K.

LEMMA 8. The sequence D(i) converges to a single fixed point. That is, for any

neighborhood N ofq, a fixed point, all but a finite number of the D(i) are contained

in N.

PROOF. Assume the D(i) have only two points gi,g2 G F as limit points.

Consider two balls B(qi,e),B(q2,e) centered at gi and g2 of radii e < d(qi,q2)/3.

Since gi,g2 are limit points of the D(i), there exist infinitely many i,j such that

D(i) n int(B(gi,e)) ^ 0 and similarly D(j) n int(5(g2,e)) ^ 0. Consider subse-

quences D(ii),D(i2),..., D(ji), D(j2),... such that i\ < j\ < i2 < ■ ■ ■ ■ Since the

collection D(i) is connected and D(i) intersects only D(i + 1), D(i — 1), there exist

integers n^, k = 1,2,..., such that ik <nk< jk and such that the following holds:

D(nk)n(S2 - (mtB(qi,e)UmtB(q2,e)) ^ 0.
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However, the set S2 - (int5(gi,e) U int5(g2,e)) is compact. As in the proof of

Lemma 7 we arrive at a contradiction. This proof requires only a slight modification

for the case of more than two fixed points. _

We now find a simple arc / from p to a fixed point q lying in (J D(i) such that

lOl1 — q. Let 0P map the positive y-axis to /-q. Then cf)q can be extended to the

upper half-plane.

By substituting v for u in the above proposition and lemmas, <f>p can be extended

to R2, having the requisite properties.
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