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THE COHOMOLOGY REPRESENTATION
OF AN ACTION OF Cp ON A SURFACE

PETER SYMONDS

ABSTRACT. When a finite group G acts on a surface S, then H1(S;Z) pos-

seses naturally the structure of a ZG-module with invariant symplectic inner

product. In the case of a cyclic group of odd prime order we describe explic-

itly this symplectic inner product space in terms of the fixed-point data of the

action.

Introduction. Let Sg be a closed connected smooth oriented surface of genus

g and let 0 be a diffeomorphism of Sg which is periodic of period n. There are only

a finite number of points on which Cn = (fa does not act freely; the action of Cn

on the tangent spaces to these points will be called the fixed-point data of <p (see

§!)•

THEOREM A. If g > 2, two periodic orientation-preserving diffeomorphisms

which are isotopic (not necessarily through periodic maps) have the same order and

fixed-point data. Two periodic maps with the same order and fixed-point data are

conjugate in Diff+(59).

Thus the fixed-point data is well defined on the torsion elements of the mapping-

class group and it distinguishes the conjugacy classes.

Cn acts on H1 (Sg; Z) giving it the structure of a ZCn-module with Cn-invariant

symplectic inner product, or symplectic ZCp-space for short. We shall now restrict

ourselves to the case n = p, an odd prime. The fixed-point data is now described

by a set of integers modulo p, {ßi}, one for each fixed point Xi, such that <jfii acts

on the tangent space at Xi by rotation counterclockwise through 27r/p.

Let Z[X], Xp = 1, be the ring of integers with a pth root of unity added. This

can be regarded as a ZCp-module by letting a generator of Cp act as multiplication

by A. If u is a real unit of Z[A] we can construct a Cp-invariant symplectic inner

product on Z[A], and obtain a symplectic ZCp-space, denoted (u, Z[A]), by

(x,y) = trQ(A)/Q(A_1ua;j/),        x,y£Z[X].

A is an imaginary generator of the different ideal of the extension Q(A)/Q as in

(4.1).
Given any ZCp-lattice M we can construct the standard hyperbolic symplectic

inner product on M © M*, which we denote H(M).

THEOREM B. Suppose Cp acts on Sg with fixed-point data B = {ßi,.. .,/?„}

and c is the number of disjoint pairs {ß, —ß} (mod p) in B.  Then as a symplectic
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390 PETER SYMONDS

ZCp-space, H1(Sg;Z) splits into an orthogonal direct sum as follows (where m is

chosen to give the correct Z-rank).
(i) n = 0, H^Sg-, Z)^H(Z) ®H_(ZCp)m;

(ii) n ¿ 0, n = 2c, H^Sg-, Z) = H(Z[X])C~1 © H(ZCp)m;_

(iii) n # 0, n ¿ 2c, Hx(Sg;Z) S ©"jf-^ZfA]) © H(Z[X]f © H(ZCp)m.
The units u¿ are given explicitly in terms of B by (6.1).

Other results in this direction have been obtained independently in [7].

1. Fixed-point data and the mapping-class group. The mapping-class

group r9 is the set of components of Diff+(S9), i.e. the group of orientation-

preserving diffeomorphisms up to isotopy. It acts naturally on i/1^; Z) and pre-

serves the cup product so gives a homeomorphism

r-:r9^Sp(2ff;Z).

r is known to be onto and its kernel is torsion-free.

We are interested in the torsion elements of r9. According to a theorem of Nielsen

[13] any torsion element of r9 of order n can be realized by a diffeomorphism cp

of Sg with 4>n = 1 exactly, not just up to isotopy, and Sg can be given a complex

structure which is invariant under fa

The most important invariant of an orientation-preserving periodic diffeomor-

phism <p of Sg of period n is its fixed-point data, which we shall define formally as

follows. The set of points of Sg at which Cn = (fa does not act freely is a finite set,

Sing(((/>)). Let {xi} be a set of representatives of the orbits of Sing((0)) under (fa).

Let ai = |stab(0)(x¿)|. <f>nlai generates stab(0)(a;¿) so it acts faithfully by rotation

on the tangent space at x¿. Let ßi be an integer such that cpP<n/a< acts by rotation

through 2-ïï/ai in the counterclockwise direction (clockwise defined in terms of the

orientation of Sg), i.e. if Sg is given an invariant complex structure, fa6in/°'i acts as

multiplication by e2n/°".

ßi is well defined modulo a¿, and ßi is prime to a¿, so there is no loss of infor-

mation in considering just /?¿/a¿ 6 Q/Z instead of a¿ and ßi. By the "fixed-point

data" of 4> we shall mean the collection

o(fa) = (n,g\ßi/ai,...,ßq/aq),

where n is the order of fa g the genus of Sg, and the numbers ßi/ai £ Q/Z are not

ordered. If n is understood in the context we shall omit it.

According to another theorem of Nielsen [12], any two periodic elements of

Diff*(59) are conjugate in Diff+(59) if and only if they have the same fixed-point

data (which is the second part of Theorem A). This can be seen as follows. An

action of Cn on Sg represents Sg as an n-fold regular cyclic branched covering of

S g = Cn\Sg. All such coverings with the same branching data can be shown to

be equivalent (if we allow an automorphism of Sg) by using the fact that r : Tg -+

Sp(2fj; Z) is onto.
To prove the first part of Theorem A we consider two periodic diffeomorphisms

fa9 of Sg which are isotopic and have period n. Cn = (fa can act on S1 = R/Z

by fax) = x + 1/n, x £ R/Z. Let (fa act diagonally on Sg x S1 and let F^ —
(fa)\Sg x S1. Fj, is a Seifert fiber space with fibers the images of (x, S1). Similarly

we can construct F$.
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We can also think of f¿ as F^ = Sg x [0, l]/~ where (s,0) ~ (<f>(s),l). If <\>

changes by an isotopy, the homeomorphism type of F^ remains the same. Thus,

as <¡> is isotopic to 9, 7ri(F^,) = TTi(Fg). Suppose o(fa) = (n,g\{ai/ßi}). Then the

Seifert invariants of Fq are {(a¿, ßi)}. (Seifert invariants, considered as integers, are

well defined to exactly the same extent as the alphas and betas in the fixed-point

data.) Now if g > 2 the Seifert fiber structure of F is unique up to isotopy [16],

so the Seifert invariants are the same both for the description F<f, and for F$. Thus

<j(fa) = a(9).
This can also be seen more directly by considering the usual presentation for

7Ti(F0):

tfiCfy) — gP(o- l,bi,... ,ag,bg,ci,... ,cq,t\ t is central,

e°* = tßi,[ai,bi] ■ ■ ■ [ag,bg]ci,... ,cq = 1).

(t) is distinguished since it is the center, and the images in 7Ti(F)/(t) of the con-

jugates of (ci) comprise exactly the torsion elements. So the pairs (a¿,/?¿) can be

read off from iri(F<j,).

This completes the proof of Theorem A.

COROLLARY l. I. The fixed-point data a is well defined on the torsion elements

°fFg, g>2, and takes different values on distinct conjugacy classes.

REMARKS, (a) The set of possible values of o is described in [10]. It is always

the case that Ylßilai e ^.
(b) Theorem A is probably folklore. It can also be proved by considering the

action of the group of Teichmüller space (cf. [6]).

2. The image in Go(ZG). Let G be a finite group acting on Sg preserving

orientation. M = H1(Sg;Z) is a ZG-lattice, i.e. a ZG-module that is finitely

generated and free over Z. The cohomology group H1(Sg;Z) = Homz(M,Z) by

Poincaré duality. Sg can be given the structure of a finite G-CW-complex by

lifting the cells from a CW-decomposition of G\Sg. We shall insist that Sing(G)

be contained in the 0-skeleton.

Go(ZG) is the Grothendieck group of finitely generated ZG-modules with rela-

tions coming from short exact sequences [15]. If G* is the CW-chain complex of Sg

then we can calculate its Euler characteristic x(^*) £ Go(ZG) either directly,

X(G.) = [G2] - [Gi] + [Go],

or on homology,

X(CU) = [H2(Sg;Z)] - [Hi(Sg;Z)] + [H0(Sg;Z)] = 2[Z] - [M].

However G2 and Gi are free ZG-lattices and G0 = ii0(Sing(G); Z) © ZGm. Thus

(2.1) [M] = 2[Z] - [flo(Sing(G); Z)] + m[ZG].

Ho(Sing(G); Z) is just a permutation module and is completely described by the

alphas, so [M] is known. Working over Q, this gives Hi(S9; Q) as a QG-space and

the alphas can be read off from Hi(Sg; Q).

The class of M in Go(ZG) tells us more than just Q <g> M. For example in the

case G = Gp, the cyclic group of order p, p prime, there is a decomposition

Go(ZGp)^G0(QGp)©Cl(Z[A]),

where C1(Z[A]) is the ideal-class group of Z[A], Ap = 1, (cf. [5, §74]).
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PROPOSITION 2.1.   The image of [M] in C1(Z[A]) is 0.

PROOF. This is true for every term on the right-hand side of (2.1) since

#o(Sing(G);Z) is a trivial ZG-lattice.

3. The Atiyah-Singer signature. From now on we shall restrict to the case

of a cyclic group Gp of prime order p^ 2 and regard H1(Sg;Z) not only as a

ZGp-lattice but as one equipped with a Gp-invariant symplectic inner product ( , )

(a symplectic ZGp-space). Our main sources of results on these are [2, 4]. Recall

that if M is an inner-product space (not necessarily symplectic here) and AT is a

submodule then

TVX = {m e M\(n,m) = 0 for all n £ TV}.

M is metabolic if there exists a submodule TV satisfying TV = TV-1. M is hyperbolic

if there is a submodule TV such that M = TV © Homz(TV, Z), where the right-hand

side is equipped with the inner product

((n- l,ni),(n2,n2)) = ri2(n{) + erix(n2),        nun2 G TV, r¿i,n2 e Homz(M,Z).

e = ±1 according to whether the product is symmetric or symplectic. We shall

write M = H(N) in this case.

The Witt group (y2(Z,Gp) is formed from the semigroup of symplectic ZGP-

lattices under orthogonal direct sum. One takes the Grothendieck group and then

quotients out the submodule generated by the metabolic spaces. One defines simi-

larly rV2(Q, Cp) and W2(R,Gp); there are canonical injections between them,

W2(Z,GP) - W2(Q,CP) - W2(R,CP).

An element of W2(R, Gp) is determined by its Atiyah-Singer signature [3], which

is defined as follows. Take a representative (M, ( , )) of a given class. Construct an

invariant symmetric inner product ( , ) on M by averaging over Gp any symmetric

inner product. Then for some automorphism A of M,

(x,y) = (x,Ay),        x,y£M.

A* is defined by (A*x,y) = (x,Ay). Let J = A(AA*)~1'2, where (AA")1'2 is
the positive square root of AA*. Then J2 = — 1 and J commutes with the action

of Gp on M so we can consider M to be a complex vector space, of half its real

dimension, with J acting as ¿. This yields a complex representation of Gp which

is well defined up to isomorphism and which we shall call Hol(M). It is not a

Witt-class invariant, but if we pass to the representation ring R(G) and define the

Atiyah-Singer signature to be

ASsign(G, M) = Hol(M) - Hol(M) e R(G),

then this is a Witt-class invariant. If h £ Gp we can evaluate the character of

ASsign(G, M) on h to get ASsign(/i, M) £ C.
C ® M splits as E+ © ÜL, corresponding to the two idempotents

ei = £(1® l-¿® J),        e2 = §(l®l + t<8> J).

Since these are orthogonal, 1 <S> J acts as ¿ on E+ and as — i on E-. As CGp-spaces,

Hol(M) =i E+ by x ■-+ ej(l ® x) and similarly Hol(M) S E- (cf. [1]).
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Now let Sg be an oriented Riemann surface on which Cp acts conformally (there

is no loss of generality by the theorem of Nielsen mentioned in §1). We can identify

H1(Sg;R) with the space of harmonic forms on Sg and can take

(a,ß) = JaAß,    (a,ß) = JaA*ß,        a,ß £ H^S^R),

where * is the conjugation operation on harmonic forms. Hence * = —A = -J.

This means that E+ and thus Hol(M) can be identified with the space of holomor-

phic forms on Sg since the latter are the harmonic forms w which satisfy *w = —¿w.

The importance of this is that the representation of Gp on the holomorphic forms

is known in terms of the fixed-point data of the action by a formula of Eichler, which

in the case of Gp is as follows (see [9]).

THEOREM 3.1. Let ¡p be an automorphism of a Riemann surface Sg, cj(fa) =

(p,9\ßi,---,ßn)- Let ßi be defined (mod p) by ßißi = 1 (mod p), i = l,...,n.

Then

Xho.(aí)(0) = 1 + ¿1/(^'/p-1).
t=i

We see that the Witt class of H1(Sg; Z) is completely determined by the fixed-

point data.

4. The multisignature. Following Conner et al. [2, 4] we consider the ring

Z[A], Ap = 1. There is a Witt ring W2(Z,Z[A]) formed from finitely generated

projective Z[A]-modules equipped with a Z-valued Z-linear symplectic inner product

which is invariant under multiplication by A. Fix a generator h £ Cp: A Z[A]-

module becomes a ZGp-module with h acting as multiplication by A, and there is

a canonical homomorphism

S:W2(Z,Z[X])^W2(Z,Cp),

which is in fact an isomorphism.

The ring Z[A] has an involution induced by A i-> A-1 so it makes sense to define

M)(Z[A]) to be the Witt group of finitely generated projective Z[A]-modules with

Z[A]-valued Hermitian inner product (Hermitian-symmetric, not skew-symmetric).

There is a homomorphism

T:#o(Z[A])-W2(Z,Z[A])

which takes a representative (M( , )) to (M, ( , )) where

(a,ß) = tvQW/Q(A-1(a,ß)),        a,ß£M.

A is an imaginary generator of the different ideal of the extension Q(A)/Q. This

is the inverse fractional ideal of

{x £ Q(A)| trQ(A)/Q(xy) £ Z for all y £ Z[A]}.

It is generated by /'(A) where / is the minimal polynomial of A over Q and /' is

its formal derivative. For our purposes we shall use instead

(4.1) A = A-<p-3>/2/'(A)

since A = -A.



394 PETER SYMONDS

PROPOSITION 4.1 [2]. T gives a one-to-one correspondence between the two

types of inner product even before Witt equivalence and so

Xo(Z[X]) = W2(Z,Z[X]).

REMARK. For u £ Q(A + Ä) and / an ideal of Z[A] such that ull = Z[X], let
(u, I) represent the Hermitian space with underlying Z[A]-module / and product

(x, y) = uxy,        x,y£l.

Then the (u,I) generate #o(Z[A]). One can also define #o(Q(A)) in similar fashion.

It is generated by the (u, Q(A)).

Let us use the symbol P for a prime ideal in Z[A + X]. These are the finite

primes of Q(A + A). There are also (p — l)/2 infinite primes corresponding to the

embeddings of Q(A + Ä) in R. They will be denoted by Poo-

We are going to use the Hilbert symbol (x, cr)p — ±1 for x £ Q(A + Ä)* and P

a prime (which may be infinite) (see [4, 14]). For an infinite prime, (x,a)p is +1

or —1 according to whether x > 0 or x < 0 respectively under Pqo-

The multisignature is a homomorphism

multisign: M)(Q(A)) - Z^"1'/2,

where the entries of Z^p_1^2 are indexed by the infinite primes. The Poo-entry

of multisign is the signature after applying Pqo . For convenience later we shall let

the rth coordinate of Z(p_1)/2 correspond to the prime Pr : X + X h-> çr + ç*. This

depnds on the root of unity A so we should write multisign(A).

5. The relation between the signatures. We can also consider ASsign to

take values in Z(p-1)/2 by writing ASsign(ft, M) in terms of cr - f, r = 1,...,

(p — l)/2, and taking as rth coordinatethe coefficient of çr — ç*.

Consider the diagram:

Ko(Z[A]) -^U W2(ZCV)

multisign ASsign(/i)

zip-1)/2_► z^-1'/2

Both vertical maps are known to be injective and to have image

{(mi,...,m(p_1)/2)|mi = ■•■ = m(p_i)/2    (mod 2)}.

We should like to complete the bottom of the square so as to make the diagram

commute. We shall actually do so for Q coefficients.

Let (M, ( , )) be a symplectic ZGp-space. ( , ) can be extended to a skew

Hermitian product on C <g> M by

(a <g> a, b ® ß) = ab(a, ß),        a, b £ C, a, ß £ M.

Similarly for ( , ). Now suppose x £ E+ = Hol(M):

¿(x, x) = (x, -¿x) = (x, - Jx) = (x, x) > 0.

Similarly if x £ E- then ¿(x,x) < 0, so we can test whether x £ E+ or x G £L by

computing ¿(x, x).
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Now consider a Hermitian space (u, Q(A)) and let us find its Atiyah-Singer sig-

nature after the map

Mo(Q(X))^W2(Q,Cp)^W2(R,Cp).

Let ç = e2ni/p. h£Cp acts on R®Q Q(A) as /® A. In C®Q Q(A) the ^-eigenvector

of h is

er = l®l + f®A + --- + ?(p-1)r ® A"-1.

Since the çr-eigenspace has dimension one it must either be contained in E+ or in

E-. We can decide which by considering

¿(er,er)=¿/P¿r®As,P¿^®Aí)=¿P¿P¿c(t-s>(As,Aí)

\a=0 t=0 / 3=01=0

p—1p—1 p—1

= ¿EEfM)r(AS"í'1)=pí'Eí,'r(A"'1)
s=0t=0 v=0

p-1

= m^2?"trQW/Q(A-1uXv)
v=0

= î«ErrtrQ(A)/Q(UA^(p-3)/2//'(A)).
v=0

Now according to the formula for the dual basis with respect to îtq^/q, ([L]),

the dual basis to 1, A,..., Ap_2 is

(1 + X + ... + Xp-2)/f'(X), (1 + X + ■ • • + Ap-3)//'(A),..., (1 + A)//'(A), 1//'(A).

So
trQ(A)/Q(A7/'(A)) = trQ(A)/Q(A'(l//'(A)))

1       ifr = p-2,

—1   if r = p— 1,

0      otherwise.

Suppose that u = A* + A*. Then

i(er,eT) =pi(çr((p-1)/2+í) +f((p-i)/2-<) _ f((P+l)/2+t) _ £r((p+l)/a-t))

= pz(cr(p+1)/2 - ? (P+!)/2)(frt + ^ri)

= -4psin(r(p + l)7r/p)cos(2ri7r/p)

= —4psin(r7r 4- r7r/p) cos(2irrt/p)

= (—l)r+14psin(r7r/p)cos(27rrt/p).

Let us define
' 1      if x > 0,

£(x) = <  -1    if x < 0,

0      if x = 0.

As 0 < r < (p - l)/2, £sin(r7r/p) = 1 so

e(i(er,er)) = (-l)r+1ecos(2irrt/p) = (-l)r+1(A* + ÂV)/>r,

where Pr is the infinite prime which takes A + Ä to cr + f.
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If we repeat this for a general u £ Q(A + A)* by writing u — J2r ar(Ar + Ar),

ar £ Q, then as ítq^x)/q is linear we see that

ei(er,er) = (-l)r+1(u,a)Pr.

This number determines whether çr or ç1" occurs in Xho1(m) (h) and so is the coef-

ficient of cr - f as ASsign(ft). Since the spaces (u, Q(A)) generate #o(Q(A)) we

have shown

PROPOSITION    5.1.   As  homomorphisms from  #o(Q(A))   (or  H0(Z[\]))   to
zip-1)/2,

ASsign(/i) o S o T = W o multisign(A),

where W(xi,..., x(p_i)/2) = (xi, -x2,..., (-l)r+1xr,..., (-l)(p_1>/2x(p_i)/2).

6. The case of genus (p —1)/2. Let us consider the simplest case of an action

of Cp on a surface, with nonzero signature. This is an action on the surface of genus

(p — l)/2 and necessarily has three fixed points (by an Euler-number argument).

To these are associated three integers 0 < /?i,/?2,/?3 < p, and /?i + /?2 + /?3 = 0

(mod p). The cohomology representation must correspond to a Hermitian inner-

product space (u, I), I an ideal of Z[A], under the map T of §4 because H1 (Sg; Q) =

Q(A) by §2 so the action of Gp on H1(Sg;Z) factors through Z[A]. However,

according to Proposition 2.1, /must be principal so we can assume we have (t¿, Z[A]).

We want to know u.

From Eichler's formula 3.1

3

XHol(M) = l + E1/(^-l),
t=l

where c = e27tl/p. We shall need the formula (which is easy to check)

(f - l)-1 = p" V + 2c2r + • ■ • + (p - l)^-1)').

We continue to use the notation x, when x is an integer, to mean some integer such

that xx = 1 (mod p). We write D(x) for the integer satisfying 0 < D(x) < p — 1

and D(x) = x (mod p), so D(x) = x — p[_a;/P.J- Then

p-i

s=l

v-i

if - I)"1 - (f - I)"1 = P"1 J£t(D(fs) - D(-rs))ç°
s-l

p-1

s=l

(p-l)/2

^p-1    J]   (2D(rs)-p)(cs-n
9=1
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2p"1 (¿DOMJ (çs - ?')■

Thus
(p-1)/2   3

ASsign(/i) = p"1    ^   £(2/J(ftS)-p)(cs-n
«=i   i=i

(p-l)/2 r
= £

s=l

Since 53 A — 0 (mod p), X) ß%s — 0 (mod p) and so p-1 X^^(AS) = 1 or 2 as it
must be a positive integer and D(ßis) < p. So the coefficient of çs — çs in the above

formula is —1 or +1 according to whether p_1 Yli=i D(ßis) — 1 or 2 respectively.

But since 0 < p~1D(ß3s) < 1,

n    !f--i(i>(/3lS) + D(/?2«))<l,

l(£»(/?iS) + JD(/?2S))>l.¿?    V* '     1 2    ifp-!(

So the coefficient of fs - çs is

-esm((D(ßis) + D(ß2s))Tr/p)

= -esm((ßis + ß2s)/p-[ßis/pJ-lß2s/pJir)

= (-l)1+^s^p^\^2S/p-iesm((ßi + ß2)s7r/p).

The decision to eliminate ß3 was quite arbitrary. We could have eliminated any one

of the betas and obtained the same result. Moreover, since we are only interested

in the ±1, we can multiply together the three formuas and still have the correct

number. Hence the coefficient of çs — çs is

-esin((/?i + /?2)s7r/p) sin((/?i + ß3)sn/p) sin((/?2 + ß3)sw/p).

So the Pa term of the multisignature is

(-l)â£sin((/?i + äWp) sin((A + ß3)sir/p) sin((/32 + /Wp)-

We now want to find a unit v £ Z[X + X] for which the Hilbert symbols take

these values. First note that

(-l)s = esin((p + I)«r/P).    (for 0 < s < (p - l)/2)

= £r(sin((p+l)s7r/p))~3

(which will be more convenient).

Let

£ = _ç(p+D/2 = ¿i*/pi ß = _A(p+D/2 g Z[X],

multisign(A)Ps = e(-l)s     ]J     sm((h + & Wp)
l<j<k<3

^£      TT       sm((ßj+ßk)sir/p)

i<3<k<3    Sm((p+l)S7T/p)

c(ßi+ßk)s _ c(ßj+ßk)s

=£ n í(p+l)s _ i(p+l)s
¿<j<*:<3       s s

So let us take

(6J) w=     11 „(p+i) - »(P+i)
n\¡>-ri) — m

l<j<fc<3      P
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which is easily seen to be a unit of Z[A]. Then

multisign(A, (v, Q(A))) = multisign(A, H1 (Sg)).

Therefore a suitable candidate for (u, Z[X]) is (v, Z[X]) since they have the same

multisignature. In fact they are isomorphic: This can be seen as follows, u and v

both have Hubert symbol 1 at every finite prime since they are units; they have

equal Hubert symbols at every infinite prime by the multisignature. Thus by the

Hasse Cyclic-Norm Theorem [14], v — uaa for some a £ Q(A). Consider the prime

factorization of the ideal aZ[A]. Since aä is a unit, aZ[A] can only contain non-self-

conjugate prime ideals in the form PaP~a. By the Approximation Theorem [11]

there is a 6 € Q(A) such that ordp (b) — —a and ordp (b) — 0 for each of these pairs.

Then ordp(bb~1a) = 0 at every single finite prime of Z[A] so c = bb~1a is a unit of

Z[A], and v = ucc.

The isomorphism (v, Z[X]) —► (u, Z[X]) is just multiplication by c. It is a module

isomorphism since c is a unit, and as for the product,

u(cx)(cy) — uccxy — uxy,        x, y £ Z[A].

This proves

PrOPSITION 6.1. When Cp acts on a surface of genus (p — l)/2 and h G Gp has

fixed-point dataa(h) = (p,(p—l)/2\ßi/p,ß2/p,ß3/p), the corresponding Hermitian

inner-product space is isomorphic to (v, Z[X]), where v is given by (6.1).

REMARK. A necessary and sufficient condition for an action to exist with the

fixed-point data a(h) = (p, (p - l)/2\ßi/p,ß2/p,ß3/p) is that ßi + ß2 + ß3 = 0

(mod p) [10].

7. Higher genus. In order to deal with surfaces of higher genus we need

an equivariant decomposition of the surface. As the action is determined up to

conjugacy by the fixed-point data it suffices to build up, from the smaller pieces,

some action on a surface with the correct fixed-point data. Since we are dealing only

with Cp all the alphas are equal to p and we shall write (g\ßi,...,/?„) for the surface,

determined up to equivariant isomorphism, on which a(h) = (p, g\ßi/p,..., ßn/p)-

ßi will be called the index of the corresponding fixed point. As mentioned in §1,

^2ßi = 0 (mod p). So as to have enough building blocks we allow actions on tori

and spheres.

The operations for constructing new actions are:

(a) connected sum at a fixed point. Suppose we have two actions on two surfaces

S and S' such that S has a fixed point of index ßi and S' has a fixed point of index

—ßi. Then we can cut out two discs around these fixed points and join the surfaces

along the boundary.

(b) Adding p handles to a connected surface so that they are permuted by Gp.

(c) Joining one surface to another by p cylinders that are permuted by Gp.

PROPOSITION 7.1. Every action ofCp on a surface can be obtained from the

following using operations (a), (b), (c).

(i) An action on a surface of genus (p— l)/2 (with three fixed points).

(ii) A free action on a torus.

(iii) An action on a sphere (with two fixed points).
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REMARK, (b) is unnecessary; we could perform (c) with an action on a torus

instead.

PROOF. Look at the indices ßi,... ,/?„. Collect all the pairs (ß, —ß) and put

them aside. Suppose we are left with ßi,...,ßr. If r = 0 carry on to the next

stage. Otherwise r > 3 (or we would have (ßi, —ßi))- Let 71 = —ßi — ß2 : 71 ^ 0

since this would imply ßi = -ß2. Thus we can form ((p - l)/2|/?i, ß2,71). Now let

^2 = 'y, — ß3; if 72 7^ 0 we can form ((p — 1)/2| — 71, ^3,72). The connected sum

at the fixed points corresponding to ±71 is (p - l|/?i,/32,/?3,72).

Continue with 73 = ")2—ß4 etc. Until 7r'-i = 0 in which case we have constructed

((r' - 2(p - l)/2|/?i,... ,ßr')- Now start again with ßr>+i to construct an action

on another surface in the same way. The resulting surfaces can be joined using

operation (c) to give ((r - 2)(p - l)/2|/?i,..., ßr).

Now for the pairs (ß, —ß). Each of these can be realized on a sphere, (0|/?, — ß).

These and the result of the first stage, if any, can be joined by operation (c). The

result is ((n — 2)(p - l)/2|/?i,... ,ßn), unless n — 0 in which case we use the free

action on a torus, (1|0).

The indices are now correct. A look at the Euler number shows that the genus

is the least possible, for

x(Sg)=pX(Sg)-n(p-l)

where Sg = Cp\Sg. Hence g = (n-2)(p-l)/2 + pg. So g > (n-2)(p-l)/2, and if
n = 0, g>l. If necessary the genus can be increased by using operation (b). This

completes the proof of the theorem.

We need to know what this decomposition does to cohomology. Clearly (a)

gives an orthogonal direct sum. Operation (b) gives an orthogonal direct sum with

ii(ZGp) since it involves a connected sum with p tori. Each torus contributes H(Z)

and they are permuted.

To deal with (c) first consider the case of joining a sphere (0|7, —7) to another

sphere (0|cr, — a) using (c), obtaining U1¡a say. Let c¿ be a cycle in Hi(U) repre-

sented by a loop around the ¿th handle. Yl ci = 0 and the c¿ are orthogonal under

the intersection pairing; they generate a submodule G of Hi(U) and G = Z[A]. Let

d be a cycle which goes up one cylinder and down another. Let d¿ = hld: Again

the dt are orthogonal and generate a submodule D of Hi(U) with D = Z[A]. An

argument with a Mayer-Vietoris sequence shows that Hi (U) = G © D, so under

duality Hl{U) S 7T(Z[A]).
Suppose we wish to join S to T using (c). We may assume that S and T have

fixed points ps,pt of indices 7,6 respectively, for if T, say, did not have a fixed point

we could perform (b) on S instead. Form ults as above and join it to S at ps using

(a). Join the result to T at pt to get V,

Hl(V) =* HX(S) © H1(T)®H(Z[X]).

But V is isomorphic to the space obtained by joining S to T using (c) (because it

has the same fixed-point data).

This information together with Proposition 7.1 implies Theorem B of the Intro-

duction.

REMARK. Ewing [8] shows that the index in W2(Z,CP) of the submodule gen-

erated by the spaces which occur as H1(Sg; Z) for an action of Gp on Sg is equal

to h*(p), the ideal class number of Z[A + Â].
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