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THERE IS NO EXACTLY fc-TO-1 FUNCTION
FROM ANY CONTINUUM ONTO [0,1], OR ANY DENDRITE,

WITH ONLY FINITELY MANY DISCONTINUITIES

JO W. HEATH

ABSTRACT. Katsuura and Kellum recently proved [8] that any (exactly) fc-to-

1 function from [0,1] onto [0,1] must have infinitely many discontinuities, and

they asked if the theorem remains true if the domain is any (compact metric)

continuum. The result in this paper, that any (exactly) fc-to-1 function from a

continuum onto any dendrite has finitely many discontinuities, answers their

question in the affirmative.

1. Introduction. Continuous (exactly) fc-to-1 maps have been extensively

studied for decades. Much research has concentrated on which spaces can be the

domain of such a map, and for which fc (see bibliography). As for which spaces

can be the image of such a map, Harrold [5] showed that no arc could be (for

any fc > 1), and he showed that if the domain is a simple graph, then the image

contains a simple closed curve. Recently Nadler and Ward [12] proved that if the

image Y is locally connected, then there is a fc-to-1 map onto y iff y contains a

simple closed curve. They also proved that any continuum (locally connected or

not) that contains a nonunicoherent subcontinuum is the image of a fc-to-1 map.

If a discontinuity or two is allowed for the fc-to-1 function, more spaces qualify

for both domain and range, not surprisingly. For instance, K. Kuperberg [9] has

constructed a 2-to-l function on a disk with one discontinuity, and Kellum and

Katsuura [8] showed that for fc odd or fc = 4, there is a fc-to-1 function from [0,1]

into [0,1] with exactly one discontinuity. The author has shown in [7] that if fc

is even and fc > 4 then there is a fc-to-1 function from [0,1] into [0,1] with two

discontinuities (and none with fewer than two), and has shown in [6] that every

2-to-l function from [0,1] to any Hausdorff space has infinitely many discontinu-

ities. Kellum and Katsuura also showed that if the image is compact, then any

function from [0,1] to [0,1] requires infinitely many discontinuities for fc > 1. In

the same paper [8], Kellum and Katsuura ask if every fc-to-1 function from any

continuum onto [0,1] must have infinitely many discontinuities. The main result of

this paper is that any (exactly) fc-to-1 function from any continuum onto a locally

connected continuum with no simple closed curve (a dendrite) has infinitely many

discontinuities. This answers the Katsuura-Kellum question in the affirmative.

Requiring no simple closed curve in the image is clearly necessary since otherwise

there is a continuous map [12]. In view of Nadler and Ward's similar result with

nonunicoherent subcontinua, the following seems a natural question:

Received by the editors September 15, 1986. Presented at the Atlanta AMS meeting January

8, 1988.
1980 Mathematics Subject Classification (1985 Revision). Primary 54C10, 26A15, 26A03.
Key words and phrases, fc-to-1 function, fc-to-1 map.

©1988 American Mathematical Society

0002-9947/88 $1.00 + $.25 per page

293



294 J. W. HEATH

Question. Is there a fc-to-1 function from any continuum onto any arc-connected,

hereditarily unicoherent continuum with only finitely many discontinuties?

In the Katsuura-Kellum result mentioned above, compactness of the image is

crucial, and it is for this paper's result also, as the following simple example demon-

strates:

EXAMPLE. Let X be the dendrite in the plane that is the union of straight line

segments with one endpoint at the origin (0,0) of length 1/i and slope i for each

positive integer i, and let Y = [0,1). Define /((0,0)) = 0 and divide the countably

many half open, half closed intervals left in X — {(0,0)} into fc disjoint infinite col-

lections, G\, G?,..., Gk- For each i < fc, map the first arc in G i homeomorphically

to [0,1/2), the second to [1/2,3/4), etc. Map the first arc in the last collection Gk

to (0,1/2], the second to (1/2,3/4], etc. Then / is fc-to-1 and is discontinuous only

at (0,0).

2. Some definitions. A continuum is a compact connected metric space.

A function is fc-io-1 if each point in the image has exactly fc inverse points.

A dendrite is a locally connected continuum containing no simple closed curve.

A sequence of sets is null if their diameters converge to 0.

The arc A is irreducible from p to S if one endpoint of A is the point p, the other

endpoint of A lies in the set S, and no point of A other than the two endpoints lies

in S.

3. Preliminary lemmas. Some version of Lemma 0 was independently noticed

by Kellum and Katsuura.

LEMMA 0. If f is a finite-to-one function from the compactum X to the den-

drite Y with only finitely many discontinuities, then X does not contain an infinite

collection of disjoint continua whose diameters are bounded away from 0.

PROOF. Suppose there is such a collection of disjoint continua. Then there is a

subsequence {d} that converges to the nondegenerate continuum C". Since there

are only finitely many discontinuities, C" contains a nondegenerate continuum C

that contains no discontinuity for /, and since all of C cannot map to the same

point, there are points r and s in C that map to different points in Y. Let t denote

an interior point of the arc from f(r) to f(s) in Y; then t is a cut point of Y and

there are open sets R and S containing /(r) and f(s) so that any continuum in Y

that intersects both R and S also contains t.

If i is large enough then C¿ contains no discontinuity of / and contains points

close enough to r and s that /(C¿) is a continuum in Y that intersects both R and

S, and hence contains t. This makes infinitely many point inverses for t since the

Ci are disjoint, a contradiction.

COROLLARY l TO LEMMA 0. /// is a finite-to-1 function from the contin-

uum X to the dendrite Y with only finitely many discontinuities, then X is locally

connected and hence arc-wise connected.

COROLLARY 2 TO LEMMA 0. The statement of Lemma 0 remains true if Y

is a continuum with the property that each pair of points in Y is separated by some

finite subset ofY.
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COROLLARY 3 TO LEMMA 0. /// is a finite-to-1 function from a compactum

to a dendrite Y with finitely many discontinuities, and if [a, b] is an arc in X, then

lim{/(i)|x e [a,b],x —► b} exists.

PROOF. Otherwise there is a sequence of disjoint subarcs in [a,b] converging to

b whose left endpoints map to a sequence in Y that converges to the point s in Y

and whose right endpoints' images converge to a different point r in Y. As in the

proof of Lemma 0, the images of the disjoint subarcs map arbitrarily close to both

r and s and hence most of the arcs map to a point t in the arc from r to s, yielding

the same contradiction.    Q.E.D.

Lemma 1 essentially reduces the theorem to the case where Y is an arc although

that may not be apparent yet. It has as a corollary that if all of the discontinuities

of / map to two points in Y and A is the arc between them, then f~1(A) is a

continuum so that / [ f_1(A) has all of /'s properties and maps onto an arc. (To

see that f~1(A) is connected, let a and b be any two points of X that map to A

and note that an arc in X from a to b maps to A by Lemma 1 so that a and b

are arc-connected in f~l(A).) The fact that the discontinuities are probably more

widely dispersed will cause some difficulties, but there will still be an arc A in Y

where / f f~1(A) yields a contradiction.

LEMMA 1. Suppose that f is a fc-to-1 function from the continuum X onto the

dendrite Y whose set of discontinuities, DIS, is finite, that E' is a 1-complex in Y

containing /(DIS), and that [x,y] is an arc in X with f(x) and f(y) both in E'.

Then f([x, y]) is a subset of E'.

PROOF. Let E denote f'1(E'). Since DIS C E and E' is compact, E is closed

in X and contains both x and y by assumption. Hence [x, y] — E has an open

component (a,6), unless f([x, y]) C E' as desired. Since (a,6) is connected and

misses DIS, its image /((a, 6)) is connected and lies in some component C of Y — E'.

Let A be an irreducible arc from some point of f((a,b)) to £", which connects

/((a, 6)) to E' on the off chance that a and ö are both in DIS and Cl(/((o,6))) is

in C. If Cl(/((a,6))) intersects E', let A = 0.

Since every subcontinuum of a dendrite is a dendrite, D = A U Cl(/((o, b))) is a

dendrite with one endpoint e in E' and another go riot in E'. Every dendrite has at

least two endpoints and if D had two in E' then there would be two arcs between

them in Y, one in D and one in E', not possible since dendrites are uniquely arcwise

connected.

The initial dendrite D will be augmented with images of special arcs (defined

below as "eligible") getting larger dendrites at each ordinal stage because / is fc-

to-1. The contradiction is that the process does not end and also cannot become

uncountable.

DEFINITION. The arc [w, z] in X is eligible from w if [w, z) misses E and z is in

E.

DEFINITION. The eligible arc [w,z] from w extends the dendrite D' through its

endpoint g if f(w) = q, and for some subarc [w, x'] of \w, z), q separates f([w, x']) —

{q} from e in Y. The dendrite D' U Gl(f([w,z))) is the extension.

(All of the dendrites that will be considered will contain the special endpoint e

in E' described before.)
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We will extend the dendrite D = A U Cl(/((a,6))) first. Recall that go is an

endpoint of D not in E' and that e is the endpoint of D in E'. Denote by B the

arc from go to e in E'. Let w\, w2, ■ ■ ■, Wk be the fc points in X — E that map to

go, and let f/i, f/2,..., f/fc be disjoint open sets in X — E containing them that map

into C with the further property that if Wi is not in [a, b] then í/¿ also misses [a,b].

Since X is arc-connected by Lemma 0 there is for each i an eligible arc Ri from W{

and a subarc R^ in [/, with endpoint tü¿.

We wish to show that one of the Ri arcs extends D through go, where R[ satisfies

the separation property. So suppose that for each i there is a point x, in R[ such

that the arc T¿ from /(a:*) to e does not contain go- Since f{R[) contains an arc from

go to f(xi), T{ connects /(x¿) to e, and B is an arc from g0 to e, B C /(i2¿) U Tj.

Since go is not in T¿, some initial segment B{ = [qo,qi] of B is contained in fiR'J.

Let TV = flí-BiK = 152, ...,fc}, say TV = [go,?']- Each point of TV has a point
inverse in R!¿ and there are fc disjoint R!¿ arcs, so all of the point inverses of TV are

accounted for in the union of the R[ arcs.

At this point the argument for the initial dendrite differs from that of later

dendrites. If Wi belongs to the arc (a,b) then both [wi,a] and [u>¿,6], subarcs of

[a, b], are eligible from Wi since a and b are in E and {a,b) misses E. One of them,

say [wi,a], satisfies f([wi,a']) nTV = {go} for some a' in (w¿,a], since each point of

TV has only one point inverse in each f/¿ and since [w¿, a'] n [tü¿, 6'] = {w¿}. But this

means that [wi, a] extends D through go- So we may assume that no Wi is in (a, b).

Since each point inverse of go misses (a,6), go is not in /((a, 6)), so go =

lim{/(x)|x £ (a,6), x —► a}, or 6 of course, from the Corollary to Lemma 0. No

uii is o or 6 since a and b are in E so each Wi is not in [a, b] and the open set [7¿

containing w¿ misses [a, 6]. The irreducible arc A, if nonempty, has one endpoint e

in E' and the other endpoint in f((a, b)) which cannot be an endpoint of the union

D — A U Cl(/((a,6))), so g0 is not in A. This means that the arc B from go to e

has an initial segment in f((a,b)) U {go}> so TV must intersect f((a,b)). This is a

contradiction since each point inverse of TV is in some C/¿ and every í/¿ misses [a, b].

Therefore for some least i, go separates f(R'i) — {go} from e. Let e' denote the

endpoint of it¿ in E. Define £>i = D U C\(f(Ri - {e'})). Note that the larger R¿

is used, and note that C\(f(Ri)) — f(Ri) is a single point, or is empty, from the

Corollary to Lemma 0.

Now suppose that Da has been constructed for each a < ß so that:

(1) Da is a dendrite in C U {e} containing D,

(2) if q is any endpoint of Da other than e, then there is an eligible arc in X

that extends Da through g,

(3) if a is not a limit ordinal then there is an eligible arc [w,z] that extends

Da-i through some endpoint of Da-i and Da = £>Q-i U Cl(f([w, z))), and

(4) if a is a limit ordinal, then Da = Cl(U{-D-y|'Y < a})-

So far D0 = D satisfies (1), (2), and (3), and Di satisfies (1) and (3). We will

construct Dp.

First, assume that ß — 2 exists. There is an eligible arc [w,z] that extends Dß-2,

and Dß-i — D/3_2UCl(/([w, z))). The dendrite £>0_i has an endpoint q in C since

it cannot have two endpoints in £" (lest Y have a simple closed curve). Choose the

endpoint g in the new part Cl(/([u>,z))). As before there are fc points wi,... ,Wk

in X — E that map to g, disjoint open sets U\,..., Uk containing them that map
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into C and whose closures are in X — E. For each i there is an eligible arc from

Wi, Ri, and a subarc R[ in E/¿ with endpoint w¿. Again, if, for each i, q does not

separate f{R'i) — {g} from e, then there is an arc TV = [g,g'] in the arc from g to e

such that each point of TV has a point inverse in each R[.

Now suppose that some u>¿ is in \w,z). Since the new endpoint g is not the old,

f(w), Wi is in (w,z). Butf([w,Wi]) contains an arc from the old endpoint to g and

must then map onto TV. This means the eligible arc [wi, z] has no point in f/¿ other

than Wi that maps to TV, so [wí,z] extends Dß-\. Hence we will assume that no

Wi is in \w, z).

Thus g is not in f([w,z)), so g = lim{/(x)|x E [w,z),x —► z}. But this means

there are points of [w, z) arbitrarily close to E that map to TV, contradicting the

fact that each Cl(í/¿) misses E and the t/¿ have all the point inverses of TV.

Thus, for some least i [wi,zi\ extends Dß-\ through g; define Dß = Dß-i U

Gl(f([wi,Zi))). Then properties (1) and (3) hold for Dß. We proved that the new

endpoints of £>/j-i extend, and the old ones do by induction. Hence Dß-i also

satisfies (2).

Now suppose that 6 — 2 does not exist, that is that ß — 1 is a limit ordinal

and Dß-i = C1(|J{Z>^|7 < ß — 1}). If the endpoint g of Dß-\ is in some D1

for 7 < ß — 1 then some eligible arc extends Dß-i through g by the induction

hypothesis. So assume g is an endpoint of Dß-\ that is not in any previous Dn.

Exactly as in the nonlimit case, there is an arc TV = [g,g'] in the arc from g to e

and fc disjoint open sets U\,..., Uk whose closures miss E such that /_1(TV) lies in

the union of the Ui open sets.

Each subarc [g,g"] of TV has a point f(x) that is from some previous extension,

i.e. x belongs to some eligible arc that extended some D^ for 7 < ß — 1. Otherwise,

the arc [g, g"] is in lim^-i = Dß-\ — \J{D^\i < /?— 1}. Since Y is locally connected

there is an ordinal 7I with points of D~¡i close enough to g and g" that there are

small disjoint arcs connecting each of g and g" to D^\. But [g, g"] in lim^_! misses

the arc in D^i connecting the small arcs, and a simple closed curve is formed in Y.

Hence lim^-i contains no arc.

Hence there is a sequence of points {/(x¿)} in TV converging to g such that each

Xj is in an eligible arc. Since g belongs to no previous ZX,, the eligible arcs can

come from different extensions and hence are disjoint. But each contains a point of

E. Since the sequence is null, it converges to some point of E, and eventually the

Xi are outside of the C1(Í7¿) and map to TV; a contradiction.

Thus all of the endpoints of Dß-i extend, and Dß can be defined as Dß-\ plus

one of the extensions.

This completes the induction and Lemma 1 is proved.

The following real analysis lemmas will be needed later:

LEMMA 2. Suppose that f is a continuous map from (0,1) to [0,1] that is at

most fc-to-1.  Then there is a subinterval of (0,1) on which f is 1-to-l.

PROOF. Let c be one of the values in [0,1] with the maximum number, j, of

point inverses, j < fc. If ax, a2,..., a, are the points that map to c subscripted so

that a, < at+i, then the graph between a¿ and a¿_¡_i is either a hill (i.e. f(x) > c

for x between a¿ and a¿+i), or a valley.  Let m be the number of hills and n the
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number of valleys. Then m + n = j - 1. Suppose m>n. Let

L — min{lub{/(x)|a¿ < x < ai+1}}.
i

Suppose the graph over (01,02) is a hill. If / is not 1-to-l over (ai,oi) where

61 is the least point of (01,02) that maps to L, then some horizontal line {y = r}

with c < r < L intersects the graph of / at least three times between ai and 61.

This same line intersects the graph between ai and a¿ at least 2m + 2 times. But

2m + 2>m + n-r-2=y + l>i, contradicting the maximality of j.

LEMMA 3. /// is afinite-to-1 continuous map from [0,1) onto [0,1), then there

is a collection C of disjoint half open, half closed arcs in the domain [0,1) such that

f restricted to [0,1) — \JC is 1-to-l and still onto [0,1).

PROOF. Let xi be the largest number in [0,1) that maps to 0. If xi is not

0, let Ii, the first member of C, be [0, xi) and let /1 be the restriction of / to

[xi, 1). If Xi = 0, set /1 = /. Well order the rational numbers in (0,1), ri, r2, —

If /i"1(ri) has more than one point, let si denote the least and ii the greatest.

Put I2 = [si,<i) in C and denote by fi the restriction of /1 to [xi,si) U [<i, 1). If

/_1(ri) has only one point, let fi — fx-

Note that since /([0,1)) has no maximum, lim{/(x)|x —► 1} = 1. Hence f2l(r-¿)

either lies in [0, si) or it lies in [ti, 1). If more than one point in the domain of f^

maps to ri, let s-i denote the least and Í2 the greatest. Again add I3 = [«2, ¿2) to

C and note that the three elements of C are disjoint. Call /3 the restriction of f^

to its domain with I3 removed. If only one point maps to r2 via fi let f% = f2.

In this way, maps /i,/a,... are constructed so that:

(1) f~~l(ri) has only one point for i < j,

(2) the image of fj is [0,1),

(3) fj is either /,_i or there is a half open, half closed interval Ij in the domain

D of fj-i so that fj is fj-i restricted to D — Ij, and

(4) if y is any number in [0,1) then every x in the domain of fj that maps to y

lies in the same component of the domain of fj.

Let g denote the intersection of {fi\i = 1,2,...}, and let y be any number in

the image [0,1). We will show that there is exactly one x in the domain of g that

maps to y.

First, there is at least one x in the domain of g that maps to y. For each of the

finitely many x in [0,1) that maps to y (via /), let ix be the least positive integer

such that x is not in the domain of /¿x (if there is one). Let j be the largest of

these ¿'s. Then since f3 is onto, some x has no ix and this x will be in the domain

of g.

Second, there cannot be two numbers, say x and w, in the domain of g that map

to y. If so, then from prperty (4) above, the segment [x, w] must be in a component

of the domain of every /¿ since x and w are. But / cannot be constant on [x, w] so

there is some rational number rj such that two numbers between x and w map to

Tj. Since those two numbers are not both in the domain of fj+i, the interval [x, w]

is not in the domain of /J+i after all. A contradiction.
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4. Theorem and proof.

THEOREM. /// is a k-to-1 function from the continuum X onto the dendrite

Y and fc > 1, then f must have infinitely many discontinuities.

PROOF. Suppose on the contrary that the set DIS of discontinuities of / is finite.

Let E' be a minimal 1-complex containing /(DIS) and let J be /(DIS) plus the

junction points of E'. J is finite with, say, n elements, so E' — J has n — 1 open

arcs, Ai,A%,... ,An-i. Let D = /_1(J); then D has kn points.

From Lemma 0, X is arc-connected, so there is an arc, Bi, between two points

of D that otherwise misses D, and a second irredubible arc B2 from a third point

of D to Bi, etc., getting a 1-complex E such that: E — D = lj{lnt(73j)|i =

1,2, ...,fcrc — 1}. Since D maps to E', it follows from Lemma 1 that all of E

maps to E'.

Since D = /-1(J) and each Int(i?¿) misses D and is connected, each Int(T3¿)

maps into some Ar There are kn — 1 5's, n — 1 ^4's, and fc > 1, so at least fc + 1

of the 73's, say Bi,B2, • • ■, -B/c+i, map to the same A, say, Ai.

We will be primarily interested in those points of X that map to Ai. If p maps

to Ai and T is an arc from p to E, then Int(T) maps to Ai too, by Lemma 1 again.

LetX' = D\Jf-1(Ai). Then:
(1) / is fc-to-1 on X' to JuAi,

. (2) X' is compact, and

(3) if p is in X' — D, there is an arc in X' from p to D.

MAIN CLAIM (proof later). X' - (D U Bx U • • ■ U Bk+i) is the union of disjoint

open arcs and half open, half closed arcs.

Let M denote the collection of arcs from the main claim plus the interiors of the

Bt arcs, i = 1,2,..., fc + 1. Then M decomposes X' — D. For each open arc in M

there is an open sub arc on which / is 1-to-l (Lemma 2). Change the composition

of M by replacing each of its open arcs with an open arc on which / is 1-to-l plus

the 0, 1 or 2 leftover half open, half closed arcs. M still covers X' — D and has at

least fc + 1 open arcs, which will be denoted i?i, i?2, • • •, Rk+i, with the subscripts

arranged so that if .Ai is identified with [0,1], then glb/(.R¿) < glb/(i?¿+i) for
i = 1,2,..., k. For bookkeeping purposes, color the open arcs in M blue and the

half open, half closed arcs black.

For each i = 1,2,..., fc, disjoint subsets G¿ of X' — D will be constructed so that

/ maps Gi onto (gib/(A¿), 1) in A\_, and so that G¿ misses Rk+i- The contradiction

will be that each point of /(i^+i) has one inverse in Rk+i and fc others in the G's,

one too many for a fc-to-1 function.

Construction of the Gi. Each G, will contain iü¿ and black points from the half

open, half closed arcs of M, and when G¿ is constructed its points will be colored

green to distinguish them from the other points in M. Since the construction of

Gi is similar to any other except that there are no green points yet, we will start

with the inductive step:

Suppose G i has been constructed for each i < j, so that:

(1) f(Gi) = (gib f(Ri), 1),
(2) / is 1-to-l on Gi,

(3) Gi is a subset of the union of the black arcs in M plus Ri,

(4) Gi n G„ = 0 if zV n, and
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(5) the collection M is altered but still has Rn for n > j, covers the portion of

X' — D not in Uí^íN < .?}, and stiH consists of blue open arcs on which / is 1-to-l

and black half open, half closed arcs.

Let y = lub/(i?j). If y = 1, let Gj = Rj and color it green. Otherwise, suppose

there are m blue points that map to y as well as the j — 1 green points that map to

y. Each of the blue points is in an open interval on which / is 1-to-l, so there is a

positive number e such that there are at least m + 1 blue points that map to y — e,

including the one in Rj. The e can also be made small enough that there are still

j — 1 green points that map to y — e. Since f~l(y — e) has less than fc + 1 points,

(j — 1) + {m + 1) < k + I. Hence there is at least one black point that maps to y.

The function / is not 1-to-l on the black half open, half closed arcs, but the

graph of / restricted to a black arc is at each of its points either a crossing point,

a local maximum, or a local minimum. This is true of any finite-to-1 map, and /

is continuous on each black, or blue, arc in M. For each black point that maps to

y that is either a crossing or a local maximum, there is added to f_1(y — e'), for

some e' < e, at least one black point. Hence there is at least one black point, x,

that maps to y and is a local minimum.

Suppose the half open, half closed arc in M that x belongs to is [a, b). Either

there is a first point c in [o, 6) between x and b at which / \ [x, 6) is a maximum, or

lub f([x, b)) = lim{/(c)|c —» 6} in [x, 6). In the former case put Ti = [x, c) in Hj, a

precursor of Gj, and in the latter case put Tx = [x, 6) in Hj. The arc \a,b) — Ti'is

the union of 0, 1, or 2 half open, half closed arcs; put them back in M and remove

[a,b) from M. Note that / maps Ti = [x,x') to [y,\ub f(Ti)), with /(x) = y.

Now suppose the half open, half closed arcs 1\,Ta,..., Ta,... have been con-

structed for all a < ß so that:

(1) if Ta = [xa,x'a), then / satisfies the hypothesis of Lemma 3, i.e. f(Ta) =

[/(xa),lub(/(Ta))),

(2) each Ta is black,

(3) if f{Ta) = [2/0,2/1) in [0,1), then there is a number y2 > yi such that

f{Ta+i) = [2/1,2/2), and

(4) if a is a limit ordinal, then there is a number y greater than

y0 = \ub{f(T1)\1<a}

such that f(Ta) is [2/0,2/)-

Now, if 2/ = lub{/(Ta)|a < /?} is 1, we are through constructing Hj. Otherwise,

exactly as in the construction of T2, Tß is formed. The only minor difference is

that f_ï(y — e) has at least one black point from (J{?a|a < /?}, rather than a blue

point from Rj. Continue until y = 1 is reached, finishing the construction of Hj.

Each Ta — [xa,x^), for all relevant a, maps onto some \ya,ya+i) m [0,1] with

/(ia) = 2/q and ya+i = lub/(TQ). From Lemma 3, there is a collection Ca of

disjoint half open, half closed arcs in Ta such that / [ (Ta - \JCa) is 1-to-l and

has the same [ya, ya+i) image. Color each point of Ta - \J Ca green and put it in

the set Gj under construction. The half open half closed arcs of Ca stay black and

are returned to the ever-changing collection M.

By induction Gi,G2,...,Gk are defined and the theorem is proved.

PROOF OF MAIN CLAIM. All sets in this proof are presumed to be in X'. The

property that each point in X' connects to D via an arc in X' is heavily used, as
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are the conclusions of Lemma 0 and Lemma 1, which are true for compact subsets

ofX.
Let F = Bi U B-2. U • • • U Bk+i U D c X'. We will find a collection G of disjoint

open or half open, half closed arcs whose union is X' — F. If points were allowed in

G, it would be easy. The secret is to cover the most complex arcs in X' — F first.

Complexity centers on the following definition:

The point p is an offshoot limit point of the set Q if there is an arc A containing

p and a null sequence of arcs converging to p, each with one endpoint on A and one

endpoint in Q — A.

The complexity levels are defined as follows: If x is in X' — F, then

(1) level (x) > 0,

(2) level(x) > i if x is an offshoot limit point of points whose level is at least

i — 1, and

(3) level (x) = i if level (x) > i but not level (x) > i + 1.

Many continua have arbitrarily high levels, but not one on which there is an at

most fc-to-1 function to (0,1):

Fact 1. No point in X' — F has level fc + 1 or higher.

PROOF. Suppose on the contrary that there is a point pi in X' — F with

level(pi) > fc + 1. By definition there is an arc Si containing pi and a null sequence

of offshoot arcs converging to pi with non-Si endpoints in level fc or higher. Since

P\ is not in the closed set F, we may assume that Si and all of its offshoot arcs

also miss F. Let /(Si) = [oi,6i] in Ai = (0,1).

Now suppose for each i < j < fc + 2 an arc S, in X' — F has been chosen and

also a point pj in X' — F so that:

(1) S„ n Sm = 0 if n ,¿ m and both are less than j,

(2) /(Sm) = [am,bm] C (am_i,6m_i) for K m < j,

(3) pj is not in any Si, i < j, and

(4) pj has level at least fc + 2 - j and maps into (o,-_i, bj-\).

Note that each point in (aj-\,bj-i) has an inverse in each of the disjoint S¿,

i < j.

By the definition of (fc + 2 - j)-level, there is an arc Sj in X' — F containing pj

with an attached null sequence of offshoot arcs converging to pj with endpoints of

level at least fc + 1 — j. This Sj can be made short enough to miss the other S¿,

i < j, since pj misses them. Since pj maps into (aj-i,bj-i) the arc Sj can also be

made short enough that f(Sj) — [aj,bj] lies in (aj-i,bj-i). Thus properties (1)

and (2) are still true.

Since at most a finite number of disjoint arcs can map to any interval that

contains either üj or bj and since each offshoot arc has one point on Sj that maps

to [aj, bj], there is an offshoot endpoint p^+i of level at least fc + 1 — j that maps

into (aj,bj) that is close enough to pj to not be in any S¿, i < j; it misses Sj by

definition of offshoot limit point.

Thus the process can continue inductively until [ak+i,bk+i] has too many point

inverses for each of its points.      Q.E.D. (for Fact 1)

Fact 2. Suppose F' is a closed set in X' containing F and suppose P is a closed

set in X' — F' with no offshoot limit points. Then there is a finite collection of arcs

in X' whose union contains P such that each component of this union intersects

F'.
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PROOF. Well-order P. Let Si be an arc from the first point pi of P to F'. If

pa and Sa have been selected for each a < b, let pb be the first point of P not in

Bi, — G\(\JSa\a < b), and let S& be an irreducible arc from pb to Bb- Finally, let c

be the least ordinal greater than each ordinal used, and let Bc = Cl(|JSa|a < c).

Claim. (1) Each Bb is the union of finitely many arcs, each component of which

intersects F', and (2) if a < b then there is a finite set of points in P,Pi,P2, • • • ,Pm

such that Bb is Ba plus an irreducible arc Ti from pi to F'LiBa, plus an irreducible

arc T2 from P2 to F' U Ba U Ti,..., plus an irreducible arc Tn from Pn to F' U Ba U

Ti U • • • UT„_i. Furthermore, if b is a limit ordinal then there are on each T¿ points

of P arbitrarily close to p¿.

Let b be the least ordinal such that the claim is false. The first, B2 = Si, satisfies

part (1) by construction and part (2) vacuously. If 6 has a predecessor, then Bb is

Bb-i plus a new arc S(,_i irreducible from Pb-\ to F' U Bb-i, and so satisfies part

(2) by induction and part (1) follows from part (2).

Now suppose 6 is a limit ordinal. First, 6 cannot be an uncountable ordinal since

each Ba+i — Ba contains an arc. If 6 is uncountable then there is an uncountable

collection of disjoint arcs and an infinite subcollection whose diameters are bound

away from 0 (contradicting Lemma 0). Since 6 is countable, then, there is a sequence

of increasing ordinals, 61,62,... whose limit is b. Let 61 = 2, the first relevant

ordinal.

Consider the structure of these Bbi- The first, B2, is an arc from a point of P to

F'. Then, for Bb2, there is a finite subset of P satisfying part (2) of the claim for

62 and 61 = 2. Consider one of the arcs Tj irreducible from pj to F U Bbi U Ti U

• • • U Tj-i. The arc Tj either goes directly to F' or to one of the previous T¿, or

to Si.

In the process of building the 73's only finitely many T"s can go to F'. Since

the T's are disjoint (without their endpoints), any infinite collection is null. So if

infinitely many T's intersected F' then some point of F' would be a limit of T's

and hence of P since each T has a point of P. This contradicts the hypothesis that

F' and P are disjoint closed sets.

Back to the more prevalent case then: suppose Tj intersects a previous T¿ and

its non-pj endpoint is p¿, the endpoint of T¿. If Tj is the first T past T¿ to do this

then Tj merely extends the arc T¿ and no triod is formed. Otherwise, if Tj hits T¿

at an interior point, or if some previous T extended T¿ and Tj hits T¿ at p¿, then

a triod is formed whose three endpoints are all in P. Another way that a triod

can be formed is if some pi = pj at a limit level, or if the limit p¿ belongs to some

previous T. Such a point p¿ is a possible junction point and any triod with p¿ as

junction point either has regular T legs or arbitrarily short legs tipped with points

from P from the "furthermore" part of the claim. We will show that there are only

finitely many triods formed in this construction, namely:

Subclaim. There are only finitely many Bbi that contain triods.

Suppose a single T3 from some Bbj is abutted by infinitely many later T's from

Bbj and later B's in the sequence. As before, the T's form a null sequence, and

a convergent subsequence converges to some point of T3 which is an offshoot limit

point of P since each T has a point of P. But P has no offshoot limit points.

Now suppose that there are infinitely many triods formed using all different T's.

The triods form a null sequence and some subsequence íi,ía,... converges to the
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point po in P. Since X is locally connected, there is a short arc Gi from p0 to ti, a

shorter arc G2 from po to £2, etc., so that {G¿} converges to p0, and none intersect

F'.

For each i > 1, there is an arc in í¿ U G¿ from each endpoint of í¿ to the first arc

Gi. If po is not to be an offshoot limit point of P, all except finitely many of the

endpoints of the triods must be in Gi. We will suppose they all are and we will

assume that po does not belong to any of the triods, since p0 only belongs to at

most one. The endpoints of ¿2 are in C\\ replace the subarc of Gi, between the first

point of Gi in £2 and the last point of Gi in Í2, with the subarc of ¿2 between the

same two points. Since no arc in ¿2 contains all three endpoints, one of them is no

longer in Gi. Closer to po there is another triple of endpoints whose triod misses ¿2

and another similar substitution can be made. After doing this for infinitely many

triods, the new arc with its offshoot triod arcs to P, makes po an offshoot limit

point of P; a contradiction. This establishes the subclaim.

Thus, for some i, every new arc that goes to Bu simply extends some previous

arc. If Bbi has, say, n endpoints, then so does each Bbj for bj > bi. Each ray

produced by tacking one arc to the end of the previous arc has a unique limit

point, since the sequence of arcs is null. These n rays, plus their limit points, form

n arcs that decompose Bb — Bbi, and there are, as required in the "furthermore"

part of the claim (2), points of P arbitrarily close to the limit points of the rays.

If a < 6, then some bj past bi is greater than a and by induction, Bbj — Ba is a

successive arc buildup as required, and by using final segments of the rays (plus

their limit points) to structure Bb — Bbj, the difference Bb — Ba has the structure

required to satisfy the rest of part (2) of the claim. Part (1) follows from the fact

that Bb is the union of B^ and the n arcs of Bb - Bu-

This establishes the claim, completes the induction, and proves Fact 2.

TVote. If P C U, an open set in X' with the property that for each point x in P

there is an arc from x to F' in U, then each arc in the finite collection that satisfies

the conclusion of Fact 2 is in U if the original arcs, Sa, are constructed in U in the

beginning.

(Proof of the main claim, continued.) Recall that the aim is to decompose X' — F

into a collection of disjoint open or half open, half closed arcs.

Let {e¿} denote a sequence of positive numbers converging to 0 with the property

that if q belongs to the e¿-neighborhood of F, denoted Nei(F), there is an arc from

g to F in TVeij_i(F). This sequence exists since F is compact and X' is locally

connected.

For each i, let P(i) denote the ¿-level (of complexity) points in X' — F. Define

Pko = P{k)-Nel(F) and for i > 0, define Pki = P(k) n{C\(Nei{F) - Ne,i+1(F))).

Since there are no (fc + l)-level points outside of F (Fact 1), each Pki is closed,

misses F, and has no offshoot limit points. Hence from Fact 2, there is for each », a

finite collection Hi of arcs such that Pki C (J Hi, and each component of the union

of the elements of Hi has a point of F. If i > 1, make \J Hi c Nej-i(F). (See the

note at the end of the proof of Fact 2.)

Let Si be an arc in He, containing a point of F. Each component of Si - F is

an open or half open, half closed arc. Put in the collection Lko (being constructed)

each component of Si — F that contains a point of P(k).
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Each component of \jHr¡ intersects F so there is a second arc S2 in Ho (if

Ho i1 {Si}) that intersects Si or F. Add to Lfc0 the open or half open, half closed

arc components of S2 - (Si UF) that contain points of -P(fc). For each e > 0, there

are only finitely many Lko members outside TVe (F) since no point outside of F is

an offshoot limit point of P{k). Continue this process with the other arcs of H0

one at a time. So far:

(1) [jLko contains Pk0,

(2)Cl(\jLk0)-\JLk0CF,
(3) the members of Lko are disjoint open or half open, half closed arcs that miss

F, only finitely many of which are more than e away from F, for any e > 0, and

(4)U£fcoCiJ#o.
Now for Hi. Some arc Tx in Hi intersects F. Each component of Ti —

(F U (U-^fco)) is an open or half open, half closed arc since F U (IJ^fco) is closed;

those components that contain a point of P(k) will be put in Lki- Continue this

process on the other members of Hi, one at a time. Now:

(i) (IJ Lko) U (IJ Lki) contains Pk0 U Pku
(ii) the previous properties (2) and (3) hold with Lko replaced by LjtoULii, and

(iii)U£fciC(lJtfi)cTVe0(n
Continue and let Lk = \J{Lki\i =0,1,...}. From (i), P(k) C IJ-^fc- For each

e > 0, there is an i such that \J{Lkj\j > i) C Ne(F), and each of Lko, Lki, • • •, Lki

has only finitely many members outside of TVe (F). This fact together with property

(2) and the fact that any infinite sequence of the disjoint Lk is null, ensures that

C1(|JLk) — \jLkCF. The earlier Lki are not changed so property (3) ensures that

Lk is a collection of disjoint open and half open, half closed arcs that miss F.

For P(k - 1), use in the place of F the closed set F' = F U (\jLk). Then F'

contains all offshoot limit points of P(k — 1) since they are all in F U P(k). The

same construction yields Lk-i, a collection of disjoint open or half open, half closed

arcs that miss F' and whose union contains those points of P(k — 1) not already in

\JLk-
Finally, Lk U Lk-i U • • • U Lo will decompose all of X' — F into disjoint open or

half open, half closed arcs.    Q.E.D. (Main claim)
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