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ABSTRACT. Let T C C be a piecewise smooth Jordan curve, symmetric with

respect to the real axis, which contains the origin in its interior and which is

not a circle centered at the origin. Let Q be the annulus obtained by rotating

T around the origin. We characterize the curves T with the property that if

/ G C(iï) is analytic on sT for every s, \s\ = 1, then / is analytic in Int fî.

1. Introduction. Throughout the paper we assume that T C G is a piecewise

smooth Jordan curve which is symmetric with respect to the real axis, does not

contain the origin and is not a circle centered at the origin. We denote by D the

bounded domain with boundary T. We denote by fi the closed annulus obtained

by rotating T around the origin: Q = {sz: z £T, \s\ — 1}. We denote by a, b the

inner and the outer radius of fi, respectively.

We call the curve T regular if every continuous function on Q which is analytic

on each curve sT, \s\ — 1, is analytic in Intfi, that is, if / £ G(fi) and if

,^ for each s £ C, \s\ — 1, the function /|(«r) has a continuous

extension to sD which is analytic in sD

then / is analytic in Int 0. We call T singular if it is not regular.

When studying the conditions which imply the regularity of T one has to distin-

guish two cases:

(i) 0 is in the exterior of T, i.e. 0 £ C\D,

(ii) 0 is in the interior of T, i.e. 0 £ D.

In the first case the situation is simple.

THEOREM 0 [1].   IfO is in the exterior ofT then F is regular.

In the present paper we study the second case and from now on we assume that

0 is in the interior ofT. Now the situation is more complicated. We illustrate this

with two examples.

EXAMPLE 1. Suppose that T contains an arc of a circle centered at the origin.

If |si| = |s2| = 1 and if si is close to s2 then b(siD) r\b(s2D) contains an arc. This

implies that T is regular [1].

EXAMPLE 2. Let T be a circle whose center is different from the origin and

which contains the origin in its interior. The function f(z) = 1/z shows that T is

singular.
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2. A characterization of singular curves. If / £ G(fi), a < r < b and

n £ Z define

A„(f,r) =r~n±j \~™vf(re^)d<p.

Note that if / is analytic in Intfi then for each r, a < r < b, An(f,r) is equal to

the nth coefficient in the Laurent series of /. Note also that / is analytic in Int Q

if and only if for each n £ Z the function r i—► An(f,r) is constant on [a, b] [1].

LEMMA 1. Suppose that f £ C(Q) satisfies (1). Then for every n £ Z the

function z h-► znAn(f, \z\) has a continuous extension from T to D which is analytic

in D.

Note that in [1] the lemma is stated for smooth curves T. However, its proof

works equally well for piecewise smooth curves T.

THEOREM l. r is singular if and only if there are n £ N and a function

G, continuous on D and analytic in D such that the function w t-> G(w)/wn is

nonconstant and depends only on \w\ onT, that is, if wi,w2 £ T, |u>i| = \w2\, then

G(w1)/w? = G(w2)/w%.

PROOF. Suppose that T is singular. This means that there is an / € G(fi) which

satisfies (1) and which is not holomorphic in IntQ. By Lemma 1, for each n £ Z

there is a continuous function G„ on D, analytic in D and such that An(f, \z\) =

Gn(z)/zn (z £ T). It follows that An(f,r) = 0 (a < r < b) and that A0(f,r) =

const (a < r < b) [1]. Since / is not analytic in Int O there is some n > 0 such that

r h-► An(f,r) is nonconstant. Put G = Gn. Clearly G has the required properties.

Conversely, suppose that there are n £ N and a continuous function G on D,

analytic in D and such that w t—► G(w)/wn is nonconstant and depends only on

\w\ on T. Define the function g on O by

g(\z\eia) = G(z)/zn        (z£T, 0 < a < 2tt).

Then g is well defined and continuous on 0, depends only on \z\ and is not a con-

stant. Put f(z) = zng(z) (z £ Ü). If |s| = 1 and z £ V then f(sz) = (sz)ng(\z\) =

(sz)nG(z)/zn = snG(z). This shows that / satisfies (1). Since / £ G(ft) and since

/ is not analytic in Int Q it follows that T is singular. This completes the proof.

3. Singular curves and symmetry. By our assumption, T is symmetric with

respect to the real axis. A singular curve may have no other lines of symmetry [1,

Example 5]. However, once it contains two arcs whose union is symmetric with

respect to a line L through 0 then it is symmetric with respect to L. This is a

consequence of the following

THEOREM 2. Let T be a singular curve. Suppose that there are an arc A C T

and an a, 0 < a < 2n, such that etaA C T. Then T = exaY and consequently T is

symmetric with respect to the lines through 0 and etna/2, n£ N. In particular a/ir

must be rational.

For a set E C C write E* — {f : c e E}. To prove Theorem 2 we need the

following lemma.
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LEMMA 2 [1]. Let P C G be an open set with piecewise smooth boundary. Let

f be a continuous function on P which is analytic in P and let g be a continuous

function on P* which is analytic in P*. Suppose that f(w) = g(w) (w £ bP). Then

f is a constant.

PROOF OF THEOREM 2. By Theorem 1 there are n £ N and a function F,

continuous on D, analytic in D such that w »-► G(w) = F(w)/wn is nonconstant

and depends only on \w\ on T. So there is a function <p: [a,b] —» G such that

G(w) — <p(\w\) (w £ T). Note that G is continuous on ¿*\{0} and analytic on

7J>\{0}.
Let P = DC\(e%aD). Denote by Pi the component of P which contains e"*A in its

boundary. Assume for a moment that Pi does not contain 0. Then G is continuous

on Pi and analytic in Px. If w £ (bPi) r\T then G(w) = <p(\w\). Further, if

w £ eiaA then e~i0iw € A so G(w) = <p(\w\) = <p(\e-iaw\) = G(e~iaw). This

implies that G(w) = G(e~iaw) (w £ Pi). In particular, if w £ (bPi) n (eÍQr) then

G(w) = G(e~iaw) = <p(\e~iaw\) = <p(\w\) so G(w) = <p(\w\) (w £ (bPi) n (eiaT)).

Let Q = DC\e~iaD. Denote by Qi the component of Q which contains (eiaA)* =

e~"*A* in its boundary. Note that Q\ = Pi. So Qi does not contain 0 and

consequently G is continuous on Qi and analytic in Q\. If w £ (bQi) D T then

G(w) = <p(\w\). Further, if w £ (eiaA)* then eiaw £ A* so G(w) = <p(\w\) =

<p(\e-iaw\) = G(eiaw). This implies that G(w) = G(eiaw) (w £ Qi). In particular,

if w £ (bQi) n (e-iaT) then G(w) = G(eiaw) = <p(\eiaw\) = ip(\w\) so G(w) =

cp(\w\)(w£(bQi)r\(e-iaT)).

We have proved that G is continuous on Pi, analytic in Pi, continuous on P*,

analytic in Pi* and satisfies G(w) — <p(\w\) (w £ bPi,w £ bPf). So G(w) = G(w)

(w £ bPi ). By Lemma 2 it follows that G is constant on Pi, a contradiction.

Thus we proved that 0 £ Pi. Since P contains a neighborhood of 0 it follows

that 0e Pi.

Let B = £>\Pi and assume that B is not empty. If we repeat the above argument

we see that G(w) = <p(|w|) (w £ bPi). Further, since G(w) = <p(\w\) (w £T — bD)

it follows that G is continuous on B, analytic in B and satisfies G(w) = <p(|w|)

(w £ bB). In the same way, considering B* = D\Qi instead of B we prove that

G is continuous on B*, analytic in B* and satisfies G(w) = <p(\w\) (w £ bB*).

So G(w) — G(w) (w £ bB) and by Lemma 2 G is a constant, a contradiction.

Consequently B = 0 so D C Pi C D C eiaD which implies that D = e"*D and

T = eiaT. Further, since einaD = D (n £ N) and since D* = D it follows that

<e-ina/2Dy _ eina/2D _ g-ma/2^ which proves that V is symmetric with respect

to the lines through 0 and eina/2, n £ N. Since T is not a circle centered at 0 it

follows that a/7r must be rational. This completes the proof.

COROLLARY 1. Let T be a singular curve. Suppose that 0 < ß < n and that T

contains two arcs whose union is symmetric with respect to the line L through 0 and

e**. Then T is symmetric with respect to L. In particular, ß/ir must be rational.

PROOF. By the assumption there are arcs Ai, A2 such that (e~î/3Ai)* — e~%®A2

which implies that e2t0A* = A2. Since T* = T it follows that A* C T and Theorem

2 implies that T is symmetric with respect to L. This completes the proof.
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4. Two examples.  We denote by A the open unit disc in G.

PROPOSITION l. Let T be a triangle. Then T is singular if and only if T is an

equilateral triangle centered at the origin.

Recall that we are assuming that T = T*.

PROOF. Suppose that T is singular. By Corollary 1 the lines through 0 which

are perpendicular to the sides of T are the lines of symmetry for T which proves

that T is an equilateral triangle centered at 0. Conversely, suppose that T is an

equilateral triangle centered at 0. Let *: D —> A be the conformai map which

satisfies *(0) = 0, *'(0) > 0. Define

G(w)/w3 = *H3 + 1/V(w)3.

Then G is continuous on D, analytic in D and it is easy to see that G(w)/w3

depends only on \w\ on T. By Theorem 1 T is singular. This completes the proof.

PROPOSITION 2. Let T be a rectangle. Then T is singular if and only ifT is a

square centered at the origin.

PROOF. Suppose that T is a square centered at the origin. Let $:£>-> A be

the conformai map which satisfies *(0) = 0, *'(0) > 0. Then

G(w)/w4 = V(w)4 + 1/V(w)4

depends only on \w\ on T. In the same way as above, Theorem 1 implies that T is

singular.

Conversely, assume that T is singular. Corollary 1 implies that T is symmetric

with respect to the imaginary axis. With no loss of generality assume that a + ¿,

a — i, —a + i, —a —i are the vertices ofT where a > 0. We have to prove that a = 1.

It suffices to prove the following: Suppose that there is a nonconstant function G,

continuous on T)\{0} and analytic in -D\{0} which depends only on \w\ on T. Then

a = 1. Let G be as above. With no loss of generality assume that G(a+i) = 0. Since

G(w) depends only on \w\ on T it follows that we can extend G to the rectangle Q

with vertices 3a - ¿, 3a + 3¿, -a - ¿, -a + 3¿ by

G(2i + w) = G(w),        )

G(2a + w)=G(w),        \ (w£D\{0}),
G(2a + 2¿ + w) = G(w) J

to get a continuous function on 0\{0,2a, 2¿, 2a + 2¿}. In particular, G is analytic in

a neighborhood of a-M. Put f(w) = G(w — (a + i)). Then / is analytic in an open

disc U centered at 0. By the properties of G we have f(w) = f(—w) (w £ U f] R)

so f(w) = f(—w) (w £ U). Further, whenever z £ R- and w £ iR- have the same

distance from -a - i we have f(w) = f(z).

Put w(z) = i((z2 + 2az + 1)1/2 - 1) where 11/2 = 1. Passing to a smaller U if

necessary we may assume that w is analytic in U. We have

(z + a)2 + l = (w(z)/i+l)2+a2        (z£U)

which means that if z £ U fl R- then w £ ¿P_ and w and z have the same distance

from —a — i.
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There is a disc U' centered at 0 such that w(U') C U. For every z £ U' (1R- we

have f(w(z)) = f(z) which implies that

(2) f(w(z))=f(z)        (z£U').

Recall that /(0) = 0. Since / is not a constant there is some k £ N such that

f'(0) = ■■■ = /(*0(0) = 0, /(fc+1'(0) t¿ 0. By (2) we have

;(*+i)(z) _ f(k+1)(w(z))w'(z)k+1

+ terms containing fik\w(z)),..., f'(w(z)) as factors,

so /<fc+1)(0) = fik+1)(0)w'(0)k+1 which implies that w'(0)k+1 = 1. On the other

hand, w'(0) = ¿a by the definition of w(z). Consequently a = 1. This completes

the proof.

REMARK. There is no similar result when T is a pentagon. There are pentagons

T which are singular and which are not equilateral. To see this observe that there

are pentagons of the same form as [1, Example 5].

5. Functions analytic on sT, \s\ = 1. We now proceed to obtain a more

detailed description of singular curves. The first step in this direction is a charac-

terization of functions / which satisfy (1).

From now on we denote by $ the conformai map from A to D which satisfies

$(0) = 0, $'(0) > 0.

THEOREM 3. A function f £ C(fi) satisfies (1) if and only if the following two
conditions are satisfied:

(i) for each n < 0, An(f, r) = 0 (a < r < b),

(ii) for each n > 0 there is a polynomial Pn satisfying Pn(l/ç) = ?-2nPn(f)

(c £ C) such that

An(f,\a>(c)\) = rnPn(c)      (çebA).

REMARK. Note that the degree of Pn is at most 2n. Note also that ç~nPn(ç)

has the form 6n0 + bni(ç + 1/c) -\-h bnn(çn + l/çn) so that (ii) is equivalent to

(ii') for each n > 0 there are a„o, a„i,..., ann such that

A„(/, \$(el,p)\) = an0 + a„i cos<p H-(- ann coswp.

PROOF. The only if part. Observe first that by the symmetry of T with respect

to the real axis we have 4>(f) = 4>(ç) (c £ bA).

Assume that / € G(fi) satisfies (1). By Lemma 1 for every n £ Z the function

z »-> 2nAn(|2|) has a continuous extension from r to D which is analytic in D. It

follows that for each n £ Z there is a function P„, continuous on A, analytic in A,

such that

(3) $(ç)"An(/,|$(c)|) = Pn(c)       (ç£bA).

If n < 0 it follows that ç h-> An(f, \®(ç)\) is the boundary function of a function

G, continuous on A, analytic in A, which has a zero at c = 0. Since G(ç) = G(f)

(ç £ bA) it follows that G = 0 which proves (i).

Let n > 0. We have $(ç) = çV(ç) (ç £ A) where both * and 1/4* are continuous

on A and analytic in A. By (3) we have

(4) Fn(i)/9(()n = c2"Pn(l/c)/*(lAr       (?G6A)



406 JOSIP GLOBEVNIK

which implies that

r f„(ç)/*(c)» (<• g A),
f      \Pn(l/c)-c2"/*(l/f)"    (i6C\A),

is an entire function of polynomial growth at infinity so it is a polynomial that

we denote by P„. By (4) we have Pn(c) = c2nP„(l/ç) (c £ C). Further, by

(3), A„(/,|*(ç)|) = F„(f)/*(?)» = r"Pn(ç) (c £ bA) which proves (ii). This
completes the proof of the only if part.

The if part. Suppose that / £ C(Q) satisfies (i) and (ii). We first show that for

each n £ Z and for each s, \s\ = 1, the function z >-► znAn(f, \z\) has a continuous

extension from sT to sD which is analytic in sD, that is, ç h-> (s<b(ç))nAn(f, |$(?)|)

is the boundary function of a function continuous on A, analytic in A. If n < 0

this is so since An(r) = 0 (a < r < b). If n > 0 then

(s$(c))"An(/, |<f>(ç)|) = sn*(í)Vr"Pn(?) = s"*(c)"Pn(c)

which, on bA, is the boundary function of sn*i>Pn which is continuous on A and

analytic in A.

For each r, a <r <b, X^oo An(f,r)rnetn'p is the Fourier series of <p h-> f(rel<p).

Let

(1 m-l

-1 -(m-l)

be its mth Cezàro mean. By the uniform continuity of / on fi the family {9 \->

f(rel6): a < r < b} is uniformly equicontinuous on [0,27r]. The usual proof of

Féjer's theorem [2] applied to E-oo^M/»^"*3 shows that am(f,r,ei,p) con-

verges to f(re%{p) uniformly for r and <p, a <r < b, 0 < <p < 2-k. Consequently, on

fl, f(z) is the uniform limit of the sequence

(1 m-l \

A0(f,\z\)+Y/Ak(f,\z\)zk + ---+    Y,    Ak(f,\z\)zk    .
-1 -(m-l) )

By the preceding discussion each fm satisfies (1) so the same holds for /. This

completes the proof of Theorem 3.

6. Another characterization of singular curves.

THEOREM 4. Let r and <E> be as in Theorem 3. T is singular if and only if there

are n > 0 and real numbers cti, a2,..., an, not all equal to zero, and a function F

on [a, b] such that

(5)   F(|$(ç)|) = ai(c + l/c) + a2(c2 + l/c2) + --- + an(c" + l/c")        (ç£bA).

REMARK. (5) should be understood as an incidence relation, that is, if

/i(ç) = ai(ç + l/ç) + --- + an(cn + l/ç")

then h(çi) = h(ç2) whenever Çi,ç2£ bA and |$(ft)| = |$(f2)|. Note also that h(eif)

is a trigonometric polynomial

h(et,p) = ci cos ip + ■ • ■ +cn cos nip.
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PROOF. The only if part. Suppose that T is singular. This means that there is

an / £ C(fl) which satisfies (1) and which is not holomorphic in IntO. It follows

that there is some n £ Z such that r i-» An(f,r) is nonconstant on [a,b] [1]. By

Theorem 3 it follows that there is some n > 0 such that

¿n(/,l*(?)l) = ?-nFn(?)      (çe&A)

where ç *—> Ç~nPn{ç) is not a constant and Pn is a polynomial satisfying Pn(l/ç) =

r2"Pn(c) (Ç £ C), that is,

An(f, |S(ç)|) = bo + bi(ç + 1/c) + ■■■ + bn(çn + 1/c")        (c 6 6A)

where at least one of ¿>i,..., bn is different from zero. If all nonzero bk are pure

imaginary let

F(\*(ç)\) = C1(An(f,\m\)-bo)       (?€6A),

and otherwise let

F(|S(?)|) = Re(A„(/, |<D(c)|) - bo)       (c £ bA).

In either case F(|$(f)|) is of the form (5). This completes the proof of the only if

part.

The if part. Suppose that there are n > 0 and real numbers oi,..., on, not all

equal to zero, and a function F on [a, b] such that (5) holds. Let h be as in the

Remark. By (5), F(|w|) = h(^~1(w)) (w £ T). Suppose for a moment that F is

not continuous on [a,b]. This implies that there are r, a < r < b, and a sequence

wn £ T, \wn\ —> r, such that |F(|wn|)— F(r)| > S > 0 (n £ N). By the compactness

of T we may, passing to a subsequence if necessary, assume that wn —* w £ T. It

follows that \(h o $_1)(wn) - (h o $~1)(w)\ > 6 (n £ N), a contradiction. This

proves that F is continuous on [a, b]. Define

f(z) = znF(\z\)       {zett).

Clearly / is continuous on fi. Let s £ bA. We have /(s$(ç)) = sn$(ç)nh(ç)

(ç £ bA). Since h has a pole of at most order n at the origin and 3> has a zero at

the origin it follows that /|(sr) has a continuous extension to sD which is analytic

in sD. It follows that / satisfies (1). Since F is not a constant it follows that / is

not analytic in Int fi. This proves that T is singular. The proof is complete.

7. Properties of singular curves.

PROPOSITION 3. Suppose that T intersects a circle centered at the origin in an

infinite set of points.  Then T is regular.

PROOF. Suppose that T is singular. By Theorem 4 there are n > 0 and numbers

ai,..., an, not all equal to zero, and a function F on [a, b] such that F(|i>(f)|) = h(ç)

(c £ bA) where h(ç) = ai(ç + 1/c) + ■ ■ ■ + an(çn + l/çn). By our assumption h

has the same value at an infinite sequence of points on bA, a contradiction. This

completes the proof.

PROPOSITION 4. Let r be singular. Then \w\ has only a finite number of local

maxima or minima on T, that is, <p i—> |$(eI¥>)| has only a finite number of local

maxima or minima on (0,7r).

PROOF. By Theorem 4 there is a trigonometric polynomial h(<p) = 6iCOS£> +

•■■ + bncosnip, not identically zero, such that |$(el!P)| = |$(eî,/')| implies that
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h(ip) = h(t¡)). Suppose now that ip •-» ^(e1*5)! has a local maximum at <po, 0 <

<Po < ir. By Proposition 3 there is a neighborhood U of tpo such that |$(e,v3)| <

|$(e,v,°)| (ip £ U\{<po}). Continuity of $ implies that there are sequences <p'n / (p0,

<Pn \ <Po such that |$(e^«)| = |$(e¿^")| (n £ N) and consequently h(<p'n) = h(<p'¿)

(n £ N). It follows that h'(ip0) = 0. Since h! has only finitely many zeros on (0, it)

it follows that ip i—► |$(e1,p)| has only finitely many local maxima or minima on

(0,7r). This completes the proof.

PROPOSITION 5. Let r be such that 9 i-> |$(e,e)| has only a finite number of

local extrema on (0, tt) . Moreover, assume that whenever <p is the point of local

extremum then T is symmetric with respect to the line through 0 and $(el,p). Then

T is singular.

PROOF. Let <pi, 1 < ¿ < n, be the points of local extrema of 9 i-* |$(eîél)| on

(0,7r), ¡pi < <p2 < ■ ■ • < <pn- Because of the symmetry we have tpk = kn/(n + 1).

Write ipo — 0, <Pn+i = "" and observe that between <pk and <pk+i, 6 *—> |$(etö)|

is either strictly increasing or strictly decreasing, 0 < k < n; in particular, it is

one-to-one. It is periodic with period 2n/(n + 1). Now it is easy to see that there

is a function F on [a,b] such that F(\$(et,p)\) — cos(n + l)<p. By Theorem 4 the

curve T is singular. This completes the proof.

PROPOSITION 6.   Every curve T is the limit of a sequence of singular curves.

PROOF. We first prove that a curve T is singular if the conformai map $ is a

polynomial. Let $(<;) = YJk=ia^k- Since $(f) = $M (? e A)' aii--->am are

real. We have
m     m

i^)i2=EEa*a<et(fc-i)ô

fc=i¡=i

= amaie^m-^e + (am_ia1 +ama2)e^m-2^e

-\-h (a2ai + a3a2 H-h amam_i)eífl

+ (a] + a22 + ■ ■ ■ + a2m)

+ (aia2 + a2a3 H-h am-iam)e~te

+ ■■■ + (aiam_i + a2am)e-¿('"-2)<' + aiame^m-^e

which shows that there are real numbers Ai,...,Am, not all equal to zero, such

that |$(ç)|2 = Ai(c + 1/c) + • • • + Am(çm + l/cm) (c £ bA). By Theorem 4 it

follows that T is singular.

Now, let T be a curve and let $: A —► D be the usual conformai map. Let

$(?) = Pit + P2?2 + • • ■ (f € A). Since $(<r) = ¥(f) (c £ A), pk are real, k £ N.
Let e > 0. Since $ is continuous on A for each n £ N there is an rn, 0 < rn < 1,

such that

(6) |*(r„f)-*(0l<e/n       (? e 6A).

With no loss of generality assume that rn / 1. Further, by the uniform convergence

of the Taylor series on compact subsets of A it follows that for each n £ N there

is an m £ N such that if gn(ç) = Pif H-h Pmfm then gn maps r„A conformally

onto a domain D„ bounded by a smooth curve rn, and moreover that

(7) |o„(r„c)-$(rnç)|<e/n        (c £ bA).
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Since pk are real we have T* = Tn. Further, if e is chosen small enough at the

beginning then each r„ contains 0 in its interior. Since gn are polynomials the

curves Tn are singular. By (6) and (7) it follows that T is the limit of the curves

rn. This completes the proof.

Every curve T is the limit of a sequence Tn of the curves such that for each n,

rn meets a circle centered at the origin in an arc. By Proposition 3 such curves are

regular so we have

PROPOSITION 7.   Every curve T is the limit of a sequence of regular curves.

8. Functions analytic on circles. Let T be a circle. We know from Example

2 in §1 that T is singular and that the function f(z) = 1/z satisfies (1). Clearly

g(z) = z also satisfies (1) and so does every uniform limit on Q of a sequence of

polynomials in / and g. It turns out that there are no other functions which satisfy

(!)•

THEOREM 5. Let T be a circle. The f £ C(U) satisfies (1) if and only if f is
the uniform limit of a sequence of polynomials in z and 1/z. Consequently, if f

satisfies (1) then f is analytic on every circle contained in fi and containing 0 in

its interior.

PROOF. The proof is similar to the proof of Theorem 3 but with $ replaced by

the linear map mapping A onto D (thus dropping the requirement that $(0) = 0).

Let r = {p + çR: c £ bA} where 0 < p < R. Suppose that / £ C(U) satisfies

(1). By Lemma 1 it follows that for each n£ Z there is a function Gn, continuous

on A, analytic in A such that (p + çR)nAn(f, \p + çR\) = Gn(c) (ç £ bA). As in

the proof of Theorem 3 we see that An(r) = 0 (a < r < b, n < 0). Let n > 0. We

have A„(/, \p + cR\) = Gn(c)/(p + cR)n (ç £ bA) which implies that

Gn(c)/(p + cR)n = G„(?)/(p + sR)n = ?nG„(l/?)(Ä + cp)n       (c £ bA)

so
¡(R + cPYGn(c) (ce A),

Ç      \(p + cR)nrGn(l/ç)    (Ç£C\A),

is a polynomial that we denote by Pn. We have P„(f) = Ç2nPn(l/ç) (c £ C). Now,

F«(?)
A„(/,|p + cP|) = (p + çR)n(R + ç.p)n

Pn (?)/?"

\P + cR\2n
(? 6 bA),

so there are ao, a¡,..., an such that

\p + Rei,p\2nAn(\p + Reiip\) = a0 + ax cos<p H-\-an coswp.

For every m £ N, cosm<p is a polynomial in cos<p of degree m, so

\p + Re^\2nAn(\p + R¿v\) = Qn(cos <p)

where Qn is a polynomial of degree < n. Write \p + Rel,p\ — t. Clearly a < t < b

(0 < ip < tt). We have (p + Rcostp)2 + R? sin2 <p — t2 which implies that cosip —

(t2 -R2- p2)/2PR, so

i2"An(r) = Qn((t2 -R2- p2)/2PR) = 5n(i2)
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where Sn is a polynomial of degree < n so there are cq,Ci,.. .,c„ such that

An{r) = c0 + ci/r2 + ■■■ + cn/r2n        (a<r< b).

If z = re^ it follows that

znAn(\z\) = zn(c0 + cil(zz) + ■■■ + cn/(znzn))

= c0zn + cizn-x/z + ■■■+ cn/zn.

Recall that on Q, f(z) is the uniform limit of the sequence

(1 m-l

A0(f,\z\) + Y^Mf,\z\)zk + ---+    J2   Mf,\A)zk
-1 -(m-l)

which implies that it is the uniform limit of a sequence of polynomials in z and 1/z.

This completes the proof.

Thus, if T is a circle then / 6 G(fi) satisfies (1) if and only if / belongs to the

function algebra on the closed annulus 0 generated by the functions z and 1/z. It

might be interesting to study this algebra in the theory of function algebras.
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