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FIXED POINTS OF ARC-COMPONENT-PRESERVING MAPS

CHARLES L. HAGOPIAN

ABSTRACT. The following classical problem remains unsolved:

If M is a plane continuum that does not separate the plane and / is a map

of M into M, must / have a fixed point?

We prove that the answer is yes if / maps each arc-component of M into

itself. Since every deformation of a space preserves its arc-components, this

result establishes the fixed-point property for deformations of nonseparating

plane continua. It also generalizes the author's theorem [10] that every arc-

wise connected nonseparating plane continuum has the fixed-point property.

Our proof shows that every arc-component-preserving map of an indecompos-

able plane continuum has a fixed point. We also prove that every tree-like

continuum that does not contain uncountably many disjoint triods has the

fixed-point property for arc-component-preserving maps.

1. Introduction. According to the Lefschetz fixed-point theorem, every defor-

mation of a polyhedron with nonzero Euler characteristic has a fixed point. A vari-

ety of concepts have been used to extend this result [6, 7, 8, 9, 21, 27]. Recently,

the author [13] used the dog-chases-rabbit principle to prove that every deformation

of a uniquely arcwise connected continuum has a fixed point. Young's example [30]

of a uniquely arcwise connected continuum without the fixed-point property shows

that the author's theorem [13] does not generalize to arc-component-preserving

maps. However, every arc-component-preserving map of a uniquely arcwise con-

nected plane continuum has a fixed point [12]. Here we establish the analogous

theorem for nonseparating plane continua. Once again, our proof is based on the

dog-chases-rabbit principle.

2. Definitions. A space S has the fixed-point property if for each map f oî S

into S, there exists a point p of S such that f(p) = p.

A map / of S is an arc-component-preserving map if / maps each arc-component

of S into itself.

A map / of S is a deformation if there exists a map h of S x [0,1] onto S such

that h(p, 0) = p and h(p, 1) = f(p) for each point p of S.

A continuum is a nondegenerate compact connected metric space.

A continuum is uniquely arcwise connected if it is arcwise connected and does

not contain a simple closed curve.

A continuum is indecomposable if it is not the union of two of its proper subcon-

tinua.
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A continuum T is a triod if T has a subcontinuum Z such that T ~ Z is the

union of three nonempty disjoint open sets.

A tree is a finite graph that does not contain a simple closed curve.

A continuum M is tree-like if for each positive number e, there is a cover of M

with mesh less than e whose nerve is a tree.

In [2], Bellamy constructed a tree-like continuum that admits a fixed-point-free

map. Whether or not this example can be modified to solve the classical plane

fixed-point problem remains to be seen [2, p. 12; 20, 25, 26].

3. Preliminaries. Henceforth, M is a continuum with metric p.

A chain is a finite collection ~W = {Wl : 1 < i < n} of open subsets of M such

that Wi C\Wj¿0 if and only if |¿ - j\ < 1.

If n > 2 and Wi also intersects Wn, then W is a circular chain.

If the mesh of IV is less than e, then W is an s-chain.

If Bd(U(W¿ : 1 < i < n}) C Bd(Wi U Wn), then HI is a free chain.
Let x be a point of M. Let X be the arc-component of M that contains x.

Assume

(3.1) X does not contain a simple closed curve.

Let z be a point of X ~ {x}. The arc, half-open arc, and the arc-segment

(open arc) in M with endpoints x and z are denoted by [x,z], [x,z), and (x,z),

respectively. We define [x,x] to be {x}.

A chain W = {Wi: 1 < i < n} follows [x,z] if [x,z] c|JW,ie^~ CIW2,

andz£Wn~C\Wn-i.

Assume that every subcontinuum of M that intersects (x, z) and M ~ [x, z] also

intersects {x,z}.

Then for each positive number e,

(3.2) there is a free e-chain that follows [x,z].

To see this, let V = {V¿ : 1 < ¿ < n} be an e-chain that follows [x, z\. Since [x, z]

is a component of [x, z] U (M ~ (Vi U V„)), there exist disjoint open sets P and Q in

M such that [x, z] C P, M ~ U V C Q, and M ~ (Vi U Vn) C P U Q [24, Theorem
49, p. 17]. Let Wi = Vi and Wn = V„. For each ¿ (1 < ¿ < n), let W¿ = P n V¿.
Then {W¿: 1 < ¿ < n} is a free e-chain that follows [z, z]. Hence (3.2) is true.

Assume

/ is a fixed-point-free map of M into M
(3.3)

and there is an arc in M from x to f(x).

Since the continuous image of an arc is arcwise connected [17, Theorem 1, p.

254 and Theorem 2, p. 256], for every point p of X, the arc [p, f(p)] is in X.

By the compactness of M and the continuity of /, there is a positive number r

such that for every point p of M,

(3.4) P(PJ{P)) >T.
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Using assumptions (3.1) and (3.3), Borsuk [5] proved there exists a unique se-

quence ai,a2,... of points of X such that ai = x and for each positive integer

n,

(3.5) p{an,an+i) = r/2 [5, p. 19, (4n)],

(3.6) if pe [an,an+i), then p(an,p) < r/2 [5, p. 19 (5„)],

(3.7) [x,an] n [an,an+i] = {an}        [5, p. 19, (11)], and

(3.8) an £ [x, f(an)]        [5, p. 19, (7„)].

For each positive integer n, let ipn be a homeomorphism of the half-open real

line interval [n — l,n) onto [an,an+i). For each nonnegative real number r, let

ip(r) = ipn(r) iî n — 1 < r < n.

Let Px = \J{[x,an): n = 2,3,...}. By (3.7), ip is a one-to-one map of the

nonnegative real line [0, -f-oo) onto Px. The map tp determines a linear ordering <C

of Px with x as the first point.

The set Px is called a Borsuk ray.

In [4, p. 123], Bing described the restriction of a fixed-point-free map to a Borsuk

ray in terms of a dog chasing a rabbit. To continue in this spirit, one might think

of our free chain as an open-ended hollow log through which the dog and rabbit

run.

For each point p of Px, let Px(p) denote {q £ Px : p = q or p -C q}.

Let Lx — f){C\Px(p): p £ Px}. By (3.5), Lx is not degenerate. Hence Lx is a

subcontinuum of CIPX.

The Borsuk ray Px is perfect if Lx — Cl Px and x belongs to every subcontinuum

of M that intersects Px and M ~ Px.

For each point p of Px, by [12, p. 98, (6)], p £ [x, f(p)].

If Px is perfect, it follows from (3.5) that for each point p of Px,

(3.9) f(p) £ Px(p).

Suppose M is in the plane E2.

Assume there exist disjoint open sets n and E in M such that x £U, PXP\T, ̂  0,

and for each point p of Px fl n,

(3.10) [p,/(p)]nE = 0.

The remainder of this section is devoted to proving

(3.11) Px is not perfect.

Assume Px is perfect. Since Lx = CIPX, there exist points s,t,y, and z of Px

such that {s, t} C E, {y, z} C n, and Ky«i«z.

By (3.9), f(y) £ Px(y) and f(z) £ Px(z). By (3.10), f(y) £ (y,t). Let Y
and Z be open subsets of n such that y £ Y, z £ Z, [x,y] n /(Cl F) = 0, and

[x,z]nf(ciz) = 0.
Let e be a positive number less than p([x, y], {t} U f(Y)), p([y, z],{s} U f(Z)),

p({s, t}, M ~ E), p(y, M ~ Y), and one-half of p(z, M ~ Z).
By the argument for (3.2), there exist disjoint disks B and D in E2 and a free

e-chain "W - {Wi: 1 < i < n} that follows [x,z] such that ClWi = M C\ B and

ClWn = MDD.
Let Wm be an element of Vi) that contains y.
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Since Wm C Y, p([x, y], f(Y)) > e, and [x, y] intersects each element of {Wi : 1 <

i < m},

(3.12) f(Wm) n \J{Wi : 1 < i < m} = 0.

Since Wn-i C Z, p([y,z],f(Z)) > e, and [y, z] intersects each element of

{Wi: m<i<n},

(3.13) f{Wn-i) n \J{Wt :m<i<n} = 0.

We say that an arc [u, v] in Px is ordered from Wj to Wi in Vil if u «C v, u £ Wj,

v £ Wi, and [u, v] C \J{Wk :i<k< j}.

Note that

(3.14) no arc in Px is ordered from Wm to Wi in "HI.

To see this, assume there is an arc [u, v] in Px f) \J{Wi : 1 < i < m} such that

u <SC v, u £ Wm, and v £Wi. Let Wa be an element of Ml) that contains s. Since

p(s, [y, z]) > e and [y, z] intersects each element of {Wi : m <i < n}, it follows that

a < m. Therefore [u,v] C\Wa ¿ 0. Since Wa C E and Wm C n, by (3.9) and

(3.10), f(u) £ [u,v], and this contradicts (3.12). Hence (3.14) is true.

Furthermore,

(3.15) no arc in Px is ordered from Wn-i to Wm in W.

To see this, assume there is an arc [u, v] in Px n \J{Wi ■ m < i < n} such that

u «C v, u £ Wn-i, and v £ Wm. Let Wß be an element of "W that contains t.

Note that Wß C E and Wn-i U Wn c n. Since p(t, [x,y]) > e and [x,y] intersects

each element of {Wi: 1 < i < m}, it follows that m < ß < n — 1. Therefore

[u,v] nW0 ¿ 0. By (3.9) and (3.10), f(u) £ [u,v], and this contradicts (3.13).

Hence (3.15) is true.
Let C be an open disk in E2 containing y such that M C\ G\C C Wm and

(B U D) n Cl C - 0. Let cx be the first point of [x, y] n Cl C with respect to <.
Let 6i be the last point of [x, ci] n B. Let di be the first point of [y, z] n D. Let c2

be the last point of [y, di] n Cl C.
Since Lx = C\PX, it follows that Px(z) C\C ^ 0. Let c3 be the first point of

Px(z)r\C\C.
Since W is free, by (3.15), [z, c3]C\B ^ 0. Let 62 be the last point of [z, c3] (1B.

Since Lx = C\PX, by (3.14), there exists a point d of Px(c3) fl Wn such that

[c3, d] c U{^«: 2 < ¿ < n}. Let C4 be the last point of [c3, d] n Cl C. If necessary,

adjust C so that c3 ^ c4. Let cfo be the first point of [c4, d] n D.

By (3.14) and (3.15),

(3.16) (UW : K * < n}) ~ (Wi U H^n) contains [&i,di] U [62,d2]-

Let H and / be two arc-segments in E2 ~ (BUflU [h,di] U [62,d2] U C1C)
with disjoint closures that go from B to D. Let fi be the complementary domain

ofJ3u£>U/iU/ that contains C.

By (3.16), [£>i,di] and [62,^2] are disjoint arcs in Clfi. Hence {61,di} does not

separate b2 from d2 in the simple closed curve Bdf! [24, Theorem 7, p. 144]. Since

{bi,b2} cBdB and {di,d2} C BdD, the set {61,62} does not separate di from d2
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in Bdfi. Since [£>i,ci], [c2,di], [62,03], and [04, d2] are disjoint arcs in (C1Q) ~ C,

it follows that {ci,c2} does not separate c3 from c4 and {ci,c3} does not separate

c2 from c4 in BdC. Thus {ci,c4} separates c2 from C3 in BdC.

Let J be an arc-segment in C that goes from c2 to C3. Let K be the arc in Bd C

with endpoints Ci and c4 that is crossed by the arc [62, c3] U C1J at C3. Then K

crosses the simple closed curve [c2, c3] U J only at c3. Hence [c2, c3] U J separates ci

from c4 in E2. Since [x,ci]u[c4,d] and [c2,c3]U J are disjoint, [c2,c3]U J separates

x from d in E2.

Let A be the complementary domain of [c2, c3] U J that contains d. Since Lx =

C\PX and x £ E2 ~ C1(A U fi), it follows that Px(d) intersects E2 ~(Aö Ü). Let

w be the first point of Px(d) in E2 ~ (AUfi). Since J C Q and Px(d)n [c2,c3] = 0,

the point w is in (Bd Q) ~ Cl A. Note that d £ A ~ Q. Let u be the last point of

[d, w) in E2 ~ n. Then u G A n Bd O and (w, w) C Í1.

Since w6A,u)££2~A, and [u, w]n[c2,c3] = 0, it follows that [u,w]C\C ^ 0.

Let t> be the first point of [u, w] fl BdC. Since [d2,d] and [c2,c3] U J are disjoint,

d2 £ A. Thus [c4,d2] U [u,v] is in A. Therefore {c2,c3} does not separate C4 from

v in BdC Hence [u,v] U [c4,d2] U BdC contains an arc A that goes from u to d2

in A ~ C. Note that A is in (Cl Cl) ~ (\b2, c3] U J U [c2, di]).

It follows from [24, Theorem 7, p. 144] that

(3.17) u is in the component of (BdíTj ~ {b2,di} that contains d2.

By a similar argument,

(3.18) w is in the component of (Bdf2) ~ {b2,d{}

that contains 61.

Since [u, w] and [b2, d2] are disjoint arcs in Cl fi, the set {62, d2} does not separate

u from w in Bd Ü.

Therefore, by (3.17) and (3.18),

(3.19) u belongs to the arc in (Bdfi) fl BdD that goes from di to d2-

Since M n Cl C C Wm, the point v belongs to Wm. Since W is free and (u, w) c

£2 ~ (BUD), it follows that [u,w] C UW: 1 < ¿ < n}. Hence, by (3.19),

u £ Wn-i. Thus [u, v] contains an arc that is ordered from Wn-i to Wm in W, and

this contradicts (3.15). Therefore (3.11) is true.

4. Results.

THEOREM 4.1. If M is a nonseparating plane continuum and f is an arc-

component-preserving map of M, then f has a fixed point.

PROOF. Assume / moves each point of M. According to a theorem of Bell [1]

and Sieklucki [28], there exists an indecomposable continuum Q in BdM such that

Q = f(Q).
Following Krasinkiewicz [16], we define a composant C of Q to be internal if

every continuum in the plane that intersects C and is not contained in Q intersects

every composant of Q.

By [16, Theorem 2.3], Q has uncountably many internal composants. Since

the composants of Q are disjoint [24, Theorem 138, p. 59], only countably many

composants contain triods [23].   Moreover, since each composant is dense in Q
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[24, Theorem 135, p. 58], only countably many composants contain continua that

separate the plane. Hence there is an internal composant C of Q that does not

contain a triod or a continuum that separates the plane.

Since M does not separate the plane, by [15, Theorem 2.1],

(4.2) every subcontinuum of M that intersects C and M ~ C contains Q.

Let R be a subcontinuum of Q that intersects C such that

(4.3) R = f(R) and

no proper subcontinuum of R is mapped

into itself by / [29, Theorem 11.1, p. 17].

Note that R may be Q.

Let {E¿ : i = 1,2,...} be the set of elements of a countable open base for M that

intersects R. For each positive integer ¿, let R¿ be the set consisting of all points p

in R such that p and f(p) are the endpoints of an arc in M ~ Cl Hi. Since / is fixed-

point free, it follows from (4.3) that R is not an arc. Hence R = \J{Ri : ¿ = 1,2,... }.

By the Baire category theorem, there is an integer j such that Cl Rj contains

a nonempty open subset E of R. Since Rj fl ClEj = 0, it follows that E n (R ~

Cl Ej) t¿ 0. Let n be an open subset of M ~ Ej such that n n R is a nonempty

subset of E.

Let x be a point of C fl R C\ U. Let X be the arc-component of M that contains

x. By (4.2), X C C. Hence X does not contain a simple closed curve. Since

f(X) C X, there is an arc in M from x to /(x).

As in §3 (above), define the Borsuk ray Px in X.

For each point p of Px, by [12, p. 98, (6)], p £ [x, f(p)].

Since X does not contain a triod, by (3.5), for each point p of Px,

(4.5) f(p) £ Px(p).

Note that

(4.6) Px C R.

To see this, assume the contrary. Since Px C X C Q, it follows that R ^ Q.

Hence R C C. Define p to be the last point of Px with the property that [x,p] C

fi n Px. Since X C C, the continuum [p, f(p)] U Ä is in C. Thus [p, /(p)] U Ä does

not separate the plane. Therefore [p, f(p)] C\ R is connected [24, Theorem 22, p.

175]. By (4.3), f(p) £ R. Consequently [p,f(p)] C R. By (4.5), [p,f(p)] C Px(p).
Therefore [p, f(p)] C R fl Px, and this contradicts the definition of p. Hence (4.6)

is true.

Note that

(4.7) f(Lx) C Lx.

To see this, let q be a point of Lx and let pi, p2,... be a sequence of points of Px

converging to q such that pi < p2 < ■ • ■. It follows from (4.5) and the continuity

of / that f(pi), f(p2), ■ ■ ■ converges to a point of Lx. Hence f(q) £ Lx and (4.7) is

true.

By (4.6), Lx is a subcontinuum of R. In fact, by (4.4) and (4.7), Lx = R.
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Hence

(4.8) Px H T,j / 0.

For each point p of Px n n,

(4.9) [p,/(p)] ns,- = 0.

To establish (4.9), let ri, r2,... be a sequence of points of Rj that converges to

p. For each positive integer ¿, let A¿ be an arc in M ~ Ej from r¿ to /(r¿). The

limiting set T of the sequence Ai, A2,... is a continuum in M ~ Ej that contains

{p, /(p)} [24, Theorem 58, p. 23]. By (4.2), Tu[p, f(p)] C C. Thus Tu[p, /(p)] does
not separate the plane. Therefore Tn [p,f(p)] is connected. Since {p,f(p)} C T,

it follows that [p, f(p)] C T. Hence (4.9) is true.

By (3.11), (4.8), and (4.9), Px is not perfect. Since Lx = R, by (4.6), Lx = CIPX.
Hence there exist an open set G and a continuum H in M such that x £ G C M ~

H, HC\Px^0, and # fl (M ~ Px) ^ 0. Since L^ = C1P*, there is an arc [x, z]

in Px such that z £ G and H n [x,z] ^ 0. By (4.2), # U [x,z] C C, and this

contradicts the fact that C does not contain a triod. Therefore / has a fixed point.

COROLLARY 4.10. Every arcwise connected nonseparating plane continuum

has the fixed-point property [10, 11, 22].

Suppose M is a nonseparating plane continuum and / is a map of M into M. If

only countably many arc-components of M are permuted by /, then the proof of

Theorem 4.1 can be modified to show that / has a fixed point.

QUESTION 4.11. If M is a nonseparating plane continuum and / is a map of M

into M that maps one arc-component of M into itself, must / have a fixed point?

In the proof of Theorem 4.1, we used the assumption that M does not separate

the plane only to establish the existence of Q and (4.2). If M is indecompos-

able and Q = M, then (4.2) is obviously true (even when M has infinitely many

complementary domains). Hence we have also proved the following theorem:

THEOREM 4.12. If M is an indecomposable plane continuum and f is an arc-

component-preserving map of M, then f has a fixed point.

A continuum is a solenoid if it is homeomorphic to an inverse limit of circles

with covering maps as the bonding maps.

Every solenoid admits a fixed-point-free deformation. If the degree of each bond-

ing map is greater than 1, the solenoid is indecomposable [3, Corollary, p. 118; 14,

Theorem 8, p. 249]. Hence the assumption that M is planar in Theorem 4.12 is

necessary.

In [18, Problem 27, p. 369], Bellamy asked the following question:

If M is a tree-like continuum and / is a deformation of M, must / have a fixed

point?

Theorem 4.1 shows that the answer to Bellamy's question is yes if M is planar.

Our next theorem generalizes this result [23] :

THEOREM 4.13. If H is a tree-like continuum that does not contain uncount-

ably many disjoint triods and f is an arc-component-preserving map of H, then f

has a fixed point.

PROOF. Assume / moves each point of H.
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Let M be a subcontinuum of H such that

(4.14) M = f(M) and

(4.15) no proper subcontinuum of M is mapped into itself by /.

Since H is tree-like, by (4.14), for every point p of A4,

(4.16) there is a unique arc [p, f(p)] in A4.

Hence the restriction of / to M is a fixed-point-free arc-component-preserving

map of A4.

Note that M is tree-like.

By a theorem of Manka [19], there exists an indecomposable continuum Q in

A4. Since M is tree-like, no arc in M intersects more than one composant of Q.

Therefore M has uncountably many arc-components.

Let X be an arc-component of M that does not contain a triod. Since M is

tree-like, X does not contain a simple closed curve.

Let x be a point of X. Define the Borsuk ray Px in X.

Since X does not contain a triod, it follows from (3.5) and [12, p. 98, (6)] that

for each point p of Px,

(4.17) f(p) £ Px(p).

Note that

(4.18) Px c A4.

To see this, assume the contrary. Let p be the last point of Px with the property

that [x,p] C MDPX. By (4.16), \p,f(p)] C A4. By (4.17), \p,f(p)] C Px(p).
Therefore [p, f(p)] C A4C\PX, and this contradicts the definition of p. Hence (4.18)
is true.

By the argument for (4.7),

(4.19) f(Lx) C Lx.

By (4.15), (4.18), and (4.19)

(4.20) Lx = A4.

The continuum M is indecomposable. For suppose M is the union of two proper

subcontinua J and K. Then, by (4.18) and (4.20), there is an arc in Px with both

endpoints in J that intersects K ~ J, and this contradicts the fact that M is

tree-like.

Let {E¿ : i = 1,2,... } be a countable open base for A4. For each positive integer

¿, let A4i = {p £ A4 : [p, f(p)] D E¿ = 0}. Since M is not an arc, M = \J{A4i : i =
1,2,...}. Hence there is an integer j such that Cl A4j contains a nonempty open

subset n of A4.
Let C be a composant of M that does not contain a triod.

Assume without loss of generality that x belongs to C n II.

By (4.20), Px D Tij ^ 0. By an argument similar to the one for (4.9), for each

point p of Px fl n, the arc [p, f(p)] misses Ey.

By (4.18) and (4.20), Lx = CIPx. Therefore, since C does not contain a triod,

Px is a perfect Borsuk ray in A4.
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As in the proof of (3.11), define a free chain "W = {Wi, W2,. ■., Wm, ■ • •, Wn} in

M that follows an arc [x, z] in Px and has the property that

(4.21) no arc in Px is ordered from Wm to Wi in "w.

Let p be a positive number less than p(x, A4 ~ Wi) and p([x, z], A4 ~ |J "W).

Let T be a cover of M with mesh less than p whose nerve is a tree. Let E be

an element of T that contains x. By (4.20), E D Px(z) ¿ 0. Note that E cWi.

Since "W is free and T does not contain a circular chain, Px(z) contains an arc that

is ordered from Wm to Wi in IV, and this contradicts (4.21). Hence / has a fixed

point.

COROLLARY 4.22. Bellamy's tree-like continuum without the fixed-point prop-

erty [2] does not admit an arc-component-preserving map that is fixed-point free.

QUESTION 4.23. Does every tree-like continuum have the fixed-point property

for arc-component-preserving maps?

An affirmative answer to the following question would generalize the author's

theorem [12] that every uniquely arcwise connected plane continuum has the fixed-

point property.

QUESTION 4.24. If M is a plane continuum that does not contain a simple closed

curve and / is an arc-component-preserving map of A4, must / have a fixed point?
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