TESTING ANALYTICITY ON ROTATION INVARIANT FAMILIES OF CURVES

JOSIP GLOBEVNIK
Dedicated to Professor Ivan Vidav on the occastion of his
seventieth birthday, January 17, 1988

Abstract

Let $\Gamma \subset C$ be a piecewise smooth Jordan curve, symmetric with respect to the real axis, which contains the origin in its interior and which is not a circle centered at the origin. Let Ω be the annulus obtained by rotating Γ around the origin. We characterize the curves Γ with the property that if $f \in C(\Omega)$ is analytic on $s \Gamma$ for every $s,|s|=1$, then f is analytic in Int Ω.

1. Introduction. Throughout the paper we assume that $\Gamma \subset C$ is a piecewise smooth Jordan curve which is symmetric with respect to the real axis, does not contain the origin and is not a circle centered at the origin. We denote by D the bounded domain with boundary Γ. We denote by Ω the closed annulus obtained by rotating Γ around the origin: $\Omega=\{s z: z \in \Gamma,|s|=1\}$. We denote by a, b the inner and the outer radius of Ω, respectively.

We call the curve Γ regular if every continuous function on Ω which is analytic on each curve $s \Gamma,|s|=1$, is analytic in Int Ω, that is, if $f \in C(\Omega)$ and if
for each $s \in C,|s|=1$, the function $f \mid(s \Gamma)$ has a continuous extension to $s \bar{D}$ which is analytic in $s D$
then f is analytic in Int Ω. We call Γ singular if it is not regular.
When studying the conditions which imply the regularity of Γ one has to distinguish two cases:
(i) 0 is in the exterior of Γ, i.e. $0 \in C \backslash \bar{D}$,
(ii) 0 is in the interior of Γ, i.e. $0 \in D$.

In the first case the situation is simple.
ThEOREM 0 [1]. If 0 is in the exterior of Γ then Γ is regular.
In the present paper we study the second case and from now on we assume that 0 is in the interior of Γ. Now the situation is more complicated. We illustrate this with two examples.

Example 1. Suppose that Γ contains an arc of a circle centered at the origin. If $\left|s_{1}\right|=\left|s_{2}\right|=1$ and if s_{1} is close to s_{2} then $b\left(s_{1} D\right) \cap b\left(s_{2} D\right)$ contains an arc. This implies that Γ is regular [1].

Example 2. Let Γ be a circle whose center is different from the origin and which contains the origin in its interior. The function $f(z)=1 / \bar{z}$ shows that Γ is singular.

[^0]2. A characterization of singular curves. If $f \in C(\Omega), a \leq r \leq b$ and $n \in Z$ define
$$
A_{n}(f, r)=r^{-n} \frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n \varphi} f\left(r e^{i \varphi}\right) d \varphi
$$

Note that if f is analytic in $\operatorname{Int} \Omega$ then for each $r, a \leq r \leq b, A_{n}(f, r)$ is equal to the nth coefficient in the Laurent series of f. Note also that f is analytic in Int Ω if and only if for each $n \in Z$ the function $r \mapsto A_{n}(f, r)$ is constant on $[a, b][\mathbf{1}]$.

Lemma 1. Suppose that $f \in C(\Omega)$ satisfies (1). Then for every $n \in Z$ the function $z \mapsto z^{n} A_{n}(f,|z|)$ has a continuous extension from Γ to \bar{D} which is analytic in D.

Note that in [1] the lemma is stated for smooth curves Γ. However, its proof works equally well for piecewise smooth curves Γ.

THEOREM 1. Γ is singular if and only if there are $n \in N$ and a function G, continuous on \bar{D} and analytic in D such that the function $w \mapsto G(w) / w^{n}$ is nonconstant and depends only on $|w|$ on Γ, that is, if $w_{1}, w_{2} \in \Gamma,\left|w_{1}\right|=\left|w_{2}\right|$, then $G\left(w_{1}\right) / w_{1}^{n}=G\left(w_{2}\right) / w_{2}^{n}$.

Proof. Suppose that Γ is singular. This means that there is an $f \in C(\Omega)$ which satisfies (1) and which is not holomorphic in Int Ω. By Lemma 1 , for each $n \in Z$ there is a continuous function G_{n} on \bar{D}, analytic in D and such that $A_{n}(f,|z|)=$ $G_{n}(z) / z^{n}(z \in \Gamma)$. It follows that $A_{n}(f, r)=0(a \leq r \leq b)$ and that $A_{0}(f, r)=$ const ($a \leq r \leq b$) [1]. Since f is not analytic in Int Ω there is some $n>0$ such that $r \mapsto A_{n}(f, r)$ is nonconstant. Put $G=G_{n}$. Clearly G has the required properties.

Conversely, suppose that there are $n \in N$ and a continuous function G on \bar{D}, analytic in D and such that $w \mapsto G(w) / w^{n}$ is nonconstant and depends only on $|w|$ on Γ. Define the function g on Ω by

$$
g\left(|z| e^{i \alpha}\right)=G(z) / z^{n} \quad(z \in \Gamma, 0 \leq \alpha \leq 2 \pi)
$$

Then g is well defined and continuous on Ω, depends only on $|z|$ and is not a constant. Put $f(z)=z^{n} g(z)(z \in \Omega)$. If $|s|=1$ and $z \in \Gamma$ then $f(s z)=(s z)^{n} g(|z|)=$ $(s z)^{n} G(z) / z^{n}=s^{n} G(z)$. This shows that f satisfies (1). Since $f \in C(\Omega)$ and since f is not analytic in Int Ω it follows that Γ is singular. This completes the proof.
3. Singular curves and symmetry. By our assumption, Γ is symmetric with respect to the real axis. A singular curve may have no other lines of symmetry [1, Example 5]. However, once it contains two arcs whose union is symmetric with respect to a line L through 0 then it is symmetric with respect to L. This is a consequence of the following

THEOREM 2. Let Γ be a singular curve. Suppose that there are an arc $\Lambda \subset \Gamma$ and an $\alpha, 0<\alpha<2 \pi$, such that $e^{i \alpha} \Lambda \subset \Gamma$. Then $\Gamma=e^{i \alpha} \Gamma$ and consequently Γ is symmetric with respect to the lines through 0 and $e^{i n \alpha / 2}, n \in N$. In particular α / π must be rational.

For a set $E \subset C$ write $E^{*}=\{\bar{\zeta}: \varsigma \in E\}$. To prove Theorem 2 we need the following lemma.

Lemma 2 [1]. Let $P \subset C$ be an open set with piecewise smooth boundary. Let f be a continuous function on \bar{P} which is analytic in P and let g be a continuous function on \bar{P}^{*} which is analytic in P^{*}. Suppose that $f(w)=g(\bar{w})(w \in b P)$. Then f is a constant.

Proof of Theorem 2. By Theorem 1 there are $n \in N$ and a function F, continuous on \bar{D}, analytic in D such that $w \mapsto G(w)=F(w) / w^{n}$ is nonconstant and depends only on $|w|$ on Γ. So there is a function $\varphi:[a, b] \rightarrow C$ such that $G(w)=\varphi(|w|)(w \in \Gamma)$. Note that G is continuous on $\bar{D} \backslash\{0\}$ and analytic on $D \backslash\{0\}$.

Let $P=D \cap\left(e^{i \alpha} D\right)$. Denote by P_{1} the component of P which contains $e^{i \alpha} \Lambda$ in its boundary. Assume for a moment that \bar{P}_{1} does not contain 0 . Then G is continuous on \bar{P}_{1} and analytic in P_{1}. If $w \in\left(b P_{1}\right) \cap \Gamma$ then $G(w)=\varphi(|w|)$. Further, if $w \in e^{i \alpha} \Lambda$ then $e^{-i \alpha} w \in \Lambda$ so $G(w)=\varphi(|w|)=\varphi\left(\left|e^{-i \alpha} w\right|\right)=G\left(e^{-i \alpha} w\right)$. This implies that $G(w)=G\left(e^{-i \alpha} w\right)\left(w \in \bar{P}_{1}\right)$. In particular, if $w \in\left(3 P_{1}\right) \cap\left(e^{i \alpha} \Gamma\right)$ then $G(w)=G\left(e^{-i \alpha} w\right)=\varphi\left(\left|e^{-i \alpha} w\right|\right)=\varphi(|w|)$ so $G(w)=\varphi(|w|)\left(w \in\left(b P_{1}\right) \cap\left(e^{i \alpha} \Gamma\right)\right)$.

Let $Q=D \cap e^{-i \alpha} D$. Denote by Q_{1} the component of Q which contains $\left(e^{i \alpha} \Lambda\right)^{*}=$ $e^{-i \alpha} \Lambda^{*}$ in its boundary. Note that $Q_{1}^{*}=P_{1}$. So \bar{Q}_{1} does not contain 0 and consequently G is continuous on \bar{Q}_{1} and analytic in Q_{1}. If $w \in\left(b Q_{1}\right) \cap \Gamma$ then $G(w)=\varphi(|w|)$. Further, if $w \in\left(e^{i \alpha} \Lambda\right)^{*}$ then $e^{i \alpha} w \in \Lambda^{*}$ so $G(w)=\varphi(|w|)=$ $\varphi\left(\left|e^{-i \alpha} w\right|\right)=G\left(e^{i \alpha} w\right)$. This implies that $G(w)=G\left(e^{i \alpha} w\right)\left(w \in \bar{Q}_{1}\right)$. In particular, if $w \in\left(b Q_{1}\right) \cap\left(e^{-i \alpha} \Gamma\right)$ then $G(w)=G\left(e^{i \alpha} w\right)=\varphi\left(\left|e^{i \alpha} w\right|\right)=\varphi(|w|)$ so $G(w)=$ $\varphi(|w|)\left(w \in\left(b Q_{1}\right) \cap\left(e^{-i \alpha} \Gamma\right)\right)$.

We have proved that G is continuous on \bar{P}_{1}, analytic in P_{1}, continuous on \bar{P}_{1}^{*}, analytic in P_{1}^{*} and satisfies $G(w)=\varphi(|w|)\left(w \in b P_{1}, w \in b P_{1}^{*}\right)$. So $G(w)=G(\bar{w})$ ($w \in b P_{1}$). By Lemma 2 it follows that G is constant on \bar{P}_{1}, a contradiction.

Thus we proved that $0 \in \bar{P}_{1}$. Since P contains a neighborhood of 0 it follows that $0 \in P_{1}$.

Let $B=D \backslash \bar{P}_{1}$ and assume that B is not empty. If we repeat the above argument we see that $G(w)=\varphi(|w|)\left(w \in b P_{1}\right)$. Further, since $G(w)=\varphi(|w|)(w \in \Gamma=b D)$ it follows that G is continuous on \bar{B}, analytic in B and satisfies $G(w)=\varphi(|w|)$ $(w \in b B)$. In the same way, considering $B^{*}=D \backslash \bar{Q}_{1}$ instead of B we prove that G is continuous on \bar{B}^{*}, analytic in B^{*} and satisfies $G(w)=\varphi(|w|)\left(w \in b B^{*}\right)$. So $G(\bar{w})=G(w)(w \in b B)$ and by Lemma $2 G$ is a constant, a contradiction. Consequently $B=\varnothing$ so $D \subset \bar{P}_{1} \subset \bar{D} \subset e^{i \alpha} D$ which implies that $D=e^{i \alpha} D$ and $\Gamma=e^{i \alpha} \Gamma$. Further, since $e^{i n \alpha} D=D(n \in N)$ and since $D^{*}=D$ it follows that $\left(e^{-i n \alpha / 2} D\right)^{*}=e^{i n \alpha / 2} D=e^{-i n \alpha / 2} D$ which proves that Γ is symmetric with respect to the lines through 0 and $e^{i n \alpha / 2}, n \in N$. Since Γ is not a circle centered at 0 it follows that α / π must be rational. This completes the proof.

COROLLARY 1. Let Γ be a singular curve. Suppose that $0<\beta<\pi$ and that Γ contains two arcs whose union is symmetric with respect to the line L through 0 and $e^{i \beta}$. Then Γ is symmetric with respect to L. In particular, β / π must be rational.

Proof. By the assumption there are arcs Λ_{1}, Λ_{2} such that $\left(e^{-i \beta} \Lambda_{1}\right)^{*}=e^{-i \beta} \Lambda_{2}$ which implies that $e^{2 i \beta} \Lambda_{1}^{*}=\Lambda_{2}$. Since $\Gamma^{*}=\Gamma$ it follows that $\Lambda_{1}^{*} \subset \Gamma$ and Theorem 2 implies that Γ is symmetric with respect to L. This completes the proof.
4. Two examples. We denote by Δ the open unit disc in C.

Proposition 1. Let Γ be a triangle. Then Γ is singular if and only if Γ is an equilateral triangle centered at the origin.

Recall that we are assuming that $\Gamma=\Gamma^{*}$.
Proof. Suppose that Γ is singular. By Corollary 1 the lines through 0 which are perpendicular to the sides of Γ are the lines of symmetry for Γ which proves that Γ is an equilateral triangle centered at 0 . Conversely, suppose that Γ is an equilateral triangle centered at 0 . Let $\Psi: D \rightarrow \Delta$ be the conformal map which satisfies $\Psi(0)=0, \Psi^{\prime}(0)>0$. Define

$$
G(w) / w^{3}=\Psi(w)^{3}+1 / \Psi(w)^{3}
$$

Then G is continuous on \bar{D}, analytic in D and it is easy to see that $G(w) / w^{3}$ depends only on $|w|$ on Γ. By Theorem 1Γ is singular. This completes the proof.

Proposition 2. Let Γ be a rectangle. Then Γ is singular if and only if Γ is a square centered at the origin.

Proof. Suppose that Γ is a square centered at the origin. Let $\Psi: D \rightarrow \Delta$ be the conformal map which satisfies $\Psi(0)=0, \Psi^{\prime}(0)>0$. Then

$$
G(w) / w^{4}=\Psi(w)^{4}+1 / \Psi(w)^{4}
$$

depends only on $|w|$ on Γ. In the same way as above, Theorem 1 implies that Γ is singular.

Conversely, assume that Γ is singular. Corollary 1 implies that Γ is symmetric with respect to the imaginary axis. With no loss of generality assume that $a+i$, $a-i,-a+i,-a-i$ are the vertices of Γ where $a>0$. We have to prove that $a=1$.

It suffices to prove the following: Suppose that there is a nonconstant function G, continuous on $\bar{D} \backslash\{0\}$ and analytic in $D \backslash\{0\}$ which depends only on $|w|$ on Γ. Then $a=1$. Let G be as above. With no loss of generality assume that $G(a+i)=0$. Since $G(w)$ depends only on $|w|$ on Γ it follows that we can extend G to the rectangle Q with vertices $3 a-i, 3 a+3 i,-a-i,-a+3 i$ by

$$
\left.\begin{array}{l}
G(2 i+w)=G(w), \\
G(2 a+w)=G(w), \\
G(2 a+2 i+w)=G(w)
\end{array}\right\} \quad(w \in \bar{D} \backslash\{0\})
$$

to get a continuous function on $\bar{Q} \backslash\{0,2 a, 2 i, 2 a+2 i\}$. In particular, G is analytic in a neighborhood of $a+i$. Put $f(w)=G(w-(a+i))$. Then f is analytic in an open $\operatorname{disc} U$ centered at 0 . By the properties of G we have $f(w)=f(-w)(w \in U \cap R)$ so $f(w)=f(-w)(w \in U)$. Further, whenever $z \in R_{-}$and $w \in i R_{-}$have the same distance from $-a-i$ we have $f(w)=f(z)$.

Put $w(z)=i\left(\left(z^{2}+2 a z+1\right)^{1 / 2}-1\right)$ where $1^{1 / 2}=1$. Passing to a smaller U if necessary we may assume that w is analytic in U. We have

$$
(z+a)^{2}+1=(w(z) / i+1)^{2}+a^{2} \quad(z \in U)
$$

which means that if $z \in U \cap R_{-}$then $w \in i R_{-}$and w and z have the same distance from $-a-i$.

There is a disc U^{\prime} centered at 0 such that $w\left(U^{\prime}\right) \subset U$. For every $z \in U^{\prime} \cap R_{-}$we have $f(w(z))=f(z)$ which implies that

$$
\begin{equation*}
f(w(z))=f(z) \quad\left(z \in U^{\prime}\right) \tag{2}
\end{equation*}
$$

Recall that $f(0)=0$. Since f is not a constant there is some $k \in N$ such that $f^{\prime}(0)=\cdots=f^{(k)}(0)=0, f^{(k+1)}(0) \neq 0$. By (2) we have

$$
\begin{aligned}
f^{(k+1)}(z)= & f^{(k+1)}(w(z)) w^{\prime}(z)^{k+1} \\
& + \text { terms containing } f^{(k)}(w(z)), \ldots, f^{\prime}(w(z)) \text { as factors }
\end{aligned}
$$

so $f^{(k+1)}(0)=f^{(k+1)}(0) w^{\prime}(0)^{k+1}$ which implies that $w^{\prime}(0)^{k+1}=1$. On the other hand, $w^{\prime}(0)=i a$ by the definition of $w(z)$. Consequently $a=1$. This completes the proof.

REMARK. There is no similar result when Γ is a pentagon. There are pentagons Γ which are singular and which are not equilateral. To see this observe that there are pentagons of the same form as [1, Example 5].
5. Functions analytic on $s \Gamma,|s|=1$. We now proceed to obtain a more detailed description of singular curves. The first step in this direction is a characterization of functions f which satisfy (1).

From now on we denote by Φ the conformal map from Δ to D which satisfies $\Phi(0)=0, \Phi^{\prime}(0)>0$.

THEOREM 3. A function $f \in C(\Omega)$ satisfies (1) if and only if the following two conditions are satisfied:
(i) for each $n<0, A_{n}(f, r)=0(a \leq r \leq b)$,
(ii) for each $n \geq 0$ there is a polynomial P_{n} satisfying $P_{n}(1 / \varsigma)=\varsigma^{-2 n} P_{n}(\varsigma)$ $(\varsigma \in C)$ such that

$$
A_{n}(f,|\Phi(\varsigma)|)=\varsigma^{-n} P_{n}(\varsigma) \quad(\varsigma \in b \Delta)
$$

Remark. Note that the degree of P_{n} is at most $2 n$. Note also that $\varsigma^{-n} P_{n}(\varsigma)$ has the form $b_{n 0}+b_{n 1}(\varsigma+1 / \varsigma)+\cdots+b_{n n}\left(\varsigma^{n}+1 / \varsigma^{n}\right)$ so that (ii) is equivalent to
(ii') for each $n \geq 0$ there are $a_{n 0}, a_{n 1}, \ldots, a_{n n}$ such that

$$
A_{n}\left(f,\left|\Phi\left(e^{i \varphi}\right)\right|\right)=a_{n 0}+a_{n 1} \cos \varphi+\cdots+a_{n n} \cos n \varphi
$$

Proof. The only if part. Observe first that by the symmetry of Γ with respect to the real axis we have $\Phi(\bar{\zeta})=\overline{\Phi(\zeta)}(\varsigma \in b \Delta)$.

Assume that $f \in C(\Omega)$ satisfies (1). By Lemma 1 for every $n \in Z$ the function $z \mapsto z^{n} A_{n}(|z|)$ has a continuous extension from Γ to \bar{D} which is analytic in D. It follows that for each $n \in Z$ there is a function F_{n}, continuous on $\bar{\Delta}$, analytic in Δ, such that

$$
\begin{equation*}
\Phi(\varsigma)^{n} A_{n}(f,|\Phi(\varsigma)|)=F_{n}(\varsigma) \quad(\varsigma \in b \Delta) \tag{3}
\end{equation*}
$$

If $n<0$ it follows that $\varsigma \mapsto A_{n}(f,|\Phi(\varsigma)|)$ is the boundary function of a function G, continuous on $\bar{\Delta}$, analytic in Δ, which has a zero at $\varsigma=0$. Since $G(\varsigma)=G(\bar{\varsigma})$ ($\varsigma \in b \Delta$) it follows that $G=0$ which proves (i).

Let $n \geq 0$. We have $\Phi(\varsigma)=\zeta \Psi(\varsigma)(\zeta \in \bar{\Delta})$ where both Ψ and $1 / \Psi$ are continuous on $\bar{\Delta}$ and analytic in Δ. By (3) we have

$$
\begin{equation*}
F_{n}(\varsigma) / \Psi(\varsigma)^{n}=\varsigma^{2 n} F_{n}(1 / \varsigma) / \Psi(1 / \zeta)^{n} \quad(\varsigma \in b \Delta) \tag{4}
\end{equation*}
$$

which implies that

$$
\varsigma \mapsto \begin{cases}F_{n}(\varsigma) / \Psi(\varsigma)^{n} & (\varsigma \in \bar{\Delta}) \\ F_{n}(1 / \zeta) \cdot \varsigma^{2 n} / \Psi(1 / \varsigma)^{n} & (\varsigma \in C \backslash \Delta)\end{cases}
$$

is an entire function of polynomial growth at infinity so it is a polynomial that we denote by P_{n}. By (4) we have $P_{n}(\varsigma)=\varsigma^{2 n} P_{n}(1 / \varsigma)(\varsigma \in C)$. Further, by (3), $A_{n}(f,|\Phi(\varsigma)|)=F_{n}(\varsigma) / \Phi(\varsigma)^{n}=\varsigma^{-n} P_{n}(\varsigma)(\varsigma \in b \Delta)$ which proves (ii). This completes the proof of the only if part.

The if part. Suppose that $f \in C(\Omega)$ satisfies (i) and (ii). We first show that for each $n \in Z$ and for each $s,|s|=1$, the function $z \mapsto z^{n} A_{n}(f,|z|)$ has a continuous extension from $s \Gamma$ to $s \bar{D}$ which is analytic in $s D$, that is, $\varsigma \mapsto(s \Phi(\varsigma))^{n} A_{n}(f,|\Phi(\varsigma)|)$ is the boundary function of a function continuous on $\bar{\Delta}$, analytic in Δ. If $n<0$ this is so since $A_{n}(r)=0(a \leq r \leq b)$. If $n>0$ then

$$
(s \Phi(\varsigma))^{n} A_{n}(f,|\Phi(\varsigma)|)=s^{n} \Psi(\varsigma)^{n} \varsigma^{n} \zeta^{-n} P_{n}(\varsigma)=s^{n} \Psi(\varsigma)^{n} P_{n}(\varsigma)
$$

which, on $b \Delta$, is the boundary function of $s^{n} \Psi P_{n}$ which is continuous on $\bar{\Delta}$ and analytic in Δ.

For each $r, a \leq r \leq b, \sum_{-\infty}^{\infty} A_{n}(f, r) r^{n} e^{i n \varphi}$ is the Fourier series of $\varphi \mapsto f\left(r e^{i \varphi}\right)$. Let
$\sigma_{m}\left(f, r, e^{i \varphi}\right)=m^{-1}\left(A_{0}(f, r)+\sum_{-1}^{1} A_{k}(f, r) r^{k} e^{i k \varphi}+\cdots+\sum_{-(m-1)}^{m-1} A_{k}(f, r) r^{k} e^{i k \varphi}\right)$
be its m th Cezàro mean. By the uniform continuity of f on Ω the family $\{\theta \mapsto$ $\left.f\left(r e^{i \theta}\right): a \leq r \leq b\right\}$ is uniformly equicontinuous on $[0,2 \pi]$. The usual proof of Féjer's theorem [2] applied to $\sum_{-\infty}^{\infty} A_{n}(f, r) r^{n} e^{i n \varphi}$ shows that $\sigma_{m}\left(f, r, e^{i \varphi}\right)$ converges to $f\left(r e^{i \varphi}\right)$ uniformly for r and $\varphi, a \leq r \leq b, 0 \leq \varphi \leq 2 \pi$. Consequently, on $\Omega, f(z)$ is the uniform limit of the sequence

$$
f_{m}(z)=m^{-1}\left(A_{0}(f,|z|)+\sum_{-1}^{1} A_{k}(f,|z|) z^{k}+\cdots+\sum_{-(m-1)}^{m-1} A_{k}(f,|z|) z^{k}\right)
$$

By the preceding discussion each f_{m} satisfies (1) so the same holds for f. This completes the proof of Theorem 3.

6. Another characterization of singular curves.

THEOREM 4. Let Γ and Φ be as in Theorem 3. Γ is singular if and only if there are $n>0$ and real numbers $a_{1}, a_{2}, \ldots, a_{n}$, not all equal to zero, and a function F on $[a, b]$ such that

$$
\begin{equation*}
F(|\Phi(\varsigma)|)=a_{1}(\varsigma+1 / \varsigma)+a_{2}\left(\varsigma^{2}+1 / \varsigma^{2}\right)+\cdots+a_{n}\left(\varsigma^{n}+1 / \varsigma^{n}\right) \quad(\varsigma \in b \Delta) \tag{5}
\end{equation*}
$$

REMARK. (5) should be understood as an incidence relation, that is, if

$$
h(\varsigma)=a_{1}(\varsigma+1 / \varsigma)+\cdots+a_{n}\left(\varsigma^{n}+1 / \varsigma^{n}\right)
$$

then $h\left(\varsigma_{1}\right)=h\left(\varsigma_{2}\right)$ whenever $\varsigma_{1}, \varsigma_{2} \in b \Delta$ and $\left|\Phi\left(\varsigma_{1}\right)\right|=\left|\Phi\left(\varsigma_{2}\right)\right|$. Note also that $h\left(e^{i \varphi}\right)$ is a trigonometric polynomial

$$
h\left(e^{i \varphi}\right)=c_{1} \cos \varphi+\cdots+c_{n} \cos n \varphi
$$

Proof. The only if part. Suppose that Γ is singular. This means that there is an $f \in C(\Omega)$ which satisfies (1) and which is not holomorphic in Int Ω. It follows that there is some $n \in Z$ such that $r \mapsto A_{n}(f, r)$ is nonconstant on $[a, b][\mathbf{1}]$. By Theorem 3 it follows that there is some $n>0$ such that

$$
A_{n}(f,|\Phi(\varsigma)|)=\zeta^{-n} P_{n}(\varsigma) \quad(\zeta \in b \Delta)
$$

where $\varsigma \mapsto \zeta^{-n} P_{n}(\varsigma)$ is not a constant and P_{n} is a polynomial satisfying $P_{n}(1 / \varsigma)=$ $\zeta^{-2 n} P_{n}(\varsigma)(\zeta \in C)$, that is,

$$
A_{n}(f,|\Phi(\varsigma)|)=b_{0}+b_{1}(\varsigma+1 / \varsigma)+\cdots+b_{n}\left(\varsigma^{n}+1 / \varsigma^{n}\right) \quad(\varsigma \in b \Delta)
$$

where at least one of b_{1}, \ldots, b_{n} is different from zero. If all nonzero b_{k} are pure imaginary let

$$
F(|\Phi(\varsigma)|)=i^{-1}\left(A_{n}(f,|\Phi(\varsigma)|)-b_{0}\right) \quad(\varsigma \in b \Delta)
$$

and otherwise let

$$
F(|\Phi(\varsigma)|)=\operatorname{Re}\left(A_{n}(f,|\Phi(\varsigma)|)-b_{0}\right) \quad(\varsigma \in b \Delta)
$$

In either case $F(|\Phi(\varsigma)|)$ is of the form (5). This completes the proof of the only if part.

The if part. Suppose that there are $n>0$ and real numbers a_{1}, \ldots, a_{n}, not all equal to zero, and a function F on $[a, b]$ such that (5) holds. Let h be as in the Remark. By (5), $F(|w|)=h\left(\Phi^{-1}(w)\right)(w \in \Gamma)$. Suppose for a moment that F is not continuous on $[a, b]$. This implies that there are $r, a \leq r \leq b$, and a sequence $w_{n} \in \Gamma,\left|w_{n}\right| \rightarrow r$, such that $\left|F\left(\left|w_{n}\right|\right)-F(r)\right| \geq \delta>0(n \in N)$. By the compactness of Γ we may, passing to a subsequence if necessary, assume that $w_{n} \rightarrow w \in \Gamma$. It follows that $\left|\left(h \circ \Phi^{-1}\right)\left(w_{n}\right)-\left(h \circ \Phi^{-1}\right)(w)\right| \geq \delta(n \in N)$, a contradiction. This proves that F is continuous on $[a, b]$. Define

$$
f(z)=z^{n} F(|z|) \quad(z \in \Omega) .
$$

Clearly f is continuous on Ω. Let $s \in b \Delta$. We have $f(s \Phi(\varsigma))=s^{n} \Phi(\varsigma)^{n} h(\varsigma)$ $(\varsigma \in b \Delta)$. Since h has a pole of at most order n at the origin and Φ has a zero at the origin it follows that $f \mid(s \Gamma)$ has a continuous extension to $s \bar{D}$ which is analytic in $s D$. It follows that f satisfies (1). Since F is not a constant it follows that f is not analytic in Int Ω. This proves that Γ is singular. The proof is complete.

7. Properties of singular curves.

Proposition 3. Suppose that Γ intersects a circle centered at the origin in an infinite set of points. Then Γ is regular.

Proof. Suppose that Γ is singular. By Theorem 4 there are $n>0$ and numbers a_{1}, \ldots, a_{n}, not all equal to zero, and a function F on $[a, b]$ such that $F(|\Phi(\varsigma)|)=h(\varsigma)$ $(\varsigma \in b \Delta)$ where $h(\varsigma)=a_{1}(\varsigma+1 / \varsigma)+\cdots+a_{n}\left(\varsigma^{n}+1 / \varsigma^{n}\right)$. By our assumption h has the same value at an infinite sequence of points on $b \Delta$, a contradiction. This completes the proof.

Proposition 4. Let Γ be singular. Then $|w|$ has only a finite number of local maxima or minima on Γ, that is, $\varphi \mapsto\left|\Phi\left(e^{i \varphi}\right)\right|$ has only a finite number of local maxima or minima on $(0, \pi)$.

Proof. By Theorem 4 there is a trigonometric polynomial $h(\varphi)=b_{1} \cos \varphi+$ $\cdots+b_{n} \cos n \varphi$, not identically zero, such that $\left|\Phi\left(e^{i \varphi}\right)\right|=\left|\Phi\left(e^{i \psi}\right)\right|$ implies that
$h(\varphi)=h(\psi)$. Suppose now that $\varphi \mapsto\left|\Phi\left(e^{i \varphi}\right)\right|$ has a local maximum at $\varphi_{0}, 0<$ $\varphi_{0}<\pi$. By Proposition 3 there is a neighborhood U of φ_{0} such that $\left|\Phi\left(e^{i \varphi}\right)\right|<$ $\left|\Phi\left(e^{i \varphi_{0}}\right)\right|\left(\varphi \in U \backslash\left\{\varphi_{0}\right\}\right)$. Continuity of Φ implies that there are sequences $\varphi_{n}^{\prime} \nearrow \varphi_{0}^{\prime}$, $\varphi_{n}^{\prime \prime} \searrow \varphi_{0}$ such that $\left|\Phi\left(e^{i \varphi_{n}^{\prime}}\right)\right|=\left|\Phi\left(e^{i \varphi_{n}^{\prime \prime}}\right)\right|(n \in N)$ and consequently $h\left(\varphi_{n}^{\prime}\right)=h\left(\varphi_{n}^{\prime \prime}\right)$ $(n \in N)$. It follows that $h^{\prime}\left(\varphi_{0}\right)=0$. Since h^{\prime} has only finitely many zeros on $(0, \pi)$ it follows that $\varphi \mapsto\left|\Phi\left(e^{i \varphi}\right)\right|$ has only finitely many local maxima or minima on $(0, \pi)$. This completes the proof.

Proposition 5. Let Γ be such that $\theta \mapsto\left|\Phi\left(e^{i \theta}\right)\right|$ has only a finite number of local extrema on $(0, \pi)$. Moreover, assume that whenever φ is the point of local extremum then Γ is symmetric with respect to the line through 0 and $\Phi\left(e^{i \varphi}\right)$. Then Γ is singular.

Proof. Let $\varphi_{i}, 1 \leq i \leq n$, be the points of local extrema of $\theta \mapsto\left|\Phi\left(e^{i \theta}\right)\right|$ on $(0, \pi), \varphi_{1}<\varphi_{2}<\cdots<\varphi_{n}$. Because of the symmetry we have $\varphi_{k}=k \pi /(n+1)$. Write $\varphi_{0}=0, \varphi_{n+1}=\pi$ and observe that between φ_{k} and $\varphi_{k+1}, \theta \mapsto\left|\Phi\left(e^{i \theta}\right)\right|$ is either strictly increasing or strictly decreasing, $0 \leq k \leq n$; in particular, it is one-to-one. It is periodic with period $2 \pi /(n+1)$. Now it is easy to see that there is a function F on $[a, b]$ such that $F\left(\left|\Phi\left(e^{i \varphi}\right)\right|\right)=\cos (n+1) \varphi$. By Theorem 4 the curve Γ is singular. This completes the proof.

Proposition 6. Every curve Γ is the limit of a sequence of singular curves.
Proof. We first prove that a curve Γ is singular if the conformal map Φ is a polynomial. Let $\Phi(\varsigma)=\sum_{k=1}^{m} a_{k} \varsigma^{k}$. Since $\Phi(\bar{\zeta})=\overline{\Phi(\varsigma)}(\varsigma \in \bar{\Delta}), a_{1}, \ldots, a_{m}$ are real. We have

$$
\begin{aligned}
\left|\Phi\left(e^{i \theta}\right)\right|^{2}= & \sum_{k=1}^{m} \sum_{l=1}^{m} a_{k} a_{l} e^{i(k-l) \theta} \\
= & a_{m} a_{1} e^{i(m-1) \theta}+\left(a_{m-1} a_{1}+a_{m} a_{2}\right) e^{i(m-2) \theta} \\
& +\cdots+\left(a_{2} a_{1}+a_{3} a_{2}+\cdots+a_{m} a_{m-1}\right) e^{i \theta} \\
& +\left(a_{1}^{2}+a_{2}^{2}+\cdots+a_{m}^{2}\right) \\
& +\left(a_{1} a_{2}+a_{2} a_{3}+\cdots+a_{m-1} a_{m}\right) e^{-i \theta} \\
& +\cdots+\left(a_{1} a_{m-1}+a_{2} a_{m}\right) e^{-i(m-2) \theta}+a_{1} a_{m} e^{-i(m-1) \theta}
\end{aligned}
$$

which shows that there are real numbers A_{1}, \ldots, A_{m}, not all equal to zero, such that $|\Phi(\varsigma)|^{2}=A_{1}(\varsigma+1 / \varsigma)+\cdots+A_{m}\left(\varsigma^{m}+1 / \varsigma^{m}\right)(\varsigma \in b \Delta)$. By Theorem 4 it follows that Γ is singular.

Now, let Γ be a curve and let $\Phi: \Delta \rightarrow D$ be the usual conformal map. Let $\Phi(\varsigma)=p_{1} \varsigma+p_{2} \varsigma^{2}+\cdots(\varsigma \in \Delta)$. Since $\Phi(\bar{\zeta})=\overline{\Phi(\varsigma)}(\varsigma \in \Delta), p_{k}$ are real, $k \in N$. Let $\varepsilon>0$. Since Φ is continuous on $\bar{\Delta}$ for each $n \in N$ there is an $r_{n}, 0<r_{n}<1$, such that

$$
\begin{equation*}
\left|\Phi\left(r_{n} \zeta\right)-\Phi(\varsigma)\right|<\varepsilon / n \quad(\zeta \in b \Delta) \tag{6}
\end{equation*}
$$

With no loss of generality assume that $r_{n} \nearrow 1$. Further, by the uniform convergence of the Taylor series on compact subsets of Δ it follows that for each $n \in N$ there is an $m \in N$ such that if $g_{n}(\varsigma)=p_{1} \varsigma+\cdots+p_{m} \varsigma^{m}$ then g_{n} maps $r_{n} \Delta$ conformally onto a domain D_{n} bounded by a smooth curve Γ_{n}, and moreover that

$$
\begin{equation*}
\left|g_{n}\left(r_{n} \zeta\right)-\Phi\left(r_{n} \zeta\right)\right|<\varepsilon / n \quad(\zeta \in b \Delta) \tag{7}
\end{equation*}
$$

Since p_{k} are real we have $\Gamma_{n}^{*}=\Gamma_{n}$. Further, if ε is chosen small enough at the beginning then each Γ_{n} contains 0 in its interior. Since g_{n} are polynomials the curves Γ_{n} are singular. By (6) and (7) it follows that Γ is the limit of the curves Γ_{n}. This completes the proof.

Every curve Γ is the limit of a sequence Γ_{n} of the curves such that for each n, Γ_{n} meets a circle centered at the origin in an arc. By Proposition 3 such curves are regular so we have

PROPOSITION 7. Every curve Γ is the limit of a sequence of regular curves.
8. Functions analytic on circles. Let Γ be a circle. We know from Example 2 in $\S 1$ that Γ is singular and that the function $f(z)=1 / \bar{z}$ satisfies (1). Clearly $g(z)=z$ also satisfies (1) and so does every uniform limit on Ω of a sequence of polynomials in f and g. It turns out that there are no other functions which satisfy (1).

THEOREM 5. Let Γ be a circle. The $f \in C(\Omega)$ satisfies (1) if and only if f is the uniform limit of a sequence of polynomials in z and $1 / \bar{z}$. Consequently, if f satisfies (1) then f is analytic on every circle contained in Ω and containing 0 in its interior.

Proof. The proof is similar to the proof of Theorem 3 but with Φ replaced by the linear map mapping Δ onto D (thus dropping the requirement that $\Phi(0)=0$).

Let $\Gamma=\{\rho+\varsigma R: \varsigma \in b \Delta\}$ where $0<\rho<R$. Suppose that $f \in C(\Omega)$ satisfies (1). By Lemma 1 it follows that for each $n \in Z$ there is a function G_{n}, continuous on $\bar{\Delta}$, analytic in Δ such that $(\rho+\varsigma R)^{n} A_{n}(f,|\rho+\varsigma R|)=G_{n}(\varsigma)(\varsigma \in b \Delta)$. As in the proof of Theorem 3 we see that $A_{n}(r)=0(a \leq r \leq b, n<0)$. Let $n \geq 0$. We have $A_{n}(f,|\rho+\varsigma R|)=G_{n}(\varsigma) /(\rho+\varsigma R)^{n}(\varsigma \in b \Delta)$ which implies that

$$
G_{n}(\varsigma) /(\rho+\varsigma R)^{n}=G_{n}(\bar{\varsigma}) /(\rho+\bar{\zeta} R)^{n}=\varsigma^{n} G_{n}(1 / \varsigma)(R+\varsigma \rho)^{n} \quad(\varsigma \in b \Delta)
$$

so

$$
\varsigma \mapsto \begin{cases}(R+\varsigma \rho)^{n} G_{n}(\varsigma) & (\varsigma \in \bar{\Delta}) \\ (\rho+\varsigma R)^{n} \zeta^{n} G_{n}(1 / \varsigma) & (\varsigma \in C \backslash \Delta),\end{cases}
$$

is a polynomial that we denote by P_{n}. We have $P_{n}(\varsigma)=\varsigma^{2 n} P_{n}(1 / \varsigma)(\varsigma \in C)$. Now,

$$
\begin{aligned}
A_{n}(f,|\rho+\varsigma R|) & =\frac{P_{n}(\varsigma)}{(\rho+\varsigma R)^{n}(R+\varsigma \rho)^{n}} \\
& =\frac{P_{n}(\varsigma) / \varsigma^{n}}{|\rho+\varsigma R|^{2 n}} \quad(\varsigma \in b \Delta)
\end{aligned}
$$

so there are $a_{0}, a_{1}, \ldots, a_{n}$ such that

$$
\left|\rho+R e^{i \varphi}\right|^{2 n} A_{n}\left(\left|\rho+R e^{i \varphi}\right|\right)=a_{0}+a_{1} \cos \varphi+\cdots+a_{n} \cos n \varphi
$$

For every $m \in N, \cos m \varphi$ is a polynomial in $\cos \varphi$ of degree m, so

$$
\left|\rho+R e^{i \varphi}\right|^{2 n} A_{n}\left(\left|\rho+R e^{i \varphi}\right|\right)=Q_{n}(\cos \varphi)
$$

where Q_{n} is a polynomial of degree $\leq n$. Write $\left|\rho+R e^{i \varphi}\right|=t$. Clearly $a \leq t \leq b$ $(0 \leq \varphi \leq \pi)$. We have $(\rho+R \cos \varphi)^{2}+R^{2} \sin ^{2} \varphi=t^{2}$ which implies that $\cos \varphi=$ $\left(t^{2}-R^{2}-\rho^{2}\right) / 2 \rho R$, so

$$
t^{2 n} A_{n}(t)=Q_{n}\left(\left(t^{2}-R^{2}-\rho^{2}\right) / 2 \rho R\right)=S_{n}\left(t^{2}\right)
$$

where S_{n} is a polynomial of degree $\leq n$ so there are $c_{0}, c_{1}, \ldots, c_{n}$ such that

$$
A_{n}(r)=c_{0}+c_{1} / r^{2}+\cdots+c_{n} / r^{2 n} \quad(a \leq r \leq b)
$$

If $z=r e^{i \varphi}$ it follows that

$$
\begin{aligned}
z^{n} A_{n}(|z|) & =z^{n}\left(c_{0}+c_{1} /(z \bar{z})+\cdots+c_{n} /\left(z^{n} \bar{z}^{n}\right)\right) \\
& =c_{0} z^{n}+c_{1} z^{n-1} / \bar{z}+\cdots+c_{n} / \bar{z}^{n}
\end{aligned}
$$

Recall that on $\Omega, f(z)$ is the uniform limit of the sequence

$$
f_{m}(z)=m^{-1}\left(A_{0}(f,|z|)+\sum_{-1}^{1} A_{k}(f,|z|) z^{k}+\cdots+\sum_{-(m-1)}^{m-1} A_{k}(f,|z|) z^{k}\right)
$$

which implies that it is the uniform limit of a sequence of polynomials in z and $1 / \bar{z}$. This completes the proof.

Thus, if Γ is a circle then $f \in C(\Omega)$ satisfies (1) if and only if f belongs to the function algebra on the closed annulus Ω generated by the functions z and $1 / \bar{z}$. It might be interesting to study this algebra in the theory of function algebras.

Acknowledgment. The author is indebted to Franc Forstneric and to Peter Gilkey for some stimulating discussions.

References

1. J. Globevnik, Analyticity on rotation invariant families of curves, Trans. Amer. Math. Soc. 280 (1983), 247-254.
2. K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N. J., 1962.
3. W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1966.
4. L. Zalcman, Offbeat integral geometry, Amer. Math. Monthly 87 (1980), 161-175.

Institute of Mathematics, Physics and Mechanics, E. K. University of Ljubljana, Ljubljana, Yugoslavia

[^0]: Received by the editors February 1, 1987.
 1980 Mathematics Subject Classification (1985 Revision). Primary 30E05, 30E20.
 This work was supported in part by the Republic of Slovenia Science Foundation.

