
transactions of the
american mathematical society
Volume 306, Number 1, March  1988

A TRUNCATED GAUSS-KUZMIN LAW

DOUG HENSLEY

ABSTRACT. The transformations Tn which map x 6 [0,1) onto 0 (if x <

l/(n + 1)), and to {1/x} otherwise, are truncated versions of the continued

fraction transformation T: x —» {1/x} (but 0 —* 0).

An analog to the Gauss-Kuzmin result is obtained for these Tn, and is used

to show that the Lebesgue measure of Tñ {0} approaches 1 exponentially.

From this fact is obtained a new proof that the ratios v/k, where v denotes

any solution of v2, = — 1 modfc, are uniformly distributed mod 1 in the sense

of Weyl.

1. Introduction. The continued fraction algorithm is based on iteration of the

transformation

T:x —{1/x}    (x^¿0),        T:0^0

of the unit interval [0,1). The Gauss-Kuzmin result is that for a random variable

X uniformly distributed on [0,1], the density of TkX tends to g(t) = 1/(1 + t) log2,

0< t < 1.

The associated measure p, determined by p(a, b) = fa (g(t) dt, is invariant with

respect to T. That is, p(T~lE) = p(E) for all measurable E Ç [0,1]. There is

a considerable body of knowledge about this transformation and various related

topics, such as the Jacobi-Perron algorithm. Here we mention a few of the salient

points:

(i)Ur=ir-fc{o} = Qn[o,i).
(2) T is ergodic with respect to p.

(3) The convergence of the density gk(x) is uniform and rapid, in the sense that

there exists a constant c, 0 < c < 1, such that for all fc > 1 and all t, 0 < t < 1,

\gk(t)-g(t)\<ck.

(4) The arithmetic mean of the partial quotients Ofc(x) := [1/Tfc_1x] is infinite

almost everywhere, but the geometric mean has a certain finite value a.e. These

facts are well known among specialists, and are found in most standard references.

See e.g. [7, 8].

From (4) it follows that (m denoting Lebesgue measure) m({x: a¿(x) < n for all

fc}) = 0, so that limfc^oo m({x: aj(x) < n for 1 < j < fc}) = 0.

One of our concerns here is to find out how rapidly this quantity approaches

zero as fc —» oo. Another is to determine the asymptotic conditional density of

TkX given that T'X > l/(n + 1) for 0 < j < k.  To this end we introduce the
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transformations Tn mentioned in the abstract:

Tn(x) = {l/x}       (l/(n + l)<*<l),

T„(x) = 0       (0<x< l/(n + l)).

Let //„(fc) = 1 - m(T-fc{0}) = m({x: a3(x) < n for 1 < j < fc}). We obtain these

results first:

THEOREM 1. For each n > 1 there exists A(n), 0 < A(n) < 1, and gn(t), a

continuous decreasing, positive, convex probability density function on [0,1], such

that for all fc > 1, \pn{k) < \{n)k+1 < 2pn(k), \pn(k + l)//i„(fc) - A(n)| <

10(19/20)*, and pn{2k + 2)/pn(2k + 1) < A(n) < pn(2k + l)/pn(2k). Moreover,
X(n + 1) > A(n) for all n > 1, and linin-xx, ra(l - A(n)) = l/log2.

Let Ln denote the linear functional

n

(Lnf)(t) = ^(k + t)-2f
fc=i

This is a truncation of
oo

w = £(fc+«r7
fc=i

which gives the density of TX if X has density /. Note that Loo(g) = a.

THEOREM 2. The function gn(t) satisfies the condition X(n)gn(t) = L(gn(t)).

(Partial statement—the rest must await the introduction of further notation.) Basi-

cally, this gn(t) is a convex combination of functions (l+6)/(l+0t)2 with 0 < 9 < 1,

as is the Gauss-Kuzmin density g(t). The difference is that for g„(i) the set of O's

involved is restricted to those for which ak(6) < n for all fc, a set of measure zero,

while g(t) = ¡Ql[(l + (9)/(l + 6t)2] de.

THEOREM 3. Let un(A) = f. o„(t) dt. Then for all Lebesgue-measurable A not

containing zero, vn(T~1A) = \(n)vn(A).

The final result is a weaker version of the already known fact, due to Hooley, that

(v/k) is uniformly distributed mod 1 if we average over all fc < x and all solutions

fmodfc of v2 = -lmodfc [2, 3, 4]. This is known for general nonsquare D in place

of —1, but the case of D = — 1 serves as a paradigm for all negative values of D.

Hooley's proof is based on the clever use of some deep results about Kloosterman

sums. The proof we sketch here has its roots in a relatively simple lemma about

the last continued fraction convergent c/d to a rational number a/6, other than a/6

itself. Let A(y) denote {(a, 6) such that g.c.d.(a, 6) = 1 and a2 + b2 < y2}, and let

a* [a, 6) = Vc2 + d?/y/a2 + b2 where (c, d) satisfies ad - be = 1, c2 + d2 < a2 + b2,

ac + bd> 0. There are two ways to write a/6 as a continued fraction: [ai, 02 • • • an]

or [ai,02 • •  a„ - 1,1].

The next-to-last convergents, [ai,02 • ■ a„_i] and [01,02 ••■an - 1], are then

equal to (c/d) and (a — c)/(b — d) in one order or the other. These each give

a solution to v2 = -lmoda2 + 62: v = ac + bd and v = a(a — c) + 6(6 - d).

Since (a, 6) and (c, d) are nearly parallel, v/(a2 + b2) and 1 - u/(a2 + b2) are well

approximated by cr*(a,6) and 1 - er*(a,6), in one or the other order.   Thus the

k + t

k + t
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question of the distribution of v/k, v2 = — lmodfc, is related to the question of

the distribution of a* (a, 6), averaged over all pairs of relatively prime integers (a, 6)

with a2 + b2 < y2, say. The key to this approach is the fact that

£ 1 = V+0(iV)+0(2/).
{{a,b)€A{y): o-'(a,b)<t}

The distribution of v/k is thus seen to be, at any rate, asymptotically uniform in

a neighborhood of zero.

For t = l/(n +1) and n large, this estimate can be fed into a continued-fraction

machinery to yield estimates of the proportion of v/k between [ai,a2 • • -af] and

[ai, 02 • • ■ üj, n+1], still with an accuracy of about 1 part in n, provided ai, a2 • • • Oj

are all less than n + 1.

Knowing, as we do, the extent to which such intervals fill up [0,1], the rest is just

a matter of judicious balancing of various error terms. This approach also gives

estimates for the distribution of v/(a2 + b2) averaged over pairs (a, 6) confined to

a wedge f?i < arg(a + ib) < 02, and with a2 + b2 < y2; it is still uniform. But I

do not see any reason why Hooley's approach cannot be applied to this question,

with a more accurate error bound, so the reader will be spared the details. For the

record, the result one gets with this approach is that if x denotes the characteristic

function of a statement, then

^2     x(o-*(a, b) E [s, t] and 0i < arg(a + ib) < 02)

(o,6)eA(i)

= 3(ö2 - Oi)(t - s)x2/tt2 + 0(x2(62 - 0i)(loglogx)2/logx) + 0(x13/8),

uniformly in 0 < s < t < 1 and 0 < 0X < 02 < 27r.

From this one can deduce that uniformly over d < x1/5 and over all classes H

of the class group of Q(\/—D), the distribution of fc(a)/Norm(o) is uniform when

averaged over all ideals a in H and of norm < x, as x —+ oo, where fc(o) denotes the

integer fc, 0 < fc < Normo such that fc = i/-Dmoda.

Hooley does not work out, in [2], any error term for uniformity of distribution.

But a straightforward application of the discrepancy theorem of Erdös and Turan

gives the estimate (say for D = 1),

J2     X{°* (a, 6) € [a, t]) = (6/tt)(í - s)x2 + 0(x3/2 exp(3\/Íoií)).
(a,b)€A(x)

Iwaniec gets a more general estimate which includes this as a special case, in Lemma

4 of [4].

2. Farey n-intervals. Fix n, and let V(k) = {(vi,V2,- ■ ■ ,Vk): < u¿ < n for

1 < j < fc}- For v e V(k), let I(v) = {r:r = \/vi + l/v2 +...+ l/(vk + A) for

some A, 0 < A < l/(n + 1)}. Here the notation l/v + \/w refers to the continued

fraction l/(v + 1/w), and we shall abbreviate this to [v,w]. Thus I(v) — {r: r —

[fii V2, ■ ■ ■, Vk + A] with 0 < A < (n + 1)_1}. We include an empty vector for V(0),

with corresponding interval I0 := [0, l/(n + 1)]. If v G V(k) we say that the rank

of I(v) is fc.
If n = 2, for instance, the intervals I(v) of rank 0, 1, and 2 are [0,1/3]; [3/4,1],

[3/7,1/2]; and [2/3,7/10], [1/3,4/11], [2/5,6/17] and [1/2,4/7]. For any fixed n, all
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the I(v), taken over all fc > 0 and all v G V(k), are disjoint. The only real numbers

r, 0 < r < 1 not belonging to any I(v) are those with a continued fraction expansion

r = [wi,w2,w3,...] of infinite length, such that Wi < n for all i > 1. While there

are uncountably many such numbers, it is intuitively obvious that they make up a

set of Lebesgue measure zero. Later we shall prove that Rn(k) := the complement

in [0,1] of the union of all Farey n-intervals of rank < fc, which is, for any finite fc,

a union of finitely many open intervals, has Lebesgue measure /¿„(fc) which tends

to zero more rapidly than (1 - \/(n + l))k as fc —> oo. If we identify 0 with 1 in

the unit interval to form a circle, topologically, then the mapping T: [0,1] —> [0,1],

T(r) = {l/r} sends every interval I(v) for v G V(k), fc > 1, onto an interval I(w)

for w G V(k— 1). For fc > 1, and v G V(k), the restriction of T to I(v) is one-to-one,

continuous and differentiable, and — (n + l)2 < T'(r) < —1. There are nk elements

in V(k), and the preimage of each interval I(w) for w G V(k — 1) consists of the

n intervals I((l, Wi,..., Wfc-i)), I((2, wi,..., wk-i)), ■■-, I((n, wi,w2,..., wk-i)).

We shall abbreviate (j,wi,w2,... ,w¡) to (jw) from now on, and take (w,j) to be

(u>i,W2,.. .,wi,j). Extending this, we put (v,w) = (vi,v2,... ,Vj,wi,w2,... ,w¡)

for v G V(j) and w G V(l). Also, if v = (vi,... ,Vj), put v~ = (ui,U2,. • • ,Uj-i),

and V- — (t>2, ̂3) • • •, Vj). Every Farey interval I(v) for v G V(k), fc > 1, has either

the form

(n + l)c + c'   c

(n+l)d + d''dj '

where cd! — c'd = —1 in the former case and +1 in the latter. The former case

occurs if and only if fc is even. A truncated Farey n-interval I\{v) will be defined

as {r: r = [i>i,U2, ■ ■ ■ ,Vk + M with Ai < A < A2}, where Aa < l/(n + 1). These

intervals behave just like the /(t>)'s with respect to T.

Clearly any interval [s, t] Ç [0,1] can be largely covered by Farey n-intervals

I(v) C [s, t] of rank < fc, together with one or two truncated n-intervals perhaps,

and leaving an uncovered remnant of measure < /¿„(fc).

3. The remnant: numbers r not captured in the Farey n-intervals of

small rank. Recall that Rn(k) = {r: 0 < r < 1 and r does not belong to any

Farey n-interval of rank < fc}. Equivalently,

(1) Rn(k) = {r £ [0,1]: r = [vi,v2,... ,vk + X]

with l/(n + 1) < A < 1, and 1 < v< < n for 1 < i < fc},

and also equivalently,

(2) Rn(k) = {r G [0,1]: r = [vi,v2,. ■. ,vk,vk+i, p],

with 1 < Vi < n for 1 < i < k + 1, and 0 < p < 1}.

(Neither definition covers Rn(0) = (l/(n + 1),1)-) Let /¿„(fc) be the Lebesgue

measure of Rn{k), that is, the sum of the lengths of the intervals which comprise

Rn{k).

An example is in order: n = 4, fc = 0,1, and 2. i?4(0) = (1/5,1),

Ä4(l) = (1/5,5/21) U (1/4,5/16) U (1/3,5/11) U (1/2,5/6),

c   (n + l)c + c'

d n + l)d + d'
or
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and

R4(2) = (6/29,2/9) U (11/49,3/13) U (16/69,4/17) U (21/89,5/21) U (6/23,2/7)

U (11/38,3/10) U (16/53,4/13) U (21/68,5/16) U (6/17,2/5)

U (11/27,3/7) U (16/37,4/9) U (21/47,5/11) U (6/11,2/3) U (11/16,3/4)

U (16/21,4/5) U (21/26,5/6).

Doing the arithmetic, one finds that (to within the implicit accuracy of the

displayed number of digits)

/¿4(0) = .80000000,    /¿4(1) = .55514069,    /¿4(2) = .40742855,

and further similar calculations yield

/¿4(3) = .29443213, /¿4(4) = .21382442, /¿4(5) = .15505299.

This is increasingly like a geometric sequence as fc increases. The ratio of suc-

cessive /¿„(fc) seems to tend to about 0.725. Other examples with different choices

of n give heuristic confirmation.

In this section, we develop a body of information about Rn(k) and some associ-

ated functions and measures. For purposes of the application to uniform distribu-

tion, we only need the result that /¿„(fc) decreases exponentially for each n, with a

limiting ratio //„(fc + l)//t„(fc) —► A(n) as fc —> oo, that A(n) is increasing in n, and

that linin^oo n(l - A(n)) = 1/ log 2.

The proofs are based on an analysis of the linear functional Ln, Ln(f(t)) :=

J2k=i(k + t)~2f(l/(k + t)), and the effects of high order iterates of Ln on the

initial function which is constant at 1 for 0 < t < 1.

We begin by establishing some terminology. From now on, most of the time n will

be fixed, and will be relegated to the background. Thus if the context establishes

n, I will write L(f(t)) = ££=i(fc + t)~2f(l/{k + t)), instead of £„(••• ).
The (nonlinear) operator S = Sn from the set p of positive, continuous functions

on [0,1] into the same set, is defined by

a,        s/(i)=¿(fc+1)-v(^)/£+i)/,()*.

C,/(',,fi=/.£(*+rv((¿o)'
Since

(2) /  Sf(t)dt = l    for all/ G P.
Jo

S is simply a renormalized version of L. That is,

(3) Sf = Lf/ i  Lf

and by iteration,

Skf = Lkfl Í Lkf.

The key lemma is that SfcX[o,i]M converges to a function g(t) — gn(t), and that

S(g(t)) = g(t). From this, we eventually obtain these theorems:
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THEOREM 1. For each n > 1 there exists A(n), 0 < A(n) < 1, and o„(t),

continuous, decreasing, positive and convex on [0,1], such that for all fc > 1,

\nn{k) < X(n)k+l < 2/in(fc),    \ßn{k + l)//in(fc) - A(n)| < 10(19/20)fc,

and

/¿„(2fc + 2)//¿„(2fc + 1) < A(n) < /i„(2fc + l)//¿n(2fc).

For a// n > 1, A(n -f 1) > A(n), and lim«-«» n(l - A(n)) = 1/ log 2.

THEOREM 2. T/ie function g„(t) satisfies the condition A(n)g„(t) = L(gn(t)).

For all initial functions ^(t) := (1 + 0)/(l + 6t)2, with parameter 0 < 9 < 1,

ll^n^ei') — °n(i)||oo < 10(19/20)/c. T/iere ¿5 a probability measure ßn, concentrated

on irrational numbers a G [0,1] such that in the continued fraction expansion of a

as [01,02,03,...], a//oj < n, so that

9-(t)=f1 tTTmdß^=f ^{t)dßn{o).
Je=o (l + "ij Jo=o

THEOREM 3.   Let Tn : [0,1] -+ [0,1),

T„(x) = {1/x}    ifx > l/(n + 1),     else 0.

Let vn(A) — fA gn(t)dt.  Then for all Lebesgue-measurable A not containing zero,

vn(T-l(A)) = X(n)vn(A).

REMARK. That is, T„ is a measure-decimating transformation. Since vn(A)

differs from the Lebesgue measure of A by at most a factor of 2, larger or smaller,

this result also gives /¿„(fc - 1) between |A(n)fc and 2A(n)fc.

A superficially attractive speculation is that the Bernoulli shift operator

T*(oi,o2,...) = (03,03,...),

which is related to T in an obvious way, gives an alternative description of vn by

way of, say, fixing v* on cylinders, with i/*(a¿ = j) = fxfy+i) 9n{t)dt.

As it happens, this does not work. The measure on [0,1] corresponding to v*

on sequences (01,02,...), is grainy, while vn has a smooth density. This other

measure does satisfy much the same recursion as does vn, which shows that the

proof of Theorem 3 will have to use some argument specific to the starting values

for iteration of 5.

Now that the results are stated, we relegate n to the background. We have

already defined i/>0(i) = (1 + 0)/(l + et)2. Now let <j>°e(t) = 1/(1 + 0t)2, and for

r > 1 let

(4) m) = Lr<l>0e(t),    xPKt) - SrxP°6(t) = (fW)/ J «(*)*) •

Recall that V„(r) = {1,2,... ,n}r, (v,6) = (vi,va,...,vr-i,vr +6) if

V = (Vi,V2,...,Vr),

and (w) is the denominator of the continued fraction [w] = \/wi + \./w2-\-\-l/wr.

(Alternatively, (w) = dr if do = 1, di = wi and dt = w¿dj_i + d¿_i for 2 < i < r.)
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LEMMA 1.  For allr > 1,

«6V„(r)

Corollary.

0ÓW =    £   ((u)+i(ll_))_2'     «Aere («") = («!,i>3,...,vr_:i).

v€Vn{r)

PROOF. We verify the lemma directly for r = 1, where

(5)        0á(') = ¿(fc + í)-2^(¿7)

= ¿(fc + tr2 (i + 7^7) 2 ¿(fc + *)-'*?/(*+•)(*)
*:=i ^ /   fc=i

as required.

Now assume the lemma holds for r. Then

(6) 4>l(t)=    ¿2   Mr2<,e](0,    and
v€Vn(r)

4>l+1(t)=    £   M-2¿(fc + ̂ 2<,e)(-Í
v€Vn(r) k=l V

Now
2

2

(7)   (^-(* + ')-<,(g^)-(r^(1 + h,|fl1/(t + |))   M

(fc + t + MlPM)2'

But

[v,0] = {v2,v3,... ,vr + 6)/(vi,v2,... ,vr + 0)

so that

(8) (fc + t + h>,0])(u,0) = (k(v,6) + (v2, ...,vr + 0) + t(v,9)).

Now fc(vi,t>2,-.. ,vr + e) + (v2,.- ■ ,vr + 6) — (k,vi,V2,-. .,vr + 6), so that with

w = (k,vi,v2,...,vr),

(9) (k +1 + \v,e])(v,e) = (w,e)(i + \w,e]t).

Hence

(10)       «+1(*)= E ¿(fc^i---'^+^"24^,...^+«i(i)-
«€V„(r)fc=l

LEMMA 2.   For a//r >0

^+1(0 = ¿7Í(W/(fc+e)(í),
fc=i
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where
Ev€vnir)(v,k + eyjji + vi,v2,... ,vr,k + e)-1

lk[ '      ¿Zv£Vn(r)Y:?=1(v,l + 0)-i(l-rVi,...,vr,l-r9)-i

For r — 0, this should be interpreted as

„m      (k + o)-i(k + i + e)-i

Er=iC+ö)_ic+i+ö)-1'
PROOF OF LEMMA 2. There is a constant Cr > 0 such that

n

(11) 4>re+1(t) = Cr   £   E(fi,...,^,fc + ö)-2^,fc+9](t).
veVn(r)k=l

Now <,*+«] (0 = (! + [«.* + »])^,fc+i](0. so

(12) («l,V2,.-.,«r,fc + 0)-Vfv>fc+fl]W

= (Vl)..., vr, k + 9)~1((vi,. ..,vr,k + 0)(1 + {v,k + 9]))-1tfVik+e](t)

= {vi,..., vr, k + ey1 (i + vi, V2,..., vr, k + $)- Vp„,fc+i] (0-

Thus
n

(13) iï+\t) = CrJ2   £   {vi,...,vr,k + 9}tfVtk+e](t),
k=lv€Vn(r)

where {w} := (wi,... ,iys)_1(l + Wi,... , ius)_1. Now

(k + e)(vi,...,vr + i/(fc + e)) = (vi,...,vr,k + e),

so

(14) rßTe+1(t) = CrJ2(k + 9)-i   £    L,. ..,^ + -1-}^.^+1/(Jk+,)1(t)
fc=l t»€V„(r)  l J

We rewrite the inner sum with ak = l/(fc + 0), as

n

(is) £   £{«,* + "*}<.+»*](*)•
u€V„(r-l) 1=1

This is a sum of the same form as in (13), but with r replaced by r - 1. On the

inductive assumption that the lemma holds for that case, the sum in (15) is equal to

(\/Cr-i)iprak(t), and since f¿ (expression (15)) dt = E«ev„(r-i) Tï=iiv,1 + ak},

it follows that this sum is equal to C~\. Therefore,

(16)       i>re+l{t) = crJ2{k + e)-2[ £  L   *   }Uî/(fc+9)(t).
fc=l \v€Vn(r)  ( > J

But

(v, l/(fc + 9))(k + 9) = {v1,v2,...,vr + l/(fc + 9))(k + 9)

= (vi,.. .,vT-i)(vr{k + 9) + l) + (vi,.. .,vr-2){k + 9)

= (vr,... ,vr)(k + 0) + (vi,... ,vr-i) = (vi,...,vr,k + 9).
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Hence

n

(17) rpl+\t) = Cr    £    £{v,* + W/(iH.fl)(0-
t»€V„(r)fc=l

Since ¡¿ißre+\t)dt = 1, C"1 must be E„ev„(r) ELi{u>fc + ö>- This Proves

Lemma 2.

The point of Lemma 2 is that it displays the action of S on ipg(t), as giving a

weighted average of various i/£(f)'s. If we view {ipg(t): 0 < 9 < 1} as a string,

the points of which reside in some space, we see that the recursion yields on each

iteration a new string which is contained in the convex hull of the preceding string.

This sort of averaging ought eventually to squeeze the string down to a point, and

that limit point will be our gn(t). The trick is to find the right norm.

The functions V°(f) = (1 + 9)1(1 + 9t)2 enjoy the property that ip^ (t) > ip°2(t)

if 9i > 02- That is, V'gj majorizes ip°2 in the sense of Olkin and Marshall: For all

s, 0 < s < 1,

(18) /   /(f) df > /   g(t) dt,        and     /   /(f) df = /   g(t) dt = 1.
Jo Jo Jo Jo

When this holds for positive functions / and o, we say that f > g. We will also

need the discrete analog. Given sequences (oi,02,. ..,or) and (61,62,... ,6r) of

nonnegative numbers, rcof necessarily in decreasing order, we say

fc fc r r

(19) a>b   if 2J a-i > £ 6¿ for 1 < fc < r, and £ a¿ = £ 6¿ = 1.
¿=1 i=l 1=1 i=l

Clearly if / >- 0 and g > h then f > h, and likewise for sequences. So if all the

^ij(f), for any fixed r, are comparable in this sense, we can put ^(f) := /0 tpg(s) ds,

and

1 r1
(20) distance^ ,Ve2)~\      *5, (<) - *e2(t) df ,

\Jo

and it will be a metric for {ipß(t) : 0 < 9 < 1}.

LEMMA 3. For even r, tpre >- tpg if 9i > 92, while for odd r, tpr6i < ipg3 if

9i >92.

This is not easily proved, and we must work up to it with some auxiliary lemmas.

LEMMA 4. For fixed r, the sequences ik(9j) satisfy 7£(0i) >■ lrk(^) tf and on^y

iJ9i <92.

LEMMA 5. Suppose 0 < ci < C2 < • • • < c„ and 01,02,... ,o„ > 0. Then for

allk, 1 < fc < n,

fc e   n k ¡n

£ ai £ ao - £ cjai / £ cJaj■
j=i 1 j=i    ,=1   / j=i
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PROOF.

n fc fc n

£ c3a3 £ ai - £ ciai £ ai

j=i    (=1    j=i    1=1

n k k n

= £ cJ°j£a'-£ci°j £ a¿

j=k+l 1=1 j=l ¡=fc+l

n      k fc        n

> cfc+i £ £ aj<n - ck £ £ aja,

fc+1i=l J=li=fc+1

n fc

= (cfc+i - ck)   £   £aja¡ > 0.    D

j=k+ii=i

Now this says that (a*)/ E" afc >" (cfc0-fc)/ E" cfcafc-

To apply the lemma, we fix 0 < s < t < 1, and put

(21) Ofc =    £   {v, k + s} = ak(s),    say, and

f€V„(r)

cfc = E«6V„(r){v'fc + <}/Evevn(r){w'fc + s) = ojfc(f)/afe(s).   To establish that

cfc < Cfc+i, 1 < fc < n — 1, we prove that

d2
(22) — logofc(s)>0.

From this it will follow that

— logofc(s) < — logofc(s + 1),
ds ds

so that

logOfc(f) - logofc(s) < logafc+i(f) - logafc+i(s),

and

ak(t)/ak(s) < ak+i(t)/ak+i(s).

But (22) is equivalent to the claim that

(23) ak(s)a'¿(s) > (a'k(s))2.

To prove this we start with the cases r = 0 and r = 1.   For r = 0, Ofc(f) =

(k + t)-1(k + l + t)-1, so logojt(f) = -(log(fc + f)+log(fc + l-(-f)) which is thus
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concave up. For r = 1,

n

(24) afc(i)=£((fc + i)i + ir1((* + 0(i + l) + l)"1,

3 = 1

a'k(t) = - ¿/((fc + t)j + l)-2((fc + t)(j + 1) + I)'1

j=i
n

-£(i + l)((fc + <)i + l)_1((fc + í)(í + l) + l)-2,    and
j'=l

4'(0 = ¿ 2/2((fc + f)y + i)-3((fc + t)(j +1) +1)-1

3 = 1

n

+ £2/(i + l)((fc + f)/ + l)-2((fc + f)(j + l) + l)-2

i=i
n

+ £ 2(J + l)2((fc + i)i + l)_1((fc + t)(j + 1) + I)"3.

i=i

Thus with the notation ((fc -f t)j + 1)_1 = eá, ((k + t)(j + 1) 4-1)-1 = /,,

(25) a'k\t)ak(t) - (a'k(t))2 = ¿¿2/2e3/,eí/¡ + 2¿(¿ + l)e2/2ei/,

i=i/=i

+ 2(¿ + 1)VjVi - #$«?/*/« - j(l + itftifjff
- (j + \)lejf2e2h - (j + l)(l + l)ejeif2f2.

By symmetry this is equal to

n     n ,^ k

(26) £ £ *&UU • ( = if J = /, else 1
i=u=i ^L J

( j2e2j + l2e2 - j(j + l)ejfj + 1(1 + l)e,/i )

\       +Ü + I)2/,2 + V + l)2/¡2 - Jleje, - j(l + l)ejf, \ .

{      -(j + iyfa-U + W + Vjfjfi. J
The complicated factor can be simplified a bit by setting Ej = je¿, etc., to read

E2 + Ef + EjFj + EiFi + F2 + F,2 - EjE¡ - EjFt - EtFj - FjF¡. This is

> 2Ej + 2E¡ + 2Fj + 2F¡ + EjFj + EiFt — EjFi — E\Fj

> \(Ej - Ft)2 + ±(£, - F,)2 + EjFj + W > 0.

For r > 2, we can take the approach that

(vi,V2,...,vr,k + t) - (k + t + Pv)(vi,v2,■ ■.,vr),

where pv = (vi,v2,... ,vr-i)/(v2,v2,... ,vr), while

(l + V2,V2,...,Vr,k + t) = (k + t + qv)(l + V2,V2, ... ,vr),

with the obvious meaning for qv.



318 DOUG HENSLEY

Now for general r,

(27) ak(t)=    £   {v,k + t}=    J2   (fc + '+ftO'Hfc + t + ftO^M.
v€V„(r) »eVn(r)

o'fc = 2     £    ((fc-(-f + pv)_2(fc + í + g„)-1 + (fc-r-f-r-pt;)~1(fc + f + OtJ)-2){w}

u€V„(r)

and

o'fe' = 2    £    ((fc + f-rp„)"3(fc + f-r-0,;)-1 + (fc + f + pv)-2(fc-r-f-r-g„)~2

u€V„(r)

+ (fc + f + Pv)_1 (fc +1 + g,,)-3)^}.

Thus a'¿(t)ak(t) - (a'k(t))2 = (with Pv = (fc + f + g»)-1 etc.)

(28) £      £   {v){w}pvQvPwQw ■ (5 if v = 10 else 1)

w€V„(r)tu€V„(r)

Í P2 + P¿ -rP^Q,, -r-P^Q«, + Q2 +g2 I
^ Mji uj ¿v^tU ¿to^íu y*¿V^¿W )

Again the last factor is positive, for the same reason as with the Ej and Fj.

Thus we may apply Lemma 5 in (21) and conclude that for arbitrary r > 1 and

0 < 0i < 0a < 1,

(29) Yk(9i)> Yk(92).

This proves Lemma 4.

Now for r = 0, ip^ (t) >- ip°2 (t) if 6»i > 92. By Lemma 2,

(30) ^+1(í)-£7Í(^í/(fc+fl)(í)-
fc=i

Thus with the notation 9g(t) ~ f0 tpre(s) ds, we have

(3i) *5+1w = £-£(*)*;/(*+«)(*)•
fc=i

Now make the inductive assumption that Lemma 3 holds out to r (and is in doubt

for r + 1). If r is even, then %^ (t) > %2(t) if 9X > 92. Thus if 9i > 92, then

n n

(32) £7i(W/(fc+9l)(0 < EníCW/íW*)-
fc=l fc=l

The sequence ^ï/nfe+s^Wi 1 < fc < n, is decreasing in fc because l/(fc + 62) >

l/(fc + 1 + e2). If we replace Yki^i) with 7^(02) this shifts mass into smaller values

of fc, where it will multiply larger ^ri/tk+g\(t) values. More precisely, if (ak) >- (bk)

and if ci > c2 > • ■ • > c„ > 0 then E/t=i afccfc ̂  Efc=i bkck. (This is easily proved

by Abel summation and is left to the reader.) Hence %^(t) < %2x(t) for 92 <9i.

If r is odd, the inequalities are just reversed. The same sort of argument yields

^^(t) > tffl+'if), and this completes the proof of Lemma 2.
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Now let

Dr(ei,e2)-.= Cm,(t)-%2(t)\-
Jo

By Lemma 2, Dr(9i,92) = \Tr(9i)-Tr(92)\, where rr(0) : = J¡ %(t) dt. Moreover,

for all r, Tr(9) is monotone (increasing or decreasing depending on the parity of r)

as a function of 9. Now from (31),

(33) r'+'W = Ê-r£Wr'(^)

Inspection of the definition of 7^(0) shows that

(34) fc-2 <7Í(0) «Cfc-2    (uniformly in r and 9),

and that fk+i(9) < 7^(0), for 1 < fc < n - 1. But now

r+»(o)-r+»(i) = ¿Tî(i)r (^ -7Ï(o)r (±)
fc—i

= (£(7fc(l)-7i+i(0)r(-^T)j

+ 7;(i)r(^-I)-7i(o)r'-(i),

n+l ,    v

= £«(*,r)r^-J,    say.

Now Efcíi ^(fc'r) = 0- Because of the cancellation among terms ¿(fc, r) = 7^(1) -

7£+1(0) for 1 < fc < n, the sum of the positive <5(fc, r) is less than 1, for each r. In

fact, it is less than 6/7, since both 7Ï(1) and 75(0) are greater than 1/7.  To see

this, we consider first

(35)

75(0)= £(t;,2)-1(l + i;i,...,t;r,2)-1/^ 5>,0_1<1 + «i,...,^,/)"1.
V„(r) '    V„(r)i=l

Now for 1 < I < n, and any v G Voo(r), (v, l)/(v, 2) < 1/2. Thus

(«,2)-1(l + t;i,...,t;r,2)-1<(/2/4)(î;,0-1(l + î;i,...,î;r,Z)-1,

so that 75(0) > 1/ E~i 4/Z2 = 6/4tt2 > 1/7. The fraction defining fftl) as in (35)
has the same numerator but a smaller denominator, since I + 1 replaces / in (v,l).

Thus also 7i(l) > 1/7. Let E(r) = ^k:Slktr)>06{k,r) = \ ELi W,r)\. Then
since Tr(0) is monotone in 0, 0 < 0 < 1,

(36)

that is,

(37)

< \E(r)r(0)-E(r)r(l)\ < ^\Tr(0) - T*(l)\,¿^)r(j)

|rr+1(o)-rr+1(i)|<(f)|rr(o)-rr(i)|.
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Now for r = 0, r°(0) = /„ *g(i) df = ¡¡ tdt = 1/2, while

r°(l) = i  *?(f)df = Í   (2 - -?—) dt = 2(1 - log 2) = .61371    (approx.).

Thus |r°(0)-r°(l)|< 1/7, so

(38) |r(0)-r(l)|<(l/7)(6/7)r,

or equivalently,

(39) ||^1-*S2||i<(l/7)(6/7)r    for0i, 0 < 0¿ < 1 and r > 1.

Now some elementary calculus from (39), gives for all r > 1 and 0 < 0¿ < 1,

0< f < 1,

(40) |^i(f)-^2(f)|<2(19/20r.

We begin the proof with some notation. Let F(f) = itjj (t) - \fjj (f), and assume

|F(f)| takes a maximum value of e at f = fo-

Since F(f) is a linear combination of functions of the form (1 + 0)f/(l + 0f), with

coefficients in [—1,1], and since both the sum of the positive, and the negative,

coefficients is 1, we see that for 0 < f < 1,

(41) |F'(f)|<2,    |F"(f)|<4.

Now F(0) = F(l) = 0, so |F(f)| > e-2(f-f0)2 for |f-f0| < \fe/2, and the interval

about fo of radius \fe/2 lies within [0,1]. Thus

(42) j\F(t)\dt>i^e*l2.

In view of (39), this forces e < (l/3)/(6/7)2r/3.

Now put /(f) = F'(f) = ipr6i(t) - ipre2(t), and suppose 1 > 6 = supo^^! |/(f)| =

|/(fi)|. Then one of fi ± \6 is in [0,1] (say fi + \8), so that as before,

(43)

-ti + ii
/ f(t)dt >-i°>-

Since |F(f)| < (l/3)(6/7)2r/3, the change from fx to fi + ±6 is < (2/3)(6/7)2r/3 in

F, so 6 < 2(6/7)f/3. Thus 6 < 2(19/20)r, which is equivalent to (40).

Now the sets Convex Hull{5r((l+0)/(l+0f)2), 0 < 0 < 1} are a nested sequence

of compact sets, with diameter tending to zero. Therefore there is a function

<?(f) = ff„(f) such that

(44) lim Sr((l + 0)/(l + 0f)2) = o(f)
r—»oo

uniformly for 0 < f < 1. We now derive some of the properties of g(f). Consider

the linear operator K: M —► B, where M is the set of all functions m(x) on [0,1]

of bounded variation, with m(0) =0. B is the set of all continuous differentiable

functions on [0,1], and

„,   ,       f1 (l + x)dm(x)
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We identify m which agree almost everywhere (so that really M is a set of equiva-

lence classes). Every m can be represented as cimi — C2m2, where ci > 0, C2 > 0,

and n¿i and m2 are probability distribution functions (m¿(0) > 0, m,(l) = 1,

continuous from the right and nondecreasing).

LEMMA 6.   If mi and m,2 are probability distribution functions and K(mi) =

K(m2) then mi — m,2-

PROOF. Otherwise we should have a function

1 (l + x)dmi(x) _    f1 (1_+ x) dm2(x)

(1 + xt)2      'Jo  '

1 (1 + x)d(mi - m2)(x)
Thus

L = 0   on 0 < f < 1.
yl + Xt)2 -    -

Repeated differentiation yields

<47> °*fe&3&«"« -"•)«
and in particular, with f = 0,

(48) 0 = /   xr(l + x) d(mi - m2)(x)
Jo

for all r > 0. Now /0 d(mi = ni2)(x) = 0, so integrating (48) by parts repeatedly

yields

/•l r-l

(49) /   xr d(m1-m2)(x) = £x*(l + x)(-l)r-fc+1d(m1-m2)(x) = 0.

J° fc=i

Taking linear combinations of appropriate instances of (49) and integrating once

more by parts gives

/   p(x)(mi
Jo

(50) /   p(x)(mi -m2)(x)dx = 0
Jo

for all polynomials p. But this forces mi = m,2, for otherwise a sufficiently good

polynomial approximation to (mi — m2)(x) would falsify (50).

The probability distribution functions on [0,1] form a compact metric space under

the Levy metric. To each function ipo(t) G B, associate

(51) mr(x):=^2ce,    where rpl(t) = £cg

With respect to this metric on M, and the L°° norm on B, say, K is continuous.

The inverse images mr(x) of the ipo(t) must have at least one accumulation point

in M, since M is compact. But there cannot be two, since K would send each to

g(t). Thus there is a unique measure ß = ßn and associated probability distribution

function m(x), such that K(m) = g(t). That is,

(52) gn(t)= f (l + 0)/(l + 0f)2d/3„(0).
Jo
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REMARK. Each of the functions (1 + 0)/(l + 0f)2 is analytic in the half-plane

Re(f) > —1, so g„(f) is also analytic in that domain. Thus

= /'Jo
((9n)W= /   (l + 0)0r(-ir(r + l)!(l + 0f)-2-'-d/?„(0)

for all r > 1.

From (44), S(g(t)) = g(t). That is,

(53) (jf X> + 8)~29n (^ «**)) gn(t) = ¿(ft + f)-2g„ ( JL)

Let

(54) A(n):=/o£(fc + S)-2g„(-^)d,

Then also

«     /-í/fc ¡-i

Kn) = £ / 9n(u)du= gn(u)du,
¿r;./l/(fc+l) Jl/(n+l)

so 0 < A(n) < 1.

We now have all of Theorem 2 except that ßn is concentrated on the set of

irrationals in [0,1] with continued fraction expansion of the form [01,03,...], with

all Oj < n. For the proof of this, consider Ar = {0: 0 < 0 < 1 and í>r(x[o,i](í))

includes (1 + 0)/(l + 0f)2 with a positive coefficient}. Thus Aq = {0}, ai =

{1,1/2,..., 1/n}, and from (6), Ar = {0 = [^1,^2, • • •,vr]: u¿ < n for 1 < i < r.}

Let A = {{vi,V2,- ■ ■]: Vi < n for all i > 1}. A is closed. For any x, 0 < x < 1, nof of

the form [01,02,...], all a¿ < n, write x = [01,02,... ,aj,bi,b2,...], where 61 > n.

We admit the possibility that a.j > 1 and 61 = 00, in which case there are no further

6's. If 61 =00 then consider the interval bounded by [01,02,... ,Oj —1,1,2n+l] and

[ai, 02, • • •, Oj■, 2n +1]. For all r > 1, no element of Ar belongs to this interval. Were

ß to assign positive measure to the inner half of this interval, the Levy distance

between the mr(x) and m(x) could not converge to zero. Thus the support of ß is

at any rate a subset of A. Now consider x G A. We must show that

ß(x - £, x + e) > 0

for every £ > 0. So fix e > 0.

There exist 01,02,... ,a3 < n such that |[01,02,... ,a3■ + s] — x\ < e for all s,

0 < s < 1. Now for all r > j,

(55) mr(x-e,x + £)>^(A(n))-r £ (v)~2.

u=[fli ,<i2,...,a;,&i ,62 »•■•!&»•—j]

v€V„(r)

But that is

(56) >A(n)-^(o1,o2,...,a,)-2 £     (w)~2 ] (A(n)^).

\weV„{r-j) J
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Now by Lemma 1, ^2v€Vnir)(v)~2 > ^(X(n))r, since for all 0, <pre(t) > ^Lrg(t)

because </>$(f) > ¿g(f) on [0,1]. Thus mr(x - e,x + e) » X(n)~] (ai,... , a.,)-2,

and remains bounded away from zero as r —► oo. This proves the last outstanding

claim of Theorem 2.

To prove Theorem 3, it is sufficient to work with sets of the form (0, a). Then

n       /.1/fc

vn(T-1(0,a)) = ^2 / 9n(t)dt
k=iJl/{k+a)

= X(n) /   g„(f)df    by Theorem 2,
Jo

= A(n)i/n(0,o).

This leaves Theorem 1.

To see that \X(n)k < /¿„(fc -1) < 2A(n)fc, we note that |o„(f) < 1 < 2g„(f) for

0 < f < 1. Thus

(57) \ j  Lkgn(t)dt< f  LkX[o,i](t)dt< [  Lkgn(t)dt,
¿ Jo Jo Jo

kkii\ Ji «-- o\/„\fc

so that

)g(f)df <2A(n)\

But

(58) f  4>ko(t)dt = pn(k-l),    for all ft >1.
Jo

PROOF. For each w G V„(fc), consider the open intervals J(w,i), 1 < i < n,

bounded by [w, i] and [w, i + 1] in one order or the other. Each open interval of

Rn(k) has the form U"=i •J(w^)^ together with the connecting points. A simple

calculation establishes

(59) \[w,i] - [w,i + l]\ = M"1«™,*'} + (to))-1.

Summing (59) over all choices of w, and 1 < i < n gives (58) with fc + 1 in place of

fc, in view of the corollary to Lemma 1.

REMARK. Because Sk<po(t) converges exponentially to g(f), more is true: there

exists a constant c(n), | < c(n) < 2, such that

/¿„(fc - 1) = c(n)(l + O(19/20)")A(n)fc.

We now show that /¿„(fc + l)//¿„(fc) alternates about A(n). First recall that we

have already seen that ipr (t) ■< tpr6i (t) if 0i < 02 and r is odd, while ipr (t) -< ipr (t)

if 0i < 02 and r is even (Lemma 3). Now for even r, tpr0+1(t) = E/t=i llW^i/kW-

Each component of this sum majorizes ifo(t), and the coefficients are positive with a

sum of 1. So V"o+1(0 >~ ̂ oM- if r IS 0(id a similar argument shows that t/>q+1 -< V>o-

Now

= f <Pko(t)dtl f cj>ko(t)dt= [ ipk(t)dt.
Jl/(n+l) I    Jo Jl/(n+l)
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For fc even,
•l/(n+l) rl/{n+l)

/       i>ko(t)dt> 4 + )(t)dt,
Jo Jo

(6i) ^+2(f )=¿ ¿ Yk+1 m (l) rí/tí+1/
k=i]=i        v j

and this is reversed for fc odd. Consequently, /¿„(fc)//¿„(fc— 1) alternates. Further-

more, two applications of Lemma 2 give
n      n

l/fc)(¿)>
LJ = 1 V'V/

from which it follows that Vo "< V"o "< V'o "< ■ ' ■ < 9 ~< ' • • -< V'o -< V'o ̂  V'o-
Together with (60), this shows that /¿„(fc)//¿„(fc — 1) alternates about A(n).

Next, we prove that A(n + 1) > A(n) for all n > 1. We have

(62) cpko(t)=    £   ({v)+t{v-))-2,

v€Vn(k)

and we put

¿5(0=   £   ((v) + t(v-))-2.
vevn+1(k)

If A(n) were equal to A(n+1) then <¡>o(t)/<po(t) would be bounded above. We prove

it is not, with f = 0.

For every v G Vn(fc) consider

Wv := {w G V„+i(fc) : w = v in fc — 1 places, and (n + 1) in one place.}

Each w with one entry equal to n + 1 belongs to n sets Wv.

For w G Wv, (w) < 4n(v). Thus (w)~2 > (4n)_2(u)-2, so that

£     (wy2>    £    fcn-^n)-»-2.

w€Vn + i(k) v€V„(k)

For fixed n and fc —» oo, this gives <J>o(0)/(Pq(Q) —► oo.

Finally, we prove that linin-.oc n(l - A(n)) = l/log2. We know that

ffn(0) = fclim     £   (v)-2/    £   (v) + {v-))~1.

From Schweiger [8], if n = oo, then

r(o=ij,,"**,i)™H©')'
and EvgVooifc)^)-1^) + (u~))_1 = 1 smce f°r n = °°í Jo 0o   W^ — 1 f°r aii fc-

Thus for fixed fc as n —» oo

vev„(k) s

Hence lim„_00 g„(0) = l/log2.   Since 1 - A(n) = /0 gn(t)dt, and since

|gjj(f)| < 2, this integral is asymptotic to g„(0)/n as n —► oo, and so n(l - A(n))

tends toward l/log2 as claimed.

LAST REMARK. Clearly Tn(x) -* {1/x} if x > l/(n -I- 1), else 0, tends to

scramble things before kicking them out of bounds to zero. Is there some analog to

the ergodic theorem for measure-decimating transformation?
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4. Uniform distribution of solutions to v2 = -lmodfc. Since the result

obtained does not match Hooley's in accuracy, we confine ourselves to a mention

of the salient steps.

The problem is converted to one of equidistribution of o"*(oj), over a G A(x) as

i-K». It is noted that a* is essentially parallel to a, and that if a = (a,b),

a* = (c,d) then cr*(ct) is close to (ac + bd)/(a2 + b2) — v/k, where v = ac + bd =

>/—îmoda2 + 62. The important steps begin with several lemmas.

Lemma 1.

¿2 X(^(a) < t) = V + O(fV) + 0(y).
\a\<y
a€A

PROOF. We start with the identity
oo

(1) £ X(a*(a) < t) =   £  £ X(\ß\/t < \ß. + kß\ < y).

\a\<y \ß\<tyk=l
aeA ßeA

Now ft|/9| < 1/3.+ fcj9|< (ft+1)|/5|,80

(2) £ x(o-*(«) < 0 <  £ £ X(l/i -1 < fc < y/\ß\)
\a\<y \ß\<tyk=l
aeA ßeA

s?([Ä]-[i]+1)-
\ß\<ty  XL|M|J L    J '
ß€A

Similarly, the rightmost term of (2), with —1 in place of +1, provides a lower bound

for(l). Both of these bounds lie within E|/?|<ty; ß€A2oiH\ß\<ty; /je/ifo/l/3!-1/*).
and we settle for the trivial estimate

(3) £  2<2((2f2/ + l)2-l) = 8fV8f2/<8fV + 82/.

\ß\<ty
ßeA

Now we must estimate E|^|<2; ßeA * and Ew|<2- ßeA Vl/?l- This requires two

subsidiary lemmas.

Lemma 2. E\0\<Z[ 0€a 1 = 6z2/n + 0(z).

Lemma 3. Z\0\£Miß€A VIA = iar/* + o(i).

COROLLARY.   Lemma 1 still holds if in the statement, x(cr*(a) < t) is replaced

by any expression of the form x(o"*(q) + p(a) < t), provided p(a) — 0(|a|-3).

PROOF.  If p(a) = 0(|o|-3) then |p(a)| < C\a\~3 for some C, and all a G A.

Now for any 6 > 0,

(4) £ x(a-»+0<f)-       £       1<  £ x(^(o) + p(a)<f)

\<*\<V \a\<(C/S)1/3 \<*\<V
aGA ac.ß. aeA

< £x(<r*(a)-o<i) +       £       1.

\<*\<y \a\<(C/S),/3
aeA a£fi
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The corollary follows from Lemmas 1 and 2 on taking 6 = y~6^5.

LEMMA 4.  Em<y- ß€A xi°*{ß) >í-t)^ty2 + y.

LEMMA 5.   E|Q|<x; aeA x{s < o*(a) < t) < (9/8)n((f - s)x2 + x), uniformly

in s, t satisfying 0 < s < f < 1 and t — s > 3~n.

REMARK. The proof of this lemma was the central difficulty in this argument.

COROLLARY.   For any interval I = [s,t], with 0 < s < t < 1,

£    x(o-*(«) e J) < (t - s)7/8x2 + (f - s)-x/8x.

|a|<x; aeA

If t — s < 1/x, the sum here is simply <C x9'8.

LEMMA 6.   For every v G V^fc), and every Ai < A2 < l/(n + 1),

£ X(<x» G 7A(t;)) = -\IA(v)\x2 +o(Ç]+ 0(x9/8).
\a\<x V       '

Corollary.

£ x[o-*{a) G /(«)) = £*a (l+O (i)) |/(«)| + 0(x9/8).
|a|<i ^ V    //

The number of Farey n-intervals I(v) corresponding to v G V(k), fc < K, is

£"*-"" (1+0(:))-

Given an arbitrary interval [s, f] Ç [0,1], we apply Lemma 6 to any Farey n-

interval I(v), with v G V(fc) and k < K, which contains as an interior point either

s or f. There will be 0,1, or 2 such intervals. We apply the corollary to Lemma 6

to all the Farey n-intervals with fc < K contained in \s,t]. Let I be the collection

of all these intervals. Then

(5) £ x(«t» g M]) > £ £ x(**(«) e/)
aeA iei aeA

|a|<a: |<*| —x

,2-£s*Ki+°e))
= ^x2^(|/|+0(^)+0(x9/8)#j)

+ 0(x9/8)#I)+Ol

Now we take n = [ilogx/(loglogx)2] and fc = [logn]. Then #1 <C exp(nlog2n) -C

exp(|logx) = y/x, so that (x9/8#I) <C x13/8. The difference between E/g/ and

(f - s) is < (1 - l/n)nlog" < 1/n. It follows that

(6)        £*(»»€ [,,<]) 2 §*,-.)+0(sSjäs£).
a6>l

|a|<x
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Finally, we apply (6) to [0, s] and [f, 1]. Since Y,aeA-, \a\<x * = 6x2/7r + 0(x) by

Lemma 2, the inequality in (6) also goes the other way. Therefore

(7)        z *«•(«) c im])=;<t - .y h- o f***1') ■
|a|<x

Buta* (a) = s*(a) + 0(|a|-3), and if a = (o,6) then o(a, 6) = (a2 + 62)s*(a). Thus

considering [s ± x6/5, f ± x~6/5],

2^(.,6M)-|(«-.y+o(^S?î2).
|o:|<x

aeA

as desired.
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