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AN APPROACH TO HOMOTOPY
CLASSIFICATION OF LINKS

J. P. LEVINE

ABSTRACT. A reformulation and refinement of the ¿t-invariants of Milnor are

used to give a homotopy classification of 4 component links and suggest a pos-

sible general homotopy classification. The main idea is to use the (reduced)

group of a link and its "geometric" automorphisms to define the precise inde-

terminacy of these invariants.

Introduction. In 1954, Milnor [M] introduced the concept of link homotopy,

a notion considerably weaker than the usual notion of link type. In fact it is also

weaker than the relations of PL and topological isotopy and /-equivalence intro-

duced later (see [R, Go, Gl]), but equivalent to the apparently weaker relation

which asks for disjoint singular cylinders in / x S3 connecting the links (see [Li]).

Recently link homotopy has come up in a reformulation of the 4-dimensional topo-

logical surgery conjecture (see [FL]).

Unlike usual link type the classification problem for link homotopy seems quite

tractable—in [M] Milnor gives a complete homotopy classification of links with 3

or fewer components, and shows that a link is homotopically trivial if and only if

a certain collection of numerical invariants is defined and vanishes—alternatively

this can be interpreted in terms of the reduced link group Q(L) defined in [M] (see

below).

The numerical homotopy invariants used in [M] are part of a wider collection—

the p-invariants—which appear in [Ml] and are there shown to be invariants

of topological isotopy. In [S] they are shown to be invariants of topological I-

equivalence, but are not, except for the subset used in [M], homotopy invariants.

Although the p-invariants do not serve to classify links under /-equivalence, it is

still an open question whether a link with trivial /Z-invariants is cobordant to a

boundary link. A boundary link is one whose components bound disjoint surfaces

in Sz—they have trivial ¿¿-invariants and include all split links (links whose compo-

nents lie in disjoint balls in S3) and parallel links (links formed by several "parallel"

copies of a single knot). As already mentioned, the homotopy ¿¿-invariants are triv-

ial if and only if the link is homotopy trivial but it is not true that any links with

the same ¿¿-invariants are homotopic [L]—their indeterminacy is too large.

In [L] a classification of links up to surgery equivalences is given using certain

of the homotopy ¿¿-invariants with a refinement of their indeterminacy. In fact,

it seems implicit in [M] that one should be able to use the ¿¿-invariants to give

a general homotopy classification.   It is shown in [M, P] that the ¿¿-invariants
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with their original indeterminacy already classify the "almost 2-trivial" links—

those which become homotopy trivial when any two components are removed.

It is the aim of this paper to initiate a program for solving this problem. We

will obtain a formulation of a new and much more delicate indeterminacy for the ß-

invariants which allows us to distinguish many links which are not distinguished by

the old indeterminacy. Furthermore it seems hopeful that this may be the correct

indeterminacy for complete homotopy classification. We will show this to be true

for 4-component links (our main application) and a general class of links containing

the "almost 2-trivial" links.

The primary tool in this study is the group Q(L), a certain quotient of the

fundamental group G(L) of the complement of the link L defined in [M]. Q(L),

together with a "peripheral structure" consisting of elements of defined by meridians

and longitudes of the link components, is shown in [M] to be a homotopy invariant

up to a certain explicit indeterminacy in the peripheral structure. We will show

that this indeterminacy in the peripheral structure can be substantially reduced.

Corresponding to the results mentioned above we will see that Q(L), with this more

delicate peripheral structure, provides a homotopy classification within the same

class of links. In fact these two classification schemes are generally equivalent.

The approach we take (begun in [M]) is to study a link L by taking one of its

components to represent a conjugacy class of elements a in $(K), where K is the

sublink of L defined by the remaining components. The crucial observation is that

the homotopy class of L is determined by K together with the orbit of a in Q(K)

under automorphisms induced by homotopies of K to itself (we call these geometric

automorphisms). Thus the classification problem reduces, in a recursive manner, to

the problem of deciding which automorphisms are geometric. The automorphisms

preserving the peripheral structure of S(K), which we call strong, certainly contain

the geometric ones. The orbit of a under strong automorphisms can be used to

define the new indeterminacy of the ¿¿-invariants; it is the correct indeterminacy for

classification if all strong automorphisms are geometric. This is proved to be the

case for 3-component links and "almost trivial" links. In fact the larger and simpler

group of automorphisms of $(K) which preserve the meridians (called special), can

be used to define a simpler indeterminacy for the ¿¿-invariants which, although too

large to have hope of classification, is often smaller than the old indeterminacy.

This paper consists of three parts. In the first part we define the peripheral

structure in $(L), demonstrate its homotopy invariance, and rephrase the classi-

fication problem as a question of determining the geometric automorphisms. The

¿¿-invariants arise as exponents in a representation of an element of S(K) as a

monomial in basic commutators of the meridians. The indeterminacy comes from

the change in such a representation induced by relations in Q(K) and geometric

automorphisms. Our approach to the ¿¿-invariants is technically different from Mil-

nor's in the use of basic commutators rather than the Magnus expansion used in

[M, Ml].

In the second part we show that, for an almost trivial link, every strong auto-

morphism is geometric. This follows from one general technique for constructing

geometric automorphisms and the observation that for these links they generate all

the special automorphisms.
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In the third part, we show that, for 3-component links, all strong automorphisms

are geometric. Here we find that special automorphisms are not necessarily strong

and, if fact, that there are automorphisms which preserve the old peripheral struc-

ture considered in [M] but are not strong.

In this context we present several examples of nonhomotopic links with identical

¿¿-invariants (in their original indeterminacy). In fact, we are able to find links

whose reduced groups are isomorphic, preserving meridians, but are not homotopic.

The argument here is rather technical but one interesting feature is the non-

trivial use of a rather obvious and seemingly innocuous symmetry which relates

the geometric automorphisms of the various sublinks of a given link. Although the

explicit general description of the indeterminacy in the ¿¿-invariants is unwieldy, in

some special cases we are able to obtain a neat statement which exhibits some new

invariants that are independent of the ¿¿-invariants in their original indeterminacy.

The numbering of the theorems, etc. will be according to the section in which

they appear.

PART I

1. We will define a link of multiplicity m to be an ordered collection of m oriented,

smoothly imbedded disjoint circles in S3. A sublink is any subcollection with the

induced order. The principal sublink is the sublink of multiplicity m — 1 obtained by

deleting the last component. An (ambient) isotopy between links Lq and Li is an

orientation-preserving diffeomorphism of S3 which maps L0 onto Li preserving the

order and orientation of the components. We will generally omit the word ambient

when referring to an isotopy and we warn the reader, therefore, not to confuse this

with the notion of PL or topological isotopy which is not ambient. The group of the

link L, denoted G(L), is the fundamental group S3 —L. A peripheral structure on L

is a collection (¿¿i, Ai),..., (pm, Am), where m is the multiplicity of L and ¿¿¿, A, are

meridians and longitudes of L defined explicitly as follows. Choose oriented closed

curves mi, li on the boundary T¿ of a tubular neighborhood T¿ of the ith component

L(i) of L, determined up to homotopy by the properties: m¿ is null-homotopic in

Ti and has linking number +1 with L(i); li is homotopic to L(i) in T¿ and has

linking number 0 with L(i)—recall that L(i) is oriented. We may assume li and

mi intersect transversally at a single point x¿ G T¿. For any path 7¿ in S3 - L from

the basepoint to x¿, the elements pi and A¿ in G(L), represented by 7irr¿i7~1 and

7¿'¿7,-1' wm De referred to as a compatible ¿-meridian and ¿-longitude pair; 7¿ will

be called a stem for the pair (pi, A¿). Choice of a different stem will change (pi\i)

to (¿¿-,A-) where p't = giPig'1 X't - g^KgA for some & £ G(L). Two peripheral

structures {¿/¿,A¿} and {a¿¿,A¿} are conjugate if, for some g £ G(L), p[ = gpig~x,

\\ = g\ig~x. The structured group of L is G(L) together with all the peripheral

structures. If L and L' are isotopic links then it is clear that G(L) and G(L')

are isomorphic as structured groups i.e. there is an isomorphism <j>: G(L) —► G(L')

such that {¿¿j, A¿} is a peripheral structure on L, then {</>(¿¿¿), <^(A¿)} is a peripheral

structure on L'.

2. Suppose Lo,Li are links which are defined by smooth imbeddings io, ii : E —»

S3, where E is the disjoint union of m circles Si + S2 + ■ ■ • + Sm. Then L0 and

Li are homotopic if there is a homotopy it: E —> S3, 0 < t < 1, such that it(Si)

and it(Sj) are disjoint for any i ^ j and 0 < í < 1.  We will use the alternative
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Figure l

characterization of homotopy as the equivalence relation among links generated by

link isomorphisms and local crossing changes of arcs from the same link component

(see Figure 1 and [M]).

We recall the definition of Q(L) from [M]. Define J(L) Ç G(L) to be the normal

subgroup generated by all elements of the form [//,-, p^], where Pi,p'¿ are ¿-meridians

for any i = l,...,m. Then Q(L) = G(L)/J(L) is the reduced group of L. We

also consider peripheral structures on Q(L). If {/¿¿,A¿} is the image in Q(L) of

a compatible ¿-meridian and ¿-longitude pair and 0¿ is the coset of A¿ modulo

Ni(L), the normal subgroup of Q(L) generated by an ¿-meridian, then {pi,6i}

will be referred to as a preperipheral structure on Q(L). It is proved in [M] that

homotopic links Lq, Li yield an isomorphism §(Lo) « Q{Li) which preserves the

preperipheral structures. We will consider the coset 0, of A¿ modulo Ni(L), the

normal subgroup of Q(L) generated by elements of the form [g, [g,Pi]], for any

g £ S(L). Then {¿¿¿,0¿} will be called a peripheral structure on Q(L). Q(L),

together with its peripheral structures, is the reduced structured group of L. We

will show in §4 that a homotopy of links defines, in a functorial way, an isomorphism

of the reduced structured groups.

3. We first recall a theorem from [M] on the structure of Q(L) with a slightly

different presentation.

PROPOSITION 3. Let L be a link and {¿¿¿,A¿} a peripheral structure in G(L).

Then Q(L) is generated by pi,... ,pm. Furthermore there exist words wi,... ,wm

in the {pi} which represent A¿ in Q(L) so that a complete set of relations for Q(L)

are those of the followng two types:

(i) [pi,Wi] = 1, i= l,...,m.

(ii) C = 1, where C is any commutator in {pi} with repeats.

To explain the meaning of (ii), we make the following definitions A commutator

in {pi} can be defined recursively:

(a) The commutators of weight one are ¿¿i,... ,¿¿m-

(b) The commutators of weight n are words [Ci,C2] where Ci,C2 are distinct

commutators of weight < n and n = wt Ci + wt C2 ■

Note that there are only a finite number of commutators of any given weight. If

F denotes the free group on {¿¿¿}, then the commutators of weight > n generate

the subgroup Fn, which is normal. F = F\ 2 -Fa 2 • •• 2 Fn 3 Fn+i D • ■ • is the

lower central series of F and f]n Fn = {1} (see [MKS, or LS]).

We will say that pi occurs r times in a commutator C as follows.

(a) if C = pj, then r = 1 if i = j and 0 otherwise.

(b) if C = [Ci, C2] then r = ri + r2, where pi occurs rs times in Cs, s = 1,2.

We will say that a commutator C has repeats if some ¿¿¿ occurs at least twice in

C.
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PROOF OF PROPOSITION. In light of [M, §6] we need only prove that Ji = J2

where Ji is the normal subgroup of F, generated by commutators with repeats and

J2 is the normal subgroup generated by all elements of the form [¿¿¿, ¿¿"], where

p'i,p'i are any conjugates of /z¿, and 1 < i < m. That Ji Ç J2 is clear since any

commutator in which pi occurs is in the normal closure Ni of pi. We will prove

that J2 Q Ji using the notion of basic commutator, which we will need later.

We recall the definition (see [S, MKS]). A set of basic commutators in {pi) is

an ordered set of commutators C\, C2,... with the following properties:

(1) Ci — pi if ¿ = 1,... ,m.

(2) wt d < wt Cj if i < j.
(3) If k > m, then Ck = [Ci, Cj] for some i < j < k.

(4) If Cj = [Cr, Cs] in (3), then r < i.

(5) Every [d,Cj] with i < j satisfying (4) is a basic commutator.

We quote the Basis theorem of P. Hall, concerning the lower central series of F.

THEOREM 3 (SEE [MKS]). There exists a set of basic commutators, for any

m. Given any set of basic commutators Ci,C2,- ■ ■, then every element of F/Fq

has a unique representative as a monomial, C^C^2 ■ ■ ■ C£", where Ci,... ,Cn are

all the basic commutators of weight < q.

We now show J2 Q Ji- First notice that Fm+i Q J\, since it is obvious that

any commutator of weight > m must have repeats. Now, if a £ Ni we can write

a as a monomial in basic commutators modFm+i. If C is any commutator ap-

pearing in this monomial then pi occurs in C. To see this, notice that any set

of basic commutators in {¿¿1,... ,pm} determines a set of basic commutators in

{pi,... ,ßi,... ,pm} by deleting those in which ¿¿¿ occurs. If pi did not occur in C,

then a would have a nontrivial representation as a monomial in basic commutators

in F' = FINi, the free group on pi,... ,pi,... ,pm. Since a £ Ni, this violates

the Hall Basis theorem applied to F'. Now if a,ß £ Ni, we can write each as a

monomial in basic commutators in which pi occurs, modFTO+i. If we substitute

these monomials onto [a, ß] and expand, we obtain a product of commutators each

of which has repeats—since Fm+i Ç Jl5 we conclude [a,ß] £ J\.

This complete the proof of Proposition 3. We can now denote Ji = J2 by J. At

this time we also record, for future use.

LEMMA 3. Let {d} be a set of basic commutators in {pi} and suppose Cj,...,

Cn are those of weight < q. If an element of J has a representation C\l,..., C£"

modulo Fq+i, then whenever ei / 0, Ci must be a commutator with repeats.

To prove this we use the Magnus expansion (see [LS]). This is an isomorphism

(denoted M) of F into the group of units U of the ring P of noncommuting power

series in variables x\,..., xn, defined by M(pi) = 1 + x¿, M(p~x) — 1/1 + x,-. An

element of U can be written uniquely in the form ±l+p+£ where p is homogeneous

of degree > 0 and each term of £ has degree larger than deg p; we call p the principal

part. We make the following observation. If C is a commutator in {pi} of weight

n, then the principal part p of M(C) has degree n and each x¿ appears in every

term of p with total degree equal to the number of occurrences of pi in C. To

see this, suppose C = [Ci,^] where wtC¿ — n¿ (¿ = 1,2) n = ni + r¿2- Then

M (Ci) has principal part pi where deg pi — n, (see [LS]) and one computes that
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M(C) — 1 + pip2 — P2P1+ terms of degree > n. Since C ^ Fn+i, we conclude

that P1P2 - P2P1 is the principal part of M(C). The observation now follows by

induction.

To prove the lemma it suffices to consider an element g £ J C\Fq and represen-

tation g = Crr ■ ■ ■ C%' modFç-i-i where Cr, ■ ■ ■, Ca are the basic commutators of

weight q. The principal part of M(g) is p = erpr H-h esps, where pi is the princi-

pal part of M(Ci). Now one of the more important properties of basic commutators

is that {pr,...,ps} is a linearly independent set [MKS]. Therefore, if e¿ ^ 0 for

some d without repeats the p contains terms in which no variable has total degree

> 1. On the other hand we can see that for any g £ J, every term of M(g) — 1

must contains some variable with degree > 1. J is the subgroup generated by all

[Ni, Ni] and if g £ Ni, then every term of M(g) — 1 contains x¿ with total degree

> 0. An easy calculation establishes the result.

4. We now show that the reduced structured group of a link is a homotopy

invariant. In fact we will associate to a specific homotopy, in a functorial manner,

an isomorphism (up to inner automorphisms) of the reduced structured groups

which respects composition in the two contexts. Roughly speaking this can be

done by identifying the reduced groups with the analogous group of the "trace" of

the homotopy, but we will take a more combinatorial approach.

It is an easy consequence of general position that any homotopy can be approxi-

mated by a sequence of link isotopies and crossing changes (see Figure 1) which we

explicitly describe as follows. Let L be a link and B a 3-ball in S3 such that BC\L

consists of two arcs from the same component of L which is trivial in the sense that

there is a diffeomorphism of B onto the standard 3-ball which maps L n B onto

straight line segments. Let L' be another link satisfying:

(i) V n (S3 - B) = L n (S3 - B).
(ii) L' n B is another pair of trivial arcs.

(iii) L and L' have the same multiplicity and the order and orientation agree in

(i).
We will say that L and L' are related by an elementary homotopy in B.   A

homotopy will now denote a sequence of link isotopies and elementary homotopies.

Suppose we have an elementary homotopy between Li and L2 in B. Let G =

iti(S3 — (i?ULi)). We use the same base-point for G, G(Li) and G(L2) and there

are natural epimorphisms pi: G —► G(Lt). The kernel Ri of pi can be described

as follows. Choose meridians 01,02 £ G for the two segments of one of the arcs

emerging from B and ßi, /?2 for the other arc. We may choose these elements to

share the same stem (see Figure 2).

We have the relation aißi — ß2a2 in G, If we consider the corresponding ele-

ments in G(Li) or G(L2) we have the extra relation ai = 02 or ßx = /?2 depending

on the position of the arcs in B. Thus R, is the normal closure of either aia2 1 or

ßißi1-

We can define a reduced group G from G by dividing out the (normal) subgroup

generated by all elements of the form [¿¿í,¿¿"] where ¿¿í,¿¿" are meridians of the

¿th component for an ¿ = 1,..., m. Then pi induces epimorphisms pi : Q —► £(L¿)

whose kernel is the normal closure of aia2 l or ßiß2l. But since Oj and ßj commute

in Q these are the same element and so we obtain an isomorphism p2°PÍ* '■ 9(Li) —>

S(L2).
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Figure 2

L(k)

L{k)

L(k)

Figure 3

By taking compositions we have now defined a multiplicative transformation

from homotopies of links to isomorphisms of reduced groups.

THEOREM 4. Suppose a homotopy between links L and V defines an isomor-

phism <p: 5(L) —* Q(L') and {pi,0i} is a peripheral structure on Q(L) (see §2).

Then there is a peripheral structure {p^,9^} on Q(L') such that p\ = cp(pi) and

0- = <p($i) mod Ni(L') for every i.

We will say that <f> is a strong isomorphism between the structured reduced groups

$(L) and $(L'). An isomorphism <p which only has the property that (¡>(pi) is an

¿-meridian, for every ¿, will be called special. Note that any special isomorphism <j>

satisfies (j)Ni(L) = Ni(L') for every ¿.

PROOF OF THEOREM. We consider an elementary homotopy in a ball fl which

changes a crossing of the kth component. It is clear that we only have to worry

about the A:th meridians and longitudes. Consider Figure 3.
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Figure 4

In this figure ai,a2,ßi,ß2,Ti,T2 are closed paths in S3 — (B n L) sharing the

same stem o. We also insist that the linking number of r¿ with L(K) is zero. We

may take pk to be represented by ax. Then \k is represented by a^1/^^. We

may draw a similar figure for V near B except that inside B the crossings are

changed (see Figure 4).

We take p'k to be represented by ai again, and now A'fc is represented by

ui7"ia¡"1T2. The isomorphism Q(L) —► $(L') sends ¿¿^ to p'k and Xk to £A'fc where

£ is represented by (a^1 ß2'ri'r2){<xi'ri(Xi1'r2)~l = a^1 ß2Tiair^1 a^1. We need to

show that £ £ TVfc(L'). Note that ß2 = aißia^1, ßi = t^ a2Ti and a2 = cvi in

G(L'). Substituting for ¿?2 we find that £ can be represented by

ar1(airfla;i7'iar1)'"io;ir1_1a1"1 = rf^inaj^rïairf 1a¡'1 = [rf1, [ai,7i]]

which is conjugate to [tj, [ri, oi]], an element of Nk(L'). This completes the proof.

5. We now consider a single link L and ask which automorphisms of the struc-

tured reduced group Q(L) are induced by homotopies from L to itself (self-homo-

topies of L). We call such automorphisms geometric. In addition to those induced

by elementary homotopies, this will include those induced by ambient isotopies. It

follows from the theorem of §4 that a geometric automorphism (p satisfies the fol-

lowing condition: For any peripheral structure {¿¿i, 9,} of £(L), there exist elements

9i € 9(L) so that

(i) <t>(pi) = giplg~1,

(û)d>(9i) = gi9ig-lmodNi(L).

Automorphisms satisfying (i), (ii) will be called strong and those satisfying (i)

special. We will say that the elements {gi,- ■■ ,gm} of Q(L) are admissible for <p. A

change of peripheral structure results in conjugation of the {&}. Note that a given

strong automorphism and peripheral structure may have many admissible sets and

not every set is admissible.
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The question of which automorphisms of structured reduced groups are geometric

is related to the homotopy classification of links by the following theorem which is

a simple generalization of [M, Theorem 3].

THEOREM 5. Let L be a link and I1J2 oriented simple closed curves in the

complement of L. Let Li be the link obtained by adjoining ¿"i to L (i — 1,2).

Suppose li represents ai £ $(L)—up to conjugacy. Then Li is homotopic to L2 if

and only if there exists a geometric automorphism <j> of Q(L) such that <£(a<i) = 0:2-

Note that every inner automorphism of Q(L) is geometric. The isotopy which

moves the basepoint about a closed curve representing g £ G(L) but leaves L fixed

will induce the inner automorphism of G(L) defined by conjugating with g.

Milnor's Theorem shows that Li is homotopic to L2 if ai = o¡2. The point of

this generalization is that we obtain necessary and sufficient conditions by bringing

in automorphisms of Q(L). The proof is an easy consequence of Milnor's Theorem.

If Li is homotopic to L2, we can restrict the homotopy to L to obtain a self-

homotopy. The induced automorphism of Q(L) will clearly do. Conversely, given

</> induced by a self-homotopy of L, we use the following lemma to extend this to a

homotopy from Li to some link L3. Obviously L3 consists of L together with an

extra component ¿3—if Z3 represents 03 € §(L) then it is clear that (¡)(ai) = 03.

We now compare L2 and L3: They both contain L as principal sublink and the

extra components represent the same element of $(L). Thus we can apply Milnor's

Theorem to conclude that L2 and L3 are homotopic. This completes the proof.

LEMMA 5. Suppose Li is a link with sublink Ki and a given homotopy of Ki

with A2- Then the homotopy extends to a homotopy of Li with some link L2

containing K2 as a sublink.

Since isotopies obviously satisfy this extension property we only need consider

elementary homotopies. If A is the ball in which an elementary homotopy of Ki

occurs then we need only check that (Li — Ki) f~l A can be isotopically deformed

out of B rel Ki. We leave this as an exercise for the reader.

It seems much more difficult to decide whether this lemma is true in higher

dimensions. For example, it would imply that any imbedding Sp + Sq Ç Sm is

null-homotopic if irp(Sm~q~1) = 0—when p — q = 2, m = 4 a proof has been

announced ([HS]—also see [MR, FR]). In the context of link maps, i.e. maps

of several spheres into Sm allowing self-intersections in each component but no

intersections between different components, this lemma is false. For example, there

are nontrivial link maps S2 + S2 —> S4 (see [FR]) but, as mentioned above, this

lemma would preclude such a possibility.

By this theorem we have, in some sense, reinterpreted the homotopy classifica-

tion question as the problem of determining which automorphisms of the reduced

structured group are geometric. We can, in fact, relate this problem to the specific

question of whether the reduced structured group determines the homotopy class

of a link.

COROLLARY 5. Let L be a link and suppose that the sublinks Lr = {L(l),
L(2),... ,L(r)}, 2 < r < m, have the property that every strong automrophism

of Q(Lr) is geometric. Then any link whose reduced structured group is strongly

isomorphic to Q(L) is homotopic to L.
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PROOF. We begin an induction on the number of components of L by noticing

that all knots are homotopic. Now suppose L' is a link and $: Q(L) —» Q(L')

is a strong isomrophism. If K and K' are the two principal sublinks we have an

induced strong isomorphism <j>: Q(K) ss S{K')> since $ identifies meridians of the

last components. By induction we can assume that K and K' are homotopic, and,

therefore, by Lemma 5 we may even assume K — K'. We can now regard i^asa

strong automorphism of Q(K) and, by property (ii) applied to $, we see that cp

identifies the classes represented by the remaining components. By induction we

may conclude that <p is geometric and so apply Theorem 5 to conclude L and L'

are homotopic.

6. We use Theorem 5 to formulate a practical recursive approach to the ho-

motopy classification of links. Suppose K is a fixed m-component link with a

peripheral structure and we consider the class of links obtained by adjoining one

more component to K. We will use the class of this component in Q(K) to define a

set of numerical invariants. The indeterminacy of these invariants arises from the

relations in and the automorphisms of $(K). By just considering geometric auto-

morphisms, the indeterminacy is precisely that needed for homotopy classification.

If we consider strong automorphisms, then the indeterminacy may be too large if

it turns out that there are automorphisms which are not geometric.

To begin will need a version of the Hall Basis Theorem in the context of the

reduced free group T defined to be the quotient F/J where F is the free group with

basis {¿¿t} (see §3). Note that T is the reduced group of the trivial link, where a

peripheral structure {pi,9i} is given by: 0, = 1. We will say that Ci,C2,... is a

set of reduced basic commutators if it is obtained from a set of basic commutators

by deleting those with repeats. Note that any set of reduced basic commutators is

finite. The following proposition is a direct consequence of the Hall Basis Theorem

and Lemma 3.

PROPOSITION 6. If Ci,... ,Cn is a set of reduced basic commutators in {pi},

then every element of T has a unique representation in the form C^C^2 ■ ■ -C£".

Now suppose L is a link whose principal sublink is K, and the last component

of L defines the element a £ $(K)—up to conjugacy. The peripheral structure

on K determines generators {pi} of $(K). We write a — C\l ■ ■ C£" and refer

to {ei,... ,en} as the commutator numbers of L. Since the peripheral structure

on K and the set of reduced basic commutators are prescribed the only source

of indeterminacy in the commutator numbers are the relations in Q(K) and, by

Theorem 5, the geometric automorphisms of §5.

More specifically we have, from Proposition 3 an isomorphism Q(K) sa T/M,

where M is the normal closure of elements {[a¿í,Áí]} determined by the peripheral

structure {pi,Xi} and a prescribed choice of elements Â, in T representing Xt £

S(K). We also fix a set of generators {(pi} of the group of geometric automorphisms

of 5(K) and, for each fa a set of elements {gtj} in T whose reductions to $(K)

are admissible for fa. From the {Xi} and {gij} we define a set of transformations

of the commutator number {ei} i—► {e¿}:

(i) For each Xi, define {e^} by the formula

C1 ' ■ • • Cn" • [Ai, pi] = C11 • ■ • Cnn.
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(ii) For each gn,..., gim, define {e'j} by the formula

cei ■■■cerc = c¡'1 ■■■c<

where Cr <—>■ Cr under the substitution of g^pjg^j   for pj (j — 1,... ,m).

We will refer to the transformations in (i) as R-transformations and those in

(ii) as A-transformations. We may, in fact, ignore one of the relations and so

obtain (m - 1) A-transformations. If we consider strong automorphisms instead of

geometric automorphisms in (ii), we will refer to them as A'-transformations. The

equivalence relation among commutator numbers generated by A and A (resp. A')

transformations will be referred to as p- equivalence (resp. p'-equivalence). Of course

p-equivalence is finer than ¿/-equivalence.

THEOREM 6. Given K with a prescribed peripheral structure and elements {Xi}

and {gij} in T, as described above, then the p-equivalence class (and so the p'-

equivalence class) of the commutator numbers of any link L with principal sublink

K is a homotopy invariant of L. If two such links have p-equivalent commutator

numbers then they are homotopic.

In light of Theorem 5, we only have to check that two elements of Q(K) are

conjugate up to geometric (strong) automorphisms if and only if their commu-

tator numbers are p-equivalent (//-equivalent). First of all it is clear that two

elements of §(K) admit commutator numbers that are equal under a sequence of

yl-transformations (^'-transformations ) and their inverses if and only if there is

a geometric (strong) automorphism identifying them. It is also easy to see that

two sets of commutator numbers determine the same element of Q(K) if and only

if they are related by a sequence of transformation similar to A-transformations

except that we must consider the more general case of conjugates g\Xi,Pi]g~l in

(i), g £ T. But since all inner automorphisms are geometric we may express such

a transformation as a sequence of A and A (A1) transformations. This completes

the proof.

PART II

7.  We begin with a technique for constructing geometric automorphisms.

THEOREM 7. Suppose L is an m-component link whose kth component L(k)

bounds a disk A in S3 whose interior intersects L only at points of the rth com-

ponent L(r) (1 < k,r < m). Suppose {pi} is a set of meridians for L that have

representative curves whose stems are all disjoint from A. Then a geometric au-

tomorphism 4> of Q(L) is defined by: pk i—> prPkßV1> pi t—► pi for i ^ k. If the
interior of A is disjoint from L entirely then <j> is induced by an isotopy of L.

PROOF. Choose an arc r from a point of L(r) to a point of L(k) which is

otherwise disjoint from L, A and the representatives of {pi}. The homotopy, which

will move only L(r), consists of pushing a segment of L(r) along t, sliding it under

A, back over A and finally pulling it back along r. See Figures 5 and 6.

The intersections that occur during this deformation occur between L(r) and the
o

intersections of L with A. The assumption of the theorem implies that we have a
o

homotopy or, in the case where 6 n L is empty, an isotopy.
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Figure 5

Figure 6

The automorphism 4> of Q(L) induced by this homotopy does not alter pi if

¿ ^ k, since they can be represented by curves disjoint from A and r. Now suppose

7i, mi are the curves defined in §1, so that 7imi7~1 represents ¿¿i. Then it is easy

to see that cp(pk) is represented by the curve (ikf~1mTT)mk(T~lm~1T',^1). See

Figure 7. If we choose r = 7,T17fc, then ^(¿¿fc) = pTPkP7l-

8. As our first application we determine the geometric automorphisms of almost

trivial links. Recall from [M] that a link is almost trivial if any proper sublink is

homotopic to the trivial link.

THEOREM 8. If L is an m-component almost trivial link, then every special

automorphism is geometric. Furthermore every set of elements gi,...,gm of Q(L)

is admissible for a special automorphism. If L is trivial then every special automor-

phism is induced by an isotopy of L.
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)

Figure 7

We first deal with the case of L trivial. Then Q(L) « T and a peripheral

structure {pi,0i} is given by 9i — 1 and {¿¿i} the reduction of a basis of F. For any

1 <r,s < m let fatS be the automorphism of T defined by

,      ,     , / VsPrPj1' i = r'
faAPi) = \ .,

{ Pi, i¿ r.

In fact (prtS is induced from an automorphism of F defined by the same formula.

It is known that these elements generate the group of special automorphisms (au-

tomorphisms which take every every basis element to some conjugate) of F (see

[H, Ko]). We will need

LEMMA 8. Every set of elements gi,..., gm of T is admissible for some special

automorphism of T. Furthermore, {fa,s} are a set of generators of this group of

special automorphisms.

PROOF. We first point out that for any special automorphism of T there exists

an admissible set gi,-..,gm such that each gj can be written as a word in {¿¿i}

which does not contain pj. In fact if we have gj = Vjpe-Wj, then

9JN9J1 = VjP^WjPjwJ^p-tv'1 = VjWjPjW^vj1

since pj commutes with wjPjwJ1 in T. Therefore gj may be replaced by VjWj.

Iterating this process will remove all appearances of pj in gj.

Now suppose gi,. ■■ ,gm is any set of elements of T with the property that pj

does not appear in gj. Suppose, for some 1 < k < m, that & = 1 if ¿ > k. We will

show, by induction on k, that the endomorphism <f> of T defined by <p(pt) = giPig~l

is an automorphism and can be written as a composition of {(p^l : 1 < r, s < m}.

Consider the endomorphism V of T defined by

9kPk9kl,        i = k,
i>{ßi) = {

{ Pi, 176 k.

Since gic does not involve pk, it is clear that tp is a product of {<f>fa : 1 < s < m}

and so an automorphism. If a = ip~x o <p then cr(pi) is a conjugate of pi, for every

¿, and o(pi) = pi if ¿ > k. By induction we have that a is an automorphism and a

product of {fa,s : 1 < r, s < m}. We then have the conclusion for <f> = i¡) o a.

This proves the lemma.
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Figure 8

Now suppose L is the trivial link. We can choose disjoint disks Ai,..., Am in

S3 whose boundaries form L. Choose a set of meridians for L whose stems are

disjoint from {At}. Then it follows from Theorem 7 that every faiS is geometric

and, in fact, induced by an isotopy of L. By Lemma 8 this is also true for every

special automorphism.

We denote the following consequence of the above argument. Given any set of

meridians {pi} in Q(L), there exist disjoint disks {Ai} in S3 whose boundaries

form L such that {pi} are presented by curves with stems disjoint from {Ai}—we

will say that {Ai} are in good position for {pi}. In fact, choose any disks {A¿} and

meridians {¿¿¿} such that {A¿} are in good position for {/z¿}. By the lemma, there

is a special automorphism <p of Q(L) such that <A(¿¿¿) = pi and by the argument

above <p is induced by an isotopy of L. This isotopy will transform {A[} into the

desired {Ai}.

We now take L to be an almost trivial link. Let {¿¿i} be any set of meridians

of L, which defines an epimorphism T —► T(L') by Proposition 3. We will show

that every automorphism fatS of T induces an automorphism of Q(L') which is

geometric. By Lemma 8 this will prove the theorem.

Let L' be the sublink of L obtained by removing the rth component. Then V

is homotopic to the trivial link and, by Lemma 5, we can assume L' is trivial. We

may choose disjoint imbedded disks Ai,..., Ar,..., Am in good position for the

meridians of L' induced by {pi}. We would like to apply Theorem 7 to obtain the

desired geometric automorphism. The only problem is that the stem of the curve

representing ¿¿r might intersect As. But these intersections may be eliminated, at

the cost of introducing more intersections of As with L(r), by pushing a little disk

of As at an intersection point along the stem past the meridian circle (see Figure

8).

Since the stem does not intersect any other A¿, As will remain disjoint from

every other Ai-

This completes the proof of the theorem.

COROLLARY 8. Suppose L is an m-component link such that one if its (m — 1)-

component sublinks is almost trivial. Then any other link L' is homotopic to L if

and only if $(L) is strongly isomorphic to §(L').

This is an immediate consequence of Corollary 5 together with the theorem

above.   In fact, by examining the proof of Corollary 5 we only need require the
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isomorphism Q(L) « Q(L') to be special and preserve the preperipheral structure

(see §2).

This corollary applies to all 3-component links and to 4-component links whose

linking numbers lij, 1 < i,j < 4, satisfy the following property.

For some k, l^ = 0 unless ¿ = k or j = k.

Part III

9. The rest of this paper will be devoted to determining the geometric auto-

morphisms of links with 3 or fewer components. As a consequence we will be able

to give an explicit homotopy classification of links with 4 or fewer components in

terms of the commutator numbers defined in §6. For 3-component links such a clas-

sification already appears in [M], but we will go through this case as a warm-up

for the considerably more complicated 4-component case.

THEOREM 9. If L is a link with 3 or fewer components, then every strong

automorphism of Q(L) is geometric. The homotopy class of any link with 4 or fewer

components is determined by the strong isomorphism class of its reduced structured

group.

The second assertion follows from the first and Corollary 5.

The case of one component is trivial. It has pointed out many times in the lit-

erature that the linking number is a complete homotopy invariant for 2-component

links (see e.g. [M]).

Suppose L is a 2-component link. Since we may replace L by any other link in

its homotopy class, we may assume L is a twist link with k twists, where k is the

linking number. A standard computation shows that L has a peripheral structure

{pi,Xi} where Ai = p2, X2 = p\. Since any special automorphism of T is easily

seen to be inner, this is also true for Q(L) and so they are all geometric.

We now show to use this fact to classify 3-component links by explicitly describ-

ing the indeterminacy (i.e. ^-equivalence) of the commutator numbers. We shall

write x = pi, y = p2- A set of reduced basic commutators of {x,y} is {x,y[x,y]}.

If L is a 3-component link with principal sublink K, then the linking number

k of K is the first invariant of L to record. The commutator numbers {ei,e2,e3}

of L are the exponents in the representation a = xeiye2[x,y]es where a £ Q(K) is

(up to conjugacy) the class represented by the third component of L in Q(K) and

x, y are the meridian generators of Q(K) corresponding to a prescribed peripheral

structure.

The A-transformation is determined by rewriting a[pi,Xi\ (i — 1 or 2) in the

standard form

a[x,yk] = xe>ye2[x,y]e3[x,y]k = xe>ye2[x,y]e3+k.

The ^-transformations are determined by admissible sets for generators of the group

of geometric (=inner) automorphisms. We may take (1, x) and (y, 1), corresponding

to conjugation by x and y, respectively. We then compute

(i) x'^xyx-^&xyx-1]'3 = xe*[x,y]e2ye2[x,y]e3

= xe>ye2[x,y]e2+es,

(ii) (yxy-^y^lyxy-^y]63 =xeiye'[y,x]e*ye*[y,x]ei[x,y]ea

= xeiye2[x,y]e*-e\
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We see that ei,e2 are unchanged by A or ^-transformations. This is a gen-

eral fact—the exponents of the meridian generators will be invariant under in-

equivalence. In fact they are just the linking numbers of the last component of

L with the other components.

Finally we see that es can be changed by any multiple of (k,ei,e2). Thus we

conclude that a complete set of homotopy invariants for L is given by the three

linking numbers ki,k2,k¡ and d — e^ mod(fci,/c2,fc3), which coincides with ¿t123

(see [M]).

10. We now take up the task of determining the geometric automorphisms of

3-component links. At the same time we will discuss the related classification of

4-component links. In fact, the interplay between these two problems will be an

indispensable part of the proof of Theorem 9.

As a first step we describe ^-equivalence when K is the trivial link. In other words

we consider T and record the ^-transformations corresponding to the generators

{fa,s} of the group of special automorphisms of T.

We write x = pi, y = ¿¿2, z = ¿¿3 and the set of reduced basic commutators

x, y, z, [x, y], [x, z], [y, z], [y, [x, z]], [z, [x, y]]. lîa£T, then we write

a = xei ye2ze> [x, y]e* [x, z]e> [y, z]e* [y, [x, z]]e* [z, [x, y]]e°

to determine the commutator numbers {ei : 1 < li < 8} of a. The A-transforma-

tions are obtained by writing fa,s(a) in this form. We omit the details of this

computation, which is straightforward, and record them in Table 1.

TABLE 1

_4        5        6 7_8

(1.2) -ei      0        0 0 eie3 + e5

(1.3) 0      -ei      0      eie2+e4 0

(2,1)     e2       0        0            0          -e2e3-e6

(2,3)      0        0      -e2         -e4                e4

(3.1) 0       e3       0 e6 0

(3.2) 0        0        e3 e5 e5

The entry in row (r, s) and column t represents the difference e\ — et where

{et} h-> {e't} is the A-transformation defined by fa,s. Note that t = 1,2,3 are

omitted from the table since they are unchanged by any A-transformation.

It will be usefull to note that the subgroup of inner automorphisms of T is

generated by <foi ° fan, <t>i2 ° <t>z2 and ^13 o (f>23 (conjugation by x, y, z, respectively)

and the quotient group of outer special automorphisms of T is free abelian with

basis 0i2,</>2i and <f>i3. We will write $(a,b,c) = 013o</>52 o^. The commutators

[faj, fas] do not affect ei for ¿ < 6.
We may simplify Table 1 by replacing some of the fas by other generators:

</>'l2 = 012 ° [<A31,<Al2]e\   <A'l3 = <Al3 ° [<¡>21,<l>\z]~e\   4>21 = 021 ° [<t>12, fail]*2 ■

That these are also generators depends on the fact that any commutator of weight

3 in the {fas} is trivial. Table 2 is the simplified table of A-transformations.
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TABLE  2

_4 5 6 7 8

(1,2)'     -ei       0 0 0 e5

(1,3)'       0        -ei       0 e4 0

(2,1)'      e2 0 0 0 -e6

(2,3)        0 0        -e2     -e4      e4

(3.1) 0 e3 0 e6 0

(3.2) 0 0 e3        e5        e5

11. We now consider an arbitrary 3-component link. By the homotopy classfi-

cation of §9 we may take K to be the link L(k, I, r; d) illustrated in Figure 9.

Figure 9

The components are numbered and oriented and the peripheral structure is deter-

mined by choosing stems connecting the dots on the link components to a basepoint

above the page. The boxes enclose Skein elements illustrated in Figure 10.

Tfc : k full twists Ad : d full twists

Figure 10

The linking numbers of the three components are k, I, r and d is the invariant of

§9. A straightforward computation shows that, for the given peripheral structure,
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the longitudes in Q(K) can be expressed as follows:

(a) Xi=yKzr[x,yp)[x,yp[y,z]d,

X2=xKzl[x,yp)[z,x]d[y,zp,

X3=xryl[x,y]d[x,zp[y,zp,

modulo commutators of weight 3. Therefore, the relations for Q(K) in the presen-

tation given by Proposition 3 are

(b) [x,y]k[x,zY[x,[y,z]]d = l,

[y,x]k[y,z]l[y,[z,x]]d = l,

We can ignore the third relation since it is a consequence of these two.

To determine the special automorphisms of $(K) we can consider the automor-

phisms $> = $(a,b, c) of T from §10 and ask which ones induce automorphisms of

5(K). This amounts to determining whether $ maps the relations (b) to relations.

A computation shows that this happens exactly when

(c) ak — br + el = 0 mod A

where A is the least common multiple of (k, I), (k, r) and (r, /). To determine which

of these are strong automorphisms of $(K), we must check which sets {ybza,xc, 1}

are admissible i.e. satisfy (i), (ii) of §5 using the longitudes given by (a). Carrying

out this computation gives the criterion

(d) ak-br + cl = 0.

An interesting observation that one makes during these calculations is that every

special automorphism of Q(K) perserves the preperipheral structure (see §2). Thus

whenever two of the three linking numbers k, I, r are nonzero there are such special

automorphisms which are not strong. This suggests in light of Theorem 5 that there

are 4-component links whose reduced structured groups are isomorphic, preserving

the preperipheral structure, but not the peripheral structure.

I have not been able to construct such examples but we will be able to display

below nonhomotopic links whose reduced structured groups are isomorphic via

special isomorphisms.

12. We will need to record the A and A' transformations for the commutator

numbers of an element of S(K), K = L(k, I, r, d). This is done Table 3.

TABLE 3

4_5 6        7_8_

k r 0 d d
-k 0 I -d 0
-ei 0 e3 e5 0

e2 e3 0 e6 -e6

0 -ei -e2 0 e4

ce2 — bei —aei 0 ae4 — abei — ce^ + be§

As before, the ith column contains the differences e't — et where {et} i—► {e't} is the

transformation determining a given row.
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The first two rows record the A-transformations corresponding to the relations

(b) of §11. The next three rows record the A-transformations induced by a generat-

ing set of inner automorphisms and the last row records the A'-transformation in-

duced by $(a, b, c), somewhat simplified by composing with previous A-transforma-

tions.

It will also be useful to have the A and A-transformations defined by commu-

tators of the first five transformations of Table 3. These do not change et, i < 6

and so we record the effect on e-j and eg in Table 4. It will also be important to

notice that the commutators of the last transformation with the first five are all

consequences of these.

TABLE 4

7_8_

r 0

/ -I
0 k
0 e3

ei -ei

e2 0

13. Before embarking on the proof of Theorem 9 we discuss some examples of

this general classification in particular cases. A complete set of invariants of a

4-component link L is the following:

(i) Integers: k, l,r, ei,t2,e-¡, (the linking numbers of L).

(ii) Residue class of d mod (k,l,r).

(iii) Commutator numbers e4,e5,e6,e7,e8 up to p-equivalence explicitly given in

Table 3, where a,b,c satisfy (d) of §11.

We point out the relation of these invariants with the ¿¿-invariants so that we

can compare the indeterminacies.

ßi2 = k,    ßi3=r,    ¿¿23 = ',    Â«i4=ei,    ¿¿24 = e2,    ¿¿34 = e3,

¿«123 = d,      ¿¿124 = e4i      ¿*134 = 65,      ¿¿234 = Ê6,      ¿«2134 = ¿7,      ¿¿3124 = ^8-

The ¿¿-invariants not contained in the above list can be expressed in terms of those

in the list using the relations in [Ml].

Recall from [Ml] that the indeterminacy of fiilt...,im is the greatest common

divisor of all ßj1,...,j„ where ji,--.,jn is obtained from ¿i,...,¿m by deleting at

least one index and permuting the remaining ones cyclically.

We will see that this indeterminacy is considerably reduced by our results.

Case 1. fc = / = r = ei = e2 = e3 = 0.

In this case al values of a, b, c define geometric automorphisms. From Table 3

one checks easily that these links are classified by the ¿¿-invariants.

Case 2. k = / = r = ei = e2 = 0, e3 ^ 0.

Again all values of a, b, c are allowed. From Table 3 one may check that a com-

plete set of ^-equivalence invariants are the following: e3,e4,e5 mod e3,e6 mod e3,

e7 and eg mod (d, e3,e4,e5,e6) and the quantity A defined by

A = e^e^ — 6367    mod e3 • (e4, d).
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« Q  o o

Figure il

These coincide with the ¿¿-invariants except for A which give an additional in-

variant. For example the links in Figure 11 have d = e4 = e7 = eg = 0, e3 = 1—

therefore the same ¿¿-invariants. However e5 = e6 = 0 in (a) while es = e6 = 1 in

(b)—thus A = 0 in (a) and A = 1 in (b).

Case 3. / = r = ei = e2 = 0, but k, e3 ^ 0.

The geometric automorphisms require a — 0, but b and c are arbitrary. From

Table 3 we obtain the following set of p-equivalence invariants: k, e%,e4 mod k,e^

mod e3,e6 mod e3,e7 and eg mod (d, k,e3,e4,ee) and the integral quantity A' de-

fined by A' = fce3e7 — de3e4 — ke^e^. These coincide with the ¿¿-invariants, except

for the new invariant A'.

These three cases give a complete set of homotopy invariants for any 4-component

link with the property that each component has nonzero linking number with no

more than one other component.

Case 4. ei,e2, and e3 are pairwise relatively prime.

From Table 4 one can check that e7 and eg can be transformed arbitrarily without

affecting e4,e5,e6- On the other hand, it can be checked from Table 3 that the

quantity 9 = e^e^ — e2e$ +eie6 is well defined modulo the greatest common divisor

of fce3 — re2, ke^ — lei a.nd aeie2 — beie3 + ce2e3 for all, a,b, c satisfying 11(d). The

¿¿-invariants, except for the ordinary linking numbers, are completely indeterminate

but 9 is a complete invariant of p-equivalence.

Case 5. A:, I and r are pairwise relatively prime.

Again e7 and eg can be transformed arbitrarily. The quantity 9' = rle4 — kle$ +

rkee is well defined modulo lei ~ re2, ¿ei — ke3 and this gives a complete invariant

of /»-equivalence. In this case the information carried by the ¿¿-invariants is already

contained in 9'. The strong automorphisms are all inner, as will be proved below

in §15.
As an example of Case 4 or Case 5 consider the two links in Figure 12. We have

A; = Z = r = ei = e2 = e3 = 1, ei = 0 for ¿ > 5 for both links but e4 = 0 in one

case, 1 in the other. Thus the ¿¿-invariants are the same but 9 = 0 or 1 and 9' = 0

or 1, where both 9 and 9' are integers. It is of some interest to note, from Table

3, that the special automorphism $(0,0,1), which is not strong, will identify the

commutator numbers of these links. In fact the reduced groups of these links are



HOMOTOPY CLASSIFICATION OF CLASSICAL LINKS 381

isomorphic, via a special isomorphism extending $(0,0,1), although there does not

seem to be such an isomorphism which preserves the preperipheral structure.

14. We now begin the proof that every $(a, b, c) which is a strong automor-

phism, i.e. a,b,c satisfy 11(d), is geometric. In case k = r = I = 0, K is almost

trivial and the result follows from Theorem 8. If any two of k,l,r are zero—say

k, 1,0—then we have to show $(1,0,0) and $(0,0,1) are geometric. But we can

apply Theorem 7, using the fact that the sublinks of K formed by the first and

second or second and third components are trivial.

Now we assume that at two of k, r, I are nonzero. There will now be strong outer

automorphisms to which we cannot apply Theorem 7 and so we will need another

technique for constructing geometric automorphisms.

Our method will be the following. Suppose £,»?,€ $(K) are represented by

simple closed curves forming links K^,Kn, when adjoined to K. If we know that

K^ and K„ are homotopic, then, by Theorem 5, there is a geometric automorphism

$ of S(K) such that $(£) = rj. By examining Table 3 we may be able to relate $

to a specific $(a,6, c). To establish that K$ and Kn are homotopic we will reorder

the components in order to express them as K'^,,K', corresponding to elements

£',?/' £ S(K') where K' is some other common sublink of K^,K„. By previous

results we may be able to find a geometric automorphism $' of $(K') so that

$'(£') = r,'.

To carry out this program we will need

PROPOSITION 14.   Let K = L(k,l,r;d) andw£Q(K) where

w = xaybzc[x,y]e[y,zY.

Then w can be represented (modulo commutators of weight 3) by a simple closed

curve 7 so that, ¿/7i,72i73 are the components of K (in order) and K' is the link

defined by 73,7,71 (in that order), then K' is isotopic to L(c,a,r;0) and, under

this isotopy, 72 represents w' £ $(K'), where w' = ztbxk[t,x]e[x,z]d[z,t]t modulo

commutators of weight S. Here x,y,z £ Q(K) and z, t, x, £ Q(K') are the meridians

of the peripheral structures defined in §11.

The proof consists of examining Figure 13, checking that 7 represents w, observ-

ing that Figure 14 is isotopic to Figure 13 and checking that 7 represents w'.

We can rephrase Proposition 14 in terms of the commutator numbers as follows.

If L is a 4-component link with principal sublink K = L(k, I, r; d) and commutator

numbers {ei}, then the reordering of the components of L defined by (1,2,3,4) <-*

(3,4,1,2) yields a link L' with principal sublink Ä"'(L(e3,ei,r;0) and commutator

numbers {e¿} where e\ = I, e2 = e2, e'3 = k, e'4 — —e§, e'5 = —d and e'6 = e4; e'7 and

eg are not computed.

We will use a specific instance of this proposition.

COROLLARY 14. Suppose K = L(k,r,l;d) and tl,r¡ £ Q(K) have commutator

numbers {ei}, {êi}. Suppose ei = e"i if i = 1,2,3,5 and, for some integers A, B,

ë4 -e4 = A(re2 -lei)/(r,l),

e"6 - e6 = fl(fce3 - re2)/(k, r).

Also assume ei,e2,e3 are pairwise relatively prime. Then the links L^ and L„,

formed by adjoining curves representing £, n to K, are homotopic.
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Figure 12

Figure 13

The point is that we could not derive this result from Table 3 without using

some $(a,¿>, c). If we apply Proposition 14 to L^ and Lv we will see that their their

new commutator numbers are equivalent using only the A-transformations and A'-

transformations defined by inner automorphisms i.e. the first 5 rows of Table 3. We
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T2

Figure 14

also use the fact that e7 and eg are irrelevant, from Table 4 and the assumption

that ei,e2,e3 are pairwise relatively prime.

More specifically, renumbering the components of L^ and L„ give new links L'^,

L'n with the same principal sublink K' = L(e3,ei,r;0). The first 3 columns and 5

rows of Table 3 for K' are given in Table 5.

Table 5

4       5       6

e3      r       0

-e3     0      ei

-/      0       fc
e2      k       0

0      -I    -e2

If {e'j} and {e[} are commutator numbers of L'^, L^ as specified by Proposition 14,

then e~5 = 65 and

e~4 - e4 = -B(ke3 - re2)/(k, r),

e'6-e'6 =A(re2 -lei)/(r,l).

Thus we may apply row 1 —Bk/(k, r)—Al/(r, I) times; row 2 —Al/(r, I) times; row 4

Br/(k, r) times; and row 5 —Ar/(r, I) times to transform {e¿} to {e[} for ¿ = 4,5,6.

For ¿ = 7,8 we rewrite rows 2, 3 and 6 of Table 4 for K' as in Table 6.

Table 6

7_8_

ei        -ei

0 e3

e2 0

Using the fact that ei, e2, e3 are pairwise relatively prime, it is not hard to see that

these transformations can effect any desired change (e'7,e'8) 1—► (ë'7,ë'8).

Thus we conclude that {e¿} and {e[} are p-equivalent and so, by Theorem 6, Li

and V are homotopic.
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15. Let us now consider the quotient group S of strong automorphisms of Q(K)

modulo geometric automorphisms. We shall show that S is trivial. The group of

outer special automorphisms is abelian and, therefore, so is S. We can also see

that S is finite. Let s be the greatest common divisor of k, r, I—we will prove that

sS = 0. In fact we can see that, for any strong $ = $(a,b,c) $s is inner. Modulo

inner automorphisms $s = $(sa, sb, sc) and we can write

sa = 7r — ol,    sb — rl + ^k,    sc — rr + ok,

for suitable 7, a, t using 11(d). One may then check that <&(sa, sb, sc) is conjugation

by
w = xTryTlz-<>l\x,yYd[x,zYd[y,z]-id-aTl.

It now suffices to show that S = sS, or, equivalently, S = pS for every prime

factor p of s. If a, ß, 7 are the generators of S represented by $(0, l/(r, I), r/(r, I)),

$(r/(k,r),k/(k,r),0), $(l/(k,l),0,-k/(k,l)), respectively, we shall show a,/?, 7, G

pS.
We note the relation

(aj (k,r)(k,lf~ (k,l)(r,lf+ (fc,r)(/,r)7"°

which holds because (a, b, c) —> $(a, £>, c) defines a homomorphism of Z © Z © Z

onto S. If e(n) denotes the exponent of p in the prime factorization of any integer

n (e(n) = 00 if (p,n) = 1), we may assume without loss of generality, that e(k) <

e(r) < e(l). Then (a) implies tht S/pS is generated by a,ß (or ß,7)—so we only

need show a,ß £pS.

Consider the quantity 9 = e3e4 - e2e5 + eie6 modulo p (see §13, Case 4). Since

p\s, it follows from Table 3 that 9 is invariant under any A-transformation or A'-

transformation corresponding to an inner automorphism, and that a,ß change 9

by e3<r,eir, respectively, where a = (re2 — lei)/(r,l), r = (fce3 - re2)/(k,r).

Let A, A be arbitrary integers and consider £, 77 £ Q(K) with commutator num-

bers {ei}, {êi}, and 9,9 the invariants of the preceding paragraph, where ei = e"i for

¿ < 3, e\ = 0 for 4 < ¿ < 6, e4 = A10, e$ = 0 and e^ — B2t. If t\,e2,e3 are pairwise

relatively prime it follows from Corollary 14 that L^ and Ln are homotopic. Now

0 = 0 and 0 = Ae3<7 + fleir mod p and there must be a geometric automorphism

that sends 0 and 0. This implies that Ca + Dß £pS for some C, D satisfy

(b) Ce3«T + DeiT = Ae3<r + fleir    modp.

We will show that a suitable collection of (ei,e2,e3, Ai, fl) will produce enough

values of (C, D) to show that a, ß £ p.

(i) ei = p, e2 = e3 - 1, A = 1: From (b) we conclude C = 1 mod p.

Therefore a = q'ß mod pS for some q'.

(ii) ei = e2 = 1, e3 — p, B = 1, if e(k) = e(r): From (b) we conclude D = 1

mod p and so ß = qa mod pS, for some q.

(iii) ei =. r/(r,l) mod p, e2 = l/(r,l) mod p, e3 = 1, fl = 1, if e(k) < e(r): We

obtain D = 1 mod p and so ß = qa mod pS, for some q. Note that we can choose

61562^3 pairwise relatively prime by the Dirichlet Theorem.

If q = 0 mod p in (ii) or (iii), then, together with (i), this finishes the proof. We

now assume q £ 0 mod p.
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(iv) Choose ei,e2,e3 to satisfy eir = 1, e3aq = 1 mod p, A = 0, fl = 1: From

(b) we have C + Dq = q mod p. Therefore Ca + Dß = q(l-D)a + Dqa = qa£ pS.
This complete the argument if we can show that ei,e2,e3 can be chosen to

satisfy the requirements of (iv) and be pairwise relatively prime. The equations to

be satisfied are

(¿o61'3 " Úr)6262 ' l    m°dP'

r I
-e2e3 — q-—:reie3 = 1    modp.

If e(k) < e(r) we may set e3 = 1 and solve for ei and e2- Since et ^ 0 mod p,

we may use the Dirichlet Theorem to choose {e*} pairwise relatively prime. If

e(r) = e(l), we may set e2 = 0, e3 = 1 and solve for ei; ei ^ 0 mod p and so we

can achieve pairwise relatively prime. If e(k) = e(r) < e(l) and p ^ 2, then we may

choose e2, e3 to satisfy the second equation and (k/(k, r))e3 — (r(k, r))e2 = 0 mod p

and, therefore, solve the first equation for t\. This is impossible when p = 2.

Thus we are finished unless p = 2, e(k) = e(r) < e(l). If I = 0, we can finish the

proof at this point by invoking Theorem 7 to conclude that $(0,0,1) is geometric

and so a = 0. Write

16. To complete the proof when p = 2, we consider £,r? £ Q(K) with commu-

tator numbers {ei} and {e"i} defined by

ei = 1,    e2 = 0,    e3 - 2n,    e4 = 1,    e5 = 0,    e6 = 1,    e7 = e8 = 0

êi = ei    for i < 7,    eg = 1.

We rewrite Table 3 as in Table 7, using these values of ei, e2, e3.

TABLE 7

4      5        6        7 8

-1     0       2" e5 0

0-100 e4

0      0        I 0 re4-d
0       0      2nk keb re4

0      0        0 e6 2ne4 - e6

0      0     -2nb 0 -ab-ce6

We can rewrite Table 4 as in Table 8.

Table 8

7        8

1 -1

0 2"
r 0

0 k

We will show that L^ and L„ are homotopic. Thus there is a geometric automor-

phism of $(K) which does not change e,, for ¿ < 7, but changes eg by one. Since

Table 8 contains all commutators of those in Table 7, we can assume that any

sequence of transformations be applied in the form

rpQ,\ rp(Xl rp<l3 rpa^rpa.5rpdft rp



386 J. P. LEVINE

where Ti is the transformation corresponding to the ¿th row of Table 7 and T is a

sequence of transformations from Table 8.

Since e4,e5,46 are not changes we see that ai = ü2 = 0. Now using the trans-

formations of Table 8 we can replace some of those in Table 7 by simpler ones and

consider a new table of transformations of e6, e7, e8 (Table 9).

TABLE 9

6       7 8

/ 0 -d
2nk 0 0

-2nb 0 -ab - ce6

0 1 -1
0 0 2"
0 0 r

0 0 k

The last four rows generate the commutators and Ti,T2,T5 have been eliminated.

If we assume n is large, then a3 must be even. Since e7 is not changed, the fourth

row of Table 9 cannot be used. Now all the entries in the eg column are even except

possibly for the first row, which must be used an even number of times, and the

third row. Since eg is changed by 1, some choice of $(a, b, c) must be used in which

—ab — cee is odd. The initial value of to is 1 and every transformation of Table 7

changes it by an even amount; therefore eß will alway be odd. We conclude that

some $(a, b, c) is geometric for which —ab — c is odd. This quantity is odd for both

a and ß (e(k) — e(r)) and so Aa + Bß £ 2S, for some A, fl satisfying A + fl odd.

Since we have already proved in §15, that a = ß mod 2, we conclude that a £ 2S.

17. We finally have to prove that L^ and L„ of §16 are homotopic. Using Propo-

sition 14 we can replace L^,L„ by L'c,L'v with principal sublink K' = L(2",l,r;0)

and the same commutator numbers {e¿}, for ¿ < 6, given by e\ — I, e2 — 0, e3 = k,

e4 = -1, e'5 = -d, e'6 = 1.

From the tables of transformations for K' derived from Tables 3 and 4 we extract

Table 10.

TABLE 10

4     5     6    7     8

0 k 0 0     0
0 -/ 0 0    e4

0 0 0 1-1
0 0 0 0    2"

The first two rows come from rows 4 and 5 of Table 3 and the last two rows come

from rows 2 and 3 of Table 4. If we apply the first row of Table 10 l/(k,l) times

and the second row k/(k,l) times we obtain a new transformation:

(0000    ke4/(k,l)).

We now restrict ourselves to this transformation and the last two rows of Table 10,

which only change e7 and e8. Since e4 = -1 we obtain Table 11.
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TABLE  11

7 8

1 -1

0 2"
0       k/(k,l)

Now k/(k,l) is odd and it is clear that these three transformations can effect any

desired change in e7 and eg. This shows that L'^ and L'n are homotopic and the

proof is now complete.
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